modeling_utils.py 75.7 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors, Facebook AI Research authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import inspect
import os
import re
from dataclasses import dataclass
from typing import Callable, Dict, List, Optional, Set, Tuple, Union

import torch
from torch import Tensor, device, dtype, nn
from torch.nn import CrossEntropyLoss
from torch.nn import functional as F

from transformers.activations import get_activation
from transformers.configuration_utils import PretrainedConfig
from transformers.file_utils import (
    DUMMY_INPUTS,
    TF2_WEIGHTS_NAME,
    TF_WEIGHTS_NAME,
    WEIGHTS_NAME,
    ModelOutput,
    cached_path,
    hf_bucket_url,
    is_remote_url,
    is_torch_tpu_available,
    replace_return_docstrings,
)
from generation_utils import GenerationMixin
import logging

logger = logging.getLogger(__name__)  # pylint: disable=invalid-name
logging.basicConfig(
    format="%(asctime)s - %(levelname)s - %(name)s - PID: %(process)d -  %(message)s",
    datefmt="%m/%d/%Y %H:%M:%S",
    level=logging.INFO,
)


try:
    from torch.nn import Identity
except ImportError:
    # Older PyTorch compatibility
    class Identity(nn.Module):
        r"""A placeholder identity operator that is argument-insensitive."""

        def __init__(self, *args, **kwargs):
            super().__init__()

        def forward(self, input):
            return input


def find_pruneable_heads_and_indices(
    heads: List[int], n_heads: int, head_size: int, already_pruned_heads: Set[int]
) -> Tuple[Set[int], torch.LongTensor]:
    """
    Finds the heads and their indices taking :obj:`already_pruned_heads` into account.

    Args:
        heads (:obj:`List[int]`): List of the indices of heads to prune.
        n_heads (:obj:`int`): The number of heads in the model.
        head_size (:obj:`int`): The size of each head.
        already_pruned_heads (:obj:`Set[int]`): A set of already pruned heads.

    Returns:
        :obj:`Tuple[Set[int], torch.LongTensor]`: A tuple with the remaining heads and their corresponding indices.
    """
    mask = torch.ones(n_heads, head_size)
    heads = set(heads) - already_pruned_heads  # Convert to set and remove already pruned heads
    for head in heads:
        # Compute how many pruned heads are before the head and move the index accordingly
        head = head - sum(1 if h < head else 0 for h in already_pruned_heads)
        mask[head] = 0
    mask = mask.view(-1).contiguous().eq(1)
    index: torch.LongTensor = torch.arange(len(mask))[mask].long()
    return heads, index


class ModuleUtilsMixin:
    """
    A few utilities for :obj:`torch.nn.Modules`, to be used as a mixin.
    """

    def num_parameters(self, only_trainable: bool = False) -> int:
        """
        Get the number of (optionally, trainable) parameters in the model.

        Args:
            only_trainable (:obj:`bool`, `optional`, defaults to :obj:`False`):
                Whether or not to return only the number of trainable parameters

        Returns:
            :obj:`int`: The number of parameters.
        """
        params = filter(lambda x: x.requires_grad, self.parameters()) if only_trainable else self.parameters()
        return sum(p.numel() for p in params)

    @staticmethod
    def _hook_rss_memory_pre_forward(module, *args, **kwargs):
        try:
            import psutil
        except (ImportError):
            raise ImportError("You need to install psutil (pip install psutil) to use memory tracing.")

        process = psutil.Process(os.getpid())
        mem = process.memory_info()
        module.mem_rss_pre_forward = mem.rss
        return None

    @staticmethod
    def _hook_rss_memory_post_forward(module, *args, **kwargs):
        try:
            import psutil
        except (ImportError):
            raise ImportError("You need to install psutil (pip install psutil) to use memory tracing.")

        process = psutil.Process(os.getpid())
        mem = process.memory_info()
        module.mem_rss_post_forward = mem.rss
        mem_rss_diff = module.mem_rss_post_forward - module.mem_rss_pre_forward
        module.mem_rss_diff = mem_rss_diff + (module.mem_rss_diff if hasattr(module, "mem_rss_diff") else 0)
        return None

    def add_memory_hooks(self):
        """
        Add a memory hook before and after each sub-module forward pass to record increase in memory consumption.

        Increase in memory consumption is stored in a :obj:`mem_rss_diff` attribute for each module and can be reset to
        zero with :obj:`model.reset_memory_hooks_state()`.
        """
        for module in self.modules():
            module.register_forward_pre_hook(self._hook_rss_memory_pre_forward)
            module.register_forward_hook(self._hook_rss_memory_post_forward)
        self.reset_memory_hooks_state()

    def reset_memory_hooks_state(self):
        """
        Reset the :obj:`mem_rss_diff` attribute of each module (see
        :func:`~transformers.modeling_utils.ModuleUtilsMixin.add_memory_hooks`).
        """
        for module in self.modules():
            module.mem_rss_diff = 0
            module.mem_rss_post_forward = 0
            module.mem_rss_pre_forward = 0

    @property
    def device(self) -> device:
        """
        :obj:`torch.device`: The device on which the module is (assuming that all the module parameters are on the same
        device).
        """
        try:
            return next(self.parameters()).device
        except StopIteration:
            # For nn.DataParallel compatibility in PyTorch 1.5

            def find_tensor_attributes(module: nn.Module) -> List[Tuple[str, Tensor]]:
                tuples = [(k, v) for k, v in module.__dict__.items() if torch.is_tensor(v)]
                return tuples

            gen = self._named_members(get_members_fn=find_tensor_attributes)
            first_tuple = next(gen)
            return first_tuple[1].device

    @property
    def dtype(self) -> dtype:
        """
        :obj:`torch.dtype`: The dtype of the module (assuming that all the module parameters have the same dtype).
        """
        try:
            return next(self.parameters()).dtype
        except StopIteration:
            # For nn.DataParallel compatibility in PyTorch 1.5

            def find_tensor_attributes(module: nn.Module) -> List[Tuple[str, Tensor]]:
                tuples = [(k, v) for k, v in module.__dict__.items() if torch.is_tensor(v)]
                return tuples

            gen = self._named_members(get_members_fn=find_tensor_attributes)
            first_tuple = next(gen)
            return first_tuple[1].dtype

    def invert_attention_mask(self, encoder_attention_mask: Tensor) -> Tensor:
        """
        Invert an attention mask (e.g., switches 0. and 1.).

        Args:
            encoder_attention_mask (:obj:`torch.Tensor`): An attention mask.

        Returns:
            :obj:`torch.Tensor`: The inverted attention mask.
        """
        if encoder_attention_mask.dim() == 3:
            encoder_extended_attention_mask = encoder_attention_mask[:, None, :, :]
        if encoder_attention_mask.dim() == 2:
            encoder_extended_attention_mask = encoder_attention_mask[:, None, None, :]
        # T5 has a mask that can compare sequence ids, we can simulate this here with this transposition
        # Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow
        # /transformer/transformer_layers.py#L270
        # encoder_extended_attention_mask = (encoder_extended_attention_mask ==
        # encoder_extended_attention_mask.transpose(-1, -2))
        encoder_extended_attention_mask = encoder_extended_attention_mask.to(dtype=self.dtype)  # fp16 compatibility

        if self.dtype == torch.float16:
            encoder_extended_attention_mask = (1.0 - encoder_extended_attention_mask) * -1e4
        elif self.dtype == torch.float32:
            encoder_extended_attention_mask = (1.0 - encoder_extended_attention_mask) * -1e9
        else:
            raise ValueError(
                "{} not recognized. `dtype` should be set to either `torch.float32` or `torch.float16`".format(
                    self.dtype
                )
            )

        return encoder_extended_attention_mask

    def get_extended_attention_mask(self, attention_mask: Tensor, input_shape: Tuple[int], device: device) -> Tensor:
        """
        Makes broadcastable attention and causal masks so that future and masked tokens are ignored.

        Arguments:
            attention_mask (:obj:`torch.Tensor`):
                Mask with ones indicating tokens to attend to, zeros for tokens to ignore.
            input_shape (:obj:`Tuple[int]`):
                The shape of the input to the model.
            device: (:obj:`torch.device`):
                The device of the input to the model.

