bignumber.d.ts
47.7 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
// Type definitions for Bignumber.js
// Project: bignumber.js
// Definitions by: Felix Becker https://github.com/felixfbecker
export interface Format {
/** the decimal separator */
decimalSeparator?: string;
/** the grouping separator of the integer part */
groupSeparator?: string;
/** the primary grouping size of the integer part */
groupSize?: number;
/** the secondary grouping size of the integer part */
secondaryGroupSize?: number;
/** the grouping separator of the fraction part */
fractionGroupSeparator?: string;
/** the grouping size of the fraction part */
fractionGroupSize?: number;
}
export interface Configuration {
/**
* integer, `0` to `1e+9` inclusive
*
* The maximum number of decimal places of the results of operations involving division, i.e. division, square root
* and base conversion operations, and power operations with negative exponents.
*
* ```ts
* BigNumber.config({ DECIMAL_PLACES: 5 })
* BigNumber.config(5) // equivalent
* ```
* @default 20
*/
DECIMAL_PLACES?: number;
/**
* The rounding mode used in the above operations and the default rounding mode of round, toExponential, toFixed,
* toFormat and toPrecision. The modes are available as enumerated properties of the BigNumber constructor.
* @default [[RoundingMode.ROUND_HALF_UP]]
*/
ROUNDING_MODE?: RoundingMode;
/**
* - `number`: integer, magnitude `0` to `1e+9` inclusive
* - `number[]`: [ integer `-1e+9` to `0` inclusive, integer `0` to `1e+9` inclusive ]
*
* The exponent value(s) at which `toString` returns exponential notation.
*
* If a single number is assigned, the value
* is the exponent magnitude.
*
* If an array of two numbers is assigned then the first number is the negative exponent
* value at and beneath which exponential notation is used, and the second number is the positive exponent value at
* and above which the same.
*
* For example, to emulate JavaScript numbers in terms of the exponent values at which
* they begin to use exponential notation, use [-7, 20].
*
* ```ts
* BigNumber.config({ EXPONENTIAL_AT: 2 })
* new BigNumber(12.3) // '12.3' e is only 1
* new BigNumber(123) // '1.23e+2'
* new BigNumber(0.123) // '0.123' e is only -1
* new BigNumber(0.0123) // '1.23e-2'
*
* BigNumber.config({ EXPONENTIAL_AT: [-7, 20] })
* new BigNumber(123456789) // '123456789' e is only 8
* new BigNumber(0.000000123) // '1.23e-7'
*
* // Almost never return exponential notation:
* BigNumber.config({ EXPONENTIAL_AT: 1e+9 })
*
* // Always return exponential notation:
* BigNumber.config({ EXPONENTIAL_AT: 0 })
* ```
* Regardless of the value of `EXPONENTIAL_AT`, the `toFixed` method will always return a value in normal notation
* and the `toExponential` method will always return a value in exponential form.
*
* Calling `toString` with a base argument, e.g. `toString(10)`, will also always return normal notation.
*
* @default `[-7, 20]`
*/
EXPONENTIAL_AT?: number | [number, number];
/**
* - number: integer, magnitude `1` to `1e+9` inclusive
* - number[]: [ integer `-1e+9` to `-1` inclusive, integer `1` to `1e+9` inclusive ]
*
* The exponent value(s) beyond which overflow to `Infinity` and underflow to zero occurs.
*
* If a single number is
* assigned, it is the maximum exponent magnitude: values wth a positive exponent of greater magnitude become
* Infinity and those with a negative exponent of greater magnitude become zero.
*
* If an array of two numbers is
* assigned then the first number is the negative exponent limit and the second number is the positive exponent
* limit.
*
* For example, to emulate JavaScript numbers in terms of the exponent values at which they become zero and
* Infinity, use [-324, 308].
*
* ```ts
* BigNumber.config({ RANGE: 500 })
* BigNumber.config().RANGE // [ -500, 500 ]
* new BigNumber('9.999e499') // '9.999e+499'
* new BigNumber('1e500') // 'Infinity'
* new BigNumber('1e-499') // '1e-499'
* new BigNumber('1e-500') // '0'
* BigNumber.config({ RANGE: [-3, 4] })
* new BigNumber(99999) // '99999' e is only 4
* new BigNumber(100000) // 'Infinity' e is 5
* new BigNumber(0.001) // '0.01' e is only -3
* new BigNumber(0.0001) // '0' e is -4
* ```
*
* The largest possible magnitude of a finite BigNumber is `9.999...e+1000000000`.
*
* The smallest possible magnitude of a non-zero BigNumber is `1e-1000000000`.
*
* @default `[-1e+9, 1e+9]`
*/
RANGE?: number | [number, number];
/**
*
* The value that determines whether BigNumber Errors are thrown. If ERRORS is false, no errors will be thrown.
* `true`, `false`, `0` or `1`.
* ```ts
* BigNumber.config({ ERRORS: false })
* ```
*
* @default `true`
*/
ERRORS?: boolean | number;
/**
* `true`, `false`, `0` or `1`.
*
* The value that determines whether cryptographically-secure pseudo-random number generation is used.
*
* If `CRYPTO` is set to `true` then the random method will generate random digits using `crypto.getRandomValues` in
* browsers that support it, or `crypto.randomBytes` if using a version of Node.js that supports it.
*
* If neither function is supported by the host environment then attempting to set `CRYPTO` to `true` will fail, and
* if [[Configuration.ERRORS]] is `true` an exception will be thrown.
