DCGAN-checkpoint.ipynb
16.5 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"scrolled": true
},
"outputs": [],
"source": [
"%matplotlib inline\n",
"import os\n",
"from glob import glob\n",
"import numpy as np\n",
"from matplotlib import pyplot\n",
"from PIL import Image\n",
"import tensorflow as tf\n",
"\n",
"##README : IF output folder already existed in same route, it makes error. change past output folder's name ##"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"class Dataset(object):\n",
" def __init__(self, data_files):\n",
" IMAGE_WIDTH = 25\n",
" IMAGE_HEIGHT = 25\n",
" self.image_mode = 'RGB'\n",
" image_channels = 3\n",
" self.data_files = data_files\n",
" self.shape = len(data_files), IMAGE_WIDTH, IMAGE_HEIGHT, image_channels\n",
"\n",
" def get_batches(self, batch_size):\n",
" IMAGE_MAX_VALUE = 255\n",
" current_index = 0\n",
" while current_index + batch_size <= self.shape[0]:\n",
" data_batch = get_batch(\n",
" self.data_files[current_index:current_index + batch_size],\n",
" self.shape[1],self.shape[2],\n",
" self.image_mode)\n",
" \n",
" current_index += batch_size\n",
" \n",
" yield data_batch / IMAGE_MAX_VALUE - 0.5\n",
"\n",
"\n",
"def model_inputs(image_width, image_height, image_channels, z_dim):\n",
" real_input_images = tf.placeholder(tf.float32, [None, image_width, image_height, image_channels], 'real_input_images')\n",
" input_z = tf.placeholder(tf.float32, [None, z_dim], 'input_z')\n",
" learning_rate = tf.placeholder(tf.float32, [], 'learning_rate')\n",
" return real_input_images, input_z, learning_rate\n"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"def discriminator(images, reuse=False, alpha=0.2, keep_prob=0.5):\n",
" with tf.variable_scope('discriminator', reuse=reuse):\n",
" # Input layer is 25x25xn\n",
" # Convolutional layer, 13x13x64\n",
" conv1 = tf.layers.conv2d(images, 64, 5, 2, padding='same', kernel_initializer=tf.contrib.layers.xavier_initializer())\n",
" lrelu1 = tf.maximum(alpha * conv1, conv1)\n",
" drop1 = tf.layers.dropout(lrelu1, keep_prob)\n",
" \n",
" # Strided convolutional layer, 7x7x128\n",
" conv2 = tf.layers.conv2d(drop1, 128, 5, 2, 'same', use_bias=False)\n",
" bn2 = tf.layers.batch_normalization(conv2)\n",
" lrelu2 = tf.maximum(alpha * bn2, bn2)\n",
" drop2 = tf.layers.dropout(lrelu2, keep_prob)\n",
" \n",
" # Strided convolutional layer, 4x4x256\n",
" conv3 = tf.layers.conv2d(drop2, 256, 5, 2, 'same', use_bias=False)\n",
" bn3 = tf.layers.batch_normalization(conv3)\n",
" lrelu3 = tf.maximum(alpha * bn3, bn3)\n",
" drop3 = tf.layers.dropout(lrelu3, keep_prob)\n",
" \n",
" # fully connected\n",
" flat = tf.reshape(drop3, (-1, 4*4*256))\n",
" logits = tf.layers.dense(flat, 1)\n",
" out = tf.sigmoid(logits)\n",
" \n",
" return out, logits"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"def generator(z, out_channel_dim, is_train=True, alpha=0.2, keep_prob=0.5):\n",
" # TODO: Implement Function\n",
" with tf.variable_scope('generator', reuse=(not is_train)):\n",
" # First fully connected layer, 8x4x512\n",
" fc = tf.layers.dense(z, 4*4*1024, use_bias=False)\n",
" fc = tf.reshape(fc, (-1, 4, 4, 1024))\n",
" bn0 = tf.layers.batch_normalization(fc, training=is_train)\n",
" lrelu0 = tf.maximum(alpha * bn0, bn0)\n",
" drop0 = tf.layers.dropout(lrelu0, keep_prob, training=is_train)\n",
" \n",
" # Deconvolution, 16x8x256\n",
" conv1 = tf.layers.conv2d_transpose(drop0, 512,3, 1, 'valid', use_bias=False)\n",
" bn1 = tf.layers.batch_normalization(conv1, training=is_train)\n",
" lrelu1 = tf.maximum(alpha * bn1, bn1)\n",
" drop1 = tf.layers.dropout(lrelu1, keep_prob, training=is_train)\n",
" \n",
" # Deconvolution, 32x 128\n",
" conv2 = tf.layers.conv2d_transpose(drop1, 256, 3, 2, 'same', use_bias=False)\n",
" bn2 = tf.layers.batch_normalization(conv2, training=is_train)\n",
" lrelu2 = tf.maximum(alpha * bn2, bn2)\n",
" drop2 = tf.layers.dropout(lrelu2, keep_prob, training=is_train)\n",
" \n",
" # Output layer, 28x28xn\n",
" logits = tf.layers.conv2d_transpose(drop2, out_channel_dim, 3, 2, 'valid')\n",
" \n",
" out = tf.tanh(logits)\n",
" \n",
" print(fc.shape)\n",
" print(drop1.shape)\n",
" print(drop2.shape)\n",
" print(logits.shape)\n",
" \n",
" return out"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
"def model_loss(input_real, input_z, out_channel_dim, alpha=0.2, smooth_factor=0.1):\n",