        Returns:
            :obj:`torch.Tensor` The extended attention mask, with a the same dtype as :obj:`attention_mask.dtype`.
        """
        # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
        # ourselves in which case we just need to make it broadcastable to all heads.
        if attention_mask.dim() == 3:
            extended_attention_mask = attention_mask[:, None, :, :]
        elif attention_mask.dim() == 2:
            # Provided a padding mask of dimensions [batch_size, seq_length]
            # - if the model is a decoder, apply a causal mask in addition to the padding mask
            # - if the model is an encoder, make the mask broadcastable to [batch_size, num_heads, seq_length, seq_length]
            if self.config.is_decoder:
                batch_size, seq_length = input_shape
                seq_ids = torch.arange(seq_length, device=device)
                causal_mask = seq_ids[None, None, :].repeat(batch_size, seq_length, 1) <= seq_ids[None, :, None]
                # causal and attention masks must have same type with pytorch version < 1.3
                causal_mask = causal_mask.to(attention_mask.dtype)
                extended_attention_mask = causal_mask[:, None, :, :] * attention_mask[:, None, None, :]
            else:
                extended_attention_mask = attention_mask[:, None, None, :]
        else:
            raise ValueError(
                "Wrong shape for input_ids (shape {}) or attention_mask (shape {})".format(
                    input_shape, attention_mask.shape
                )
            )

        # Since attention_mask is 1.0 for positions we want to attend and 0.0 for
        # masked positions, this operation will create a tensor which is 0.0 for
        # positions we want to attend and -10000.0 for masked positions.
        # Since we are adding it to the raw scores before the softmax, this is
        # effectively the same as removing these entirely.
        extended_attention_mask = extended_attention_mask.to(dtype=self.dtype)  # fp16 compatibility
        extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0
        return extended_attention_mask

    def get_head_mask(
        self, head_mask: Optional[Tensor], num_hidden_layers: int, is_attention_chunked: bool = False
    ) -> Tensor:
        """
        Prepare the head mask if needed.

        Args:
            head_mask (:obj:`torch.Tensor` with shape :obj:`[num_heads]` or :obj:`[num_hidden_layers x num_heads]`, `optional`):
                The mask indicating if we should keep the heads or not (1.0 for keep, 0.0 for discard).
            num_hidden_layers (:obj:`int`):
                The number of hidden layers in the model.
            is_attention_chunked: (:obj:`bool`, `optional, defaults to :obj:`False`):
                Whether or not the attentions scores are computed by chunks or not.

        Returns:
            :obj:`torch.Tensor` with shape :obj:`[num_hidden_layers x batch x num_heads x seq_length x seq_length]`
            or list with :obj:`[None]` for each layer.
        """
        if head_mask is not None:
            head_mask = self._convert_head_mask_to_5d(head_mask, num_hidden_layers)
            if is_attention_chunked is True:
                head_mask = head_mask.unsqueeze(-1)
        else:
            head_mask = [None] * num_hidden_layers

        return head_mask

    def _convert_head_mask_to_5d(self, head_mask, num_hidden_layers):
        """-> [num_hidden_layers x batch x num_heads x seq_length x seq_length]"""
        if head_mask.dim() == 1:
            head_mask = head_mask.unsqueeze(0).unsqueeze(0).unsqueeze(-1).unsqueeze(-1)
            head_mask = head_mask.expand(num_hidden_layers, -1, -1, -1, -1)
        elif head_mask.dim() == 2:
            head_mask = head_mask.unsqueeze(1).unsqueeze(-1).unsqueeze(-1)  # We can specify head_mask for each layer
        assert head_mask.dim() == 5, f"head_mask.dim != 5, instead {head_mask.dim()}"
        head_mask = head_mask.to(dtype=self.dtype)  # switch to fload if need + fp16 compatibility
        return head_mask


class PreTrainedModel(nn.Module, ModuleUtilsMixin, GenerationMixin):
    r"""
    Base class for all models.

    :class:`~transformers.PreTrainedModel` takes care of storing the configuration of the models and handles methods
    for loading, downloading and saving models as well as a few methods common to all models to:

        * resize the input embeddings,
        * prune heads in the self-attention heads.

    Class attributes (overridden by derived classes):
        - **config_class** (:class:`~transformers.PretrainedConfig`) -- A subclass of
          :class:`~transformers.PretrainedConfig` to use as configuration class for this model architecture.
        - **load_tf_weights** (:obj:`Callable`) -- A python `method` for loading a TensorFlow checkpoint in a
          PyTorch model, taking as arguments:

            - **model** (:class:`~transformers.PreTrainedModel`) -- An instance of the model on which to load the
              TensorFlow checkpoint.
            - **config** (:class:`~transformers.PreTrainedConfig`) -- An instance of the configuration associated
              to the model.
            - **path** (:obj:`str`) -- A path to the TensorFlow checkpoint.

        - **base_model_prefix** (:obj:`str`) -- A string indicating the attribute associated to the base model in
          derived classes of the same architecture adding modules on top of the base model.
        - **authorized_missing_keys** (:obj:`Optional[List[str]]`) -- A list of re pattern of tensor names to ignore
          when loading the model (and avoid unnecessary warnings).
    """
    config_class = None
    base_model_prefix = ""
    authorized_missing_keys = None

    @property
    def dummy_inputs(self) -> Dict[str, torch.Tensor]:
        """
        :obj:`Dict[str, torch.Tensor]`: Dummy inputs to do a forward pass in the network.
        """
        return {"input_ids": torch.tensor(DUMMY_INPUTS)}

    def __init__(self, config: PretrainedConfig, *inputs, **kwargs):
        super().__init__()
        if not isinstance(config, PretrainedConfig):
            raise ValueError(
                "Parameter config in `{}(config)` should be an instance of class `PretrainedConfig`. "
                "To create a model from a pretrained model use "
                "`model = {}.from_pretrained(PRETRAINED_MODEL_NAME)`".format(
                    self.__class__.__name__, self.__class__.__name__
                )
            )
        # Save config in model
        self.config = config

    @property
    def base_model(self) -> nn.Module:
        """
        :obj:`torch.nn.Module`: The main body of the model.
        """
        return getattr(self, self.base_model_prefix, self)

    def get_input_embeddings(self) -> nn.Module:
        """
        Returns the model's input embeddings.

        Returns:
            :obj:`nn.Module`: A torch module mapping vocabulary to hidden states.
        """
        base_model = getattr(self, self.base_model_prefix, self)
        if base_model is not self:
            return base_model.get_input_embeddings()
        else:
            raise NotImplementedError

    def set_input_embeddings(self, value: nn.Module):
        """
        Set model's input embeddings

        Args:
            value (:obj:`nn.Module`): A module mapping vocabulary to hidden states.
        """
        base_model = getattr(self, self.base_model_prefix, self)
        if base_model is not self:
            base_model.set_input_embeddings(value)
        else:
            raise NotImplementedError

    def get_output_embeddings(self) -> nn.Module:
        """
        Returns the model's output embeddings.

        Returns:
            :obj:`nn.Module`: A torch module mapping hidden states to vocabulary.
        """
        return None  # Overwrite for models with output embeddings

    def tie_weights(self):
        """
        Tie the weights between the input embeddings and the output embeddings.

        If the :obj:`torchscript` flag is set in the configuration, can't handle parameter sharing so we are cloning
        the weights instead.
        """
        output_embeddings = self.get_output_embeddings()
        if output_embeddings is not None and self.config.tie_word_embeddings:
            self._tie_or_clone_weights(output_embeddings, self.get_input_embeddings())

        if self.config.is_encoder_decoder and self.config.tie_encoder_decoder:
            self._tie_encoder_decoder_weights(self.encoder, self.decoder, self.base_model_prefix)

    @staticmethod
    def _tie_encoder_decoder_weights(encoder: nn.Module, decoder: nn.Module, base_model_prefix: str):
        uninitialized_encoder_weights: List[str] = []
        assert decoder.__class__ == encoder.__class__, f"{decoder.__class__} and {encoder.__class__} have to be equal."

