sagemaker.d.ts 326 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308
import {Request} from '../lib/request';
import {Response} from '../lib/response';
import {AWSError} from '../lib/error';
import {Service} from '../lib/service';
import {WaiterConfiguration} from '../lib/service';
import {ServiceConfigurationOptions} from '../lib/service';
import {ConfigBase as Config} from '../lib/config';
interface Blob {}
declare class SageMaker extends Service {
  /**
   * Constructs a service object. This object has one method for each API operation.
   */
  constructor(options?: SageMaker.Types.ClientConfiguration)
  config: Config & SageMaker.Types.ClientConfiguration;
  /**
   * Adds or overwrites one or more tags for the specified Amazon SageMaker resource. You can add tags to notebook instances, training jobs, hyperparameter tuning jobs, batch transform jobs, models, labeling jobs, work teams, endpoint configurations, and endpoints. Each tag consists of a key and an optional value. Tag keys must be unique per resource. For more information about tags, see For more information, see AWS Tagging Strategies.  Tags that you add to a hyperparameter tuning job by calling this API are also added to any training jobs that the hyperparameter tuning job launches after you call this API, but not to training jobs that the hyperparameter tuning job launched before you called this API. To make sure that the tags associated with a hyperparameter tuning job are also added to all training jobs that the hyperparameter tuning job launches, add the tags when you first create the tuning job by specifying them in the Tags parameter of CreateHyperParameterTuningJob  
   */
  addTags(params: SageMaker.Types.AddTagsInput, callback?: (err: AWSError, data: SageMaker.Types.AddTagsOutput) => void): Request<SageMaker.Types.AddTagsOutput, AWSError>;
  /**
   * Adds or overwrites one or more tags for the specified Amazon SageMaker resource. You can add tags to notebook instances, training jobs, hyperparameter tuning jobs, batch transform jobs, models, labeling jobs, work teams, endpoint configurations, and endpoints. Each tag consists of a key and an optional value. Tag keys must be unique per resource. For more information about tags, see For more information, see AWS Tagging Strategies.  Tags that you add to a hyperparameter tuning job by calling this API are also added to any training jobs that the hyperparameter tuning job launches after you call this API, but not to training jobs that the hyperparameter tuning job launched before you called this API. To make sure that the tags associated with a hyperparameter tuning job are also added to all training jobs that the hyperparameter tuning job launches, add the tags when you first create the tuning job by specifying them in the Tags parameter of CreateHyperParameterTuningJob  
   */
  addTags(callback?: (err: AWSError, data: SageMaker.Types.AddTagsOutput) => void): Request<SageMaker.Types.AddTagsOutput, AWSError>;
  /**
   * Create a machine learning algorithm that you can use in Amazon SageMaker and list in the AWS Marketplace.
   */
  createAlgorithm(params: SageMaker.Types.CreateAlgorithmInput, callback?: (err: AWSError, data: SageMaker.Types.CreateAlgorithmOutput) => void): Request<SageMaker.Types.CreateAlgorithmOutput, AWSError>;
  /**
   * Create a machine learning algorithm that you can use in Amazon SageMaker and list in the AWS Marketplace.
   */
  createAlgorithm(callback?: (err: AWSError, data: SageMaker.Types.CreateAlgorithmOutput) => void): Request<SageMaker.Types.CreateAlgorithmOutput, AWSError>;
  /**
   * Creates a Git repository as a resource in your Amazon SageMaker account. You can associate the repository with notebook instances so that you can use Git source control for the notebooks you create. The Git repository is a resource in your Amazon SageMaker account, so it can be associated with more than one notebook instance, and it persists independently from the lifecycle of any notebook instances it is associated with. The repository can be hosted either in AWS CodeCommit or in any other Git repository.
