SuurballeGraphSearch.java
6.8 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
/*
* Copyright 2015 Open Networking Laboratory
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.onlab.graph;
import java.util.ArrayList;
import java.util.Set;
import java.util.List;
import java.util.Map;
import java.util.HashMap;
import java.util.HashSet;
import java.util.stream.Collectors;
/**
* Suurballe shortest-path graph search algorithm capable of finding both
* a shortest path, as well as a backup shortest path, between a source and a destination
* such that the sum of the path lengths is minimized.
*/
public class SuurballeGraphSearch<V extends Vertex, E extends Edge<V>> extends DijkstraGraphSearch<V, E> {
@Override
public Result<V, E> search(Graph<V, E> graph, V src, V dst,
EdgeWeight<V, E> weight, int maxPaths) {
if (weight == null) {
weight = edge -> 1;
}
List<DisjointPathPair<V, E>> dpps = new ArrayList<>();
final EdgeWeight weightf = weight;
DefaultResult firstDijkstraS = (DefaultResult) super.search(graph, src, dst, weight, ALL_PATHS);
DefaultResult firstDijkstra = (DefaultResult) super.search(graph, src, null, weight, ALL_PATHS);
//choose an arbitrary shortest path to run Suurballe on
Path<V, E> shortPath = null;
if (firstDijkstraS.paths().size() == 0) {
return firstDijkstraS;
}
for (Path p: firstDijkstraS.paths()) {
shortPath = p;
//transforms the graph so tree edges have 0 weight
EdgeWeight<V, Edge<V>> modified = edge -> {
if (classE().isInstance(edge)) {
return weightf.weight((E) (edge)) + firstDijkstra.cost(edge.src())
- firstDijkstra.cost(edge.dst());
}
return 0;
};
EdgeWeight<V, E> modified2 = edge ->
weightf.weight(edge) + firstDijkstra.cost(edge.src()) - firstDijkstra.cost(edge.dst());
//create a residual graph g' by removing all src vertices and reversing 0 length path edges
MutableGraph<V, Edge<V>> gt = mutableCopy(graph);
Map<Edge<V>, E> revToEdge = new HashMap<>();
graph.getEdgesTo(src).forEach(gt::removeEdge);
for (E edge: shortPath.edges()) {
gt.removeEdge(edge);
Edge<V> reverse = new Edge<V>() {
final Edge<V> orig = edge;
public V src() {
return orig.dst();
}
public V dst() {
return orig.src();
}
public String toString() {
return "ReversedEdge " + "src=" + src() + " dst=" + dst();
}
};
revToEdge.put(reverse, edge);
gt.addEdge(reverse);
}
//rerun dijkstra on the temporary graph to get a second path
Result<V, Edge<V>> secondDijkstra;
secondDijkstra = new DijkstraGraphSearch<V, Edge<V>>().search(gt, src, dst, modified, ALL_PATHS);
Path<V, Edge<V>> residualShortPath = null;
if (secondDijkstra.paths().size() == 0) {
dpps.add(new DisjointPathPair<V, E>(shortPath, null));
continue;
}
for (Path p2: secondDijkstra.paths()) {
residualShortPath = p2;
MutableGraph<V, E> roundTrip = mutableCopy(graph);
List<E> tmp = roundTrip.getEdges().stream().collect(Collectors.toList());
tmp.forEach(roundTrip::removeEdge);
shortPath.edges().forEach(roundTrip::addEdge);
if (residualShortPath != null) {
for (Edge<V> edge: residualShortPath.edges()) {
if (classE().isInstance(edge)) {
roundTrip.addEdge((E) edge);
} else {
roundTrip.removeEdge(revToEdge.get(edge));
}
}
}
//Actually build the final result
DefaultResult lastSearch = (DefaultResult) super.search(roundTrip, src, dst, weight, ALL_PATHS);
Path<V, E> path1 = lastSearch.paths().iterator().next();
path1.edges().forEach(roundTrip::removeEdge);
Set<Path<V, E>> bckpaths = super.search(roundTrip, src, dst, weight, ALL_PATHS).paths();
Path<V, E> backup = null;
if (bckpaths.size() != 0) {
backup = bckpaths.iterator().next();
}
dpps.add(new DisjointPathPair<>(path1, backup));
}
}
for (int i = dpps.size() - 1; i > 0; i--) {
if (dpps.get(i).size() <= 1) {
dpps.remove(i);
}
}
return new Result<V, E>() {
final DefaultResult search = firstDijkstra;
public V src() {
return src;
}
public V dst() {
return dst;
}
public Set<Path<V, E>> paths() {
Set<Path<V, E>> pathsD = new HashSet<>();
int paths = 0;
for (DisjointPathPair<V, E> path: dpps) {
pathsD.add((Path<V, E>) path);
paths++;
if (paths == maxPaths) {
break;
}
}
return pathsD;
}
public Map<V, Double> costs() {
return search.costs();
}
public Map<V, Set<E>> parents() {
return search.parents();
}
};
}
private Class<?> clazzV;
public Class<?> classV() {
return clazzV;
}
private Class<?> clazzE;
public Class<?> classE() {
return clazzE;
}
/**
* Creates a mutable copy of an immutable graph.
*
* @param graph immutable graph
* @return mutable copy
*/
public MutableGraph mutableCopy(Graph<V, E> graph) {
clazzV = graph.getVertexes().iterator().next().getClass();
clazzE = graph.getEdges().iterator().next().getClass();
return new MutableAdjacencyListsGraph<V, E>(graph.getVertexes(), graph.getEdges());
}
}