        def tie_encoder_to_decoder_recursively(
            decoder_pointer: nn.Module,
            encoder_pointer: nn.Module,
            module_name: str,
            uninitialized_encoder_weights: List[str],
            depth=0,
        ):
            assert isinstance(decoder_pointer, nn.Module) and isinstance(
                encoder_pointer, nn.Module
            ), f"{decoder_pointer} and {encoder_pointer} have to be of type torch.nn.Module"
            if hasattr(decoder_pointer, "weight"):
                assert hasattr(encoder_pointer, "weight")
                encoder_pointer.weight = decoder_pointer.weight
                if hasattr(decoder_pointer, "bias"):
                    assert hasattr(encoder_pointer, "bias")
                    encoder_pointer.bias = decoder_pointer.bias
                return

            encoder_modules = encoder_pointer._modules
            decoder_modules = decoder_pointer._modules
            if len(decoder_modules) > 0:
                assert (
                    len(encoder_modules) > 0
                ), f"Encoder module {encoder_pointer} does not match decoder module {decoder_pointer}"

                all_encoder_weights = set([module_name + "/" + sub_name for sub_name in encoder_modules.keys()])
                encoder_layer_pos = 0
                for name, module in decoder_modules.items():
                    if name.isdigit():
                        encoder_name = str(int(name) + encoder_layer_pos)
                        decoder_name = name
                        if not isinstance(decoder_modules[decoder_name], type(encoder_modules[encoder_name])):
                            # this can happen if the name corresponds to the position in a list module list of layers
                            # in this case the decoder has added a cross-attention that the encoder does not have
                            # thus skip this step and substract one layer pos from encoder
                            encoder_layer_pos -= 1
                            continue
                    elif name not in encoder_modules:
                        continue
                    elif depth > 500:
                        raise ValueError(
                            "Max depth of recursive function `tie_encoder_to_decoder` reached. It seems that there is a circular dependency between two or more `nn.Modules` of your model."
                        )
                    else:
                        decoder_name = encoder_name = name
                    tie_encoder_to_decoder_recursively(
                        decoder_modules[decoder_name],
                        encoder_modules[encoder_name],
                        module_name + "/" + name,
                        uninitialized_encoder_weights,
                        depth=depth + 1,
                    )
                    all_encoder_weights.remove(module_name + "/" + encoder_name)

                uninitialized_encoder_weights += list(all_encoder_weights)

        # tie weights recursively
        tie_encoder_to_decoder_recursively(decoder, encoder, base_model_prefix, uninitialized_encoder_weights)
        if len(uninitialized_encoder_weights) > 0:
            logger.warning(
                f"The following encoder weights were not tied to the decoder {uninitialized_encoder_weights}"
            )

    def _tie_or_clone_weights(self, output_embeddings, input_embeddings):
        """Tie or clone module weights depending of whether we are using TorchScript or not"""
        if self.config.torchscript:
            output_embeddings.weight = nn.Parameter(input_embeddings.weight.clone())
        else:
            output_embeddings.weight = input_embeddings.weight

        if getattr(output_embeddings, "bias", None) is not None:
            output_embeddings.bias.data = torch.nn.functional.pad(
                output_embeddings.bias.data,
                (
                    0,
                    output_embeddings.weight.shape[0] - output_embeddings.bias.shape[0],
                ),
                "constant",
                0,
            )
        if hasattr(output_embeddings, "out_features") and hasattr(input_embeddings, "num_embeddings"):
            output_embeddings.out_features = input_embeddings.num_embeddings

    def resize_token_embeddings(self, new_num_tokens: Optional[int] = None) -> torch.nn.Embedding:
        """
        Resizes input token embeddings matrix of the model if :obj:`new_num_tokens != config.vocab_size`.

        Takes care of tying weights embeddings afterwards if the model class has a :obj:`tie_weights()` method.

        Arguments:
            new_num_tokens (:obj:`int`, `optional`):
                The number of new tokens in the embedding matrix. Increasing the size will add newly initialized
                vectors at the end. Reducing the size will remove vectors from the end. If not provided or :obj:`None`,
                just returns a pointer to the input tokens :obj:`torch.nn.Embedding` module of the model wihtout doing
                anything.

        Return:
            :obj:`torch.nn.Embedding`: Pointer to the input tokens Embeddings Module of the model.
        """
        base_model = getattr(self, self.base_model_prefix, self)  # get the base model if needed
        model_embeds = base_model._resize_token_embeddings(new_num_tokens)
        if new_num_tokens is None:
            return model_embeds

        # Update base model and current model config
        self.config.vocab_size = new_num_tokens
        base_model.vocab_size = new_num_tokens

        # Tie weights again if needed
        self.tie_weights()

        return model_embeds

    def _resize_token_embeddings(self, new_num_tokens):
        old_embeddings = self.get_input_embeddings()
        new_embeddings = self._get_resized_embeddings(old_embeddings, new_num_tokens)
        self.set_input_embeddings(new_embeddings)
        return self.get_input_embeddings()

    def _get_resized_embeddings(
        self, old_embeddings: torch.nn.Embedding, new_num_tokens: Optional[int] = None
    ) -> torch.nn.Embedding:
        """
        Build a resized Embedding Module from a provided token Embedding Module. Increasing the size will add newly
        initialized vectors at the end. Reducing the size will remove vectors from the end

        Args:
            old_embeddings (:obj:`torch.nn.Embedding`):
                Old embeddings to be resized.
            new_num_tokens (:obj:`int`, `optional`):
                New number of tokens in the embedding matrix.

                Increasing the size will add newly initialized vectors at the end. Reducing the size will remove
                vectors from the end. If not provided or :obj:`None`, just returns a pointer to the input tokens
                :obj:`torch.nn.Embedding`` module of the model wihtout doing anything.

        Return:
            :obj:`torch.nn.Embedding`: Pointer to the resized Embedding Module or the old Embedding Module if
            :obj:`new_num_tokens` is :obj:`None`
        """
        if new_num_tokens is None:
            return old_embeddings

        old_num_tokens, old_embedding_dim = old_embeddings.weight.size()
        if old_num_tokens == new_num_tokens:
            return old_embeddings

        # Build new embeddings
        new_embeddings = nn.Embedding(new_num_tokens, old_embedding_dim)
        new_embeddings.to(old_embeddings.weight.device)

        # initialize all new embeddings (in particular added tokens)
        self._init_weights(new_embeddings)

        # Copy token embeddings from the previous weights
        num_tokens_to_copy = min(old_num_tokens, new_num_tokens)
        new_embeddings.weight.data[:num_tokens_to_copy, :] = old_embeddings.weight.data[:num_tokens_to_copy, :]

        return new_embeddings

    def init_weights(self):
        """
        Initializes and prunes weights if needed.
        """
        # Initialize weights
        self.apply(self._init_weights)

        # Prune heads if needed
        if self.config.pruned_heads:
            self.prune_heads(self.config.pruned_heads)

        # Tie weights if needed
        self.tie_weights()

    def prune_heads(self, heads_to_prune: Dict[int, List[int]]):
        """
        Prunes heads of the base model.

        Arguments:
            heads_to_prune (:obj:`Dict[int, List[int]]`):
                Dictionary with keys being selected layer indices (:obj:`int`) and associated values being the list
                of heads to prune in said layer (list of :obj:`int`). For instance {1: [0, 2], 2: [2, 3]} will
                prune heads 0 and 2 on layer 1 and heads 2 and 3 on layer 2.
        """
        # save new sets of pruned heads as union of previously stored pruned heads and newly pruned heads
        for layer, heads in heads_to_prune.items():
            union_heads = set(self.config.pruned_heads.get(layer, [])) | set(heads)
            self.config.pruned_heads[layer] = list(union_heads)  # Unfortunately we have to store it as list for JSON

        self.base_model._prune_heads(heads_to_prune)

    def save_pretrained(self, save_directory):
        """
        Save a model and its configuration file to a directory, so that it can be re-loaded using the
        `:func:`~transformers.PreTrainedModel.from_pretrained`` class method.

        Arguments:
            save_directory (:obj:`str`):
                Directory to which to save. Will be created if it doesn't exist.
        """
        if os.path.isfile(save_directory):
            logger.error("Provided path ({}) should be a directory, not a file".format(save_directory))
            return
        os.makedirs(save_directory, exist_ok=True)

        # Only save the model itself if we are using distributed training
        model_to_save = self.module if hasattr(self, "module") else self

        # Attach architecture to the config
        model_to_save.config.architectures = [model_to_save.__class__.__name__]

        # If we save using the predefined names, we can load using `from_pretrained`
        output_model_file = os.path.join(save_directory, WEIGHTS_NAME)

        if getattr(self.config, "xla_device", False):
            import torch_xla.core.xla_model as xm

            if xm.is_master_ordinal():
                # Save configuration file
                model_to_save.config.save_pretrained(save_directory)
            # xm.save takes care of saving only from master
            xm.save(model_to_save.state_dict(), output_model_file)
        else:
            model_to_save.config.save_pretrained(save_directory)
            torch.save(model_to_save.state_dict(), output_model_file)

        logger.info("Model weights saved in {}".format(output_model_file))

    @classmethod
    def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs):
        r"""
        Instantiate a pretrained pytorch model from a pre-trained model configuration.

