optimizer.py
29.7 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
import datetime
import pandas as pd
import numpy as np
import FinanceDataReader as fdr
from scipy.optimize import minimize
import json
from datetime import date
import math
import itertools as it
import operator
from datetime import datetime
from scipy import stats
from scipy.stats import norm
from dateutil import rrule
from calendar import monthrange
from dateutil.relativedelta import relativedelta
from ast import literal_eval
from matplotlib import pyplot as plt
import numpy as np
import matplotlib.ticker as ticker
import sys
#소숫점 표현
pd.options.display.float_format = '{:.3f}'.format
np.set_printoptions(precision=3, suppress=True)
class c_Models:
#Input 값으로, 자산 list, 사용자 포트폴리오 비중, 시작일, 마지막일
def __init__(self, assets, assets_w, start, end):
self.result = None
self.graph = None
stocks = pd.read_csv('stockcodename.csv', index_col=0)
symbol = ''
self.asset_name = assets[:]
for k in range(len(assets)):
for i in enumerate(stocks.Name):
if i[1] == assets[k]:
assets[k] = (stocks.iloc[i[0]].Symbol)
break
data = pd.DataFrame()
# 전체 자산 data들을 가지고 온 후, 정리함
for asset in assets: #total_list:
tmp = fdr.DataReader(asset,start,end).Close
if len(data) == 0 :
data = tmp
else:
data = pd.concat([data,tmp], axis=1)
data.columns = self.asset_name
if data.isnull().values.any() == True: #불러온 data에 오류가 있다면
return "No Data",''
else:
data = data.resample('M').mean() #일별 데이터를 월별 데이터로 만들어줌
data = data.pct_change() #월별 주가 데이터를 이용해 수익률 데이터로 변환
data.dropna(inplace=True) #결측치 제외(첫 row)
self.data = data
self.assets_w = assets_w
self.mu = data.mean() * 12
self.cov = data.cov() * 12
#GMV 최적화 : 제약 조건은 비중합=1, 공매도 불가능
def gmv_opt(self):
n_assets = len(self.data.columns)
w0 = np.ones(n_assets) / n_assets
fun = lambda w: np.dot(w.T, np.dot(self.cov, w))
constraints = ({'type':'eq', 'fun':lambda x: np.sum(x)-1})
bd = ((0,1),) * n_assets
#cov = data.cov() * 12
gmv = minimize(fun, w0, method = 'SLSQP', constraints=constraints, bounds=bd)
result = dict(zip(self.asset_name, np.round(gmv.x,3)))
return result
#Max Sharp ratio : risk free rate은 0.8%로 지정했고,
def ms_opt(self):
n_assets = len(self.data.columns)
w0 = np.ones(n_assets) / n_assets
fun = lambda w: -(np.dot(w.T, self.mu) - 0.008) / np.sqrt(np.dot(w.T, np.dot(self.cov, w)))
bd = ((0,1),) * n_assets
constraints = ({'type': 'eq', 'fun': lambda x: np.sum(x) - 1})
maxsharp = minimize(fun, w0, method ='SLSQP', constraints=constraints, bounds=bd)
result = dict(zip(self.asset_name, np.round(maxsharp.x,3)))
return result
def rp_opt(self):
def RC(cov, w):
pfo_std = np.sqrt(np.dot(w.T, np.dot(self.cov, w)))
mrc = 1/pfo_std * (np.dot(self.cov, w))
rc = mrc * w
rc = rc / rc.sum()
return rc
def RP_objective(x):
pfo_std = np.sqrt(np.dot(x.T, np.dot(self.cov, x)))
mrc = 1/pfo_std * (np.dot(self.cov, x))
rc = mrc * x
rc = rc / rc.sum()
a = np.reshape(rc, (len(rc),1))
differs = a - a.T
objective = np.sum(np.square(differs))
return objective
n_assets = len(self.data.columns)
w0 = np.ones(n_assets) / n_assets
constraints = [{'type':'eq', 'fun': lambda x: np.sum(x) -1}]
