DCGAN.ipynb 36.8 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {
    "scrolled": true
   },
   "outputs": [],
   "source": [
    "%matplotlib inline\n",
    "import os\n",
    "from glob import glob\n",
    "import numpy as np\n",
    "from matplotlib import pyplot\n",
    "from PIL import Image\n",
    "import tensorflow as tf\n",
    "\n",
    "##README : IF output folder already existed in same route, it makes error. change past output folder's name ##"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [],
   "source": [
    "class Dataset(object):\n",
    "    def __init__(self, data_files):\n",
    "        IMAGE_WIDTH = 25\n",
    "        IMAGE_HEIGHT = 25\n",
    "        self.image_mode = 'RGB'\n",
    "        image_channels = 3\n",
    "        self.data_files = data_files\n",
    "        self.shape = len(data_files), IMAGE_WIDTH, IMAGE_HEIGHT, image_channels\n",
    "    \n",
    "    def get_image(iself,image_path, width, height, mode):\n",
    "        image = Image.open(image_path)\n",
    "        image = image.resize((width,height))\n",
    "        return np.array(image)\n",
    "\n",
    "\n",
    "    def get_batch(self,image_files, width, height, mode):\n",
    "        data_batch = np.array(\n",
    "            [self.get_image(sample_file, width, height, mode) for sample_file in image_files]).astype(np.float32)\n",
    "        \n",
    "        # Make sure the images are in 4 dimensions\n",
    "        if len(data_batch.shape) < 4:\n",
    "            data_batch = data_batch.reshape(data_batch.shape + (1,))\n",
    "        return data_batch\n",
    "\n",
    "    def get_batches(self, batch_size):\n",
    "        IMAGE_MAX_VALUE = 255\n",
    "        current_index = 0\n",
    "        while current_index + batch_size <= self.shape[0]:\n",
    "            data_batch = self.get_batch(\n",
    "                self.data_files[current_index:current_index + batch_size],\n",
    "                self.shape[1],self.shape[2],\n",
    "                self.image_mode)\n",
    "            \n",
    "            current_index += batch_size\n",
    "            \n",
    "            yield data_batch / IMAGE_MAX_VALUE - 0.5\n",
    "\n",
    "\n",
    "def model_inputs(image_width, image_height, image_channels, z_dim):\n",
    "    real_input_images = tf.placeholder(tf.float32, [None, image_width, image_height, image_channels], 'real_input_images')\n",
    "    input_z = tf.placeholder(tf.float32, [None, z_dim], 'input_z')\n",
    "    learning_rate = tf.placeholder(tf.float32, [], 'learning_rate')\n",
    "    return real_input_images, input_z, learning_rate\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {},
   "outputs": [],
   "source": [
    "def discriminator(images, reuse=False, alpha=0.2, keep_prob=0.5):\n",
    "    with tf.variable_scope('discriminator', reuse=reuse):\n",
    "        # Input layer is 25x25xn\n",
    "        # Convolutional layer, 13x13x64\n",
    "        conv1 = tf.layers.conv2d(images, 64, 5, 2, padding='same', kernel_initializer=tf.contrib.layers.xavier_initializer())\n",
    "        lrelu1 = tf.maximum(alpha * conv1, conv1)\n",
    "        drop1 = tf.layers.dropout(lrelu1, keep_prob)\n",
    "        \n",
    "        # Strided convolutional layer, 7x7x128\n",
    "        conv2 = tf.layers.conv2d(drop1, 128, 5, 2, 'same', use_bias=False)\n",
    "        bn2 = tf.layers.batch_normalization(conv2)\n",
    "        lrelu2 = tf.maximum(alpha * bn2, bn2)\n",
    "        drop2 = tf.layers.dropout(lrelu2, keep_prob)\n",
    "        \n",
    "        # Strided convolutional layer, 4x4x256\n",
    "        conv3 = tf.layers.conv2d(drop2, 256, 5, 2, 'same', use_bias=False)\n",
    "        bn3 = tf.layers.batch_normalization(conv3)\n",
    "        lrelu3 = tf.maximum(alpha * bn3, bn3)\n",
    "        drop3 = tf.layers.dropout(lrelu3, keep_prob)\n",
    "        \n",
    "        # fully connected\n",
    "        flat = tf.reshape(drop3, (-1, 4*4*256))\n",
    "        logits = tf.layers.dense(flat, 1)\n",
    "        out = tf.sigmoid(logits)\n",
    "        \n",
    "        return out, logits"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {},
   "outputs": [],
   "source": [
    "def generator(z, out_channel_dim, is_train=True, alpha=0.2, keep_prob=0.5):\n",
    "    # TODO: Implement Function\n",
    "    with tf.variable_scope('generator', reuse=(not is_train)):\n",
    "        # First fully connected layer, 8x4x512\n",
    "        fc = tf.layers.dense(z, 4*4*1024, use_bias=False)\n",
