modeling_bart.py 56.8 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379
# coding=utf-8
# Copyright 2020 The Facebook AI Research Team Authors and The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch BART model, ported from the fairseq repo."""
import math
import random
import warnings
from typing import Dict, List, Optional, Tuple

import numpy as np
import torch
import torch.nn.functional as F
from torch import Tensor, nn
from torch.nn import CrossEntropyLoss

from transformers.activations import ACT2FN
from transformers.configuration_bart import BartConfig
from transformers.file_utils import (
    add_code_sample_docstrings,
    add_end_docstrings,
    add_start_docstrings,
    add_start_docstrings_to_callable,
    replace_return_docstrings,
)
from transformers.modeling_outputs import (
    BaseModelOutput,
    BaseModelOutputWithPast,
    Seq2SeqLMOutput,
    Seq2SeqModelOutput,
    Seq2SeqQuestionAnsweringModelOutput,
    Seq2SeqSequenceClassifierOutput,
)
from modeling_utils import PreTrainedModel
import logging

logger = logging.getLogger(__name__)  # pylint: disable=invalid-name
logging.basicConfig(
    format="%(asctime)s - %(levelname)s - %(name)s - PID: %(process)d -  %(message)s",
    datefmt="%m/%d/%Y %H:%M:%S",
    level=logging.INFO,
)

_CONFIG_FOR_DOC = "BartConfig"
_TOKENIZER_FOR_DOC = "BartTokenizer"


BART_PRETRAINED_MODEL_ARCHIVE_LIST = [
    "facebook/bart-base",
    "facebook/bart-large",
    "facebook/bart-large-mnli",
    "facebook/bart-large-cnn",
    "facebook/bart-large-xsum",
    "facebook/mbart-large-en-ro",
]
# This list is incomplete. See all BART models at https://huggingface.co/models?filter=bart


BART_START_DOCSTRING = r"""

    This model is a PyTorch `torch.nn.Module <https://pytorch.org/docs/stable/nn.html#torch.nn.Module>`_ sub-class. Use it as a regular PyTorch Module and
    refer to the PyTorch documentation for all matters related to general usage and behavior.

    Parameters:
        config (:class:`~transformers.BartConfig`): Model configuration class with all the parameters of the model.
            Initializing with a config file does not load the weights associated with the model, only the configuration.
            Check out the :meth:`~transformers.PreTrainedModel.from_pretrained` method to load the model weights.

"""
BART_GENERATION_EXAMPLE = r"""
    Summarization example::

        from transformers import BartTokenizer, BartForConditionalGeneration, BartConfig

        # see ``examples/summarization/bart/run_eval.py`` for a longer example
        model = BartForConditionalGeneration.from_pretrained('facebook/bart-large-cnn')
        tokenizer = BartTokenizer.from_pretrained('facebook/bart-large-cnn')

        ARTICLE_TO_SUMMARIZE = "My friends are cool but they eat too many carbs."
        inputs = tokenizer([ARTICLE_TO_SUMMARIZE], max_length=1024, return_tensors='pt')

        # Generate Summary
        summary_ids = model.generate(inputs['input_ids'], num_beams=4, max_length=5, early_stopping=True)
        print([tokenizer.decode(g, skip_special_tokens=True, clean_up_tokenization_spaces=False) for g in summary_ids])

"""

BART_INPUTS_DOCSTRING = r"""
    Args:
        input_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`):
               Indices of input sequence tokens in the vocabulary. Use BartTokenizer.encode to produce them.
            Padding will be ignored by default should you provide it.
            Indices can be obtained using :class:`transformers.BartTokenizer.encode(text)`.
        attention_mask (:obj:`torch.Tensor` of shape :obj:`(batch_size, sequence_length)`, `optional`, defaults to :obj:`None`):
            Mask to avoid performing attention on padding token indices in input_ids.
            Mask values selected in ``[0, 1]``:
            ``1`` for tokens that are NOT MASKED, ``0`` for MASKED tokens.
        encoder_outputs (:obj:`tuple(tuple(torch.FloatTensor)`, `optional`, defaults to :obj:`None`):
            Tuple consists of (`last_hidden_state`, `optional`: `hidden_states`, `optional`: `attentions`)
            `last_hidden_state` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`, defaults to :obj:`None`) is a sequence of hidden-states at the output of the last layer of the encoder.
            Used in the cross-attention of the decoder.
        decoder_input_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, target_sequence_length)`, `optional`, defaults to :obj:`None`):
            Provide for translation and summarization training. By default, the model will create this tensor by shifting the input_ids right, following the paper.
        decoder_attention_mask (:obj:`torch.BoolTensor` of shape :obj:`(batch_size, tgt_seq_len)`, `optional`, defaults to :obj:`None`):
            Default behavior: generate a tensor that ignores pad tokens in decoder_input_ids. Causal mask will also be used by default.
            If you want to change padding behavior, you should read :func:`~transformers.modeling_bart._prepare_decoder_inputs` and modify.
            See diagram 1 in the paper for more info on the default strategy
        past_key_values (:obj:`tuple(tuple(torch.FloatTensor))` of length :obj:`config.n_layers` with each tuple having 4 tensors of shape :obj:`(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
            Contains pre-computed key and value hidden-states of the attention blocks.
            Can be used to speed up decoding.
            If ``past_key_values`` are used, the user can optionally input only the last
            ``decoder_input_ids`` (those that don't have their past key value states given to this model) of shape
            :obj:`(batch_size, 1)` instead of all ``decoder_input_ids`` of shape :obj:`(batch_size, sequence_length)`.
        use_cache (:obj:`bool`, `optional`, defaults to :obj:`True`):
            If `use_cache` is True, ``past_key_values`` are returned and can be used to speed up decoding (see
            ``past_key_values``).
        output_attentions (:obj:`bool`, `optional`, defaults to :obj:`None`):
            If set to ``True``, the attentions tensors of all attention layers are returned. See ``attentions`` under returned tensors for more detail.
        output_hidden_states (:obj:`bool`, `optional`, defaults to :obj:`None`):
            If set to ``True``, the hidden states of all layers are returned. See ``hidden_states`` under returned tensors for more detail.
        return_dict (:obj:`bool`, `optional`, defaults to :obj:`None`):
            If set to ``True``, the model will return a :class:`~transformers.file_utils.ModelOutput` instead of a
            plain tuple.
"""