*
* If `CRYPTO` is `false` then the source of randomness used will be `Math.random` (which is assumed to generate at
* least 30 bits of randomness).
*
* See [[BigNumber.random]].
*
* ```ts
* BigNumber.config({ CRYPTO: true })
* BigNumber.config().CRYPTO // true
* BigNumber.random() // 0.54340758610486147524
* ```
*
* @default `false`
*/
CRYPTO?: boolean | number;
/**
* The modulo mode used when calculating the modulus: `a mod n`.
*
* The quotient, `q = a / n`, is calculated according to
* the [[Configuration.ROUNDING_MODE]] that corresponds to the chosen MODULO_MODE.
*
* The remainder, r, is calculated as: `r = a - n * q`.
*
* The modes that are most commonly used for the modulus/remainder operation are shown in the following table.
* Although the other rounding modes can be used, they may not give useful results.
*
* Property | Value | Description
* -------------------|:-----:|---------------------------------------------------------------------------------------
* `ROUND_UP` | 0 | The remainder is positive if the dividend is negative, otherwise it is negative.
* `ROUND_DOWN` | 1 | The remainder has the same sign as the dividend. This uses 'truncating division' and matches the behaviour of JavaScript's remainder operator `%`.
* `ROUND_FLOOR` | 3 | The remainder has the same sign as the divisor.
* | | This matches Python's % operator.
* `ROUND_HALF_EVEN` | 6 | The IEEE 754 remainder function.
* `EUCLID` | 9 | The remainder is always positive. Euclidian division: `q = sign(n) * floor(a / abs(n))`
*
* The rounding/modulo modes are available as enumerated properties of the BigNumber constructor.
*
* See [[BigNumber.modulo]]
*
* ```ts
* BigNumber.config({ MODULO_MODE: BigNumber.EUCLID })
* BigNumber.config({ MODULO_MODE: 9 }) // equivalent
* ```
*
* @default [[RoundingMode.ROUND_DOWN]]
*/
MODULO_MODE?: RoundingMode;
/**
* integer, `0` to `1e+9` inclusive.
*
* The maximum number of significant digits of the result of the power operation (unless a modulus is specified).
*
* If set to 0, the number of signifcant digits will not be limited.
*
* See [[BigNumber.toPower]]
*
* ```ts
* BigNumber.config({ POW_PRECISION: 100 })
* ```
*
* @default 100
*/
POW_PRECISION?: number;
/**
* The FORMAT object configures the format of the string returned by the `toFormat` method. The example below shows
* the properties of the FORMAT object that are recognised, and their default values. Unlike the other configuration
* properties, the values of the properties of the FORMAT object will not be checked for validity. The existing
* FORMAT object will simply be replaced by the object that is passed in. Note that all the properties shown below
* do not have to be included.
*
* See `toFormat` for examples of usage.
*
* ```ts
* BigNumber.config({
* FORMAT: {
* // the decimal separator
* decimalSeparator: '.',
* // the grouping separator of the integer part
* groupSeparator: ',',
* // the primary grouping size of the integer part
* groupSize: 3,
* // the secondary grouping size of the integer part
* secondaryGroupSize: 0,
* // the grouping separator of the fraction part
* fractionGroupSeparator: ' ',
* // the grouping size of the fraction part
* fractionGroupSize: 0
* }
* });
* ```
*/
FORMAT?: Format;
}
/**
* The library's enumerated rounding modes are stored as properties of the constructor.
* (They are not referenced internally by the library itself.)
* Rounding modes 0 to 6 (inclusive) are the same as those of Java's BigDecimal class.
*/
declare enum RoundingMode {
/** Rounds away from zero */
ROUND_UP = 0,
/** Rounds towards zero */
ROUND_DOWN = 1,
/** Rounds towards Infinity */
ROUND_CEIL = 2,
/** Rounds towards -Infinity */
ROUND_FLOOR = 3,
/**
* Rounds towards nearest neighbour. If equidistant, rounds away from zero
*/
ROUND_HALF_UP = 4,
/**
* Rounds towards nearest neighbour. If equidistant, rounds towards zero
*/
ROUND_HALF_DOWN = 5,
/**
* Rounds towards nearest neighbour. If equidistant, rounds towards even neighbour
*/
ROUND_HALF_EVEN = 6,
/**
* Rounds towards nearest neighbour. If equidistant, rounds towards `Infinity`
*/
ROUND_HALF_CEIL = 7,
/**
* Rounds towards nearest neighbour. If equidistant, rounds towards `-Infinity`
*/
ROUND_HALF_FLOOR = 8,
/**
* The remainder is always positive. Euclidian division: `q = sign(n) * floor(a / abs(n))`
*/
EUCLID = 9
}
export class BigNumber {
/** Rounds away from zero */
static ROUND_UP: RoundingMode;
/** Rounds towards zero */
static ROUND_DOWN: RoundingMode;
/** Rounds towards Infinity */
static ROUND_CEIL: RoundingMode;
/** Rounds towards -Infinity */
static ROUND_FLOOR: RoundingMode;
/**
* Rounds towards nearest neighbour. If equidistant, rounds away from zero
*/
static ROUND_HALF_UP: RoundingMode;
/**
* Rounds towards nearest neighbour. If equidistant, rounds towards zero
*/
static ROUND_HALF_DOWN: RoundingMode;
/**
* Rounds towards nearest neighbour. If equidistant, rounds towards even neighbour
*/
static ROUND_HALF_EVEN: RoundingMode;
/**
* Rounds towards nearest neighbour. If equidistant, rounds towards `Infinity`
*/
static ROUND_HALF_CEIL: RoundingMode;
/**
* Rounds towards nearest neighbour. If equidistant, rounds towards `-Infinity`
*/
static ROUND_HALF_FLOOR: RoundingMode;
/**
* The remainder is always positive. Euclidian division: `q = sign(n) * floor(a / abs(n))`
*/
static EUCLID: RoundingMode;
/**
* Returns a new independent BigNumber constructor with configuration as described by `obj` (see `config`), or with
* the default configuration if `obj` is `null` or `undefined`.