bd = ((0,1),) * n_assets
rp = minimize(RP_objective, w0, constraints=constraints, bounds = bd, method='SLSQP')
result = dict(zip(self.asset_name, np.round(rp.x,3)))
return result #, RC(self.cov, rp.x)
def plotting(self):
wt_gmv = np.asarray(list(self.gmv_opt().values()))
wt_ms = np.asarray(list(self.ms_opt().values()))
wt_rp = np.asarray(list(self.rp_opt().values()))
ret_gmv = np.dot(wt_gmv, self.mu)
ret_ms = np.dot(wt_ms, self.mu)
ret_rp = np.dot(wt_rp, self.mu)
vol_gmv = np.sqrt(np.dot(wt_gmv.T, np.dot(self.cov, wt_gmv)))
vol_ms = np.sqrt(np.dot(wt_ms.T, np.dot(self.cov, wt_ms)))
vol_rp = np.sqrt(np.dot(wt_rp.T, np.dot(self.cov, wt_rp)))
wt_gmv = wt_gmv.tolist()
wt_ms = wt_ms.tolist()
wt_rp = wt_rp.tolist()
user_ret = np.dot(self.assets_w, self.mu)
user_risk = np.sqrt(np.dot(self.assets_w, np.dot(self.cov, self.assets_w)))
weights = {'gmv': wt_gmv, "ms" : wt_ms, "rp": wt_rp}
#rec_rs = recommended_asset()
trets = np.linspace(ret_gmv, max(self.mu), 30) # 30개 짜르기
tvols = []
efpoints = dict()
for i, tret in enumerate(trets): #이 개별 return마다 최소 risk 찾기
n_assets = len(self.data.columns)
w0 = np.ones(n_assets) / n_assets
fun = lambda w: np.dot(w.T ,np.dot(self.cov, w))
constraints = [{'type': 'eq', 'fun': lambda x: np.sum(x) - 1},
{'type': 'ineq', 'fun': lambda x: np.dot(x, self.mu) - tret}]
#{'type': 'ineq', 'fun': lambda x: x}]
bd = ((0,1),) * n_assets
minvol = minimize(fun, w0, method='SLSQP',bounds = bd, constraints=constraints)
tvols.append(np.sqrt(np.dot(minvol.x, np.dot(self.cov, minvol.x))))
pnumber = '{}point'.format(i+1)
efpoints[pnumber] = minvol.x.tolist()
if self.data.shape[0] <= 1:
error = '기간에러'
return error,1,1
else:
ret_vol = {"GMV": [vol_gmv, ret_gmv],"MaxSharp": [vol_ms, ret_ms],"RiskParity": [vol_rp, ret_rp], "Trets" : trets.tolist(), "Tvols": tvols, "User" : [user_risk,user_ret]} #, "Recommended" : rec_rs}
return ret_vol, json.dumps(efpoints), json.dumps(weights)
class back_test:
# 단순 일별수익률의 평균을 *365하여 연간수익률을 산출
def __init__(self):
self.test = 0
def Arithmetic_Mean_Annual(self,ret):
month_return = np.mean(ret)
return (month_return*252)
# 기간중 투자했을때 하락할 수 있는 비율
def dd(self,ret):
cum_ret = (1 + ret).cumprod()
max_drawdown = 0
max_ret = 1
dd_list = []
c = 0
for ix_ret in cum_ret.values:
if max_ret < ix_ret:
max_ret = ix_ret
dd_list.append((ix_ret - max_ret) / max_ret)
c= c+1
return dd_list
# 기간중 투자했을때 최고로 많이 하락할 수 있는 비율
def mdd(self,ret):
cum_ret = (1 + ret).cumprod()
max_drawdown = 0
max_ret = 1
for ix_ret in cum_ret.values:
if max_drawdown > (ix_ret - max_ret) / max_ret:
max_drawdown = (ix_ret - max_ret) / max_ret
if max_ret < ix_ret:
max_ret = ix_ret
return abs(max_drawdown)
# 포트폴리오 수익률에서 무위험 수익률을 제한 후 이를 포트폴리오의 표준편차로 나눠 산출한 값, 즉 위험대비 얼마나 수익이 좋은지의 척도
def sharpe_ratio(self,ret, rf=0.008, num_of_date=252):
return ((np.mean(ret - (rf / num_of_date))) / (np.std(ret))) * np.sqrt(num_of_date)
# 설정한 confidence level에 따른(95%) 확률로 발생할 수 있는 손실액의 최대 액수
def value_at_risk(self,ret, para_or_hist="para", confidence_level=0.95):
vol = np.std(ret)
if para_or_hist == "para":