def invert_mask(attention_mask):
    """Turns 1->0, 0->1, False->True, True-> False"""
    assert attention_mask.dim() == 2
    return attention_mask.eq(0)


def _prepare_bart_decoder_inputs(
    config, input_ids, decoder_input_ids=None, decoder_padding_mask=None, causal_mask_dtype=torch.float32
):
    """Prepare masks that ignore padding tokens in the decoder and a causal mask for the decoder if
    none are provided. This mimics the default behavior in fairseq. To override it pass in masks.
    Note: this is not called during generation
    """
    pad_token_id = config.pad_token_id
    if decoder_input_ids is None:
        decoder_input_ids = shift_tokens_right(input_ids, pad_token_id)
    bsz, tgt_len = decoder_input_ids.size()
    if decoder_padding_mask is None:
        decoder_padding_mask = make_padding_mask(decoder_input_ids, pad_token_id)
    else:
        decoder_padding_mask = invert_mask(decoder_padding_mask)
    if decoder_padding_mask is not None and decoder_padding_mask.shape[1] > 1:
        # never mask leading token, even if it is pad
        decoder_padding_mask[:, 0] = decoder_padding_mask[:, 1]
    causal_mask = torch.triu(fill_with_neg_inf(torch.zeros(tgt_len, tgt_len)), 1).to(
        dtype=causal_mask_dtype, device=decoder_input_ids.device
    )
    return decoder_input_ids, decoder_padding_mask, causal_mask


class PretrainedBartModel(PreTrainedModel):
    config_class = BartConfig
    base_model_prefix = "model"

    def _init_weights(self, module):
        std = self.config.init_std
        if isinstance(module, nn.Linear):
            module.weight.data.normal_(mean=0.0, std=std)
            if module.bias is not None:
                module.bias.data.zero_()
        elif isinstance(module, SinusoidalPositionalEmbedding):
            pass
        elif isinstance(module, nn.Embedding):
            module.weight.data.normal_(mean=0.0, std=std)
            if module.padding_idx is not None:
                module.weight.data[module.padding_idx].zero_()

    @property
    def dummy_inputs(self):
        pad_token = self.config.pad_token_id
        input_ids = torch.tensor([[0, 6, 10, 4, 2], [0, 8, 12, 2, pad_token]], device=self.device)
        dummy_inputs = {
            "attention_mask": input_ids.ne(pad_token),
            "input_ids": input_ids,
        }
        return dummy_inputs


def _make_linear_from_emb(emb):
    vocab_size, emb_size = emb.weight.shape
    lin_layer = nn.Linear(vocab_size, emb_size, bias=False)
    lin_layer.weight.data = emb.weight.data
    return lin_layer


# Helper Functions, mostly for making masks
def _check_shapes(shape_1, shape2):
    if shape_1 != shape2:
        raise AssertionError("shape mismatch: {} != {}".format(shape_1, shape2))


def shift_tokens_right(input_ids, pad_token_id):
    """Shift input ids one token to the right, and wrap the last non pad token (usually <eos>)."""
    prev_output_tokens = input_ids.clone()
    index_of_eos = (input_ids.ne(pad_token_id).sum(dim=1) - 1).unsqueeze(-1)
    prev_output_tokens[:, 0] = input_ids.gather(1, index_of_eos).squeeze()
    prev_output_tokens[:, 1:] = input_ids[:, :-1]
    return prev_output_tokens


def make_padding_mask(input_ids, padding_idx=1):
    """True for pad tokens"""
    padding_mask = input_ids.eq(padding_idx)
    if not padding_mask.any():
        padding_mask = None
    return padding_mask


# Helper Modules


class EncoderLayer(nn.Module):
    def __init__(self, config: BartConfig):
        super().__init__()
        self.embed_dim = config.d_model
        self.self_attn = Attention(self.embed_dim, config.encoder_attention_heads, dropout=config.attention_dropout)
        self.normalize_before = config.normalize_before
        self.self_attn_layer_norm = LayerNorm(self.embed_dim)
        self.dropout = config.dropout
        self.activation_fn = ACT2FN[config.activation_function]
        self.activation_dropout = config.activation_dropout
        self.fc1 = nn.Linear(self.embed_dim, config.encoder_ffn_dim)
        self.fc2 = nn.Linear(config.encoder_ffn_dim, self.embed_dim)
        self.final_layer_norm = LayerNorm(self.embed_dim)

    def forward(self, x, encoder_padding_mask, output_attentions=False):
        """
        Args:
            x (Tensor): input to the layer of shape `(seq_len, batch, embed_dim)`
            encoder_padding_mask (ByteTensor): binary ByteTensor of shape
                `(batch, src_len)` where padding elements are indicated by ``1``.
            for t_tgt, t_src is excluded (or masked out), =0 means it is
            included in attention

        Returns:
            encoded output of shape `(seq_len, batch, embed_dim)`
        """
        residual = x
        if self.normalize_before:
            x = self.self_attn_layer_norm(x)
        x, attn_weights = self.self_attn(
            query=x, key=x, key_padding_mask=encoder_padding_mask, output_attentions=output_attentions
        )
        x = F.dropout(x, p=self.dropout, training=self.training)
        x = residual + x
        if not self.normalize_before:
            x = self.self_attn_layer_norm(x)

        residual = x
        if self.normalize_before:
            x = self.final_layer_norm(x)
        x = self.activation_fn(self.fc1(x))
        x = F.dropout(x, p=self.activation_dropout, training=self.training)
        x = self.fc2(x)
        x = F.dropout(x, p=self.dropout, training=self.training)
        x = residual + x
        if not self.normalize_before:
            x = self.final_layer_norm(x)
        return x, attn_weights


class BartEncoder(nn.Module):
    """
    Transformer encoder consisting of *config.encoder_layers* self attention layers. Each layer
    is a :class:`EncoderLayer`.