*
* ```ts
* BigNumber.config({ DECIMAL_PLACES: 5 })
* BN = BigNumber.another({ DECIMAL_PLACES: 9 })
*
* x = new BigNumber(1)
* y = new BN(1)
*
* x.div(3) // 0.33333
* y.div(3) // 0.333333333
*
* // BN = BigNumber.another({ DECIMAL_PLACES: 9 }) is equivalent to:
* BN = BigNumber.another()
* BN.config({ DECIMAL_PLACES: 9 })
* ```
*/
static another(config?: Configuration): typeof BigNumber;
/**
* Configures the 'global' settings for this particular BigNumber constructor. Returns an object with the above
* properties and their current values. If the value to be assigned to any of the above properties is `null` or
* `undefined` it is ignored. See Errors for the treatment of invalid values.
*/
static config(config?: Configuration): Configuration;
/**
* Configures the 'global' settings for this particular BigNumber constructor. Returns an object with the above
* properties and their current values. If the value to be assigned to any of the above properties is `null` or
* `undefined` it is ignored. See Errors for the treatment of invalid values.
*/
static config(
decimalPlaces?: number,
roundingMode?: RoundingMode,
exponentialAt?: number | [number, number],
range?: number | [number, number],
errors?: boolean | number,
crypto?: boolean | number,
moduloMode?: RoundingMode,
powPrecision?: number,
format?: Format
): Configuration;
/**
* Returns a BigNumber whose value is the maximum of `arg1`, `arg2`,... . The argument to this method can also be an
* array of values. The return value is always exact and unrounded.
*
* ```ts
* x = new BigNumber('3257869345.0378653')
* BigNumber.max(4e9, x, '123456789.9') // '4000000000'
*
* arr = [12, '13', new BigNumber(14)]
* BigNumber.max(arr) // '14'
* ```
*/
static max(...args: Array<number | string | BigNumber>): BigNumber;
static max(args: Array<number | string | BigNumber>): BigNumber;
/**
* See BigNumber for further parameter details. Returns a BigNumber whose value is the minimum of arg1, arg2,... .
* The argument to this method can also be an array of values. The return value is always exact and unrounded.
*
* ```ts
* x = new BigNumber('3257869345.0378653')
* BigNumber.min(4e9, x, '123456789.9') // '123456789.9'
*
* arr = [2, new BigNumber(-14), '-15.9999', -12]
* BigNumber.min(arr) // '-15.9999'
* ```
*/
static min(...args: Array<number | string | BigNumber>): BigNumber;
static min(args: Array<number | string | BigNumber>): BigNumber;
/**
* Returns a new BigNumber with a pseudo-random value equal to or greater than 0 and less than 1.
*
* The return value
* will have dp decimal places (or less if trailing zeros are produced). If dp is omitted then the number of decimal
* places will default to the current `DECIMAL_PLACES` setting.
*
* Depending on the value of this BigNumber constructor's
* `CRYPTO` setting and the support for the crypto object in the host environment, the random digits of the return
* value are generated by either `Math.random` (fastest), `crypto.getRandomValues` (Web Cryptography API in recent
* browsers) or `crypto.randomBytes` (Node.js).
*
* If `CRYPTO` is true, i.e. one of the crypto methods is to be used, the
* value of a returned BigNumber should be cryptographically-secure and statistically indistinguishable from a
* random value.
*
* ```ts
* BigNumber.config({ DECIMAL_PLACES: 10 })
* BigNumber.random() // '0.4117936847'
* BigNumber.random(20) // '0.78193327636914089009'
* ```
*
* @param dp integer, `0` to `1e+9` inclusive
*/
static random(dp?: number): BigNumber;
/**
* Coefficient: Array of base `1e14` numbers or `null`
* @readonly
*/
c: number[];
/**
* Exponent: Integer, `-1000000000` to `1000000000` inclusive or `null`
* @readonly
*/
e: number;
/**
* Sign: `-1`, `1` or `null`
* @readonly
*/
s: number;
/**
* Returns a new instance of a BigNumber object. If a base is specified, the value is rounded according to the
* current [[Configuration.DECIMAL_PLACES]] and [[Configuration.ROUNDING_MODE]] configuration. See Errors for the treatment of an invalid value or base.