        The model is set in evaluation mode by default using ``model.eval()`` (Dropout modules are deactivated).
        To train the model, you should first set it back in training mode with ``model.train()``.

        The warning `Weights from XXX not initialized from pretrained model` means that the weights of XXX do not come
        pretrained with the rest of the model. It is up to you to train those weights with a downstream fine-tuning
        task.

        The warning `Weights from XXX not used in YYY` means that the layer XXX is not used by YYY, therefore those
        weights are discarded.

        Parameters:
            pretrained_model_name_or_path (:obj:`str`, `optional`):
                Can be either:

                    - A string with the `shortcut name` of a pretrained model to load from cache or download, e.g.,
                      ``bert-base-uncased``.
                    - A string with the `identifier name` of a pretrained model that was user-uploaded to our S3, e.g.,
                      ``dbmdz/bert-base-german-cased``.
                    - A path to a `directory` containing model weights saved using
                      :func:`~transformers.PreTrainedModel.save_pretrained`, e.g., ``./my_model_directory/``.
                    - A path or url to a `tensorflow index checkpoint file` (e.g, ``./tf_model/model.ckpt.index``). In
                      this case, ``from_tf`` should be set to :obj:`True` and a configuration object should be provided
                      as ``config`` argument. This loading path is slower than converting the TensorFlow checkpoint in
                      a PyTorch model using the provided conversion scripts and loading the PyTorch model afterwards.
                    - :obj:`None` if you are both providing the configuration and state dictionary (resp. with keyword
                      arguments ``config`` and ``state_dict``).
            model_args (sequence of positional arguments, `optional`):
                All remaning positional arguments will be passed to the underlying model's ``__init__`` method.
            config (:obj:`Union[PretrainedConfig, str]`, `optional`):
                Can be either:

                    - an instance of a class derived from :class:`~transformers.PretrainedConfig`,
                    - a string valid as input to :func:`~transformers.PretrainedConfig.from_pretrained`.

                Configuration for the model to use instead of an automatically loaded configuation. Configuration can
                be automatically loaded when:

                    - The model is a model provided by the library (loaded with the `shortcut name` string of a
                      pretrained model).
                    - The model was saved using :func:`~transformers.PreTrainedModel.save_pretrained` and is reloaded
                      by suppling the save directory.
                    - The model is loaded by suppling a local directory as ``pretrained_model_name_or_path`` and a
                      configuration JSON file named `config.json` is found in the directory.
            state_dict (:obj:`Dict[str, torch.Tensor]`, `optional`):
                A state dictionary to use instead of a state dictionary loaded from saved weights file.

                This option can be used if you want to create a model from a pretrained configuration but load your own
                weights. In this case though, you should check if using
                :func:`~transformers.PreTrainedModel.save_pretrained` and
                :func:`~transformers.PreTrainedModel.from_pretrained` is not a simpler option.
            cache_dir (:obj:`str`, `optional`):
                Path to a directory in which a downloaded pretrained model configuration should be cached if the
                standard cache should not be used.
            from_tf (:obj:`bool`, `optional`, defaults to :obj:`False`):
                Load the model weights from a TensorFlow checkpoint save file (see docstring of
                ``pretrained_model_name_or_path`` argument).
            force_download (:obj:`bool`, `optional`, defaults to :obj:`False`):
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.
            resume_download (:obj:`bool`, `optional`, defaults to :obj:`False`):
                Whether or not to delete incompletely received files. Will attempt to resume the download if such a
                file exists.
            proxies (:obj:`Dict[str, str], `optional`):
                A dictionary of proxy servers to use by protocol or endpoint, e.g.,
                :obj:`{'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}`. The proxies are used on each
                request.
            output_loading_info(:obj:`bool`, `optional`, defaults to :obj:`False`):
                Whether ot not to also return a dictionnary containing missing keys, unexpected keys and error
                messages.
            local_files_only(:obj:`bool`, `optional`, defaults to :obj:`False`):
                Whether or not to only look at local files (e.g., not try doanloading the model).
            use_cdn(:obj:`bool`, `optional`, defaults to :obj:`True`):
                Whether or not to use Cloudfront (a Content Delivery Network, or CDN) when searching for the model on
                our S3 (faster). Should be set to :obj:`False` for checkpoints larger than 20GB.
            kwargs (remaining dictionary of keyword arguments, `optional`):
                Can be used to update the configuration object (after it being loaded) and initiate the model (e.g.,
                :obj:`output_attention=True`). Behaves differently depending on whether a ``config`` is provided or
                automatically loaded:

                    - If a configuration is provided with ``config``, ``**kwargs`` will be directly passed to the
                      underlying model's ``__init__`` method (we assume all relevant updates to the configuration have
                      already been done)
                    - If a configuration is not provided, ``kwargs`` will be first passed to the configuration class
                      initialization function (:func:`~transformers.PretrainedConfig.from_pretrained`). Each key of
                      ``kwargs`` that corresponds to a configuration attribute will be used to override said attribute
                      with the supplied ``kwargs`` value. Remaining keys that do not correspond to any configuration
                      attribute will be passed to the underlying model's ``__init__`` function.

        Examples::

            from transformers import BertConfig, BertModel
            # Download model and configuration from S3 and cache.
            model = BertModel.from_pretrained('bert-base-uncased')
            # Model was saved using `save_pretrained('./test/saved_model/')` (for example purposes, not runnable).
            model = BertModel.from_pretrained('./test/saved_model/')
            # Update configuration during loading.
            model = BertModel.from_pretrained('bert-base-uncased', output_attention=True)
            assert model.config.output_attention == True
            # Loading from a TF checkpoint file instead of a PyTorch model (slower, for example purposes, not runnable).
            config = BertConfig.from_json_file('./tf_model/my_tf_model_config.json')
            model = BertModel.from_pretrained('./tf_model/my_tf_checkpoint.ckpt.index', from_tf=True, config=config)
        """
        config = kwargs.pop("config", None)
        state_dict = kwargs.pop("state_dict", None)
        cache_dir = kwargs.pop("cache_dir", None)
        from_tf = kwargs.pop("from_tf", False)
        force_download = kwargs.pop("force_download", False)
        resume_download = kwargs.pop("resume_download", False)
        proxies = kwargs.pop("proxies", None)
        output_loading_info = kwargs.pop("output_loading_info", False)
        local_files_only = kwargs.pop("local_files_only", False)
        use_cdn = kwargs.pop("use_cdn", True)

        # Load config if we don't provide a configuration
        if not isinstance(config, PretrainedConfig):
            config_path = config if config is not None else pretrained_model_name_or_path
            config, model_kwargs = cls.config_class.from_pretrained(
                config_path,
                *model_args,
                cache_dir=cache_dir,
                return_unused_kwargs=True,
                force_download=force_download,
                resume_download=resume_download,
                proxies=proxies,
                local_files_only=local_files_only,
                **kwargs,
            )
        else:
            model_kwargs = kwargs