VaR = np.mean(ret) - vol * norm.ppf(confidence_level)
else:
print('error')
return VaR
# 전체 투자기간에서 상승한 ( ret > 0 ) 기간의 비율
def winning_rate(self,ret):
var_winning_rate = np.sum(ret > 0) / len(ret)
return var_winning_rate
# 상승한날의 평균상승값을 하락한날의 평균하락값으로 나눈 비율
def profit_loss_ratio(self,ret):
if np.sum(ret > 0) == 0:
var_profit_loss_ratio = 0
elif np.sum(ret < 0) == 0:
var_profit_loss_ratio = np.inf
else:
win_mean = np.mean(ret[ret > 0])
loss_mean = np.mean(ret[ret < 0])
var_profit_loss_ratio = win_mean / loss_mean
return abs(var_profit_loss_ratio)
# 데이터 취합하는 코드
#임시로 5가지 데이터 예시를 활용해 코드작성
# 선택한 종목의 이름과 비중, 투자기간을 input 값으로 받음
def backtest_data(self, assets,weight,start_data_1, end_data_1,start_amount,rebalancing_month, interval, opt_option):
# input으로 받는 assetnames 입력
a = assets
stock_num = len(a)
# input으로 받는 assetweights 입력
rebal_month = int(rebalancing_month)
# input으로 받는 rebalancing_month를 입력
# 나타내는 데이터 간격을 표시
# weight 간격
b = list(map(float, weight))
# input으로 받는 from_period와 to_period 입력
stock_return = pd.date_range(start=start_data_1, end=end_data_1)
stock_return = pd.DataFrame(stock_return)
stock_return.columns = ['Date']
stocks = pd.read_csv('stockcodename.csv', index_col=0)
symbol = ''
asset_name = assets[:]
for k in range(len(assets)):
for i in enumerate(stocks.Name):
if i[1] == assets[k]:
assets[k] = (stocks.iloc[i[0]].Symbol)
break
# input으로 받는 from_period와 to_period 입력
stock_return = pd.date_range(start=start_data_1, end=end_data_1)
stock_return = pd.DataFrame(stock_return)
stock_return.columns = ['Date']
for asset in assets: #total_list:
tmp = fdr.DataReader(asset,start_data_1,end_data_1)
tmp.insert(1,"Date",tmp.index.copy(),True)
tmp = tmp[['Date','Change']]
tmp.columns = ['Date',asset]
tmp = tmp.reset_index(drop=True)
stock_return = pd.merge(stock_return,tmp,how='inner', on='Date')
stock_return = stock_return.dropna(axis=0)
#print(stock_return)
if opt_option == 'basic' :
# 투자비중으로 이루어진 dataframe 만들기
start_datetime = stock_return.iloc[0,0]
end_datetime = stock_return.iloc[-1,0]
diff_months_list = list(rrule.rrule(rrule.MONTHLY, dtstart=start_datetime, until=end_datetime))
month_gap = len(diff_months_list)
rebal_roof = month_gap//rebal_month
rebal_weight = pd.DataFrame()
for i in range(rebal_roof+1):
# 데이터로부터 리밸런싱기간만큼 가져오기
filtered_df =stock_return.loc[stock_return["Date"].between(start_datetime,
start_datetime + relativedelta(months=rebal_month)+relativedelta(days = -1))]
# 리밸런싱 기간의 누적수익률 산출
for j in range(stock_num):
filtered_df.iloc[:,j+1] = (1 + filtered_df.iloc[:,j+1]).cumprod()
# 해당 누적수익률에 initial 투자비중을 곱해준다
for j in range(stock_num):
filtered_df.iloc[:,j+1] = filtered_df.iloc[:,j+1]*float(b[j])
# 이후 각각의 종목의 비중을 계산해서 산출한다
filtered_df['total_value'] = filtered_df.sum(axis=1)
for j in range(stock_num):
filtered_df.iloc[:,j+1] = filtered_df.iloc[:,j+1]/filtered_df['total_value']
rebal_weight = pd.concat([rebal_weight,filtered_df])
start_datetime = start_datetime + relativedelta(months=rebal_month)
#final_day = monthrange(start_datetime.year, start_datetime.month)
stock_weight = rebal_weight.iloc[:,:-1]
#print(stock_weight)
'''