" d_model_real, d_logits_real = discriminator(input_real, alpha=alpha)\n",
" \n",
" d_loss_real = tf.reduce_mean(\n",
" tf.nn.sigmoid_cross_entropy_with_logits(logits=d_logits_real,\n",
" labels=tf.ones_like(d_model_real) * (1 - smooth_factor)))\n",
" \n",
" input_fake = generator(input_z, out_channel_dim, alpha=alpha)\n",
" d_model_fake, d_logits_fake = discriminator(input_fake, reuse=True, alpha=alpha)\n",
" \n",
" d_loss_fake = tf.reduce_mean(\n",
" tf.nn.sigmoid_cross_entropy_with_logits(logits=d_logits_fake, labels=tf.zeros_like(d_model_fake)))\n",
" \n",
" g_loss = tf.reduce_mean(\n",
" tf.nn.sigmoid_cross_entropy_with_logits(logits=d_logits_fake, labels=tf.ones_like(d_model_fake)))\n",
"\n",
" return d_loss_real + d_loss_fake, g_loss\n"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [],
"source": [
"def model_opt(d_loss, g_loss, learning_rate, beta1):\n",
" # Get weights and bias to update\n",
" t_vars = tf.trainable_variables()\n",
" d_vars = [var for var in t_vars if var.name.startswith('discriminator')]\n",
" g_vars = [var for var in t_vars if var.name.startswith('generator')]\n",
"\n",
" # Optimize\n",
" with tf.control_dependencies(tf.get_collection(tf.GraphKeys.UPDATE_OPS)):\n",
" d_train_opt = tf.train.AdamOptimizer(learning_rate, beta1=beta1).minimize(d_loss, var_list=d_vars)\n",
" g_train_opt = tf.train.AdamOptimizer(learning_rate, beta1=beta1).minimize(g_loss, var_list=g_vars)\n",
"\n",
" return d_train_opt, g_train_opt\n"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [],
"source": [
"def show_generator_output(sess, n_images, input_z, out_channel_dim, image_mode):\n",
" cmap = None if image_mode == 'RGB' else 'gray'\n",
" z_dim = input_z.get_shape().as_list()[-1]\n",
" example_z = np.random.uniform(-1, 1, size=[n_images, z_dim])\n",
"\n",
" samples = sess.run(\n",
" generator(input_z, out_channel_dim, False),\n",
" feed_dict={input_z: example_z})\n",
" \n",
" # pyplot.show()\n",
" return samples"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [],
"source": [
"def train(epoch_count, batch_size, z_dim, learning_rate, beta1, get_batches, data_shape, data_image_mode,\n",
" print_every=10, show_every=10):\n",
" # TODO: Build Model\n",
" input_real, input_z, _ = model_inputs(data_shape[2], data_shape[1], data_shape[3], z_dim)\n",
" d_loss, g_loss = model_loss(input_real, input_z, data_shape[3], alpha=0.2)\n",
" d_train_opt, g_train_opt = model_opt(d_loss, g_loss, learning_rate, beta1)\n",
" \n",
" saver = tf.train.Saver()\n",
" sample_z = np.random.uniform(-1, 1, size=(72, z_dim))\n",
" \n",
" samples, losses = [], []\n",
" \n",
" steps = 0\n",
" count = 0\n",
" \n",
" with tf.Session() as sess:\n",
" saver = tf.train.Saver()\n",
" sess.run(tf.global_variables_initializer())\n",
" \n",
" # continue training\n",
" save_path = saver.save(sess, \"/tmp/model.ckpt\")\n",
" ckpt = tf.train.latest_checkpoint('./model/')\n",
" saver.restore(sess, save_path)\n",
" coord = tf.train.Coordinator()\n",
" threads = tf.train.start_queue_runners(sess=sess, coord=coord)\n",
"\n",
" os.mkdir('output')\n",
" for epoch_i in range(epoch_count):\n",
" for batch_images in get_batches(batch_size):\n",
" # Train Model\n",
" steps += 1\n",
" batch_images *= 2.0\n",
" \n",
" # Sample random noise for G\n",
" batch_z = np.random.uniform(-1, 1, size=(batch_size, z_dim))\n",
" \n",
" # Run optimizers\n",
" sess.run(d_train_opt, feed_dict={input_real: batch_images, input_z: batch_z})\n",
" sess.run(g_train_opt, feed_dict={input_z: batch_z})\n",
" \n",
" if steps % print_every == 0:\n",
" os.mkdir('output/'+ str(steps))\n",
" # At the end of each epoch, get the losses and print them out\n",
" train_loss_d = d_loss.eval({input_real: batch_images, input_z: batch_z})\n",
" train_loss_g = g_loss.eval({input_z: batch_z})\n",
" print(\"Epoch {}/{} Step {}...\".format(epoch_i+1, epoch_count, steps),\n",
" \"Discriminator Loss: {:.4f}...\".format(train_loss_d),\n",
" \"Generator Loss: {:.4f}\".format(train_loss_g))\n",
" # Save losses for viewing after training\n",
" #losses.append((train_loss_d, train_loss_g))\n",
" \n",
" if steps % show_every == 0:\n",
" count = count +1\n",
" iterr = count*show_every\n",
" # Show example output for the generator # 25 number for 1 time\n",
" images_grid = show_generator_output(sess, 25, input_z, data_shape[3], data_image_mode)\n",
" x = 0\n",