    "        fc = tf.reshape(fc, (-1, 4, 4, 1024))\n",
    "        bn0 = tf.layers.batch_normalization(fc, training=is_train)\n",
    "        lrelu0 = tf.maximum(alpha * bn0, bn0)\n",
    "        drop0 = tf.layers.dropout(lrelu0, keep_prob, training=is_train)\n",
    "        \n",
    "        # Deconvolution, 16x8x256\n",
    "        conv1 = tf.layers.conv2d_transpose(drop0, 512,3, 1, 'valid', use_bias=False)\n",
    "        bn1 = tf.layers.batch_normalization(conv1, training=is_train)\n",
    "        lrelu1 = tf.maximum(alpha * bn1, bn1)\n",
    "        drop1 = tf.layers.dropout(lrelu1, keep_prob, training=is_train)\n",
    "        \n",
    "        # Deconvolution, 32x 128\n",
    "        conv2 = tf.layers.conv2d_transpose(drop1, 256, 3, 2, 'same', use_bias=False)\n",
    "        bn2 = tf.layers.batch_normalization(conv2, training=is_train)\n",
    "        lrelu2 = tf.maximum(alpha * bn2, bn2)\n",
    "        drop2 = tf.layers.dropout(lrelu2, keep_prob, training=is_train)\n",
    "        \n",
    "        # Output layer, 28x28xn\n",
    "        logits = tf.layers.conv2d_transpose(drop2, out_channel_dim, 3, 2, 'valid')\n",
    "        \n",
    "        out = tf.tanh(logits)\n",
    "        \n",
    "        print(fc.shape)\n",
    "        print(drop1.shape)\n",
    "        print(drop2.shape)\n",
    "        print(logits.shape)\n",
    "        \n",
    "        return out"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {},
   "outputs": [],
   "source": [
    "def model_loss(input_real, input_z, out_channel_dim, alpha=0.2, smooth_factor=0.1):\n",
    "    d_model_real, d_logits_real = discriminator(input_real, alpha=alpha)\n",
    "    \n",
    "    d_loss_real = tf.reduce_mean(\n",
    "        tf.nn.sigmoid_cross_entropy_with_logits(logits=d_logits_real,\n",
    "                                                labels=tf.ones_like(d_model_real) * (1 - smooth_factor)))\n",
    "    \n",
    "    input_fake = generator(input_z, out_channel_dim, alpha=alpha)\n",
    "    d_model_fake, d_logits_fake = discriminator(input_fake, reuse=True, alpha=alpha)\n",
    "    \n",
    "    d_loss_fake = tf.reduce_mean(\n",
    "        tf.nn.sigmoid_cross_entropy_with_logits(logits=d_logits_fake, labels=tf.zeros_like(d_model_fake)))\n",
    "    \n",
    "    g_loss = tf.reduce_mean(\n",
    "        tf.nn.sigmoid_cross_entropy_with_logits(logits=d_logits_fake, labels=tf.ones_like(d_model_fake)))\n",
    "\n",
    "    return d_loss_real + d_loss_fake, g_loss\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "metadata": {},
   "outputs": [],
   "source": [
    "def model_opt(d_loss, g_loss, learning_rate, beta1):\n",
    "    # Get weights and bias to update\n",
    "    t_vars = tf.trainable_variables()\n",
    "    d_vars = [var for var in t_vars if var.name.startswith('discriminator')]\n",
    "    g_vars = [var for var in t_vars if var.name.startswith('generator')]\n",
    "\n",
    "    # Optimize\n",
    "    with tf.control_dependencies(tf.get_collection(tf.GraphKeys.UPDATE_OPS)):\n",
    "        d_train_opt = tf.train.AdamOptimizer(learning_rate, beta1=beta1).minimize(d_loss, var_list=d_vars)\n",
    "        g_train_opt = tf.train.AdamOptimizer(learning_rate, beta1=beta1).minimize(g_loss, var_list=g_vars)\n",
    "\n",
    "    return d_train_opt, g_train_opt\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "metadata": {},
   "outputs": [],
   "source": [
    "def show_generator_output(sess, n_images, input_z, out_channel_dim, image_mode):\n",
    "    cmap = None if image_mode == 'RGB' else 'gray'\n",
    "    z_dim = input_z.get_shape().as_list()[-1]\n",
    "    example_z = np.random.uniform(-1, 1, size=[n_images, z_dim])\n",
    "\n",
    "    samples = sess.run(\n",
    "        generator(input_z, out_channel_dim, False),\n",
    "        feed_dict={input_z: example_z})\n",
    "    \n",
    "    # pyplot.show()\n",
    "    return samples"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "metadata": {},
   "outputs": [],
   "source": [
    "def train(epoch_count, batch_size, z_dim, learning_rate, beta1, get_batches, data_shape, data_image_mode,\n",
    "          print_every=10, show_every=10):\n",
    "    # TODO: Build Model\n",
    "    input_real, input_z, _ = model_inputs(data_shape[2], data_shape[1], data_shape[3], z_dim)\n",
    "    d_loss, g_loss = model_loss(input_real, input_z, data_shape[3], alpha=0.2)\n",
    "    d_train_opt, g_train_opt = model_opt(d_loss, g_loss, learning_rate, beta1)\n",
    "    \n",