stock_weight = stock_return.Date
stock_weight = pd.DataFrame(stock_weight)
c = 0
for stockweight in b:
stock_weight[a[c]] = float(stockweight)
c = c + 1
#print(stock_weight)
'''
else :
# 포트폴리오 최적화 코드를 통한 리벨런싱 이중 리스트 weight 산출
# 1. 입력 받은 start ~ end 날짜를 리밸런싱 기간으로 쪼개기
opt_start_datetime = stock_return.iloc[0,0]
opt_end_datetime = stock_return.iloc[-1,0]
opt_diff_months_list = list(rrule.rrule(rrule.MONTHLY, dtstart=opt_start_datetime, until=opt_end_datetime))
opt_month_gap = len(opt_diff_months_list)
opt_rebal_roof = opt_month_gap//rebal_month
opt_rebal_weight = pd.DataFrame()
#opt_array = [[0]*stock_num]*(opt_rebal_roof+1)
for i in range(opt_rebal_roof+1):
opt_df = stock_return.loc[stock_return["Date"].between(opt_start_datetime,opt_start_datetime + relativedelta(months=rebal_month)+relativedelta(days = -1))]
# 최적화 코드에서 기간마다의 가중치를 가져온다
c_m = c_Models(a,b,opt_df.iat[0,0]- relativedelta(months=3),opt_df.iat[-1,0])
ret_vol, efpoints, weights = c_m.plotting()
weights = literal_eval(weights)
weights = weights.get(opt_option)
##print(weights)
# 리밸런싱 기간의 누적수익률 산출
for j in range(stock_num):
opt_df.iloc[:,j+1] = (1 + opt_df.iloc[:,j+1]).cumprod()
# 해당 누적수익률에 initial 투자비중을 곱해준다
for j in range(stock_num):
opt_df.iloc[:,j+1] = opt_df.iloc[:,j+1]*float(weights[j])
# 이후 각각의 종목의 비중을 계산해서 산출한다
opt_df['total_value'] = opt_df.sum(axis=1)
for j in range(stock_num):
opt_df.iloc[:,j+1] = opt_df.iloc[:,j+1]/opt_df['total_value']
# 이후 각각의 종목의 비중을 계산해서 산출한다
#print(opt_df)
opt_rebal_weight = pd.concat([opt_rebal_weight,opt_df])
opt_start_datetime = opt_start_datetime + relativedelta(months=rebal_month)
#리밸런싱으로 start 기간이 고객이 원하는 end 기간보다 커지게 되면 종료
if opt_start_datetime > stock_return.iloc[-1,0]: # i가 100일 때
break
stock_weight = opt_rebal_weight.iloc[:,:-1]
##print(stock_weight)
# 수익률 데이터와 투자비중을 곱한 하나의 데이터 생성
pfo_return = stock_weight.Date
pfo_return = pd.DataFrame(pfo_return)
# weight 와 return의 날짜 맞춰주기
#pfo_return = pfo_return[0:len(stock_weight)]
pfo_return = pd.merge(pfo_return, stock_return, left_on='Date', right_on='Date', how='left')
pfo_return['mean_return'] = 0
##print(pfo_return)
for i in range(0,len(pfo_return)):
return_result = list(pfo_return.iloc[i,1:1+stock_num])
return_weight = list(stock_weight.iloc[i,1:1+stock_num])
pfo_return.iloc[i,1+stock_num] = np.dot(return_result,return_weight)
#rint(pfo_return)
pfo_return['acc_return'] = [x+1 for x in pfo_return['mean_return']]
pfo_return['acc_return'] = list(it.accumulate(pfo_return['acc_return'], operator.mul))
pfo_return['acc_return'] = [x-1 for x in pfo_return['acc_return']]
pfo_return['final_balance'] = float(start_amount) + float(start_amount)*pfo_return['acc_return']
pfo_return['Drawdown_list'] = back_test.dd(input,pfo_return['mean_return'])
pfo_return = pfo_return.set_index('Date')
#print(pfo_return)
### 벤치마크 데이터 로드 및 전처리
tiker_list = ['KS11','US500']
bench_list = [fdr.DataReader(ticker, start_data_1, end_data_1)['Change'] for ticker in tiker_list]
bench = pd.concat(bench_list, axis=1)
bench.columns = ['KOSPI', 'S&P500']
bench['KOSPI'] = bench['KOSPI'].fillna(0)