*
* ```ts
* x = new BigNumber(9) // '9'
* y = new BigNumber(x) // '9'
*
* // 'new' is optional if ERRORS is false
* BigNumber(435.345) // '435.345'
*
* new BigNumber('5032485723458348569331745.33434346346912144534543')
* new BigNumber('4.321e+4') // '43210'
* new BigNumber('-735.0918e-430') // '-7.350918e-428'
* new BigNumber(Infinity) // 'Infinity'
* new BigNumber(NaN) // 'NaN'
* new BigNumber('.5') // '0.5'
* new BigNumber('+2') // '2'
* new BigNumber(-10110100.1, 2) // '-180.5'
* new BigNumber(-0b10110100.1) // '-180.5'
* new BigNumber('123412421.234324', 5) // '607236.557696'
* new BigNumber('ff.8', 16) // '255.5'
* new BigNumber('0xff.8') // '255.5'
* ```
*
* The following throws `not a base 2 number` if [[Configuration.ERRORS]] is true, otherwise it returns a BigNumber with value `NaN`.
*
* ```ts
* new BigNumber(9, 2)
* ```
*
* The following throws `number type has more than 15 significant digits` if [[Configuration.ERRORS]] is true, otherwise it returns a BigNumber with value `96517860459076820`.
*
* ```ts
* new BigNumber(96517860459076817.4395)
* ```
*
* The following throws `not a number` if [[Configuration.ERRORS]] is true, otherwise it returns a BigNumber with value `NaN`.
*
* ```ts
* new BigNumber('blurgh')
* ```
*
* A value is only rounded by the constructor if a base is specified.
*
* ```ts
* BigNumber.config({ DECIMAL_PLACES: 5 })
* new BigNumber(1.23456789) // '1.23456789'
* new BigNumber(1.23456789, 10) // '1.23457'
* ```
*
* @param value A numeric value.
*
* Legitimate values include `±0`, `±Infinity` and `NaN`.
*
* Values of type `number` with more than 15 significant digits are considered invalid (if [[Configuration.ERRORS]]
* is `true`) as calling `toString` or `valueOf` on such numbers may not result in the intended value.
*
* There is no limit to the number of digits of a value of type `string` (other than that of JavaScript's maximum
* array size).
*
* Decimal string values may be in exponential, as well as normal (fixed-point) notation. Non-decimal values must be
* in normal notation. String values in hexadecimal literal form, e.g. `'0xff'`, are valid, as are string values
* with the octal and binary prefixs `'0o'` and `'0b'`.
*
* String values in octal literal form without the prefix will be interpreted as decimals, e.g. `'011'` is
* interpreted as 11, not 9.
*
* Values in any base may have fraction digits.
*
* For bases from 10 to 36, lower and/or upper case letters can be used to represent values from 10 to 35.
*
* For bases above 36, a-z represents values from 10 to 35, A-Z from 36 to 61, and $ and _ represent 62 and 63
* respectively (this can be changed by editing the ALPHABET variable near the top of the source file).
*
* @param base integer, 2 to 64 inclusive
*
* The base of value. If base is omitted, or is `null` or `undefined`, base 10 is assumed.
*/
constructor(value: number | string | BigNumber, base?: number);
/**
* Returns a BigNumber whose value is the absolute value, i.e. the magnitude, of the value of this BigNumber. The
* return value is always exact and unrounded.
* ```ts
* x = new BigNumber(-0.8)
* y = x.absoluteValue() // '0.8'
* z = y.abs() // '0.8'
* ```
* @alias [[BigNumber.abs]]
*/
absoluteValue(): BigNumber;
/**
* See [[BigNumber.absoluteValue]]
*/
abs(): BigNumber;
/**
* See [[plus]]
*/
add(n: number | string | BigNumber, base?: number): BigNumber;
/**
* Returns a BigNumber whose value is the value of this BigNumber rounded to a whole number in the direction of
* positive `Infinity`.
*
* ```ts
* x = new BigNumber(1.3)
* x.ceil() // '2'
* y = new BigNumber(-1.8)
* y.ceil() // '-1'
* ```
*/
ceil(): BigNumber;
/**
* Returns | |
* :-------:|---------------------------------------------------------------|
* 1 | If the value of this BigNumber is greater than the value of n
* -1 | If the value of this BigNumber is less than the value of n
* 0 | If this BigNumber and n have the same value
* null | If the value of either this BigNumber or n is NaN
*
* ```ts
* x = new BigNumber(Infinity)
* y = new BigNumber(5)
* x.comparedTo(y) // 1
* x.comparedTo(x.minus(1)) // 0
* y.cmp(NaN) // null
* y.cmp('110', 2) // -1
* ```
*
* @alias [[cmp]]
*/
comparedTo(n: number | string | BigNumber, base?: number): number;
/**
* See [[comparedTo]]
*/
cmp(n: number | string | BigNumber, base?: number): number;
/**
* Return the number of decimal places of the value of this BigNumber, or `null` if the value of this BigNumber is
* `±Infinity` or `NaN`.
*
* ```ts
* x = new BigNumber(123.45)
* x.decimalPlaces() // 2
* y = new BigNumber('9.9e-101')
* y.dp() // 102
* ```
*
* @alias [[dp]]
*/
decimalPlaces(): number;
/**
* See [[decimalPlaces]]
*/
dp(): number;
/**
* Returns a BigNumber whose value is the value of this BigNumber divided by n, rounded according to the current
* DECIMAL_PLACES and ROUNDING_MODE configuration.
*
* ```ts
* x = new BigNumber(355)
* y = new BigNumber(113)
* x.dividedBy(y) // '3.14159292035398230088'
* x.div(5) // '71'
* x.div(47, 16) // '5'
* ```
*
* @alias [[div]]
*/
dividedBy(n: number | string | BigNumber, base?: number): BigNumber;
/**
* See [[dividedBy]]
*/
div(n: number | string | BigNumber, base?: number): BigNumber;
/**
* Return a BigNumber whose value is the integer part of dividing the value of this BigNumber by n.