    "    saver = tf.train.Saver()\n",
    "    sample_z = np.random.uniform(-1, 1, size=(72, z_dim))\n",
    "    \n",
    "    samples, losses = [], []\n",
    "    \n",
    "    steps = 0\n",
    "    count = 0\n",
    "    \n",
    "    with tf.Session() as sess:\n",
    "        saver = tf.train.Saver()\n",
    "        sess.run(tf.global_variables_initializer())\n",
    "        \n",
    "        # continue training\n",
    "        save_path = saver.save(sess, \"/tmp/model.ckpt\")\n",
    "        ckpt = tf.train.latest_checkpoint('./model/')\n",
    "        saver.restore(sess, save_path)\n",
    "        \n",
    "        #newsaver = tf.train.import_meta_graph('./model/70.meta')\n",
    "        #newsaver.restore(sess, tf.train.latest_checkpoint('./model/'))\n",
    "        \n",
    "        coord = tf.train.Coordinator()\n",
    "        threads = tf.train.start_queue_runners(sess=sess, coord=coord)\n",
    "\n",
    "        os.mkdir('output')\n",
    "        for epoch_i in range(epoch_count):\n",
    "            for batch_images in get_batches(batch_size):\n",
    "                # Train Model\n",
    "                steps += 1\n",
    "                batch_images *= 2.0\n",
    "                \n",
    "                # Sample random noise for G\n",
    "                batch_z = np.random.uniform(-1, 1, size=(batch_size, z_dim))\n",
    "                \n",
    "                # Run optimizers\n",
    "                sess.run(d_train_opt, feed_dict={input_real: batch_images, input_z: batch_z})\n",
    "                sess.run(g_train_opt, feed_dict={input_z: batch_z})\n",
    "                \n",
    "                if steps % print_every == 0:\n",
    "                    os.mkdir('output/'+ str(steps))\n",
    "                    # At the end of each epoch, get the losses and print them out\n",
    "                    train_loss_d = d_loss.eval({input_real: batch_images, input_z: batch_z})\n",
    "                    train_loss_g = g_loss.eval({input_z: batch_z})\n",
    "                    print(\"Epoch {}/{} Step {}...\".format(epoch_i+1, epoch_count, steps),\n",
    "                      \"Discriminator Loss: {:.4f}...\".format(train_loss_d),\n",
    "                      \"Generator Loss: {:.4f}\".format(train_loss_g))\n",
    "                    # Save losses for viewing after training\n",
    "                    #losses.append((train_loss_d, train_loss_g))\n",
    "                            \n",
    "                if steps % show_every == 0:\n",
    "                    count = count +1\n",
    "                    iterr = count*show_every\n",
    "                    # Show example output for the generator # 25 number for 1 time\n",
    "                    images_grid = show_generator_output(sess, 25, input_z, data_shape[3], data_image_mode)\n",
    "                    x = 0\n",
    "                    for image_grid in images_grid : \n",
    "                        x = x+1\n",
    "                        dst = os.path.join(\"output\", str(steps),str(iterr)+str(x)+\".png\")\n",
    "                        pyplot.imsave(dst, image_grid)\n",
    "                        \n",
    "                 # saving the model         \n",
    "                if epoch_i % 10 == 0:\n",
    "                    if not os.path.exists('./model/'):\n",
    "                        os.makedirs('./model')\n",
    "                    saver.save(sess, './model/' + str(epoch_i))      "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "metadata": {
    "scrolled": true
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "5004\n",
      "(?, 4, 4, 1024)\n",
      "(?, 6, 6, 512)\n",
      "(?, 12, 12, 256)\n",
      "(?, 25, 25, 3)\n",
      "INFO:tensorflow:Restoring parameters from /tmp/model.ckpt\n",
      "Epoch 1/200 Step 10... Discriminator Loss: 0.7986... Generator Loss: 2.7782\n",
      "(?, 4, 4, 1024)\n",
      "(?, 6, 6, 512)\n",
      "(?, 12, 12, 256)\n",
      "(?, 25, 25, 3)\n",
      "Epoch 2/200 Step 20... Discriminator Loss: 0.7019... Generator Loss: 1.2096\n",
      "(?, 4, 4, 1024)\n",
      "(?, 6, 6, 512)\n",
      "(?, 12, 12, 256)\n",
      "(?, 25, 25, 3)\n",
      "Epoch 2/200 Step 30... Discriminator Loss: 0.6407... Generator Loss: 1.7675\n",
      "(?, 4, 4, 1024)\n",
      "(?, 6, 6, 512)\n",
      "(?, 12, 12, 256)\n",
      "(?, 25, 25, 3)\n",
      "Epoch 3/200 Step 40... Discriminator Loss: 0.9732... Generator Loss: 0.9018\n",
      "(?, 4, 4, 1024)\n",
      "(?, 6, 6, 512)\n",