bench['S&P500'] = bench['S&P500'].fillna(0)
#bench = bench.dropna()
# 벤치마크 누적수익률, DD 값
bench['KOSPI_acc'] = [x+1 for x in bench['KOSPI']]
bench['KOSPI_acc'] = list(it.accumulate(bench['KOSPI_acc'], operator.mul))
bench['KOSPI_acc'] = [x-1 for x in bench['KOSPI_acc']]
bench['KOSPI_balance'] = float(start_amount) + float(start_amount)*bench['KOSPI_acc']
bench['KOSPI_Drawdown'] = back_test.dd(input,bench['KOSPI'])
bench['S&P500_acc'] = [x+1 for x in bench['S&P500']]
bench['S&P500_acc'] = list(it.accumulate(bench['S&P500_acc'], operator.mul))
bench['S&P500_acc'] = [x-1 for x in bench['S&P500_acc']]
bench['S&P500_balance'] = float(start_amount) + float(start_amount)*bench['S&P500_acc']
bench['S&P500_Drawdown'] = back_test.dd(input,bench['S&P500'])
if interval == 'monthly' or interval == 'weekly' :
if interval == 'monthly' :
inter = 'M'
if interval == 'weekly' :
inter = 'W'
pfo_return_interval = pfo_return.resample(inter).last()
pfo_return_first = pd.DataFrame(pfo_return.iloc[0]).transpose()
pfo_return_interval = pd.concat([pfo_return_first, pfo_return_interval])
pfo_return_interval['mean_return'] = pfo_return_interval['final_balance'].pct_change()
pfo_return_interval = pfo_return_interval.dropna()
# 월별 간격으로 만들어주기, 여기서는 return과 value만 monthly로 산출함 나머지값은 daily
bench_interval = bench.resample(inter).last()
#bench_ex['KOSPI'] = bench_ex['final_balance'].pct_change()
bench_first = pd.DataFrame(bench.iloc[0]).transpose()
bench_interval = pd.concat([bench_first, bench_interval])
bench_interval['KOSPI'] = bench_interval['KOSPI_balance'].pct_change()
bench_interval['S&P500'] = bench_interval['S&P500_balance'].pct_change()
bench_interval = bench_interval.dropna()
# 날짜타입 열로 만들기 및 str 타입으로 전처리
pfo_return = pfo_return.rename_axis('Date').reset_index()
pfo_return['Date'] = pd.to_datetime(pfo_return['Date'], format='%d/%m/%Y').dt.date
pfo_return['Date'] = list(map(str, pfo_return['Date']))
pfo_return_interval = pfo_return_interval.rename_axis('Date').reset_index()
pfo_return_interval['Date'] = pd.to_datetime(pfo_return_interval['Date'], format='%d/%m/%Y').dt.date
pfo_return_interval['Date'] = list(map(str, pfo_return_interval['Date']))
bench = bench.rename_axis('Date').reset_index()
bench['Date'] = pd.to_datetime(bench['Date'], format='%d/%m/%Y').dt.date
bench['Date'] = list(map(str, bench['Date']))
bench_interval = bench_interval.rename_axis('Date').reset_index()
bench_interval['Date'] = pd.to_datetime(bench_interval['Date'], format='%d/%m/%Y').dt.date
bench_interval['Date'] = list(map(str, bench_interval['Date']))
backtest_return = {
'pfo_return': [
{
'Date': list(pfo_return_interval['Date']),
'mean_return': list(pfo_return_interval['mean_return']),
'acc_return ratio': list(pfo_return_interval['acc_return']),
'final_balance': list(pfo_return_interval['final_balance']),
'Drawdown_list' : list(pfo_return_interval['Drawdown_list'])
}
],
'bench': [
{
'Date': list(bench_interval['Date']),
'KOSPI_return': list(bench_interval['KOSPI']),
'S&P500_return': list(bench_interval['S&P500']),
'KOSPI_acc_return': list(bench_interval['KOSPI_acc']),