    Args:
        config: BartConfig
    """

    def __init__(self, config: BartConfig, embed_tokens):
        super().__init__()

        self.dropout = config.dropout
        self.layerdrop = config.encoder_layerdrop

        embed_dim = embed_tokens.embedding_dim
        self.embed_scale = math.sqrt(embed_dim) if config.scale_embedding else 1.0
        self.padding_idx = embed_tokens.padding_idx
        self.max_source_positions = config.max_position_embeddings

        self.embed_tokens = embed_tokens
        if config.static_position_embeddings:
            self.embed_positions = SinusoidalPositionalEmbedding(
                config.max_position_embeddings, embed_dim, self.padding_idx
            )
        else:
            self.embed_positions = LearnedPositionalEmbedding(
                config.max_position_embeddings,
                embed_dim,
                self.padding_idx,
                config.extra_pos_embeddings,
            )
        self.embed_patches = nn.Embedding(3, config.d_model)
        self.layers = nn.ModuleList([EncoderLayer(config) for _ in range(config.encoder_layers)])
        self.layernorm_embedding = LayerNorm(embed_dim) if config.normalize_embedding else nn.Identity()
        # mbart has one extra layer_norm
        self.layer_norm = LayerNorm(config.d_model) if config.normalize_before else None

    def forward(
        self, input_ids, patch_ids, attention_mask=None, output_attentions=False, output_hidden_states=False, return_dict=False
    ):
        """
        Args:
            input_ids (LongTensor): tokens in the source language of shape
                `(batch, src_len)`
            attention_mask (torch.LongTensor): indicating which indices are padding tokens.
        Returns:
            BaseModelOutput or Tuple comprised of:
                - **x** (Tensor): the last encoder layer's output of
                  shape `(src_len, batch, embed_dim)`
                - **encoder_states** (tuple(torch.FloatTensor)): all intermediate
                  hidden states of shape `(src_len, batch, embed_dim)`.
                  Only populated if *output_hidden_states:* is True.
                - **all_attentions** (tuple(torch.FloatTensor)): Attention weights for each layer.
                During training might not be of length n_layers because of layer dropout.
        """
        # check attention mask and invert
        if attention_mask is not None:
            attention_mask = invert_mask(attention_mask)

        inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale
        embed_pos = self.embed_positions(input_ids)
        embed_patch = self.embed_patches(patch_ids)
        x = inputs_embeds + embed_pos + embed_patch
        x = self.layernorm_embedding(x)
        x = F.dropout(x, p=self.dropout, training=self.training)

        # B x T x C -> T x B x C
        x = x.transpose(0, 1)

        encoder_states = [] if output_hidden_states else None
        all_attentions = () if output_attentions else None
        for encoder_layer in self.layers:
            if output_hidden_states:
                encoder_states.append(x)
            # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
            dropout_probability = random.uniform(0, 1)
            if self.training and (dropout_probability < self.layerdrop):  # skip the layer
                attn = None
            else:
                x, attn = encoder_layer(x, attention_mask, output_attentions=output_attentions)

            if output_attentions:
                all_attentions = all_attentions + (attn,)

        if self.layer_norm:
            x = self.layer_norm(x)
        if output_hidden_states:
            encoder_states.append(x)
            # T x B x C -> B x T x C
            encoder_states = tuple(hidden_state.transpose(0, 1) for hidden_state in encoder_states)

        # T x B x C -> B x T x C
        x = x.transpose(0, 1)

        if not return_dict:
            return tuple(v for v in [x, encoder_states, all_attentions] if v is not None)
        return BaseModelOutput(last_hidden_state=x, hidden_states=encoder_states, attentions=all_attentions)


class DecoderLayer(nn.Module):
    def __init__(self, config: BartConfig):
        super().__init__()
        self.embed_dim = config.d_model

        self.self_attn = Attention(
            embed_dim=self.embed_dim,
            num_heads=config.decoder_attention_heads,
            dropout=config.attention_dropout,
        )
        self.dropout = config.dropout
        self.activation_fn = ACT2FN[config.activation_function]
        self.activation_dropout = config.activation_dropout
        self.normalize_before = config.normalize_before

        self.self_attn_layer_norm = LayerNorm(self.embed_dim)
        self.encoder_attn = Attention(
            self.embed_dim,
            config.decoder_attention_heads,
            dropout=config.attention_dropout,
            encoder_decoder_attention=True,
        )
        self.encoder_attn_layer_norm = LayerNorm(self.embed_dim)
        self.fc1 = nn.Linear(self.embed_dim, config.decoder_ffn_dim)
        self.fc2 = nn.Linear(config.decoder_ffn_dim, self.embed_dim)
        self.final_layer_norm = LayerNorm(self.embed_dim)

    def forward(
        self,
        x,
        encoder_hidden_states,
        encoder_attn_mask=None,
        layer_state=None,
        causal_mask=None,
        decoder_padding_mask=None,
        output_attentions=False,
    ):
        residual = x

        if layer_state is None:
            layer_state = {}
        if self.normalize_before:
            x = self.self_attn_layer_norm(x)
        # Self Attention

        x, self_attn_weights = self.self_attn(
            query=x,
            key=x,
            layer_state=layer_state,  # adds keys to layer state
            key_padding_mask=decoder_padding_mask,
            attn_mask=causal_mask,
            output_attentions=output_attentions,
        )
        x = F.dropout(x, p=self.dropout, training=self.training)
        x = residual + x
        if not self.normalize_before:
            x = self.self_attn_layer_norm(x)

        # Cross attention
        residual = x
        assert self.encoder_attn.cache_key != self.self_attn.cache_key
        if self.normalize_before:
            x = self.encoder_attn_layer_norm(x)
        x, _ = self.encoder_attn(
            query=x,
            key=encoder_hidden_states,
            key_padding_mask=encoder_attn_mask,
            layer_state=layer_state,  # mutates layer state
        )
        x = F.dropout(x, p=self.dropout, training=self.training)
        x = residual + x
        if not self.normalize_before:
            x = self.encoder_attn_layer_norm(x)

        # Fully Connected
        residual = x
        if self.normalize_before:
            x = self.final_layer_norm(x)
        x = self.activation_fn(self.fc1(x))
        x = F.dropout(x, p=self.activation_dropout, training=self.training)
        x = self.fc2(x)
        x = F.dropout(x, p=self.dropout, training=self.training)
        x = residual + x
        if not self.normalize_before:
            x = self.final_layer_norm(x)
        return (
            x,
            self_attn_weights,
            layer_state,
        )  # just self_attn weights for now, following t5, layer_state = cache for decoding


class BartDecoder(nn.Module):
    """
    Transformer decoder consisting of *config.decoder_layers* layers. Each layer
    is a :class:`DecoderLayer`.
    Args:
        config: BartConfig
        embed_tokens (torch.nn.Embedding): output embedding
    """

