stats.cc
7.02 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
// Copyright 2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020 Lovell Fuller and contributors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <numeric>
#include <vector>
#include <iostream>
#include <napi.h>
#include <vips/vips8>
#include "common.h"
#include "stats.h"
class StatsWorker : public Napi::AsyncWorker {
public:
StatsWorker(Napi::Function callback, StatsBaton *baton, Napi::Function debuglog) :
Napi::AsyncWorker(callback), baton(baton), debuglog(Napi::Persistent(debuglog)) {}
~StatsWorker() {}
const int STAT_MIN_INDEX = 0;
const int STAT_MAX_INDEX = 1;
const int STAT_SUM_INDEX = 2;
const int STAT_SQ_SUM_INDEX = 3;
const int STAT_MEAN_INDEX = 4;
const int STAT_STDEV_INDEX = 5;
const int STAT_MINX_INDEX = 6;
const int STAT_MINY_INDEX = 7;
const int STAT_MAXX_INDEX = 8;
const int STAT_MAXY_INDEX = 9;
void Execute() {
// Decrement queued task counter
g_atomic_int_dec_and_test(&sharp::counterQueue);
vips::VImage image;
sharp::ImageType imageType = sharp::ImageType::UNKNOWN;
try {
std::tie(image, imageType) = OpenInput(baton->input);
} catch (vips::VError const &err) {
(baton->err).append(err.what());
}
if (imageType != sharp::ImageType::UNKNOWN) {
try {
vips::VImage stats = image.stats();
int const bands = image.bands();
for (int b = 1; b <= bands; b++) {
ChannelStats cStats(
static_cast<int>(stats.getpoint(STAT_MIN_INDEX, b).front()),
static_cast<int>(stats.getpoint(STAT_MAX_INDEX, b).front()),
stats.getpoint(STAT_SUM_INDEX, b).front(),
stats.getpoint(STAT_SQ_SUM_INDEX, b).front(),
stats.getpoint(STAT_MEAN_INDEX, b).front(),
stats.getpoint(STAT_STDEV_INDEX, b).front(),
static_cast<int>(stats.getpoint(STAT_MINX_INDEX, b).front()),
static_cast<int>(stats.getpoint(STAT_MINY_INDEX, b).front()),
static_cast<int>(stats.getpoint(STAT_MAXX_INDEX, b).front()),
static_cast<int>(stats.getpoint(STAT_MAXY_INDEX, b).front()));
baton->channelStats.push_back(cStats);
}
// Image is not opaque when alpha layer is present and contains a non-mamixa value
if (sharp::HasAlpha(image)) {
double const minAlpha = static_cast<double>(stats.getpoint(STAT_MIN_INDEX, bands).front());
if (minAlpha != sharp::MaximumImageAlpha(image.interpretation())) {
baton->isOpaque = false;
}
}
// Convert to greyscale
vips::VImage greyscale = image.colourspace(VIPS_INTERPRETATION_B_W)[0];
// Estimate entropy via histogram of greyscale value frequency
baton->entropy = std::abs(greyscale.hist_find().hist_entropy());
// Estimate sharpness via standard deviation of greyscale laplacian
if (image.width() > 1 || image.height() > 1) {
VImage laplacian = VImage::new_matrixv(3, 3,
0.0, 1.0, 0.0,
1.0, -4.0, 1.0,
0.0, 1.0, 0.0);
laplacian.set("scale", 9.0);
baton->sharpness = greyscale.conv(laplacian).deviate();
}
// Most dominant sRGB colour via 4096-bin 3D histogram
vips::VImage hist = sharp::RemoveAlpha(image)
.colourspace(VIPS_INTERPRETATION_sRGB)
.hist_find_ndim(VImage::option()->set("bins", 16));
std::complex<double> maxpos = hist.maxpos();
int const dx = static_cast<int>(std::real(maxpos));
int const dy = static_cast<int>(std::imag(maxpos));
std::vector<double> pel = hist(dx, dy);
int const dz = std::distance(pel.begin(), std::find(pel.begin(), pel.end(), hist.max()));
baton->dominantRed = dx * 16 + 8;
baton->dominantGreen = dy * 16 + 8;
baton->dominantBlue = dz * 16 + 8;
} catch (vips::VError const &err) {
(baton->err).append(err.what());
}
}
// Clean up
vips_error_clear();
vips_thread_shutdown();
}
void OnOK() {
Napi::Env env = Env();
Napi::HandleScope scope(env);
// Handle warnings
std::string warning = sharp::VipsWarningPop();
while (!warning.empty()) {
debuglog.Call({ Napi::String::New(env, warning) });
warning = sharp::VipsWarningPop();
}
if (baton->err.empty()) {
// Stats Object
Napi::Object info = Napi::Object::New(env);
Napi::Array channels = Napi::Array::New(env);
std::vector<ChannelStats>::iterator it;
int i = 0;
for (it = baton->channelStats.begin(); it < baton->channelStats.end(); it++, i++) {
Napi::Object channelStat = Napi::Object::New(env);
channelStat.Set("min", it->min);
channelStat.Set("max", it->max);
channelStat.Set("sum", it->sum);
channelStat.Set("squaresSum", it->squaresSum);
channelStat.Set("mean", it->mean);
channelStat.Set("stdev", it->stdev);
channelStat.Set("minX", it->minX);
channelStat.Set("minY", it->minY);
channelStat.Set("maxX", it->maxX);
channelStat.Set("maxY", it->maxY);
channels.Set(i, channelStat);
}
info.Set("channels", channels);
info.Set("isOpaque", baton->isOpaque);
info.Set("entropy", baton->entropy);
info.Set("sharpness", baton->sharpness);
Napi::Object dominant = Napi::Object::New(env);
dominant.Set("r", baton->dominantRed);
dominant.Set("g", baton->dominantGreen);
dominant.Set("b", baton->dominantBlue);
info.Set("dominant", dominant);
Callback().MakeCallback(Receiver().Value(), { env.Null(), info });
} else {
Callback().MakeCallback(Receiver().Value(), { Napi::Error::New(env, baton->err).Value() });
}
delete baton->input;
delete baton;
}
private:
StatsBaton* baton;
Napi::FunctionReference debuglog;
};
/*
stats(options, callback)
*/
Napi::Value stats(const Napi::CallbackInfo& info) {
// V8 objects are converted to non-V8 types held in the baton struct
StatsBaton *baton = new StatsBaton;
Napi::Object options = info[0].As<Napi::Object>();
// Input
baton->input = sharp::CreateInputDescriptor(options.Get("input").As<Napi::Object>());
// Function to notify of libvips warnings
Napi::Function debuglog = options.Get("debuglog").As<Napi::Function>();
// Join queue for worker thread
Napi::Function callback = info[1].As<Napi::Function>();
StatsWorker *worker = new StatsWorker(callback, baton, debuglog);
worker->Receiver().Set("options", options);
worker->Queue();
// Increment queued task counter
g_atomic_int_inc(&sharp::counterQueue);
return info.Env().Undefined();
}