*
* ```ts
* x = new BigNumber(5)
* y = new BigNumber(3)
* x.dividedToIntegerBy(y) // '1'
* x.divToInt(0.7) // '7'
* x.divToInt('0.f', 16) // '5'
* ```
*
* @alias [[divToInt]]
*/
dividedToIntegerBy(n: number | string | BigNumber, base?: number): BigNumber;
/**
* See [[dividedToIntegerBy]]
*/
divToInt(n: number | string | BigNumber, base?: number): BigNumber;
/**
* Returns true if the value of this BigNumber equals the value of `n`, otherwise returns `false`. As with JavaScript,
* `NaN` does not equal `NaN`.
*
* Note: This method uses the [[comparedTo]] internally.
*
* ```ts
* 0 === 1e-324 // true
* x = new BigNumber(0)
* x.equals('1e-324') // false
* BigNumber(-0).eq(x) // true ( -0 === 0 )
* BigNumber(255).eq('ff', 16) // true
*
* y = new BigNumber(NaN)
* y.equals(NaN) // false
* ```
*
* @alias [[eq]]
*/
equals(n: number | string | BigNumber, base?: number): boolean;
/**
* See [[equals]]
*/
eq(n: number | string | BigNumber, base?: number): boolean;
/**
* Returns a BigNumber whose value is the value of this BigNumber rounded to a whole number in the direction of
* negative `Infinity`.
*
* ```ts
* x = new BigNumber(1.8)
* x.floor() // '1'
* y = new BigNumber(-1.3)
* y.floor() // '-2'
* ```
*/
floor(): BigNumber;
/**
* Returns `true` if the value of this BigNumber is greater than the value of `n`, otherwise returns `false`.
*
* Note: This method uses the comparedTo method internally.
*
* ```ts
* 0.1 > (0.3 - 0.2) // true
* x = new BigNumber(0.1)
* x.greaterThan(BigNumber(0.3).minus(0.2)) // false
* BigNumber(0).gt(x) // false
* BigNumber(11, 3).gt(11.1, 2) // true
* ```
*
* @alias [[gt]]
*/
greaterThan(n: number | string | BigNumber, base?: number): boolean;
/**
* See [[greaterThan]]
*/
gt(n: number | string | BigNumber, base?: number): boolean;
/**
* Returns `true` if the value of this BigNumber is greater than or equal to the value of `n`, otherwise returns `false`.
*
* Note: This method uses the comparedTo method internally.
*
* @alias [[gte]]
*/
greaterThanOrEqualTo(n: number | string | BigNumber, base?: number): boolean;
/**
* See [[greaterThanOrEqualTo]]
*/
gte(n: number | string | BigNumber, base?: number): boolean;
/**
* Returns true if the value of this BigNumber is a finite number, otherwise returns false. The only possible
* non-finite values of a BigNumber are `NaN`, `Infinity` and `-Infinity`.
*
* Note: The native method `isFinite()` can be used if `n <= Number.MAX_VALUE`.
*/
isFinite(): boolean;
/**
* Returns true if the value of this BigNumber is a whole number, otherwise returns false.
* @alias [[isInt]]
*/
isInteger(): boolean;
/**
* See [[isInteger]]
*/
isInt(): boolean;
/**
* Returns `true` if the value of this BigNumber is `NaN`, otherwise returns `false`.
*
* Note: The native method isNaN() can also be used.
*/
isNaN(): boolean;
/**
* Returns true if the value of this BigNumber is negative, otherwise returns false.
*
* Note: `n < 0` can be used if `n <= * -Number.MIN_VALUE`.
*
* @alias [[isNeg]]
*/
isNegative(): boolean;
/**
* See [[isNegative]]
*/
isNeg(): boolean;
/**
* Returns true if the value of this BigNumber is zero or minus zero, otherwise returns false.
*
* Note: `n == 0` can be used if `n >= Number.MIN_VALUE`.
*/
isZero(): boolean;
/**
* Returns true if the value of this BigNumber is less than the value of n, otherwise returns false.
*
* Note: This method uses [[comparedTo]] internally.
*
* @alias [[lt]]
*/
lessThan(n: number | string | BigNumber, base?: number): boolean;
/**
* See [[lessThan]]
*/
lt(n: number | string | BigNumber, base?: number): boolean;
/**
* Returns true if the value of this BigNumber is less than or equal the value of n, otherwise returns false.
*
* Note: This method uses [[comparedTo]] internally.
*/
lessThanOrEqualTo(n: number | string | BigNumber, base?: number): boolean;
/**
* See [[lessThanOrEqualTo]]
*/
lte(n: number | string | BigNumber, base?: number): boolean;
/**
* Returns a BigNumber whose value is the value of this BigNumber minus `n`.
*
* The return value is always exact and unrounded.
*
* @alias [[sub]]
*/
minus(n: number | string | BigNumber, base?: number): BigNumber;
/**
* Returns a BigNumber whose value is the value of this BigNumber modulo n, i.e. the integer remainder of dividing
* this BigNumber by n.
*
* The value returned, and in particular its sign, is dependent on the value of the [[Configuration.MODULO_MODE]]
* setting of this BigNumber constructor. If it is `1` (default value), the result will have the same sign as this
* BigNumber, and it will match that of Javascript's `%` operator (within the limits of double precision) and
* BigDecimal's remainder method.
*
* The return value is always exact and unrounded.