    def __init__(self, config: BartConfig, embed_tokens: nn.Embedding):
        super().__init__()
        self.dropout = config.dropout
        self.layerdrop = config.decoder_layerdrop
        self.padding_idx = embed_tokens.padding_idx
        self.max_target_positions = config.max_position_embeddings
        self.embed_scale = math.sqrt(config.d_model) if config.scale_embedding else 1.0
        self.embed_tokens = embed_tokens
        if config.static_position_embeddings:
            self.embed_positions = SinusoidalPositionalEmbedding(
                config.max_position_embeddings, config.d_model, config.pad_token_id
            )
        else:
            self.embed_positions = LearnedPositionalEmbedding(
                config.max_position_embeddings,
                config.d_model,
                self.padding_idx,
                config.extra_pos_embeddings,
            )
        self.layers = nn.ModuleList(
            [DecoderLayer(config) for _ in range(config.decoder_layers)]
        )  # type: List[DecoderLayer]
        self.layernorm_embedding = LayerNorm(config.d_model) if config.normalize_embedding else nn.Identity()
        self.layer_norm = LayerNorm(config.d_model) if config.add_final_layer_norm else None

    def forward(
        self,
        input_ids,
        encoder_hidden_states,
        encoder_padding_mask,
        decoder_padding_mask,
        decoder_causal_mask,
        past_key_values=None,
        use_cache=False,
        output_attentions=False,
        output_hidden_states=False,
        return_dict=False,
        **unused,
    ):
        """
        Includes several features from "Jointly Learning to Align and
        Translate with Transformer Models" (Garg et al., EMNLP 2019).

        Args:
            input_ids (LongTensor): previous decoder outputs of shape
                `(batch, tgt_len)`, for teacher forcing
            encoder_hidden_states: output from the encoder, used for
                encoder-side attention
            encoder_padding_mask: for ignoring pad tokens
            past_key_values (dict or None): dictionary used for storing state during generation

        Returns:
            BaseModelOutputWithPast or tuple:
                - the decoder's features of shape `(batch, tgt_len, embed_dim)`
                - the cache
                - hidden states
                - attentions
        """
        if "decoder_cached_states" in unused:
            warnings.warn(
                "The `decoder_cached_states` argument is deprecated and will be removed in a future version, use `past_key_values` instead.",
                FutureWarning,
            )
            past_key_values = unused.pop("decoder_cached_states")
        if "decoder_past_key_values" in unused:
            warnings.warn(
                "The `decoder_past_key_values` argument is deprecated and will be removed in a future version, use `past_key_values` instead.",
                FutureWarning,
            )
            past_key_values = unused.pop("decoder_past_key_values")

        # check attention mask and invert
        if encoder_padding_mask is not None:
            encoder_padding_mask = invert_mask(encoder_padding_mask)

        # embed positions
        positions = self.embed_positions(input_ids, use_cache=use_cache)

        if use_cache:
            input_ids = input_ids[:, -1:]
            positions = positions[:, -1:]  # happens after we embed them
            # assert input_ids.ne(self.padding_idx).any()

        x = self.embed_tokens(input_ids) * self.embed_scale
        x += positions
        x = self.layernorm_embedding(x)
        x = F.dropout(x, p=self.dropout, training=self.training)

        # Convert to Bart output format: (seq_len, BS, model_dim) -> (BS, seq_len, model_dim)
        x = x.transpose(0, 1)
        encoder_hidden_states = encoder_hidden_states.transpose(0, 1)

        # decoder layers
        all_hidden_states = () if output_hidden_states else None
        all_self_attns = () if output_attentions else None
        next_decoder_cache = []
        for idx, decoder_layer in enumerate(self.layers):
            # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
            if output_hidden_states:
                all_hidden_states += (x,)
            dropout_probability = random.uniform(0, 1)
            if self.training and (dropout_probability < self.layerdrop):
                continue

            layer_state = past_key_values[idx] if past_key_values is not None else None

            x, layer_self_attn, layer_past = decoder_layer(
                x,
                encoder_hidden_states,
                encoder_attn_mask=encoder_padding_mask,
                decoder_padding_mask=decoder_padding_mask,
                layer_state=layer_state,
                causal_mask=decoder_causal_mask,
                output_attentions=output_attentions,
            )

            if use_cache:
                next_decoder_cache.append(layer_past.copy())

            if self.layer_norm and (idx == len(self.layers) - 1):  # if config.add_final_layer_norm (mBART)
                x = self.layer_norm(x)
            if output_attentions:
                all_self_attns += (layer_self_attn,)

        # Convert to standard output format: (seq_len, BS, model_dim) -> (BS, seq_len, model_dim)
        if output_hidden_states:
            all_hidden_states = tuple(hidden_state.transpose(0, 1) for hidden_state in all_hidden_states)
        x = x.transpose(0, 1)
        encoder_hidden_states = encoder_hidden_states.transpose(0, 1)

        next_cache = next_decoder_cache if use_cache else None

        if not return_dict:
            return tuple(v for v in [x, next_cache, all_hidden_states, all_self_attns] if v is not None)
        return BaseModelOutputWithPast(
            last_hidden_state=x, past_key_values=next_cache, hidden_states=all_hidden_states, attentions=all_self_attns
        )


def _reorder_buffer(attn_cache, new_order):
    for k, input_buffer_k in attn_cache.items():
        if input_buffer_k is not None:
            attn_cache[k] = input_buffer_k.index_select(0, new_order)
    return attn_cache


class Attention(nn.Module):
    """Multi-headed attention from 'Attention Is All You Need' paper"""

    def __init__(
        self,
        embed_dim,
        num_heads,
        dropout=0.0,
        bias=True,
        encoder_decoder_attention=False,  # otherwise self_attention
    ):
        super().__init__()
        self.embed_dim = embed_dim
        self.num_heads = num_heads
        self.dropout = dropout
        self.head_dim = embed_dim // num_heads
        assert self.head_dim * num_heads == self.embed_dim, "embed_dim must be divisible by num_heads"
        self.scaling = self.head_dim ** -0.5

        self.encoder_decoder_attention = encoder_decoder_attention
        self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
        self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
        self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
        self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
        self.cache_key = "encoder_decoder" if self.encoder_decoder_attention else "self"

    def _shape(self, tensor, seq_len, bsz):
        return tensor.contiguous().view(seq_len, bsz * self.num_heads, self.head_dim).transpose(0, 1)