        # Load model
        if pretrained_model_name_or_path is not None:
            if os.path.isdir(pretrained_model_name_or_path):
                if from_tf and os.path.isfile(os.path.join(pretrained_model_name_or_path, TF_WEIGHTS_NAME + ".index")):
                    # Load from a TF 1.0 checkpoint
                    archive_file = os.path.join(pretrained_model_name_or_path, TF_WEIGHTS_NAME + ".index")
                elif from_tf and os.path.isfile(os.path.join(pretrained_model_name_or_path, TF2_WEIGHTS_NAME)):
                    # Load from a TF 2.0 checkpoint
                    archive_file = os.path.join(pretrained_model_name_or_path, TF2_WEIGHTS_NAME)
                elif os.path.isfile(os.path.join(pretrained_model_name_or_path, WEIGHTS_NAME)):
                    # Load from a PyTorch checkpoint
                    archive_file = os.path.join(pretrained_model_name_or_path, WEIGHTS_NAME)
                else:
                    raise EnvironmentError(
                        "Error no file named {} found in directory {} or `from_tf` set to False".format(
                            [WEIGHTS_NAME, TF2_WEIGHTS_NAME, TF_WEIGHTS_NAME + ".index"],
                            pretrained_model_name_or_path,
                        )
                    )
            elif os.path.isfile(pretrained_model_name_or_path) or is_remote_url(pretrained_model_name_or_path):
                archive_file = pretrained_model_name_or_path
            elif os.path.isfile(pretrained_model_name_or_path + ".index"):
                assert (
                    from_tf
                ), "We found a TensorFlow checkpoint at {}, please set from_tf to True to load from this checkpoint".format(
                    pretrained_model_name_or_path + ".index"
                )
                archive_file = pretrained_model_name_or_path + ".index"
            else:
                archive_file = hf_bucket_url(
                    pretrained_model_name_or_path,
                    filename=(TF2_WEIGHTS_NAME if from_tf else WEIGHTS_NAME),
                    use_cdn=use_cdn,
                )

            try:
                # Load from URL or cache if already cached
                resolved_archive_file = cached_path(
                    archive_file,
                    cache_dir=cache_dir,
                    force_download=force_download,
                    proxies=proxies,
                    resume_download=resume_download,
                    local_files_only=local_files_only,
                )
                if resolved_archive_file is None:
                    raise EnvironmentError
            except EnvironmentError:
                msg = (
                    f"Can't load weights for '{pretrained_model_name_or_path}'. Make sure that:\n\n"
                    f"- '{pretrained_model_name_or_path}' is a correct model identifier listed on 'https://huggingface.co/models'\n\n"
                    f"- or '{pretrained_model_name_or_path}' is the correct path to a directory containing a file named one of {WEIGHTS_NAME}, {TF2_WEIGHTS_NAME}, {TF_WEIGHTS_NAME}.\n\n"
                )
                raise EnvironmentError(msg)

            if resolved_archive_file == archive_file:
                logger.info("loading weights file {}".format(archive_file))
            else:
                logger.info("loading weights file {} from cache at {}".format(archive_file, resolved_archive_file))
        else:
            resolved_archive_file = None

        # Instantiate model.
        model = cls(config, *model_args, **model_kwargs)

        if state_dict is None and not from_tf:
            try:
                state_dict = torch.load(resolved_archive_file, map_location="cpu")
            except Exception:
                raise OSError(
                    "Unable to load weights from pytorch checkpoint file. "
                    "If you tried to load a PyTorch model from a TF 2.0 checkpoint, please set from_tf=True. "
                )

        missing_keys = []
        unexpected_keys = []
        error_msgs = []

        if from_tf:
            if resolved_archive_file.endswith(".index"):
                # Load from a TensorFlow 1.X checkpoint - provided by original authors
                model = cls.load_tf_weights(model, config, resolved_archive_file[:-6])  # Remove the '.index'
            else:
                # Load from our TensorFlow 2.0 checkpoints
                try:
                    from transformers import load_tf2_checkpoint_in_pytorch_model

                    model = load_tf2_checkpoint_in_pytorch_model(model, resolved_archive_file, allow_missing_keys=True)
                except ImportError:
                    logger.error(
                        "Loading a TensorFlow model in PyTorch, requires both PyTorch and TensorFlow to be installed. Please see "
                        "https://pytorch.org/ and https://www.tensorflow.org/install/ for installation instructions."
                    )
                    raise
        else:
            # Convert old format to new format if needed from a PyTorch state_dict
            old_keys = []
            new_keys = []
            for key in state_dict.keys():
                new_key = None
                if "gamma" in key:
                    new_key = key.replace("gamma", "weight")
                if "beta" in key:
                    new_key = key.replace("beta", "bias")
                if new_key:
                    old_keys.append(key)
                    new_keys.append(new_key)
            for old_key, new_key in zip(old_keys, new_keys):
                state_dict[new_key] = state_dict.pop(old_key)

            # copy state_dict so _load_from_state_dict can modify it
            metadata = getattr(state_dict, "_metadata", None)
            state_dict = state_dict.copy()
            if metadata is not None:
                state_dict._metadata = metadata

            # PyTorch's `_load_from_state_dict` does not copy parameters in a module's descendants
            # so we need to apply the function recursively.
            def load(module: nn.Module, prefix=""):
                local_metadata = {} if metadata is None else metadata.get(prefix[:-1], {})
                module._load_from_state_dict(
                    state_dict,
                    prefix,
                    local_metadata,
                    True,
                    missing_keys,
                    unexpected_keys,
                    error_msgs,
                )
                for name, child in module._modules.items():
                    if child is not None:
                        load(child, prefix + name + ".")

            # Make sure we are able to load base models as well as derived models (with heads)
            start_prefix = ""
            model_to_load = model
            has_prefix_module = any(s.startswith(cls.base_model_prefix) for s in state_dict.keys())
            if not hasattr(model, cls.base_model_prefix) and has_prefix_module:
                start_prefix = cls.base_model_prefix + "."
            if hasattr(model, cls.base_model_prefix) and not has_prefix_module:
                model_to_load = getattr(model, cls.base_model_prefix)

            load(model_to_load, prefix=start_prefix)

            if model.__class__.__name__ != model_to_load.__class__.__name__:
                base_model_state_dict = model_to_load.state_dict().keys()
                head_model_state_dict_without_base_prefix = [
                    key.split(cls.base_model_prefix + ".")[-1] for key in model.state_dict().keys()
                ]
                missing_keys.extend(head_model_state_dict_without_base_prefix - base_model_state_dict)

            # Some models may have keys that are not in the state by design, removing them before needlessly warning
            # the user.
            if cls.authorized_missing_keys is not None:
                for pat in cls.authorized_missing_keys:
                    missing_keys = [k for k in missing_keys if re.search(pat, k) is None]

            if len(unexpected_keys) > 0:
                logger.warning(
                    f"Some weights of the model checkpoint at {pretrained_model_name_or_path} were not used when "
                    f"initializing {model.__class__.__name__}: {unexpected_keys}\n"
                    f"- This IS expected if you are initializing {model.__class__.__name__} from the checkpoint of a model trained on another task "
                    f"or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPretraining model).\n"
                    f"- This IS NOT expected if you are initializing {model.__class__.__name__} from the checkpoint of a model that you expect "
                    f"to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model)."
                )
            else:
                logger.info(f"All model checkpoint weights were used when initializing {model.__class__.__name__}.\n")
            if len(missing_keys) > 0:
                logger.warning(
                    f"Some weights of {model.__class__.__name__} were not initialized from the model checkpoint at {pretrained_model_name_or_path} "
                    f"and are newly initialized: {missing_keys}\n"
                    f"You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference."
                )
            else:
                logger.info(
                    f"All the weights of {model.__class__.__name__} were initialized from the model checkpoint at {pretrained_model_name_or_path}.\n"
                    f"If your task is similar to the task the model of the checkpoint was trained on, "
                    f"you can already use {model.__class__.__name__} for predictions without further training."
                )
            if len(error_msgs) > 0:
                raise RuntimeError(
                    "Error(s) in loading state_dict for {}:\n\t{}".format(
                        model.__class__.__name__, "\n\t".join(error_msgs)
                    )
                )
        # make sure token embedding weights are still tied if needed
        model.tie_weights()

        # Set model in evaluation mode to deactivate DropOut modules by default
        model.eval()

        if output_loading_info:
            loading_info = {
                "missing_keys": missing_keys,
                "unexpected_keys": unexpected_keys,
                "error_msgs": error_msgs,
            }
            return model, loading_info

        if hasattr(config, "xla_device") and config.xla_device and is_torch_tpu_available():
            import torch_xla.core.xla_model as xm

            model = xm.send_cpu_data_to_device(model, xm.xla_device())
            model.to(xm.xla_device())

        return model


class Conv1D(nn.Module):
    """
    1D-convolutional layer as defined by Radford et al. for OpenAI GPT (and also used in GPT-2).

    Basically works like a linear layer but the weights are transposed.

    Args:
        nf (:obj:`int`): The number of output features.
        nx (:obj:`int`): The number of input features.
    """

    def __init__(self, nf, nx):
        super().__init__()
        self.nf = nf
        w = torch.empty(nx, nf)
        nn.init.normal_(w, std=0.02)
        self.weight = nn.Parameter(w)
        self.bias = nn.Parameter(torch.zeros(nf))

    def forward(self, x):
        size_out = x.size()[:-1] + (self.nf,)
        x = torch.addmm(self.bias, x.view(-1, x.size(-1)), self.weight)
        x = x.view(*size_out)
        return x


class PoolerStartLogits(nn.Module):
    """
    Compute SQuAD start logits from sequence hidden states.