'KOSPI_balance' : list(bench_interval['KOSPI_balance']),
'KOSPI_Drawdown': list(bench_interval['KOSPI_Drawdown']),
'S&P500_acc_return': list(bench_interval['S&P500_acc']),
'S&P500_balance' : list(bench_interval['S&P500_balance']),
'S&P500_Drawdown': list(bench_interval['S&P500_Drawdown'])
}
],
'indicator': [
{
'Mean': back_test.Arithmetic_Mean_Annual(input,pfo_return['mean_return']),
'Std': pfo_return['mean_return'].std() * np.sqrt(365),
'Sharpe ratio': back_test.sharpe_ratio(input,pfo_return['mean_return']),
'VaR': back_test.value_at_risk(input,pfo_return['mean_return']),
'MDD': back_test.mdd(input,pfo_return['mean_return']),
'Winning ratio': back_test.winning_rate(input,pfo_return['mean_return']),
'Gain/Loss Ratio': back_test.profit_loss_ratio(input,pfo_return['mean_return'])
}
],
'KOSPI_indicator': [
{
'Mean': back_test.Arithmetic_Mean_Annual(input,bench['KOSPI']),
'Std': bench['KOSPI'].std() * np.sqrt(365),
'Sharpe ratio': back_test.sharpe_ratio(input,bench['KOSPI']),
'VaR': back_test.value_at_risk(input,bench['KOSPI']),
'MDD': back_test.mdd(input,bench['KOSPI']),
'Winning ratio': back_test.winning_rate(input,bench['KOSPI']),
'Gain/Loss Ratio': back_test.profit_loss_ratio(input,bench['KOSPI'])
}
],
'S&P500_indicator': [
{
'Mean': back_test.Arithmetic_Mean_Annual(input,bench['S&P500']),
'Std': bench['S&P500'].std() * np.sqrt(365),
'Sharpe ratio': back_test.sharpe_ratio(input,bench['S&P500']),
'VaR': back_test.value_at_risk(input,bench['S&P500']),
'MDD': back_test.mdd(input,bench['S&P500']),
'Winning ratio': back_test.winning_rate(input,bench['S&P500']),
'Gain/Loss Ratio': back_test.profit_loss_ratio(input,bench['S&P500'])
}
]
}
else :
# 날짜타입 열로 만들기 및 str 타입으로 전처리
pfo_return = pfo_return.rename_axis('Date').reset_index()
pfo_return['Date'] = pd.to_datetime(pfo_return['Date'], format='%d/%m/%Y').dt.date
pfo_return['Date'] = list(map(str, pfo_return['Date']))
bench = bench.rename_axis('Date').reset_index()
bench['Date'] = pd.to_datetime(bench['Date'], format='%d/%m/%Y').dt.date
bench['Date'] = list(map(str, bench['Date']))
backtest_return = {
'pfo_return': [
{
'Date': list(pfo_return['Date']),
'mean_return': list(pfo_return['mean_return']),
'acc_return ratio': list(pfo_return['acc_return']),
'final_balance': list(pfo_return['final_balance']),
'Drawdown_list' : list(pfo_return['Drawdown_list'])
}
],
'bench': [
{
'Date': list(bench['Date']),
'KOSPI_return': list(bench['KOSPI']),
'S&P500_return': list(bench['S&P500']),
'KOSPI_acc_return': list(bench['KOSPI_acc']),
'KOSPI_balance' : list(bench['KOSPI_balance']),
'KOSPI_Drawdown': list(bench['KOSPI_Drawdown']),
'S&P500_acc_return': list(bench['S&P500_acc']),
'S&P500_balance' : list(bench['S&P500_balance']),
'S&P500_Drawdown': list(bench['S&P500_Drawdown'])
}
],
'indicator': [
{
'Mean': back_test.Arithmetic_Mean_Annual(input,pfo_return['mean_return']),
'Std': pfo_return['mean_return'].std() * np.sqrt(365),
'Sharpe ratio': back_test.sharpe_ratio(input,pfo_return['mean_return']),
'VaR': back_test.value_at_risk(input,pfo_return['mean_return']),
'MDD': back_test.mdd(input,pfo_return['mean_return']),