    def forward(
        self,
        query,
        key: Optional[Tensor],
        key_padding_mask: Optional[Tensor] = None,
        layer_state: Optional[Dict[str, Optional[Tensor]]] = None,
        attn_mask: Optional[Tensor] = None,
        output_attentions=False,
    ) -> Tuple[Tensor, Optional[Tensor]]:
        """Input shape: Time(SeqLen) x Batch x Channel"""
        static_kv: bool = self.encoder_decoder_attention
        tgt_len, bsz, embed_dim = query.size()
        assert embed_dim == self.embed_dim
        assert list(query.size()) == [tgt_len, bsz, embed_dim]
        # get here for encoder decoder cause of static_kv
        if layer_state is not None:  # reuse k,v and encoder_padding_mask
            saved_state = layer_state.get(self.cache_key, {})
            if "prev_key" in saved_state and static_kv:
                # previous time steps are cached - no need to recompute key and value if they are static
                key = None
        else:
            saved_state = None
            layer_state = {}

        q = self.q_proj(query) * self.scaling
        if static_kv:
            if key is None:
                k = v = None
            else:
                k = self.k_proj(key)
                v = self.v_proj(key)
        else:
            k = self.k_proj(query)
            v = self.v_proj(query)

        q = self._shape(q, tgt_len, bsz)
        if k is not None:
            k = self._shape(k, -1, bsz)
        if v is not None:
            v = self._shape(v, -1, bsz)

        if saved_state is not None:
            k, v, key_padding_mask = self._use_saved_state(k, v, saved_state, key_padding_mask, static_kv, bsz)

        # Update cache
        layer_state[self.cache_key] = {
            "prev_key": k.view(bsz, self.num_heads, -1, self.head_dim),
            "prev_value": v.view(bsz, self.num_heads, -1, self.head_dim),
            "prev_key_padding_mask": key_padding_mask if not static_kv else None,
        }

        assert k is not None
        src_len = k.size(1)
        attn_weights = torch.bmm(q, k.transpose(1, 2))
        assert attn_weights.size() == (bsz * self.num_heads, tgt_len, src_len)

        if attn_mask is not None:
            attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attn_mask
            attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)

        # This is part of a workaround to get around fork/join parallelism not supporting Optional types.
        if key_padding_mask is not None and key_padding_mask.dim() == 0:
            key_padding_mask = None
        assert key_padding_mask is None or key_padding_mask.size()[:2] == (
            bsz,
            src_len,
        )

        if key_padding_mask is not None:  # don't attend to padding symbols
            attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
            reshaped = key_padding_mask.unsqueeze(1).unsqueeze(2)
            attn_weights = attn_weights.masked_fill(reshaped, float("-inf"))
            attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
        attn_weights = F.softmax(attn_weights, dim=-1)
        attn_probs = F.dropout(
            attn_weights,
            p=self.dropout,
            training=self.training,
        )

        assert v is not None
        attn_output = torch.bmm(attn_probs, v)
        assert attn_output.size() == (bsz * self.num_heads, tgt_len, self.head_dim)
        attn_output = attn_output.transpose(0, 1).contiguous().view(tgt_len, bsz, embed_dim)
        attn_output = self.out_proj(attn_output)
        if output_attentions:
            attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
        else:
            attn_weights = None
        return attn_output, attn_weights

    def _use_saved_state(self, k, v, saved_state, key_padding_mask, static_kv, bsz):
        # saved states are stored with shape (bsz, num_heads, seq_len, head_dim)
        if "prev_key" in saved_state:
            _prev_key = saved_state["prev_key"]
            assert _prev_key is not None
            prev_key = _prev_key.view(bsz * self.num_heads, -1, self.head_dim)
            if static_kv:
                k = prev_key
            else:
                assert k is not None
                k = torch.cat([prev_key, k], dim=1)
        if "prev_value" in saved_state:
            _prev_value = saved_state["prev_value"]
            assert _prev_value is not None
            prev_value = _prev_value.view(bsz * self.num_heads, -1, self.head_dim)
            if static_kv:
                v = prev_value
            else:
                assert v is not None
                v = torch.cat([prev_value, v], dim=1)
        assert k is not None and v is not None
        prev_key_padding_mask: Optional[Tensor] = saved_state.get("prev_key_padding_mask", None)
        if prev_key_padding_mask is not None:
            if static_kv:
                new_key_padding_mask = prev_key_padding_mask
            else:
                new_key_padding_mask = torch.cat([prev_key_padding_mask, key_padding_mask], dim=1)
        else:
            new_key_padding_mask = key_padding_mask
        return k, v, new_key_padding_mask


class BartClassificationHead(nn.Module):
    """Head for sentence-level classification tasks."""

    # This can trivially be shared with RobertaClassificationHead

    def __init__(
        self,
        input_dim,
        inner_dim,
        num_classes,
        pooler_dropout,
    ):
        super().__init__()
        self.dense = nn.Linear(input_dim, inner_dim)
        self.dropout = nn.Dropout(p=pooler_dropout)
        self.out_proj = nn.Linear(inner_dim, num_classes)

    def forward(self, x):
        x = self.dropout(x)
        x = self.dense(x)
        x = torch.tanh(x)
        x = self.dropout(x)
        x = self.out_proj(x)
        return x


class LearnedPositionalEmbedding(nn.Embedding):
    """
    This module learns positional embeddings up to a fixed maximum size.
    Padding ids are ignored by either offsetting based on padding_idx
    or by setting padding_idx to None and ensuring that the appropriate
    position ids are passed to the forward function.
    """

    def __init__(self, num_embeddings: int, embedding_dim: int, padding_idx: int, offset):
        # Bart is set up so that if padding_idx is specified then offset the embedding ids by 2
        # and adjust num_embeddings appropriately. Other models dont have this hack
        self.offset = offset
        assert padding_idx is not None
        num_embeddings += offset
        super().__init__(num_embeddings, embedding_dim, padding_idx=padding_idx)

    def forward(self, input_ids, use_cache=False):
        """Input is expected to be of size [bsz x seqlen]."""
        bsz, seq_len = input_ids.shape[:2]
        if use_cache:
            positions = input_ids.data.new(1, 1).fill_(seq_len - 1)  # called before slicing
        else:
            # starts at 0, ends at 1-seq_len
            positions = torch.arange(seq_len, dtype=torch.long, device=self.weight.device)
        return super().forward(positions + self.offset)


def LayerNorm(normalized_shape, eps=1e-5, elementwise_affine=True):
    if torch.cuda.is_available():
        try:
            from apex.normalization import FusedLayerNorm

            return FusedLayerNorm(normalized_shape, eps, elementwise_affine)
        except ImportError:
            pass
    return torch.nn.LayerNorm(normalized_shape, eps, elementwise_affine)


def fill_with_neg_inf(t):
    """FP16-compatible function that fills a input_ids with -inf."""
    return t.float().fill_(float("-inf")).type_as(t)