*
* ```ts
* 1 % 0.9 // 0.09999999999999998
* x = new BigNumber(1)
* x.modulo(0.9) // '0.1'
* y = new BigNumber(33)
* y.mod('a', 33) // '3'
* ```
*
* @alias [[mod]]
*/
modulo(n: number | string | BigNumber, base?: number): BigNumber;
/**
* See [[modulo]]
*/
mod(n: number | string | BigNumber, base?: number): BigNumber;
/**
* See [[times]]
*/
mul(n: number | string | BigNumber, base?: number): BigNumber;
/**
* Returns a BigNumber whose value is the value of this BigNumber negated, i.e. multiplied by -1.
*
* ```ts
* x = new BigNumber(1.8)
* x.negated() // '-1.8'
* y = new BigNumber(-1.3)
* y.neg() // '1.3'
* ```
*
* @alias [[neg]]
*/
negated(): BigNumber;
/**
* See [[negated]]
*/
neg(): BigNumber;
/**
* Returns a BigNumber whose value is the value of this BigNumber plus `n`.
*
* The return value is always exact and unrounded.
*
* @alias [[add]]
*/
plus(n: number | string | BigNumber, base?: number): BigNumber;
/**
* If z is true or 1 then any trailing zeros of the integer part of a number are counted as significant digits,
* otherwise they are not.
*
* @param z true, false, 0 or 1
* @alias [[sd]]
*/
precision(z?: boolean | number): number;
/**
* See [[precision]]
*/
sd(z?: boolean | number): number;
/**
* Returns a BigNumber whose value is the value of this BigNumber rounded by rounding mode rm to a maximum of dp
* decimal places.
*
* - if dp is omitted, or is null or undefined, the return value is n rounded to a whole number.
* - if rm is omitted, or is null or undefined, ROUNDING_MODE is used.
*
* ```ts
* x = 1234.56
* Math.round(x) // 1235
* y = new BigNumber(x)
* y.round() // '1235'
* y.round(1) // '1234.6'
* y.round(2) // '1234.56'
* y.round(10) // '1234.56'
* y.round(0, 1) // '1234'
* y.round(0, 6) // '1235'
* y.round(1, 1) // '1234.5'
* y.round(1, BigNumber.ROUND_HALF_EVEN) // '1234.6'
* y // '1234.56'
* ```
*
* @param dp integer, 0 to 1e+9 inclusive
* @param rm integer, 0 to 8 inclusive
*/
round(dp?: number, rm?: number): BigNumber;
/**
* Returns a BigNumber whose value is the value of this BigNumber shifted n places.
*
* The shift is of the decimal point, i.e. of powers of ten, and is to the left if n is negative or to the right if
* n is positive. The return value is always exact and unrounded.
*
* @param n integer, -9007199254740991 to 9007199254740991 inclusive
*/
shift(n: number): BigNumber;
/**
* Returns a BigNumber whose value is the square root of the value of this BigNumber, rounded according to the
* current DECIMAL_PLACES and ROUNDING_MODE configuration.
*
* The return value will be correctly rounded, i.e. rounded
* as if the result was first calculated to an infinite number of correct digits before rounding.
*
* @alias [[sqrt]]
*/
squareRoot(): BigNumber;
/**
* See [[squareRoot]]
*/
sqrt(): BigNumber;
/**
* See [[minus]]
*/
sub(n: number | string | BigNumber, base?: number): BigNumber;
/**
* Returns a BigNumber whose value is the value of this BigNumber times n.
*
* The return value is always exact and unrounded.
*
* @alias [[mul]]
*/
times(n: number | string | BigNumber, base?: number): BigNumber;
/**
* Returns a BigNumber whose value is the value of this BigNumber rounded to sd significant digits using rounding mode rm.
*
* If sd is omitted or is null or undefined, the return value will not be rounded.
*
* If rm is omitted or is null or undefined, ROUNDING_MODE will be used.
*
* ```ts
* BigNumber.config({ precision: 5, rounding: 4 })
* x = new BigNumber(9876.54321)
*
* x.toDigits() // '9876.5'
* x.toDigits(6) // '9876.54'
* x.toDigits(6, BigNumber.ROUND_UP) // '9876.55'
* x.toDigits(2) // '9900'
* x.toDigits(2, 1) // '9800'
* x // '9876.54321'
* ```
*
* @param sd integer, 1 to 1e+9 inclusive
* @param rm integer, 0 to 8 inclusive
*/
toDigits(sd?: number, rm?: number): BigNumber;
/**
* Returns a string representing the value of this BigNumber in exponential notation rounded using rounding mode rm
* to dp decimal places, i.e with one digit before the decimal point and dp digits after it.
*
* If the value of this BigNumber in exponential notation has fewer than dp fraction digits, the return value will
* be appended with zeros accordingly.
*
* If dp is omitted, or is null or undefined, the number of digits after the decimal point defaults to the minimum
* number of digits necessary to represent the value exactly.
*
* If rm is omitted or is null or undefined, ROUNDING_MODE is used.