" for image_grid in images_grid : \n",
" x = x+1\n",
" dst = os.path.join(\"output\", str(steps),str(iterr)+str(x)+\".png\")\n",
" pyplot.imsave(dst, image_grid)\n",
" \n",
" # saving the model \n",
" if epoch_i % 10 == 0:\n",
" if not os.path.exists('./model/'):\n",
" os.makedirs('./model')\n",
" saver.save(sess, './model/' + str(epoch_i)) "
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {
"scrolled": true
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"140\n",
"(?, 4, 4, 1024)\n",
"(?, 6, 6, 512)\n",
"(?, 12, 12, 256)\n",
"(?, 25, 25, 3)\n",
"INFO:tensorflow:Restoring parameters from /tmp/model.ckpt\n"
]
},
{
"ename": "FileExistsError",
"evalue": "[Errno 17] File exists: 'output'",
"output_type": "error",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mFileExistsError\u001b[0m Traceback (most recent call last)",
"\u001b[0;32m<ipython-input-10-3cf64f8b526a>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m 8\u001b[0m \u001b[0mceleba_dataset\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mDataset\u001b[0m\u001b[0;34m(\u001b[0m \u001b[0mglob\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'./motionpatch/*.png'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 9\u001b[0m \u001b[0;32mwith\u001b[0m \u001b[0mtf\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mGraph\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mas_default\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 10\u001b[0;31m \u001b[0mtrain\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mepochs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mbatch_size\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mz_dim\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mlearning_rate\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mbeta1\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mceleba_dataset\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_batches\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mceleba_dataset\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mshape\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mceleba_dataset\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mimage_mode\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
"\u001b[0;32m<ipython-input-8-4eafe8fdaf6d>\u001b[0m in \u001b[0;36mtrain\u001b[0;34m(epoch_count, batch_size, z_dim, learning_rate, beta1, get_batches, data_shape, data_image_mode, print_every, show_every)\u001b[0m\n\u001b[1;32m 25\u001b[0m \u001b[0mthreads\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mtf\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtrain\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mstart_queue_runners\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0msess\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0msess\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mcoord\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mcoord\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 26\u001b[0m \u001b[0;31m#sess.run(tf.global_variables_initializer())\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 27\u001b[0;31m \u001b[0mos\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmkdir\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'output'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 28\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mepoch_i\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mrange\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mepoch_count\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 29\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mbatch_images\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mget_batches\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mbatch_size\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;31mFileExistsError\u001b[0m: [Errno 17] File exists: 'output'"
]
}
],
"source": [
"batch_size = 50\n",
"z_dim = 100\n",
"learning_rate = 0.00025\n",
"beta1 = 0.45\n",
"\n",
"epochs = 500\n",
"print(len(glob('./motionpatch/*.png')))\n",
"celeba_dataset = Dataset( glob('./motionpatch/*.png'))\n",
"with tf.Graph().as_default():\n",
" train(epochs, batch_size, z_dim, learning_rate, beta1, celeba_dataset.get_batches, celeba_dataset.shape, celeba_dataset.image_mode)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.5.0"
}
},
"nbformat": 4,
"nbformat_minor": 1
}