# Public API
def _get_shape(t):
    return getattr(t, "shape", None)


@add_start_docstrings(
    "The bare BART Model outputting raw hidden-states without any specific head on top.",
    BART_START_DOCSTRING,
)
class BartModel(PretrainedBartModel):
    def __init__(self, config: BartConfig):
        super().__init__(config)

        padding_idx, vocab_size = config.pad_token_id, config.vocab_size
        self.shared = nn.Embedding(vocab_size, config.d_model, padding_idx)

        self.encoder = BartEncoder(config, self.shared)
        self.decoder = BartDecoder(config, self.shared)

        self.init_weights()

    @add_start_docstrings_to_callable(BART_INPUTS_DOCSTRING)
    @add_code_sample_docstrings(
        tokenizer_class=_TOKENIZER_FOR_DOC,
        checkpoint="facebook/bart-large",
        output_type=BaseModelOutputWithPast,
        config_class=_CONFIG_FOR_DOC,
    )
    def forward(
        self,
        input_ids,
        patch_ids=None,
        attention_mask=None,
        decoder_input_ids=None,
        encoder_outputs: Optional[Tuple] = None,
        decoder_attention_mask=None,
        past_key_values=None,
        use_cache=None,
        output_attentions=None,
        output_hidden_states=None,
        return_dict=None,
        **kwargs,
    ):
        if "decoder_past_key_values" in kwargs:
            warnings.warn(
                "The `decoder_past_key_values` argument is deprecated and will be removed in a future version, use `past_key_values` instead.",
                FutureWarning,
            )
            past_key_values = kwargs.pop("decoder_past_key_values")

        if decoder_input_ids is None:
            use_cache = False

        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        use_cache = use_cache if use_cache is not None else self.config.use_cache
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        # make masks if user doesn't supply
        if not use_cache:
            decoder_input_ids, decoder_padding_mask, causal_mask = _prepare_bart_decoder_inputs(
                self.config,
                input_ids,
                decoder_input_ids=decoder_input_ids,
                decoder_padding_mask=decoder_attention_mask,
                causal_mask_dtype=self.shared.weight.dtype,
            )
        else:
            decoder_padding_mask, causal_mask = None, None

        assert decoder_input_ids is not None

        if encoder_outputs is None:
            encoder_outputs = self.encoder(
                input_ids=input_ids,
                patch_ids=patch_ids,
                attention_mask=attention_mask,
                output_attentions=output_attentions,
                output_hidden_states=output_hidden_states,
                return_dict=return_dict,
            )
        # If the user passed a tuple for encoder_outputs, we wrap it in a BaseModelOuput when return_dict=False
        elif return_dict and not isinstance(encoder_outputs, BaseModelOutput):
            encoder_outputs = BaseModelOutput(
                last_hidden_state=encoder_outputs[0],
                hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
                attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
            )

        # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
        decoder_outputs = self.decoder(
            decoder_input_ids,
            encoder_outputs[0],
            attention_mask,
            decoder_padding_mask,
            decoder_causal_mask=causal_mask,
            past_key_values=past_key_values,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        if not return_dict:
            return decoder_outputs + encoder_outputs

        return Seq2SeqModelOutput(
            last_hidden_state=decoder_outputs.last_hidden_state,
            past_key_values=decoder_outputs.past_key_values,
            decoder_hidden_states=decoder_outputs.hidden_states,
            decoder_attentions=decoder_outputs.attentions,
            encoder_last_hidden_state=encoder_outputs.last_hidden_state,
            encoder_hidden_states=encoder_outputs.hidden_states,
            encoder_attentions=encoder_outputs.attentions,
        )

    def get_input_embeddings(self):
        return self.shared

    def set_input_embeddings(self, value):
        self.shared = value
        self.encoder.embed_tokens = self.shared
        self.decoder.embed_tokens = self.shared

    def get_output_embeddings(self):
        return _make_linear_from_emb(self.shared)  # make it on the fly


@add_start_docstrings(
    "The BART Model with a language modeling head. Can be used for summarization.", BART_START_DOCSTRING
)
class BartForConditionalGeneration(PretrainedBartModel):
    base_model_prefix = "model"
    authorized_missing_keys = [r"final_logits_bias", r"encoder\.version", r"decoder\.version"]

    def __init__(self, config: BartConfig):
        super().__init__(config)
        base_model = BartModel(config)
        self.model = base_model
        self.register_buffer("final_logits_bias", torch.zeros((1, self.model.shared.num_embeddings)))

    def resize_token_embeddings(self, new_num_tokens: int) -> nn.Embedding:
        old_num_tokens = self.model.shared.num_embeddings
        new_embeddings = super().resize_token_embeddings(new_num_tokens)
        self.model.shared = new_embeddings
        self._resize_final_logits_bias(new_num_tokens, old_num_tokens)
        return new_embeddings

    def _resize_final_logits_bias(self, new_num_tokens: int, old_num_tokens: int) -> None:
        if new_num_tokens <= old_num_tokens:
            new_bias = self.final_logits_bias[:, :new_num_tokens]
        else:
            extra_bias = torch.zeros((1, new_num_tokens - old_num_tokens), device=self.final_logits_bias.device)
            new_bias = torch.cat([self.final_logits_bias, extra_bias], dim=1)
        self.register_buffer("final_logits_bias", new_bias)

    @add_start_docstrings_to_callable(BART_INPUTS_DOCSTRING)
    @replace_return_docstrings(output_type=Seq2SeqLMOutput, config_class=_CONFIG_FOR_DOC)
    @add_end_docstrings(BART_GENERATION_EXAMPLE)
    def forward(
        self,
        input_ids,
        patch_ids,
        attention_mask=None,
        encoder_outputs=None,
        decoder_input_ids=None,
        decoder_attention_mask=None,
        past_key_values=None,
        labels=None,
        use_cache=None,
        output_attentions=None,
        output_hidden_states=None,
        return_dict=None,
        **unused,
    ):
        r"""
            labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`, defaults to :obj:`None`):
                Labels for computing the masked language modeling loss.
                Indices should either be in ``[0, ..., config.vocab_size]`` or -100 (see ``input_ids`` docstring).
                Tokens with indices set to ``-100`` are ignored (masked), the loss is only computed for the tokens
                with labels in ``[0, ..., config.vocab_size]``.