*
* ```ts
* x = 45.6
* y = new BigNumber(x)
* x.toExponential() // '4.56e+1'
* y.toExponential() // '4.56e+1'
* x.toExponential(0) // '5e+1'
* y.toExponential(0) // '5e+1'
* x.toExponential(1) // '4.6e+1'
* y.toExponential(1) // '4.6e+1'
* y.toExponential(1, 1) // '4.5e+1' (ROUND_DOWN)
* x.toExponential(3) // '4.560e+1'
* y.toExponential(3) // '4.560e+1'
* ```
*
* @param dp integer, 0 to 1e+9 inclusive
* @param rm integer, 0 to 8 inclusive
*/
toExponential(dp?: number, rm?: number): string;
/**
* Returns a string representing the value of this BigNumber in normal (fixed-point) notation rounded to dp decimal
* places using rounding mode `rm`.
*
* If the value of this BigNumber in normal notation has fewer than `dp` fraction digits, the return value will be
* appended with zeros accordingly.
*
* Unlike `Number.prototype.toFixed`, which returns exponential notation if a number is greater or equal to 10<sup>21</sup>, this
* method will always return normal notation.
*
* If dp is omitted or is `null` or `undefined`, the return value will be unrounded and in normal notation. This is also
* unlike `Number.prototype.toFixed`, which returns the value to zero decimal places.
*
* It is useful when fixed-point notation is required and the current `EXPONENTIAL_AT` setting causes toString to
* return exponential notation.
*
* If `rm` is omitted or is `null` or `undefined`, `ROUNDING_MODE` is used.
*
* ```ts
* x = 3.456
* y = new BigNumber(x)
* x.toFixed() // '3'
* y.toFixed() // '3.456'
* y.toFixed(0) // '3'
* x.toFixed(2) // '3.46'
* y.toFixed(2) // '3.46'
* y.toFixed(2, 1) // '3.45' (ROUND_DOWN)
* x.toFixed(5) // '3.45600'
* y.toFixed(5) // '3.45600'
* ```
*
* @param dp integer, 0 to 1e+9 inclusive
* @param rm integer, 0 to 8 inclusive
*/
toFixed(dp?: number, rm?: number): string;
/**
* Returns a string representing the value of this BigNumber in normal (fixed-point) notation rounded to dp decimal
* places using rounding mode `rm`, and formatted according to the properties of the FORMAT object.
*
* See the examples below for the properties of the `FORMAT` object, their types and their usage.
*
* If `dp` is omitted or is `null` or `undefined`, then the return value is not rounded to a fixed number of decimal
* places.
*
* If `rm` is omitted or is `null` or `undefined`, `ROUNDING_MODE` is used.
*
* ```ts
* format = {
* decimalSeparator: '.',
* groupSeparator: ',',
* groupSize: 3,
* secondaryGroupSize: 0,
* fractionGroupSeparator: ' ',
* fractionGroupSize: 0
* }
* BigNumber.config({ FORMAT: format })
*
* x = new BigNumber('123456789.123456789')
* x.toFormat() // '123,456,789.123456789'
* x.toFormat(1) // '123,456,789.1'
*
* // If a reference to the object assigned to FORMAT has been retained,
* // the format properties can be changed directly
* format.groupSeparator = ' '
* format.fractionGroupSize = 5
* x.toFormat() // '123 456 789.12345 6789'
*
* BigNumber.config({
* FORMAT: {
* decimalSeparator = ',',
* groupSeparator = '.',
* groupSize = 3,
* secondaryGroupSize = 2
* }
* })
*
* x.toFormat(6) // '12.34.56.789,123'
* ```
*
* @param dp integer, 0 to 1e+9 inclusive
* @param rm integer, 0 to 8 inclusive
*/
toFormat(dp?: number, rm?: number): string;
/**
* Returns a string array representing the value of this BigNumber as a simple fraction with an integer numerator
* and an integer denominator. The denominator will be a positive non-zero value less than or equal to max.
*
* If a maximum denominator, max, is not specified, or is null or undefined, the denominator will be the lowest
* value necessary to represent the number exactly.
*
* ```ts
* x = new BigNumber(1.75)
* x.toFraction() // '7, 4'
*
* pi = new BigNumber('3.14159265358')
* pi.toFraction() // '157079632679,50000000000'
* pi.toFraction(100000) // '312689, 99532'
* pi.toFraction(10000) // '355, 113'
* pi.toFraction(100) // '311, 99'
* pi.toFraction(10) // '22, 7'
* pi.toFraction(1) // '3, 1'
* ```
*
* @param max integer >= `1` and < `Infinity`
*/
toFraction(max?: number | string | BigNumber): [string, string];
/**
* Same as [[valueOf]]
*
* ```ts
* x = new BigNumber('177.7e+457')
* y = new BigNumber(235.4325)
* z = new BigNumber('0.0098074')
*
* // Serialize an array of three BigNumbers
* str = JSON.stringify( [x, y, z] )
* // "["1.777e+459","235.4325","0.0098074"]"
*
* // Return an array of three BigNumbers
* JSON.parse(str, function (key, val) {
* return key === '' ? val : new BigNumber(val)
* })
* ```
*/
toJSON(): string;
/**
* Returns the value of this BigNumber as a JavaScript number primitive.
*
* Type coercion with, for example, the unary plus operator will also work, except that a BigNumber with the value
* minus zero will be converted to positive zero.
*
* ```ts
* x = new BigNumber(456.789)
* x.toNumber() // 456.789
* +x // 456.789
*
* y = new BigNumber('45987349857634085409857349856430985')
* y.toNumber() // 4.598734985763409e+34
*
* z = new BigNumber(-0)
* 1 / +z // Infinity
* 1 / z.toNumber() // -Infinity
* ```
*/
toNumber(): number;
/**
* Returns a BigNumber whose value is the value of this BigNumber raised to the power `n`, and optionally modulo `a`
* modulus `m`.