    Args:
        config (:class:`~transformers.PretrainedConfig`):
            The config used by the model, will be used to grab the :obj:`hidden_size` of the model.
    """

    def __init__(self, config: PretrainedConfig):
        super().__init__()
        self.dense = nn.Linear(config.hidden_size, 1)

    def forward(
        self, hidden_states: torch.FloatTensor, p_mask: Optional[torch.FloatTensor] = None
    ) -> torch.FloatTensor:
        """
        Args:
            hidden_states (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, seq_len, hidden_size)`):
                The final hidden states of the model.
            p_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, seq_len)`, `optional`):
                Mask for tokens at invalid position, such as query and special symbols (PAD, SEP, CLS).
                1.0 means token should be masked.

        Returns:
            :obj:`torch.FloatTensor`: The start logits for SQuAD.
        """
        x = self.dense(hidden_states).squeeze(-1)

        if p_mask is not None:
            if next(self.parameters()).dtype == torch.float16:
                x = x * (1 - p_mask) - 65500 * p_mask
            else:
                x = x * (1 - p_mask) - 1e30 * p_mask

        return x


class PoolerEndLogits(nn.Module):
    """
    Compute SQuAD end logits from sequence hidden states.

    Args:
        config (:class:`~transformers.PretrainedConfig`):
            The config used by the model, will be used to grab the :obj:`hidden_size` of the model and the
            :obj:`layer_norm_eps` to use.
    """

    def __init__(self, config: PretrainedConfig):
        super().__init__()
        self.dense_0 = nn.Linear(config.hidden_size * 2, config.hidden_size)
        self.activation = nn.Tanh()
        self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
        self.dense_1 = nn.Linear(config.hidden_size, 1)

    def forward(
        self,
        hidden_states: torch.FloatTensor,
        start_states: Optional[torch.FloatTensor] = None,
        start_positions: Optional[torch.LongTensor] = None,
        p_mask: Optional[torch.FloatTensor] = None,
    ) -> torch.FloatTensor:
        """
        Args:
            hidden_states (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, seq_len, hidden_size)`):
                The final hidden states of the model.
            start_states (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, seq_len, hidden_size)`, `optional`):
                The hidden states of the first tokens for the labeled span.
            start_positions (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`):
                The position of the first token for the labeled span.
            p_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, seq_len)`, `optional`):
                Mask for tokens at invalid position, such as query and special symbols (PAD, SEP, CLS).
                1.0 means token should be masked.

        .. note::

            One of ``start_states`` or ``start_positions`` should be not obj:`None`. If both are set,
            ``start_positions`` overrides ``start_states``.

        Returns:
            :obj:`torch.FloatTensor`: The end logits for SQuAD.
        """
        assert (
            start_states is not None or start_positions is not None
        ), "One of start_states, start_positions should be not None"
        if start_positions is not None:
            slen, hsz = hidden_states.shape[-2:]
            start_positions = start_positions[:, None, None].expand(-1, -1, hsz)  # shape (bsz, 1, hsz)
            start_states = hidden_states.gather(-2, start_positions)  # shape (bsz, 1, hsz)
            start_states = start_states.expand(-1, slen, -1)  # shape (bsz, slen, hsz)

        x = self.dense_0(torch.cat([hidden_states, start_states], dim=-1))
        x = self.activation(x)
        x = self.LayerNorm(x)
        x = self.dense_1(x).squeeze(-1)

        if p_mask is not None:
            if next(self.parameters()).dtype == torch.float16:
                x = x * (1 - p_mask) - 65500 * p_mask
            else:
                x = x * (1 - p_mask) - 1e30 * p_mask

        return x


class PoolerAnswerClass(nn.Module):
    """
    Compute SQuAD 2.0 answer class from classification and start tokens hidden states.

    Args:
        config (:class:`~transformers.PretrainedConfig`):
            The config used by the model, will be used to grab the :obj:`hidden_size` of the model.
    """

    def __init__(self, config):
        super().__init__()
        self.dense_0 = nn.Linear(config.hidden_size * 2, config.hidden_size)
        self.activation = nn.Tanh()
        self.dense_1 = nn.Linear(config.hidden_size, 1, bias=False)

    def forward(
        self,
        hidden_states: torch.FloatTensor,
        start_states: Optional[torch.FloatTensor] = None,
        start_positions: Optional[torch.LongTensor] = None,
        cls_index: Optional[torch.LongTensor] = None,
    ) -> torch.FloatTensor:
        """
        Args:
            hidden_states (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, seq_len, hidden_size)`):
                The final hidden states of the model.
            start_states (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, seq_len, hidden_size)`, `optional`):
                The hidden states of the first tokens for the labeled span.
            start_positions (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`):
                The position of the first token for the labeled span.
            cls_index (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`):
                Position of the CLS token for each sentence in the batch. If :obj:`None`, takes the last token.

        .. note::

            One of ``start_states`` or ``start_positions`` should be not obj:`None`. If both are set,
            ``start_positions`` overrides ``start_states``.

        Returns:
            :obj:`torch.FloatTensor`: The SQuAD 2.0 answer class.
        """
        # No dependency on end_feature so that we can obtain one single `cls_logits` for each sample.
        hsz = hidden_states.shape[-1]
        assert (
            start_states is not None or start_positions is not None
        ), "One of start_states, start_positions should be not None"
        if start_positions is not None:
            start_positions = start_positions[:, None, None].expand(-1, -1, hsz)  # shape (bsz, 1, hsz)
            start_states = hidden_states.gather(-2, start_positions).squeeze(-2)  # shape (bsz, hsz)

        if cls_index is not None:
            cls_index = cls_index[:, None, None].expand(-1, -1, hsz)  # shape (bsz, 1, hsz)
            cls_token_state = hidden_states.gather(-2, cls_index).squeeze(-2)  # shape (bsz, hsz)
        else:
            cls_token_state = hidden_states[:, -1, :]  # shape (bsz, hsz)

        x = self.dense_0(torch.cat([start_states, cls_token_state], dim=-1))
        x = self.activation(x)
        x = self.dense_1(x).squeeze(-1)

        return x


@dataclass
class SquadHeadOutput(ModelOutput):
    """
    Base class for outputs of question answering models using a :class:`~transformers.modeling_utils.SQuADHead`.

    Args:
        loss (:obj:`torch.FloatTensor` of shape :obj:`(1,)`, `optional`, returned if both :obj:`start_positions` and :obj:`end_positions` are provided):
            Classification loss as the sum of start token, end token (and is_impossible if provided) classification losses.
        start_top_log_probs (``torch.FloatTensor`` of shape ``(batch_size, config.start_n_top)``, `optional`, returned if ``start_positions`` or ``end_positions`` is not provided):
            Log probabilities for the top config.start_n_top start token possibilities (beam-search).
        start_top_index (``torch.LongTensor`` of shape ``(batch_size, config.start_n_top)``, `optional`, returned if ``start_positions`` or ``end_positions`` is not provided):
            Indices for the top config.start_n_top start token possibilities (beam-search).
        end_top_log_probs (``torch.FloatTensor`` of shape ``(batch_size, config.start_n_top * config.end_n_top)``, `optional`, returned if ``start_positions`` or ``end_positions`` is not provided):
            Log probabilities for the top ``config.start_n_top * config.end_n_top`` end token possibilities (beam-search).
        end_top_index (``torch.LongTensor`` of shape ``(batch_size, config.start_n_top * config.end_n_top)``, `optional`, returned if ``start_positions`` or ``end_positions`` is not provided):
            Indices for the top ``config.start_n_top * config.end_n_top`` end token possibilities (beam-search).
        cls_logits (``torch.FloatTensor`` of shape ``(batch_size,)``, `optional`, returned if ``start_positions`` or ``end_positions`` is not provided):
            Log probabilities for the ``is_impossible`` label of the answers.

    """

    loss: Optional[torch.FloatTensor] = None
    start_top_log_probs: Optional[torch.FloatTensor] = None
    start_top_index: Optional[torch.LongTensor] = None
    end_top_log_probs: Optional[torch.FloatTensor] = None
    end_top_index: Optional[torch.LongTensor] = None
    cls_logits: Optional[torch.FloatTensor] = None


class SQuADHead(nn.Module):
    r"""
    A SQuAD head inspired by XLNet.