      "(?, 12, 12, 256)\n",
      "(?, 25, 25, 3)\n",
      "Epoch 3/200 Step 50... Discriminator Loss: 1.2455... Generator Loss: 2.2003\n",
      "(?, 4, 4, 1024)\n",
      "(?, 6, 6, 512)\n",
      "(?, 12, 12, 256)\n",
      "(?, 25, 25, 3)\n",
      "Epoch 4/200 Step 60... Discriminator Loss: 0.9650... Generator Loss: 1.1981\n",
      "(?, 4, 4, 1024)\n",
      "(?, 6, 6, 512)\n",
      "(?, 12, 12, 256)\n",
      "(?, 25, 25, 3)\n",
      "Epoch 4/200 Step 70... Discriminator Loss: 0.9376... Generator Loss: 1.6022\n",
      "(?, 4, 4, 1024)\n",
      "(?, 6, 6, 512)\n",
      "(?, 12, 12, 256)\n",
      "(?, 25, 25, 3)\n",
      "Epoch 5/200 Step 80... Discriminator Loss: 0.9873... Generator Loss: 0.9408\n",
      "(?, 4, 4, 1024)\n",
      "(?, 6, 6, 512)\n",
      "(?, 12, 12, 256)\n",
      "(?, 25, 25, 3)\n",
      "Epoch 5/200 Step 90... Discriminator Loss: 1.1370... Generator Loss: 2.2449\n",
      "(?, 4, 4, 1024)\n",
      "(?, 6, 6, 512)\n",
      "(?, 12, 12, 256)\n",
      "(?, 25, 25, 3)\n",
      "Epoch 6/200 Step 100... Discriminator Loss: 0.9307... Generator Loss: 1.1019\n",
      "(?, 4, 4, 1024)\n",
      "(?, 6, 6, 512)\n",
      "(?, 12, 12, 256)\n",
      "(?, 25, 25, 3)\n",
      "Epoch 6/200 Step 110... Discriminator Loss: 0.9045... Generator Loss: 1.3023\n",
      "(?, 4, 4, 1024)\n",
      "(?, 6, 6, 512)\n",
      "(?, 12, 12, 256)\n",
      "(?, 25, 25, 3)\n",
      "Epoch 7/200 Step 120... Discriminator Loss: 1.4306... Generator Loss: 3.0811\n",
      "(?, 4, 4, 1024)\n",
      "(?, 6, 6, 512)\n",
      "(?, 12, 12, 256)\n",
      "(?, 25, 25, 3)\n",
      "Epoch 7/200 Step 130... Discriminator Loss: 0.8306... Generator Loss: 1.4418\n",
      "(?, 4, 4, 1024)\n",
      "(?, 6, 6, 512)\n",
      "(?, 12, 12, 256)\n",
      "(?, 25, 25, 3)\n",
      "Epoch 8/200 Step 140... Discriminator Loss: 1.0130... Generator Loss: 0.9772\n",
      "(?, 4, 4, 1024)\n",
      "(?, 6, 6, 512)\n",
      "(?, 12, 12, 256)\n",
      "(?, 25, 25, 3)\n",
      "Epoch 8/200 Step 150... Discriminator Loss: 1.1253... Generator Loss: 2.7651\n",
      "(?, 4, 4, 1024)\n",
      "(?, 6, 6, 512)\n",
      "(?, 12, 12, 256)\n",
      "(?, 25, 25, 3)\n",
      "Epoch 9/200 Step 160... Discriminator Loss: 1.2028... Generator Loss: 0.5614\n",
      "(?, 4, 4, 1024)\n",
      "(?, 6, 6, 512)\n",
      "(?, 12, 12, 256)\n",
      "(?, 25, 25, 3)\n",
      "Epoch 9/200 Step 170... Discriminator Loss: 1.1864... Generator Loss: 0.6131\n",
      "(?, 4, 4, 1024)\n",
      "(?, 6, 6, 512)\n",
      "(?, 12, 12, 256)\n",
      "(?, 25, 25, 3)\n",
      "Epoch 10/200 Step 180... Discriminator Loss: 0.8613... Generator Loss: 1.1399\n",
      "(?, 4, 4, 1024)\n",
      "(?, 6, 6, 512)\n",
      "(?, 12, 12, 256)\n",
      "(?, 25, 25, 3)\n",
      "Epoch 10/200 Step 190... Discriminator Loss: 0.7570... Generator Loss: 1.9568\n",
      "(?, 4, 4, 1024)\n",
      "(?, 6, 6, 512)\n",
      "(?, 12, 12, 256)\n",
      "(?, 25, 25, 3)\n",
      "Epoch 11/200 Step 200... Discriminator Loss: 0.8872... Generator Loss: 1.3420\n",
      "(?, 4, 4, 1024)\n",
      "(?, 6, 6, 512)\n",
      "(?, 12, 12, 256)\n",
      "(?, 25, 25, 3)\n",
      "Epoch 12/200 Step 210... Discriminator Loss: 0.7758... Generator Loss: 1.3705\n",
      "(?, 4, 4, 1024)\n",
      "(?, 6, 6, 512)\n",
      "(?, 12, 12, 256)\n",
      "(?, 25, 25, 3)\n",
      "Epoch 12/200 Step 220... Discriminator Loss: 0.9375... Generator Loss: 2.3697\n",
      "(?, 4, 4, 1024)\n",
      "(?, 6, 6, 512)\n",
      "(?, 12, 12, 256)\n",
      "(?, 25, 25, 3)\n",
      "Epoch 13/200 Step 230... Discriminator Loss: 1.0274... Generator Loss: 2.6057\n",
      "(?, 4, 4, 1024)\n",
      "(?, 6, 6, 512)\n",
      "(?, 12, 12, 256)\n",
      "(?, 25, 25, 3)\n",
      "Epoch 13/200 Step 240... Discriminator Loss: 0.8219... Generator Loss: 1.2095\n",
      "(?, 4, 4, 1024)\n",
      "(?, 6, 6, 512)\n",
      "(?, 12, 12, 256)\n",
      "(?, 25, 25, 3)\n",
      "Epoch 14/200 Step 250... Discriminator Loss: 0.8607... Generator Loss: 1.8890\n",
      "(?, 4, 4, 1024)\n",
      "(?, 6, 6, 512)\n",
      "(?, 12, 12, 256)\n",
      "(?, 25, 25, 3)\n",
      "Epoch 14/200 Step 260... Discriminator Loss: 0.8661... Generator Loss: 1.4806\n",
      "(?, 4, 4, 1024)\n",
      "(?, 6, 6, 512)\n",
      "(?, 12, 12, 256)\n",
      "(?, 25, 25, 3)\n",
      "Epoch 15/200 Step 270... Discriminator Loss: 0.8005... Generator Loss: 1.6766\n",
      "(?, 4, 4, 1024)\n",
      "(?, 6, 6, 512)\n",
      "(?, 12, 12, 256)\n",
      "(?, 25, 25, 3)\n",