   */
  createCodeRepository(params: SageMaker.Types.CreateCodeRepositoryInput, callback?: (err: AWSError, data: SageMaker.Types.CreateCodeRepositoryOutput) => void): Request<SageMaker.Types.CreateCodeRepositoryOutput, AWSError>;
  /**
   * Creates a Git repository as a resource in your Amazon SageMaker account. You can associate the repository with notebook instances so that you can use Git source control for the notebooks you create. The Git repository is a resource in your Amazon SageMaker account, so it can be associated with more than one notebook instance, and it persists independently from the lifecycle of any notebook instances it is associated with. The repository can be hosted either in AWS CodeCommit or in any other Git repository.
   */
  createCodeRepository(callback?: (err: AWSError, data: SageMaker.Types.CreateCodeRepositoryOutput) => void): Request<SageMaker.Types.CreateCodeRepositoryOutput, AWSError>;
  /**
   * Starts a model compilation job. After the model has been compiled, Amazon SageMaker saves the resulting model artifacts to an Amazon Simple Storage Service (Amazon S3) bucket that you specify.  If you choose to host your model using Amazon SageMaker hosting services, you can use the resulting model artifacts as part of the model. You can also use the artifacts with AWS IoT Greengrass. In that case, deploy them as an ML resource. In the request body, you provide the following:   A name for the compilation job    Information about the input model artifacts    The output location for the compiled model and the device (target) that the model runs on     The Amazon Resource Name (ARN) of the IAM role that Amazon SageMaker assumes to perform the model compilation job    You can also provide a Tag to track the model compilation job's resource use and costs. The response body contains the CompilationJobArn for the compiled job. To stop a model compilation job, use StopCompilationJob. To get information about a particular model compilation job, use DescribeCompilationJob. To get information about multiple model compilation jobs, use ListCompilationJobs.
   */
  createCompilationJob(params: SageMaker.Types.CreateCompilationJobRequest, callback?: (err: AWSError, data: SageMaker.Types.CreateCompilationJobResponse) => void): Request<SageMaker.Types.CreateCompilationJobResponse, AWSError>;
  /**
   * Starts a model compilation job. After the model has been compiled, Amazon SageMaker saves the resulting model artifacts to an Amazon Simple Storage Service (Amazon S3) bucket that you specify.  If you choose to host your model using Amazon SageMaker hosting services, you can use the resulting model artifacts as part of the model. You can also use the artifacts with AWS IoT Greengrass. In that case, deploy them as an ML resource. In the request body, you provide the following:   A name for the compilation job    Information about the input model artifacts    The output location for the compiled model and the device (target) that the model runs on     The Amazon Resource Name (ARN) of the IAM role that Amazon SageMaker assumes to perform the model compilation job    You can also provide a Tag to track the model compilation job's resource use and costs. The response body contains the CompilationJobArn for the compiled job. To stop a model compilation job, use StopCompilationJob. To get information about a particular model compilation job, use DescribeCompilationJob. To get information about multiple model compilation jobs, use ListCompilationJobs.
   */
  createCompilationJob(callback?: (err: AWSError, data: SageMaker.Types.CreateCompilationJobResponse) => void): Request<SageMaker.Types.CreateCompilationJobResponse, AWSError>;
  /**
   * Creates an endpoint using the endpoint configuration specified in the request. Amazon SageMaker uses the endpoint to provision resources and deploy models. You create the endpoint configuration with the CreateEndpointConfig API.    Use this API only for hosting models using Amazon SageMaker hosting services.   You must not delete an EndpointConfig in use by an endpoint that is live or while the UpdateEndpoint or CreateEndpoint operations are being performed on the endpoint. To update an endpoint, you must create a new EndpointConfig.  The endpoint name must be unique within an AWS Region in your AWS account.  When it receives the request, Amazon SageMaker creates the endpoint, launches the resources (ML compute instances), and deploys the model(s) on them.  When Amazon SageMaker receives the request, it sets the endpoint status to Creating. After it creates the endpoint, it sets the status to InService. Amazon SageMaker can then process incoming requests for inferences. To check the status of an endpoint, use the DescribeEndpoint API. For an example, see Exercise 1: Using the K-Means Algorithm Provided by Amazon SageMaker.  If any of the models hosted at this endpoint get model data from an Amazon S3 location, Amazon SageMaker uses AWS Security Token Service to download model artifacts from the S3 path you provided. AWS STS is activated in your IAM user account by default. If you previously deactivated AWS STS for a region, you need to reactivate AWS STS for that region. For more information, see Activating and Deactivating AWS STS i an AWS Region in the AWS Identity and Access Management User Guide.