    Args:
        config (:class:`~transformers.PretrainedConfig`):
            The config used by the model, will be used to grab the :obj:`hidden_size` of the model and the
            :obj:`layer_norm_eps` to use.
    """

    def __init__(self, config):
        super().__init__()
        self.start_n_top = config.start_n_top
        self.end_n_top = config.end_n_top

        self.start_logits = PoolerStartLogits(config)
        self.end_logits = PoolerEndLogits(config)
        self.answer_class = PoolerAnswerClass(config)

    @replace_return_docstrings(output_type=SquadHeadOutput, config_class=PretrainedConfig)
    def forward(
        self,
        hidden_states: torch.FloatTensor,
        start_positions: Optional[torch.LongTensor] = None,
        end_positions: Optional[torch.LongTensor] = None,
        cls_index: Optional[torch.LongTensor] = None,
        is_impossible: Optional[torch.LongTensor] = None,
        p_mask: Optional[torch.FloatTensor] = None,
        return_dict: bool = False,
    ) -> Union[SquadHeadOutput, Tuple[torch.FloatTensor]]:
        """
        Args:
            hidden_states (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, seq_len, hidden_size)`):
                Final hidden states of the model on the sequence tokens.
            start_positions (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`):
                Positions of the first token for the labeled span.
            end_positions (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`):
                Positions of the last token for the labeled span.
            cls_index (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`):
                Position of the CLS token for each sentence in the batch. If :obj:`None`, takes the last token.
            is_impossible (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`):
                Whether the question has a possible answer in the paragraph or not.
            p_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, seq_len)`, `optional`):
                Mask for tokens at invalid position, such as query and special symbols (PAD, SEP, CLS).
                1.0 means token should be masked.
            return_dict (:obj:`bool`, `optional`, defaults to :obj:`False`):
                Whether or not to return a :class:`~transformers.file_utils.ModelOuput` instead of a plain tuple.

        Returns:
        """
        start_logits = self.start_logits(hidden_states, p_mask=p_mask)

        if start_positions is not None and end_positions is not None:
            # If we are on multi-GPU, let's remove the dimension added by batch splitting
            for x in (start_positions, end_positions, cls_index, is_impossible):
                if x is not None and x.dim() > 1:
                    x.squeeze_(-1)

            # during training, compute the end logits based on the ground truth of the start position
            end_logits = self.end_logits(hidden_states, start_positions=start_positions, p_mask=p_mask)

            loss_fct = CrossEntropyLoss()
            start_loss = loss_fct(start_logits, start_positions)
            end_loss = loss_fct(end_logits, end_positions)
            total_loss = (start_loss + end_loss) / 2

            if cls_index is not None and is_impossible is not None:
                # Predict answerability from the representation of CLS and START
                cls_logits = self.answer_class(hidden_states, start_positions=start_positions, cls_index=cls_index)
                loss_fct_cls = nn.BCEWithLogitsLoss()
                cls_loss = loss_fct_cls(cls_logits, is_impossible)

                # note(zhiliny): by default multiply the loss by 0.5 so that the scale is comparable to start_loss and end_loss
                total_loss += cls_loss * 0.5

            return SquadHeadOutput(loss=total_loss) if return_dict else (total_loss,)

        else:
            # during inference, compute the end logits based on beam search
            bsz, slen, hsz = hidden_states.size()
            start_log_probs = F.softmax(start_logits, dim=-1)  # shape (bsz, slen)

            start_top_log_probs, start_top_index = torch.topk(
                start_log_probs, self.start_n_top, dim=-1
            )  # shape (bsz, start_n_top)
            start_top_index_exp = start_top_index.unsqueeze(-1).expand(-1, -1, hsz)  # shape (bsz, start_n_top, hsz)
            start_states = torch.gather(hidden_states, -2, start_top_index_exp)  # shape (bsz, start_n_top, hsz)
            start_states = start_states.unsqueeze(1).expand(-1, slen, -1, -1)  # shape (bsz, slen, start_n_top, hsz)

            hidden_states_expanded = hidden_states.unsqueeze(2).expand_as(
                start_states
            )  # shape (bsz, slen, start_n_top, hsz)
            p_mask = p_mask.unsqueeze(-1) if p_mask is not None else None
            end_logits = self.end_logits(hidden_states_expanded, start_states=start_states, p_mask=p_mask)
            end_log_probs = F.softmax(end_logits, dim=1)  # shape (bsz, slen, start_n_top)

            end_top_log_probs, end_top_index = torch.topk(
                end_log_probs, self.end_n_top, dim=1
            )  # shape (bsz, end_n_top, start_n_top)
            end_top_log_probs = end_top_log_probs.view(-1, self.start_n_top * self.end_n_top)
            end_top_index = end_top_index.view(-1, self.start_n_top * self.end_n_top)

            start_states = torch.einsum("blh,bl->bh", hidden_states, start_log_probs)
            cls_logits = self.answer_class(hidden_states, start_states=start_states, cls_index=cls_index)

            if not return_dict:
                return (start_top_log_probs, start_top_index, end_top_log_probs, end_top_index, cls_logits)
            else:
                return SquadHeadOutput(
                    start_top_log_probs=start_top_log_probs,
                    start_top_index=start_top_index,
                    end_top_log_probs=end_top_log_probs,
                    end_top_index=end_top_index,
                    cls_logits=cls_logits,
                )


class SequenceSummary(nn.Module):
    r"""
    Compute a single vector summary of a sequence hidden states.

    Args:
        config (:class:`~transformers.PretrainedConfig`):
            The config used by the model. Relevant arguments in the config class of the model are (refer to the
            actual config class of your model for the default values it uses):

            - **summary_type** (:obj:`str`) -- The method to use to make this summary. Accepted values are:

                - :obj:`"last"` -- Take the last token hidden state (like XLNet)
                - :obj:`"first"` -- Take the first token hidden state (like Bert)
                - :obj:`"mean"` -- Take the mean of all tokens hidden states
                - :obj:`"cls_index"` -- Supply a Tensor of classification token position (GPT/GPT-2)
                - :obj:`"attn"` -- Not implemented now, use multi-head attention

            - **summary_use_proj** (:obj:`bool`) -- Add a projection after the vector extraction.
            - **summary_proj_to_labels** (:obj:`bool`) -- If :obj:`True`, the projection outputs to
              :obj:`config.num_labels` classes (otherwise to :obj:`config.hidden_size`).
            - **summary_activation**  (:obj:`Optional[str]`) -- Set to :obj:`"tanh"` to add a tanh activation to the
              output, another string or :obj:`None` will add no activation.
            - **summary_first_dropout** (:obj:`float`) -- Optional dropout probability before the projection and
              activation.
            - **summary_last_dropout** (:obj:`float`)-- Optional dropout probability after the projection and
              activation.
    """

    def __init__(self, config: PretrainedConfig):
        super().__init__()

        self.summary_type = getattr(config, "summary_type", "last")
        if self.summary_type == "attn":
            # We should use a standard multi-head attention module with absolute positional embedding for that.
            # Cf. https://github.com/zihangdai/xlnet/blob/master/modeling.py#L253-L276
            # We can probably just use the multi-head attention module of PyTorch >=1.1.0
            raise NotImplementedError

        self.summary = Identity()
        if hasattr(config, "summary_use_proj") and config.summary_use_proj:
            if hasattr(config, "summary_proj_to_labels") and config.summary_proj_to_labels and config.num_labels > 0:
                num_classes = config.num_labels
            else:
                num_classes = config.hidden_size
            self.summary = nn.Linear(config.hidden_size, num_classes)

        activation_string = getattr(config, "summary_activation", None)
        self.activation: Callable = get_activation(activation_string) if activation_string else Identity()

        self.first_dropout = Identity()
        if hasattr(config, "summary_first_dropout") and config.summary_first_dropout > 0:
            self.first_dropout = nn.Dropout(config.summary_first_dropout)

        self.last_dropout = Identity()
        if hasattr(config, "summary_last_dropout") and config.summary_last_dropout > 0:
            self.last_dropout = nn.Dropout(config.summary_last_dropout)

    def forward(
        self, hidden_states: torch.FloatTensor, cls_index: Optional[torch.LongTensor] = None
    ) -> torch.FloatTensor:
        """
        Compute a single vector summary of a sequence hidden states.