      "Epoch 15/200 Step 280... Discriminator Loss: 0.8658... Generator Loss: 1.6609\n",
      "(?, 4, 4, 1024)\n",
      "(?, 6, 6, 512)\n",
      "(?, 12, 12, 256)\n",
      "(?, 25, 25, 3)\n",
      "Epoch 16/200 Step 290... Discriminator Loss: 1.3357... Generator Loss: 0.5010\n",
      "(?, 4, 4, 1024)\n",
      "(?, 6, 6, 512)\n",
      "(?, 12, 12, 256)\n",
      "(?, 25, 25, 3)\n",
      "Epoch 16/200 Step 300... Discriminator Loss: 0.8518... Generator Loss: 1.4408\n",
      "(?, 4, 4, 1024)\n",
      "(?, 6, 6, 512)\n",
      "(?, 12, 12, 256)\n",
      "(?, 25, 25, 3)\n",
      "Epoch 17/200 Step 310... Discriminator Loss: 0.9052... Generator Loss: 1.2558\n",
      "(?, 4, 4, 1024)\n",
      "(?, 6, 6, 512)\n",
      "(?, 12, 12, 256)\n",
      "(?, 25, 25, 3)\n",
      "Epoch 17/200 Step 320... Discriminator Loss: 0.9011... Generator Loss: 1.2468\n",
      "(?, 4, 4, 1024)\n",
      "(?, 6, 6, 512)\n",
      "(?, 12, 12, 256)\n",
      "(?, 25, 25, 3)\n",
      "Epoch 18/200 Step 330... Discriminator Loss: 0.9880... Generator Loss: 0.8800\n",
      "(?, 4, 4, 1024)\n",
      "(?, 6, 6, 512)\n",
      "(?, 12, 12, 256)\n",
      "(?, 25, 25, 3)\n",
      "Epoch 18/200 Step 340... Discriminator Loss: 0.9066... Generator Loss: 2.0460\n",
      "(?, 4, 4, 1024)\n",
      "(?, 6, 6, 512)\n",
      "(?, 12, 12, 256)\n",
      "(?, 25, 25, 3)\n",
      "Epoch 19/200 Step 350... Discriminator Loss: 0.9169... Generator Loss: 1.7369\n",
      "(?, 4, 4, 1024)\n",
      "(?, 6, 6, 512)\n",
      "(?, 12, 12, 256)\n",
      "(?, 25, 25, 3)\n",
      "Epoch 19/200 Step 360... Discriminator Loss: 0.9111... Generator Loss: 1.5251\n",
      "(?, 4, 4, 1024)\n",
      "(?, 6, 6, 512)\n",
      "(?, 12, 12, 256)\n",
      "(?, 25, 25, 3)\n",
      "Epoch 20/200 Step 370... Discriminator Loss: 0.9466... Generator Loss: 1.0476\n",
      "(?, 4, 4, 1024)\n",
      "(?, 6, 6, 512)\n",
      "(?, 12, 12, 256)\n",
      "(?, 25, 25, 3)\n",
      "Epoch 20/200 Step 380... Discriminator Loss: 1.0600... Generator Loss: 1.6264\n",
      "(?, 4, 4, 1024)\n",
      "(?, 6, 6, 512)\n",
      "(?, 12, 12, 256)\n",
      "(?, 25, 25, 3)\n",
      "Epoch 21/200 Step 390... Discriminator Loss: 1.1503... Generator Loss: 0.9095\n",
      "(?, 4, 4, 1024)\n",
      "(?, 6, 6, 512)\n",
      "(?, 12, 12, 256)\n",
      "(?, 25, 25, 3)\n",
      "Epoch 22/200 Step 400... Discriminator Loss: 1.1989... Generator Loss: 1.2204\n",
      "(?, 4, 4, 1024)\n",
      "(?, 6, 6, 512)\n",
      "(?, 12, 12, 256)\n",
      "(?, 25, 25, 3)\n",
      "Epoch 22/200 Step 410... Discriminator Loss: 1.1530... Generator Loss: 0.8920\n",
      "(?, 4, 4, 1024)\n",
      "(?, 6, 6, 512)\n",
      "(?, 12, 12, 256)\n",
      "(?, 25, 25, 3)\n",
      "Epoch 23/200 Step 420... Discriminator Loss: 1.2206... Generator Loss: 0.8665\n",
      "(?, 4, 4, 1024)\n",
      "(?, 6, 6, 512)\n",
      "(?, 12, 12, 256)\n",
      "(?, 25, 25, 3)\n",
      "Epoch 23/200 Step 430... Discriminator Loss: 1.1357... Generator Loss: 1.0771\n",
      "(?, 4, 4, 1024)\n",
      "(?, 6, 6, 512)\n",
      "(?, 12, 12, 256)\n",
      "(?, 25, 25, 3)\n",
      "Epoch 24/200 Step 440... Discriminator Loss: 1.5018... Generator Loss: 0.4140\n",
      "(?, 4, 4, 1024)\n",
      "(?, 6, 6, 512)\n",
      "(?, 12, 12, 256)\n",
      "(?, 25, 25, 3)\n",
      "Epoch 24/200 Step 450... Discriminator Loss: 1.1407... Generator Loss: 0.9182\n",
      "(?, 4, 4, 1024)\n",
      "(?, 6, 6, 512)\n",
      "(?, 12, 12, 256)\n",
      "(?, 25, 25, 3)\n",
      "Epoch 25/200 Step 460... Discriminator Loss: 1.1208... Generator Loss: 1.0497\n",
      "(?, 4, 4, 1024)\n",
      "(?, 6, 6, 512)\n",
      "(?, 12, 12, 256)\n",
      "(?, 25, 25, 3)\n",
      "Epoch 25/200 Step 470... Discriminator Loss: 1.2283... Generator Loss: 1.3409\n",
      "(?, 4, 4, 1024)\n",
      "(?, 6, 6, 512)\n",
      "(?, 12, 12, 256)\n",
      "(?, 25, 25, 3)\n",
      "Epoch 26/200 Step 480... Discriminator Loss: 1.1401... Generator Loss: 0.8807\n",
      "(?, 4, 4, 1024)\n",
      "(?, 6, 6, 512)\n",
      "(?, 12, 12, 256)\n",
      "(?, 25, 25, 3)\n",
      "Epoch 26/200 Step 490... Discriminator Loss: 1.1839... Generator Loss: 0.7198\n",
      "(?, 4, 4, 1024)\n",
      "(?, 6, 6, 512)\n",
      "(?, 12, 12, 256)\n",
      "(?, 25, 25, 3)\n",
      "Epoch 27/200 Step 500... Discriminator Loss: 1.5919... Generator Loss: 0.3560\n",
      "(?, 4, 4, 1024)\n",
      "(?, 6, 6, 512)\n",
      "(?, 12, 12, 256)\n",
      "(?, 25, 25, 3)\n",