        Returns:

        Conditional generation example::

                # Mask filling only works for bart-large
                from transformers import BartTokenizer, BartForConditionalGeneration
                tokenizer = BartTokenizer.from_pretrained('facebook/bart-large')
                TXT = "My friends are <mask> but they eat too many carbs."

                model = BartForConditionalGeneration.from_pretrained('facebook/bart-large')
                input_ids = tokenizer([TXT], return_tensors='pt')['input_ids']
                logits = model(input_ids).logits

                masked_index = (input_ids[0] == tokenizer.mask_token_id).nonzero().item()
                probs = logits[0, masked_index].softmax(dim=0)
                values, predictions = probs.topk(5)

                tokenizer.decode(predictions).split()
                # ['good', 'great', 'all', 'really', 'very']
        """
        if "lm_labels" in unused:
            warnings.warn(
                "The `lm_labels` argument is deprecated and will be removed in a future version, use `labels` instead.",
                FutureWarning,
            )
            labels = unused.pop("lm_labels")
        if "decoder_cached_states" in unused:
            warnings.warn(
                "The `decoder_cached_states` argument is deprecated and will be removed in a future version, use `past_key_values` instead.",
                FutureWarning,
            )
            past_key_values = unused.pop("decoder_cached_states")
        if "decoder_past_key_values" in unused:
            warnings.warn(
                "The `decoder_past_key_values` argument is deprecated and will be removed in a future version, use `past_key_values` instead.",
                FutureWarning,
            )
            past_key_values = unused.pop("decoder_past_key_values")
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        if labels is not None:
            use_cache = False
            if decoder_input_ids is None:
                decoder_input_ids = shift_tokens_right(labels, self.config.pad_token_id)

        outputs = self.model(
            input_ids,
            patch_ids=patch_ids,
            attention_mask=attention_mask,
            decoder_input_ids=decoder_input_ids,
            encoder_outputs=encoder_outputs,
            decoder_attention_mask=decoder_attention_mask,
            past_key_values=past_key_values,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )
        lm_logits = F.linear(outputs[0], self.model.shared.weight, bias=self.final_logits_bias)

        masked_lm_loss = None
        if labels is not None:
            loss_fct = CrossEntropyLoss()
            # TODO(SS): do we need to ignore pad tokens in labels?
            masked_lm_loss = loss_fct(lm_logits.view(-1, self.config.vocab_size), labels.view(-1))

        if not return_dict:
            output = (lm_logits,) + outputs[1:]
            return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output

        return Seq2SeqLMOutput(
            loss=masked_lm_loss,
            logits=lm_logits,
            past_key_values=outputs.past_key_values,
            decoder_hidden_states=outputs.decoder_hidden_states,
            decoder_attentions=outputs.decoder_attentions,
            encoder_last_hidden_state=outputs.encoder_last_hidden_state,
            encoder_hidden_states=outputs.encoder_hidden_states,
            encoder_attentions=outputs.encoder_attentions,
        )

    def prepare_inputs_for_generation(
        self, decoder_input_ids, past, attention_mask, use_cache, encoder_outputs, **kwargs
    ):
        return {
            "input_ids": None,  # encoder_outputs is defined. input_ids not needed
            "encoder_outputs": encoder_outputs,
            "past_key_values": past,
            "decoder_input_ids": decoder_input_ids,
            "attention_mask": attention_mask,
            "use_cache": use_cache,  # change this to avoid caching (presumably for debugging)
        }

    def adjust_logits_during_generation(self, logits, cur_len, max_length):
        if cur_len == 1 and self.config.force_bos_token_to_be_generated:
            self._force_token_ids_generation(logits, self.config.bos_token_id)
        elif cur_len == max_length - 1 and self.config.eos_token_id is not None:
            self._force_token_ids_generation(logits, self.config.eos_token_id)
        return logits

    def _force_token_ids_generation(self, scores, token_id) -> None:
        """force one of token_ids to be generated by setting prob of all other tokens to 0 (logprob=-float("inf"))"""
        scores[:, [x for x in range(self.config.vocab_size) if x != token_id]] = -float("inf")

    @staticmethod
    def _reorder_cache(past, beam_idx):
        reordered_past = []
        for layer_past in past:
            # get the correct batch idx from decoder layer's batch dim for cross and self-attn
            layer_past_new = {
                attn_key: _reorder_buffer(attn_cache, beam_idx) for attn_key, attn_cache in layer_past.items()
            }
            reordered_past.append(layer_past_new)
        return reordered_past

    def get_encoder(self):
        return self.model.encoder

    def get_output_embeddings(self):
        return _make_linear_from_emb(self.model.shared)  # make it on the fly


@add_start_docstrings(
    """Bart model with a sequence classification/head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks. """,
    BART_START_DOCSTRING,
)
class BartForSequenceClassification(PretrainedBartModel):
    def __init__(self, config: BartConfig, **kwargs):
        super().__init__(config, **kwargs)
        self.model = BartModel(config)
        self.classification_head = BartClassificationHead(
            config.d_model,
            config.d_model,
            config.num_labels,
            config.classif_dropout,
        )
        self.model._init_weights(self.classification_head.dense)
        self.model._init_weights(self.classification_head.out_proj)

    @add_start_docstrings_to_callable(BART_INPUTS_DOCSTRING)
    @add_code_sample_docstrings(
        tokenizer_class=_TOKENIZER_FOR_DOC,
        checkpoint="facebook/bart-large",
        output_type=Seq2SeqSequenceClassifierOutput,
        config_class=_CONFIG_FOR_DOC,
    )
    def forward(
        self,
        input_ids,
        attention_mask=None,
        encoder_outputs=None,
        decoder_input_ids=None,
        decoder_attention_mask=None,
        labels=None,
        use_cache=None,
        output_attentions=None,
        output_hidden_states=None,
        return_dict=None,
    ):
        r"""
        labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`, defaults to :obj:`None`):
            Labels for computing the sequence classification/regression loss.
            Indices should be in :obj:`[0, ..., config.num_labels - 1]`.
            If :obj:`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
        """
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict
        if labels is not None:
            use_cache = False