        Args:
            hidden_states (:obj:`torch.FloatTensor` of shape :obj:`[batch_size, seq_len, hidden_size]`):
                The hidden states of the last layer.
            cls_index (:obj:`torch.LongTensor` of shape :obj:`[batch_size]` or :obj:`[batch_size, ...]` where ... are optional leading dimensions of :obj:`hidden_states`, `optional`):
                Used if :obj:`summary_type == "cls_index"` and takes the last token of the sequence as classification
                token.

        Returns:
            :obj:`torch.FloatTensor`: The summary of the sequence hidden states.
        """
        if self.summary_type == "last":
            output = hidden_states[:, -1]
        elif self.summary_type == "first":
            output = hidden_states[:, 0]
        elif self.summary_type == "mean":
            output = hidden_states.mean(dim=1)
        elif self.summary_type == "cls_index":
            if cls_index is None:
                cls_index = torch.full_like(
                    hidden_states[..., :1, :],
                    hidden_states.shape[-2] - 1,
                    dtype=torch.long,
                )
            else:
                cls_index = cls_index.unsqueeze(-1).unsqueeze(-1)
                cls_index = cls_index.expand((-1,) * (cls_index.dim() - 1) + (hidden_states.size(-1),))
            # shape of cls_index: (bsz, XX, 1, hidden_size) where XX are optional leading dim of hidden_states
            output = hidden_states.gather(-2, cls_index).squeeze(-2)  # shape (bsz, XX, hidden_size)
        elif self.summary_type == "attn":
            raise NotImplementedError

        output = self.first_dropout(output)
        output = self.summary(output)
        output = self.activation(output)
        output = self.last_dropout(output)

        return output


def prune_linear_layer(layer: torch.nn.Linear, index: torch.LongTensor, dim: int = 0) -> torch.nn.Linear:
    """
    Prune a linear layer to keep only entries in index.

    Used to remove heads.

    Args:
        layer (:obj:`torch.nn.Linear`): The layer to prune.
        index (:obj:`torch.LongTensor`): The indices to keep in the layer.
        dim (:obj:`int`, `optional`, defaults to 0): The dimension on which to keep the indices.

    Returns:
        :obj:`torch.nn.Linear`: The pruned layer as a new layer with :obj:`requires_grad=True`.
    """
    index = index.to(layer.weight.device)
    W = layer.weight.index_select(dim, index).clone().detach()
    if layer.bias is not None:
        if dim == 1:
            b = layer.bias.clone().detach()
        else:
            b = layer.bias[index].clone().detach()
    new_size = list(layer.weight.size())
    new_size[dim] = len(index)
    new_layer = nn.Linear(new_size[1], new_size[0], bias=layer.bias is not None).to(layer.weight.device)
    new_layer.weight.requires_grad = False
    new_layer.weight.copy_(W.contiguous())
    new_layer.weight.requires_grad = True
    if layer.bias is not None:
        new_layer.bias.requires_grad = False
        new_layer.bias.copy_(b.contiguous())
        new_layer.bias.requires_grad = True
    return new_layer


def prune_conv1d_layer(layer: Conv1D, index: torch.LongTensor, dim: int = 1) -> Conv1D:
    """
    Prune a Conv1D layer to keep only entries in index. A Conv1D work as a Linear layer (see e.g. BERT) but the weights
    are transposed.

    Used to remove heads.

    Args:
        layer (:class:`~transformers.modeling_utils.Conv1D`): The layer to prune.
        index (:obj:`torch.LongTensor`): The indices to keep in the layer.
        dim (:obj:`int`, `optional`, defaults to 1): The dimension on which to keep the indices.

    Returns:
        :class:`~transformers.modeling_utils.Conv1D`: The pruned layer as a new layer with :obj:`requires_grad=True`.
    """
    index = index.to(layer.weight.device)
    W = layer.weight.index_select(dim, index).clone().detach()
    if dim == 0:
        b = layer.bias.clone().detach()
    else:
        b = layer.bias[index].clone().detach()
    new_size = list(layer.weight.size())
    new_size[dim] = len(index)
    new_layer = Conv1D(new_size[1], new_size[0]).to(layer.weight.device)
    new_layer.weight.requires_grad = False
    new_layer.weight.copy_(W.contiguous())
    new_layer.weight.requires_grad = True
    new_layer.bias.requires_grad = False
    new_layer.bias.copy_(b.contiguous())
    new_layer.bias.requires_grad = True
    return new_layer


def prune_layer(
    layer: Union[torch.nn.Linear, Conv1D], index: torch.LongTensor, dim: Optional[int] = None
) -> Union[torch.nn.Linear, Conv1D]:
    """
    Prune a Conv1D or linear layer to keep only entries in index.

    Used to remove heads.

    Args:
        layer (:obj:`Union[torch.nn.Linear, Conv1D]`): The layer to prune.
        index (:obj:`torch.LongTensor`): The indices to keep in the layer.
        dim (:obj:`int`, `optional`): The dimension on which to keep the indices.

    Returns:
        :obj:`torch.nn.Linear` or :class:`~transformers.modeling_utils.Conv1D`:
        The pruned layer as a new layer with :obj:`requires_grad=True`.
    """
    if isinstance(layer, nn.Linear):
        return prune_linear_layer(layer, index, dim=0 if dim is None else dim)
    elif isinstance(layer, Conv1D):
        return prune_conv1d_layer(layer, index, dim=1 if dim is None else dim)
    else:
        raise ValueError("Can't prune layer of class {}".format(layer.__class__))


def apply_chunking_to_forward(
    forward_fn: Callable[..., torch.Tensor], chunk_size: int, chunk_dim: int, *input_tensors
) -> torch.Tensor:
    """
    This function chunks the :obj:`input_tensors` into smaller input tensor parts of size :obj:`chunk_size` over the
    dimension :obj:`chunk_dim`. It then applies a layer :obj:`forward_fn` to each chunk independently to save memory.

    If the :obj:`forward_fn` is independent across the :obj:`chunk_dim` this function will yield the same result as
    directly applying :obj:`forward_fn` to :obj:`input_tensors`.

    Args:
        forward_fn (:obj:`Callable[..., torch.Tensor]`):
            The forward function of the model.
        chunk_size (:obj:`int`):
            The chunk size of a chunked tensor: :obj:`num_chunks = len(input_tensors[0]) / chunk_size`.
        chunk_dim (:obj:`int`):
            The dimension over which the :obj:`input_tensors` should be chunked.
        input_tensors (:obj:`Tuple[torch.Tensor]`):
            The input tensors of ``forward_fn`` which will be chunked.
    Returns:
        :obj:`torch.Tensor`: A tensor with the same shape as the :obj:`foward_fn` would have given if applied`.


    Examples::

        # rename the usual forward() fn to forward_chunk()
        def forward_chunk(self, hidden_states):
            hidden_states = self.decoder(hidden_states)
            return hidden_states

        # implement a chunked forward function
        def forward(self, hidden_states):
            return apply_chunking_to_forward(self.forward_chunk, self.chunk_size_lm_head, self.seq_len_dim, hidden_states)
    """

    assert len(input_tensors) > 0, "{} has to be a tuple/list of tensors".format(input_tensors)
    tensor_shape = input_tensors[0].shape
    assert all(
        input_tensor.shape == tensor_shape for input_tensor in input_tensors
    ), "All input tenors have to be of the same shape"

    # inspect.signature exist since python 3.5 and is a python method -> no problem with backward compability
    num_args_in_forward_chunk_fn = len(inspect.signature(forward_fn).parameters)
    assert num_args_in_forward_chunk_fn == len(
        input_tensors
    ), "forward_chunk_fn expects {} arguments, but only {} input tensors are given".format(
        num_args_in_forward_chunk_fn, len(input_tensors)
    )

    if chunk_size > 0:
        assert (
            input_tensors[0].shape[chunk_dim] % chunk_size == 0
        ), "The dimension to be chunked {} has to be a multiple of the chunk size {}".format(
            input_tensors[0].shape[chunk_dim], chunk_size
        )

        num_chunks = input_tensors[0].shape[chunk_dim] // chunk_size

        # chunk input tensor into tuples
        input_tensors_chunks = tuple(input_tensor.chunk(num_chunks, dim=chunk_dim) for input_tensor in input_tensors)
        # apply forward fn to every tuple
        output_chunks = tuple(forward_fn(*input_tensors_chunk) for input_tensors_chunk in zip(*input_tensors_chunks))
        # concatenate output at same dimension
        return torch.cat(output_chunks, dim=chunk_dim)

    return forward_fn(*input_tensors)