      "Epoch 27/200 Step 510... Discriminator Loss: 1.2166... Generator Loss: 1.4234\n",
      "(?, 4, 4, 1024)\n",
      "(?, 6, 6, 512)\n",
      "(?, 12, 12, 256)\n",
      "(?, 25, 25, 3)\n",
      "Epoch 28/200 Step 520... Discriminator Loss: 1.1838... Generator Loss: 1.2357\n",
      "(?, 4, 4, 1024)\n",
      "(?, 6, 6, 512)\n",
      "(?, 12, 12, 256)\n",
      "(?, 25, 25, 3)\n",
      "Epoch 28/200 Step 530... Discriminator Loss: 1.2062... Generator Loss: 1.4508\n",
      "(?, 4, 4, 1024)\n",
      "(?, 6, 6, 512)\n",
      "(?, 12, 12, 256)\n",
      "(?, 25, 25, 3)\n",
      "Epoch 29/200 Step 540... Discriminator Loss: 1.2600... Generator Loss: 1.5470\n",
      "(?, 4, 4, 1024)\n",
      "(?, 6, 6, 512)\n",
      "(?, 12, 12, 256)\n",
      "(?, 25, 25, 3)\n",
      "Epoch 29/200 Step 550... Discriminator Loss: 1.1592... Generator Loss: 0.9399\n",
      "(?, 4, 4, 1024)\n",
      "(?, 6, 6, 512)\n",
      "(?, 12, 12, 256)\n",
      "(?, 25, 25, 3)\n",
      "Epoch 30/200 Step 560... Discriminator Loss: 1.1941... Generator Loss: 1.0776\n",
      "(?, 4, 4, 1024)\n",
      "(?, 6, 6, 512)\n",
      "(?, 12, 12, 256)\n",
      "(?, 25, 25, 3)\n",
      "Epoch 30/200 Step 570... Discriminator Loss: 1.5479... Generator Loss: 2.1296\n",
      "(?, 4, 4, 1024)\n",
      "(?, 6, 6, 512)\n",
      "(?, 12, 12, 256)\n",
      "(?, 25, 25, 3)\n",
      "Epoch 31/200 Step 580... Discriminator Loss: 1.3233... Generator Loss: 0.8222\n",
      "(?, 4, 4, 1024)\n",
      "(?, 6, 6, 512)\n",
      "(?, 12, 12, 256)\n",
      "(?, 25, 25, 3)\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Epoch 32/200 Step 590... Discriminator Loss: 1.1821... Generator Loss: 0.9809\n",
      "(?, 4, 4, 1024)\n",
      "(?, 6, 6, 512)\n",
      "(?, 12, 12, 256)\n",
      "(?, 25, 25, 3)\n",
      "Epoch 32/200 Step 600... Discriminator Loss: 1.1763... Generator Loss: 0.7344\n",
      "(?, 4, 4, 1024)\n",
      "(?, 6, 6, 512)\n",
      "(?, 12, 12, 256)\n",
      "(?, 25, 25, 3)\n",
      "Epoch 33/200 Step 610... Discriminator Loss: 1.1730... Generator Loss: 1.3747\n",
      "(?, 4, 4, 1024)\n",
      "(?, 6, 6, 512)\n",
      "(?, 12, 12, 256)\n",
      "(?, 25, 25, 3)\n",
      "Epoch 33/200 Step 620... Discriminator Loss: 1.5791... Generator Loss: 0.3566\n",
      "(?, 4, 4, 1024)\n",
      "(?, 6, 6, 512)\n",
      "(?, 12, 12, 256)\n",
      "(?, 25, 25, 3)\n",
      "Epoch 34/200 Step 630... Discriminator Loss: 1.4445... Generator Loss: 0.4481\n",
      "(?, 4, 4, 1024)\n",
      "(?, 6, 6, 512)\n",
      "(?, 12, 12, 256)\n",
      "(?, 25, 25, 3)\n",
      "Epoch 34/200 Step 640... Discriminator Loss: 1.1244... Generator Loss: 1.1338\n",
      "(?, 4, 4, 1024)\n",
      "(?, 6, 6, 512)\n",
      "(?, 12, 12, 256)\n",
      "(?, 25, 25, 3)\n",
      "Epoch 35/200 Step 650... Discriminator Loss: 1.1750... Generator Loss: 0.9281\n",
      "(?, 4, 4, 1024)\n",
      "(?, 6, 6, 512)\n",
      "(?, 12, 12, 256)\n",
      "(?, 25, 25, 3)\n",
      "Epoch 35/200 Step 660... Discriminator Loss: 1.2072... Generator Loss: 1.1870\n",
      "(?, 4, 4, 1024)\n",
      "(?, 6, 6, 512)\n",
      "(?, 12, 12, 256)\n",
      "(?, 25, 25, 3)\n",
      "Epoch 36/200 Step 670... Discriminator Loss: 1.2960... Generator Loss: 0.5793\n",
      "(?, 4, 4, 1024)\n",
      "(?, 6, 6, 512)\n",
      "(?, 12, 12, 256)\n",
      "(?, 25, 25, 3)\n",
      "Epoch 36/200 Step 680... Discriminator Loss: 1.1635... Generator Loss: 1.0436\n",
      "(?, 4, 4, 1024)\n",
      "(?, 6, 6, 512)\n",
      "(?, 12, 12, 256)\n",
      "(?, 25, 25, 3)\n"
     ]
    },
    {
     "ename": "KeyboardInterrupt",
     "evalue": "",
     "output_type": "error",
     "traceback": [
      "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
      "\u001b[0;31mKeyboardInterrupt\u001b[0m                         Traceback (most recent call last)",
      "\u001b[0;32m<ipython-input-10-bbe3447e21dd>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m      8\u001b[0m \u001b[0mceleba_dataset\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mDataset\u001b[0m\u001b[0;34m(\u001b[0m \u001b[0mglob\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'./smallone/*.png'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m      9\u001b[0m \u001b[0;32mwith\u001b[0m \u001b[0mtf\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mGraph\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mas_default\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 10\u001b[0;31m     \u001b[0mtrain\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mepochs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mbatch_size\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mz_dim\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mlearning_rate\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mbeta1\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mceleba_dataset\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_batches\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mceleba_dataset\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mshape\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mceleba_dataset\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mimage_mode\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
      "\u001b[0;32m<ipython-input-8-2e8656e87584>\u001b[0m in \u001b[0;36mtrain\u001b[0;34m(epoch_count, batch_size, z_dim, learning_rate, beta1, get_batches, data_shape, data_image_mode, print_every, show_every)\u001b[0m\n\u001b[1;32m     41\u001b[0m                 \u001b[0;31m# Run optimizers\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m     42\u001b[0m                 \u001b[0msess\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mrun\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0md_train_opt\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mfeed_dict\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m{\u001b[0m\u001b[0minput_real\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mbatch_images\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0minput_z\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mbatch_z\u001b[0m\u001b[0;34m}\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 43\u001b[0;31m                 \u001b[0msess\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mrun\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mg_train_opt\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mfeed_dict\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m{\u001b[0m\u001b[0minput_z\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mbatch_z\u001b[0m\u001b[0;34m}\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m     44\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m     45\u001b[0m                 \u001b[0;32mif\u001b[0m \u001b[0msteps\u001b[0m \u001b[0;34m%\u001b[0m \u001b[0mprint_every\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0;36m0\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
      "\u001b[0;32m~/anaconda2/envs/actionGAN/lib/python3.5/site-packages/tensorflow/python/client/session.py\u001b[0m in \u001b[0;36mrun\u001b[0;34m(self, fetches, feed_dict, options, run_metadata)\u001b[0m\n\u001b[1;32m    875\u001b[0m     \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m    876\u001b[0m       result = self._run(None, fetches, feed_dict, options_ptr,\n\u001b[0;32m--> 877\u001b[0;31m                          run_metadata_ptr)\n\u001b[0m\u001b[1;32m    878\u001b[0m       \u001b[0;32mif\u001b[0m \u001b[0mrun_metadata\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m    879\u001b[0m         \u001b[0mproto_data\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mtf_session\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mTF_GetBuffer\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mrun_metadata_ptr\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
      "\u001b[0;32m~/anaconda2/envs/actionGAN/lib/python3.5/site-packages/tensorflow/python/client/session.py\u001b[0m in \u001b[0;36m_run\u001b[0;34m(self, handle, fetches, feed_dict, options, run_metadata)\u001b[0m\n\u001b[1;32m   1098\u001b[0m     \u001b[0;32mif\u001b[0m \u001b[0mfinal_fetches\u001b[0m \u001b[0;32mor\u001b[0m \u001b[0mfinal_targets\u001b[0m \u001b[0;32mor\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0mhandle\u001b[0m \u001b[0;32mand\u001b[0m \u001b[0mfeed_dict_tensor\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m   1099\u001b[0m       results = self._do_run(handle, final_targets, final_fetches,\n\u001b[0;32m-> 1100\u001b[0;31m                              feed_dict_tensor, options, run_metadata)\n\u001b[0m\u001b[1;32m   1101\u001b[0m     \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m   1102\u001b[0m       \u001b[0mresults\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