        outputs = self.model(
            input_ids,
            attention_mask=attention_mask,
            decoder_input_ids=decoder_input_ids,
            decoder_attention_mask=decoder_attention_mask,
            encoder_outputs=encoder_outputs,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )
        x = outputs[0]  # last hidden state
        eos_mask = input_ids.eq(self.config.eos_token_id)
        if len(torch.unique(eos_mask.sum(1))) > 1:
            raise ValueError("All examples must have the same number of <eos> tokens.")
        sentence_representation = x[eos_mask, :].view(x.size(0), -1, x.size(-1))[:, -1, :]
        logits = self.classification_head(sentence_representation)

        loss = None
        if labels is not None:
            loss_fct = CrossEntropyLoss()
            loss = loss_fct(logits.view(-1, self.config.num_labels), labels.view(-1))

        if not return_dict:
            output = (logits,) + outputs[1:]
            return ((loss,) + output) if loss is not None else output

        return Seq2SeqSequenceClassifierOutput(
            loss=loss,
            logits=logits,
            past_key_values=outputs.past_key_values,
            decoder_hidden_states=outputs.decoder_hidden_states,
            decoder_attentions=outputs.decoder_attentions,
            encoder_last_hidden_state=outputs.encoder_last_hidden_state,
            encoder_hidden_states=outputs.encoder_hidden_states,
            encoder_attentions=outputs.encoder_attentions,
        )


@add_start_docstrings(
    """BART Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layer on top of
    the hidden-states output to compute `span start logits` and `span end logits`). """,
    BART_START_DOCSTRING,
)
class BartForQuestionAnswering(PretrainedBartModel):
    def __init__(self, config):
        super().__init__(config)

        config.num_labels = 2
        self.num_labels = config.num_labels

        self.model = BartModel(config)
        self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)

        self.model._init_weights(self.qa_outputs)

    @add_start_docstrings_to_callable(BART_INPUTS_DOCSTRING)
    @add_code_sample_docstrings(
        tokenizer_class=_TOKENIZER_FOR_DOC,
        checkpoint="facebook/bart-large",
        output_type=Seq2SeqQuestionAnsweringModelOutput,
        config_class=_CONFIG_FOR_DOC,
    )
    def forward(
        self,
        input_ids,
        attention_mask=None,
        encoder_outputs=None,
        decoder_input_ids=None,
        decoder_attention_mask=None,
        start_positions=None,
        end_positions=None,
        use_cache=None,
        output_attentions=None,
        output_hidden_states=None,
        return_dict=None,
    ):
        r"""
        start_positions (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`, defaults to :obj:`None`):
            Labels for position (index) of the start of the labelled span for computing the token classification loss.
            Positions are clamped to the length of the sequence (`sequence_length`).
            Position outside of the sequence are not taken into account for computing the loss.
        end_positions (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`, defaults to :obj:`None`):
            Labels for position (index) of the end of the labelled span for computing the token classification loss.
            Positions are clamped to the length of the sequence (`sequence_length`).
            Position outside of the sequence are not taken into account for computing the loss.
        """
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict
        if start_positions is not None and end_positions is not None:
            use_cache = False

        outputs = self.model(
            input_ids,
            attention_mask=attention_mask,
            decoder_input_ids=decoder_input_ids,
            decoder_attention_mask=decoder_attention_mask,
            encoder_outputs=encoder_outputs,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        sequence_output = outputs[0]

        logits = self.qa_outputs(sequence_output)
        start_logits, end_logits = logits.split(1, dim=-1)
        start_logits = start_logits.squeeze(-1)
        end_logits = end_logits.squeeze(-1)

        total_loss = None
        if start_positions is not None and end_positions is not None:
            # If we are on multi-GPU, split add a dimension
            if len(start_positions.size()) > 1:
                start_positions = start_positions.squeeze(-1)
            if len(end_positions.size()) > 1:
                end_positions = end_positions.squeeze(-1)
            # sometimes the start/end positions are outside our model inputs, we ignore these terms
            ignored_index = start_logits.size(1)
            start_positions.clamp_(0, ignored_index)
            end_positions.clamp_(0, ignored_index)

            loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
            start_loss = loss_fct(start_logits, start_positions)
            end_loss = loss_fct(end_logits, end_positions)
            total_loss = (start_loss + end_loss) / 2

        if not return_dict:
            output = (
                start_logits,
                end_logits,
            ) + outputs[1:]
            return ((total_loss,) + output) if total_loss is not None else output

        return Seq2SeqQuestionAnsweringModelOutput(
            loss=total_loss,
            start_logits=start_logits,
            end_logits=end_logits,
            past_key_values=outputs.past_key_values,
            decoder_hidden_states=outputs.decoder_hidden_states,
            decoder_attentions=outputs.decoder_attentions,
            encoder_last_hidden_state=outputs.encoder_last_hidden_state,
            encoder_hidden_states=outputs.encoder_hidden_states,
            encoder_attentions=outputs.encoder_attentions,
        )


class SinusoidalPositionalEmbedding(nn.Embedding):
    """This module produces sinusoidal positional embeddings of any length."""

    def __init__(self, num_positions, embedding_dim, padding_idx=None):
        super().__init__(num_positions, embedding_dim)
        if embedding_dim % 2 != 0:
            raise NotImplementedError(f"odd embedding_dim {embedding_dim} not supported")
        self.weight = self._init_weight(self.weight)

    @staticmethod
    def _init_weight(out: nn.Parameter):
        """Identical to the XLM create_sinusoidal_embeddings except features are not interleaved.
        The cos features are in the 2nd half of the vector. [dim // 2:]
        """
        n_pos, dim = out.shape
        position_enc = np.array(
            [[pos / np.power(10000, 2 * (j // 2) / dim) for j in range(dim)] for pos in range(n_pos)]
        )
        out[:, 0 : dim // 2] = torch.FloatTensor(np.sin(position_enc[:, 0::2]))  # This line breaks for odd n_pos
        out[:, dim // 2 :] = torch.FloatTensor(np.cos(position_enc[:, 1::2]))
        out.detach_()
        out.requires_grad = False
        return out

    @torch.no_grad()
    def forward(self, input_ids, use_cache=False):
        """Input is expected to be of size [bsz x seqlen]."""
        bsz, seq_len = input_ids.shape[:2]
        if use_cache:
            positions = input_ids.data.new(1, 1).fill_(seq_len - 1)  # called before slicing
        else:
            # starts at 0, ends at 1-seq_len
            positions = torch.arange(seq_len, dtype=torch.long, device=self.weight.device)
        return super().forward(positions)