*
* If `n` is negative the result is rounded according to the current [[Configuration.DECIMAL_PLACES]] and
* [[Configuration.ROUNDING_MODE]] configuration.
*
* If `n` is not an integer or is out of range:
* - If `ERRORS` is `true` a BigNumber Error is thrown,
* - else if `n` is greater than `9007199254740991`, it is interpreted as `Infinity`;
* - else if n is less than `-9007199254740991`, it is interpreted as `-Infinity`;
* - else if `n` is otherwise a number, it is truncated to an integer;
* - else it is interpreted as `NaN`.
*
* As the number of digits of the result of the power operation can grow so large so quickly, e.g.
* 123.456<sup>10000</sup> has over 50000 digits, the number of significant digits calculated is limited to the
* value of the [[Configuration.POW_PRECISION]] setting (default value: `100`) unless a modulus `m` is specified.
*
* Set [[Configuration.POW_PRECISION]] to `0` for an unlimited number of significant digits to be calculated (this
* will cause the method to slow dramatically for larger exponents).
*
* Negative exponents will be calculated to the number of decimal places specified by
* [[Configuration.DECIMAL_PLACES]] (but not to more than [[Configuration.POW_PRECISION]] significant digits).
*
* If `m` is specified and the value of `m`, `n` and this BigNumber are positive integers, then a fast modular
* exponentiation algorithm is used, otherwise if any of the values is not a positive integer the operation will
* simply be performed as `x.toPower(n).modulo(m)` with a `POW_PRECISION` of `0`.
*
* ```ts
* Math.pow(0.7, 2) // 0.48999999999999994
* x = new BigNumber(0.7)
* x.toPower(2) // '0.49'
* BigNumber(3).pow(-2) // '0.11111111111111111111'
* ```
*
* @param n integer, -9007199254740991 to 9007199254740991 inclusive
* @alias [[pow]]
*/
toPower(n: number, m?: number | string | BigNumber): BigNumber;
/**
* See [[toPower]]
*/
pow(n: number, m?: number | string | BigNumber): BigNumber;
/**
* Returns a string representing the value of this BigNumber rounded to `sd` significant digits using rounding mode
* rm.
*
* - If `sd` is less than the number of digits necessary to represent the integer part of the value in normal
* (fixed-point) notation, then exponential notation is used.
* - If `sd` is omitted, or is `null` or `undefined`, then the return value is the same as `n.toString()`.
* - If `rm` is omitted or is `null` or `undefined`, `ROUNDING_MODE` is used.
*
* ```ts
* x = 45.6
* y = new BigNumber(x)
* x.toPrecision() // '45.6'
* y.toPrecision() // '45.6'
* x.toPrecision(1) // '5e+1'
* y.toPrecision(1) // '5e+1'
* y.toPrecision(2, 0) // '4.6e+1' (ROUND_UP)
* y.toPrecision(2, 1) // '4.5e+1' (ROUND_DOWN)
* x.toPrecision(5) // '45.600'
* y.toPrecision(5) // '45.600'
* ```
*
* @param sd integer, 1 to 1e+9 inclusive
* @param rm integer, 0 to 8 inclusive
*/
toPrecision(sd?: number, rm?: number): string;
/**
* Returns a string representing the value of this BigNumber in the specified base, or base 10 if base is omitted or
* is `null` or `undefined`.
*
* For bases above 10, values from 10 to 35 are represented by a-z (as with `Number.prototype.toString`), 36 to 61 by
* A-Z, and 62 and 63 by `$` and `_` respectively.
*
* If a base is specified the value is rounded according to the current `DECIMAL_PLACES` and `ROUNDING_MODE`
* configuration.
*
* If a base is not specified, and this BigNumber has a positive exponent that is equal to or greater than the
* positive component of the current `EXPONENTIAL_AT` setting, or a negative exponent equal to or less than the
* negative component of the setting, then exponential notation is returned.
*
* If base is `null` or `undefined` it is ignored.
*
* ```ts
* x = new BigNumber(750000)
* x.toString() // '750000'
* BigNumber.config({ EXPONENTIAL_AT: 5 })
* x.toString() // '7.5e+5'
*
* y = new BigNumber(362.875)
* y.toString(2) // '101101010.111'
* y.toString(9) // '442.77777777777777777778'
* y.toString(32) // 'ba.s'
*
* BigNumber.config({ DECIMAL_PLACES: 4 });
* z = new BigNumber('1.23456789')
* z.toString() // '1.23456789'
* z.toString(10) // '1.2346'
* ```
*
* @param base integer, 2 to 64 inclusive
*/
toString(base?: number): string;
/**
* Returns a BigNumber whose value is the value of this BigNumber truncated to a whole number.
*
* ```ts
* x = new BigNumber(123.456)
* x.truncated() // '123'
* y = new BigNumber(-12.3)
* y.trunc() // '-12'
* ```
*
* @alias [[trunc]]
*/
truncated(): BigNumber;
/**
* See [[truncated]]
*/
trunc(): BigNumber;
/**
* As [[toString]], but does not accept a base argument and includes the minus sign for negative zero.`
*
* ```ts
* x = new BigNumber('-0')
* x.toString() // '0'
* x.valueOf() // '-0'
* y = new BigNumber('1.777e+457')
* y.valueOf() // '1.777e+457'
* ```
*/
valueOf(): string;
}
export default BigNumber;