      "\u001b[0;32m~/anaconda2/envs/actionGAN/lib/python3.5/site-packages/tensorflow/python/client/session.py\u001b[0m in \u001b[0;36m_do_run\u001b[0;34m(self, handle, target_list, fetch_list, feed_dict, options, run_metadata)\u001b[0m\n\u001b[1;32m   1270\u001b[0m     \u001b[0;32mif\u001b[0m \u001b[0mhandle\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m   1271\u001b[0m       return self._do_call(_run_fn, feeds, fetches, targets, options,\n\u001b[0;32m-> 1272\u001b[0;31m                            run_metadata)\n\u001b[0m\u001b[1;32m   1273\u001b[0m     \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m   1274\u001b[0m       \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_do_call\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0m_prun_fn\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mhandle\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mfeeds\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mfetches\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
      "\u001b[0;32m~/anaconda2/envs/actionGAN/lib/python3.5/site-packages/tensorflow/python/client/session.py\u001b[0m in \u001b[0;36m_do_call\u001b[0;34m(self, fn, *args)\u001b[0m\n\u001b[1;32m   1276\u001b[0m   \u001b[0;32mdef\u001b[0m \u001b[0m_do_call\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mfn\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m   1277\u001b[0m     \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1278\u001b[0;31m       \u001b[0;32mreturn\u001b[0m \u001b[0mfn\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m   1279\u001b[0m     \u001b[0;32mexcept\u001b[0m \u001b[0merrors\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mOpError\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0me\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m   1280\u001b[0m       \u001b[0mmessage\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mcompat\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mas_text\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0me\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmessage\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
      "\u001b[0;32m~/anaconda2/envs/actionGAN/lib/python3.5/site-packages/tensorflow/python/client/session.py\u001b[0m in \u001b[0;36m_run_fn\u001b[0;34m(feed_dict, fetch_list, target_list, options, run_metadata)\u001b[0m\n\u001b[1;32m   1261\u001b[0m       \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_extend_graph\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m   1262\u001b[0m       return self._call_tf_sessionrun(\n\u001b[0;32m-> 1263\u001b[0;31m           options, feed_dict, fetch_list, target_list, run_metadata)\n\u001b[0m\u001b[1;32m   1264\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m   1265\u001b[0m     \u001b[0;32mdef\u001b[0m \u001b[0m_prun_fn\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mhandle\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mfeed_dict\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mfetch_list\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
      "\u001b[0;32m~/anaconda2/envs/actionGAN/lib/python3.5/site-packages/tensorflow/python/client/session.py\u001b[0m in \u001b[0;36m_call_tf_sessionrun\u001b[0;34m(self, options, feed_dict, fetch_list, target_list, run_metadata)\u001b[0m\n\u001b[1;32m   1348\u001b[0m     return tf_session.TF_SessionRun_wrapper(\n\u001b[1;32m   1349\u001b[0m         \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_session\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0moptions\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mfeed_dict\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mfetch_list\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtarget_list\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1350\u001b[0;31m         run_metadata)\n\u001b[0m\u001b[1;32m   1351\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m   1352\u001b[0m   \u001b[0;32mdef\u001b[0m \u001b[0m_call_tf_sessionprun\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mhandle\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mfeed_dict\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mfetch_list\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
      "\u001b[0;31mKeyboardInterrupt\u001b[0m: "
     ]
    }
   ],
   "source": [
    "batch_size = 256\n",
    "z_dim = 100\n",
    "learning_rate = 0.00025\n",
    "beta1 = 0.45\n",
    "\n",
    "epochs = 200\n",
    "print(len(glob('./smallone/*.png')))\n",
    "celeba_dataset = Dataset( glob('./smallone/*.png'))\n",
    "with tf.Graph().as_default():\n",
    "    train(epochs, batch_size, z_dim, learning_rate, beta1, celeba_dataset.get_batches, celeba_dataset.shape, celeba_dataset.image_mode)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.5.0"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 1
}