'Winning ratio': back_test.winning_rate(input,pfo_return['mean_return']),
'Gain/Loss Ratio': back_test.profit_loss_ratio(input,pfo_return['mean_return'])
}
],
'KOSPI_indicator': [
{
'Mean': back_test.Arithmetic_Mean_Annual(input,bench['KOSPI']),
'Std': bench['KOSPI'].std() * np.sqrt(365),
'Sharpe ratio': back_test.sharpe_ratio(input,bench['KOSPI']),
'VaR': back_test.value_at_risk(input,bench['KOSPI']),
'MDD': back_test.mdd(input,bench['KOSPI']),
'Winning ratio': back_test.winning_rate(input,bench['KOSPI']),
'Gain/Loss Ratio': back_test.profit_loss_ratio(input,bench['KOSPI'])
}
],
'S&P500_indicator': [
{
'Mean': back_test.Arithmetic_Mean_Annual(input,bench['S&P500']),
'Std': bench['S&P500'].std() * np.sqrt(365),
'Sharpe ratio': back_test.sharpe_ratio(input,bench['S&P500']),
'VaR': back_test.value_at_risk(input,bench['S&P500']),
'MDD': back_test.mdd(input,bench['S&P500']),
'Winning ratio': back_test.winning_rate(input,bench['S&P500']),
'Gain/Loss Ratio': back_test.profit_loss_ratio(input,bench['S&P500'])
}
]
}
return backtest_return
# print(back_test().backtest_data(['삼성전자','LG전자'],[0.9,0.1],'2010-01-01', '2021-01-01',10000000,3, 'monthly', 'gmv')['pfo_return'].mean_return)
# print(back_test().backtest_data(['삼성전자','LG전자'],[0.9,0.1],'2010-01-01', '2021-01-01',10000000,3, 'monthly', 'gmv')['pfo_return'][0]['acc_return_ratio'])
# print(back_test().backtest_data(['삼성전자','LG전자'],[0.9,0.1],'2018-01-01', '2021-01-01',10000000,6, 'monthly', 'gmv'))
if (sys.argv[2] == "weight"):
args = sys.argv[1].split(",")
assets = []
gravity = []
for i in range(len(args)-1):
assets.append(args[i])
gravity.append(0)
if (sys.argv[3] == 'gmv'):
print(c_Models(assets, gravity, args[-1],'2021-06-01').gmv_opt())
elif (sys.argv[3] == 'ms'):
print(c_Models(assets, gravity, args[-1],'2021-06-01').ms_opt())
elif (sys.argv[3] == 'rp'):
print(c_Models(assets, gravity, args[-1],'2021-06-01').rp_opt())
else:
args = sys.argv[1].split(",")
assets = []
gravity = []
for i in range(len(args)-1):
assets.append(args[i])
gravity.append(0)
data = back_test().backtest_data(assets,gravity,args[-1], '2021-06-01',10000000,6, 'monthly', sys.argv[3])
#data = back_test().backtest_data(['삼성전자','LG전자','카카오','호텔신라'],[0,0,0,0],'2020-01-01', '2021-01-02',10000000,6, 'monthly', 'ms')
# data = back_test().backtest_data(['삼성전자','LG전자'],[0.1,0.1],'2020-01-01', '2021-01-02',10000000,6, 'monthly', 'gmv')
x = data['pfo_return'][0]['Date']
y = data['pfo_return'][0]['acc_return ratio']
y2 = data['bench'][0]['KOSPI_acc_return']
y3 = data['bench'][0]['S&P500_acc_return']
x_ticks = []
for i,j in enumerate(x):
if (i % 6) == 0:
x_ticks.append(j)
else:
x_ticks.append('')
x_ticks[-1]= x[-1]
plt.figure(figsize=(10,5))
ax=plt.gca()
ax.xaxis.set_major_locator(ticker.MultipleLocator(12))
plt.plot(x,y,label = sys.argv[3] +' result')
plt.plot(x,y2 ,label = 'kospi result')
plt.plot(x,y3, label = 's&p500 result')
plt.xticks(x_ticks,rotation=60)
plt.xlabel('Date')
plt.ylabel('Return')
plt.title('result')
plt.legend()
plt.show()
plt.savefig("./src/test.png", dpi = 100)
print("end")