   */
  createEndpoint(params: SageMaker.Types.CreateEndpointInput, callback?: (err: AWSError, data: SageMaker.Types.CreateEndpointOutput) => void): Request<SageMaker.Types.CreateEndpointOutput, AWSError>;
  /**
   * Creates an endpoint using the endpoint configuration specified in the request. Amazon SageMaker uses the endpoint to provision resources and deploy models. You create the endpoint configuration with the CreateEndpointConfig API.    Use this API only for hosting models using Amazon SageMaker hosting services.   You must not delete an EndpointConfig in use by an endpoint that is live or while the UpdateEndpoint or CreateEndpoint operations are being performed on the endpoint. To update an endpoint, you must create a new EndpointConfig.  The endpoint name must be unique within an AWS Region in your AWS account.  When it receives the request, Amazon SageMaker creates the endpoint, launches the resources (ML compute instances), and deploys the model(s) on them.  When Amazon SageMaker receives the request, it sets the endpoint status to Creating. After it creates the endpoint, it sets the status to InService. Amazon SageMaker can then process incoming requests for inferences. To check the status of an endpoint, use the DescribeEndpoint API. For an example, see Exercise 1: Using the K-Means Algorithm Provided by Amazon SageMaker.  If any of the models hosted at this endpoint get model data from an Amazon S3 location, Amazon SageMaker uses AWS Security Token Service to download model artifacts from the S3 path you provided. AWS STS is activated in your IAM user account by default. If you previously deactivated AWS STS for a region, you need to reactivate AWS STS for that region. For more information, see Activating and Deactivating AWS STS i an AWS Region in the AWS Identity and Access Management User Guide.
   */
  createEndpoint(callback?: (err: AWSError, data: SageMaker.Types.CreateEndpointOutput) => void): Request<SageMaker.Types.CreateEndpointOutput, AWSError>;
  /**
   * Creates an endpoint configuration that Amazon SageMaker hosting services uses to deploy models. In the configuration, you identify one or more models, created using the CreateModel API, to deploy and the resources that you want Amazon SageMaker to provision. Then you call the CreateEndpoint API.   Use this API only if you want to use Amazon SageMaker hosting services to deploy models into production.   In the request, you define one or more ProductionVariants, each of which identifies a model. Each ProductionVariant parameter also describes the resources that you want Amazon SageMaker to provision. This includes the number and type of ML compute instances to deploy.  If you are hosting multiple models, you also assign a VariantWeight to specify how much traffic you want to allocate to each model. For example, suppose that you want to host two models, A and B, and you assign traffic weight 2 for model A and 1 for model B. Amazon SageMaker distributes two-thirds of the traffic to Model A, and one-third to model B. 
   */
  createEndpointConfig(params: SageMaker.Types.CreateEndpointConfigInput, callback?: (err: AWSError, data: SageMaker.Types.CreateEndpointConfigOutput) => void): Request<SageMaker.Types.CreateEndpointConfigOutput, AWSError>;
  /**
   * Creates an endpoint configuration that Amazon SageMaker hosting services uses to deploy models. In the configuration, you identify one or more models, created using the CreateModel API, to deploy and the resources that you want Amazon SageMaker to provision. Then you call the CreateEndpoint API.   Use this API only if you want to use Amazon SageMaker hosting services to deploy models into production.   In the request, you define one or more ProductionVariants, each of which identifies a model. Each ProductionVariant parameter also describes the resources that you want Amazon SageMaker to provision. This includes the number and type of ML compute instances to deploy.  If you are hosting multiple models, you also assign a VariantWeight to specify how much traffic you want to allocate to each model. For example, suppose that you want to host two models, A and B, and you assign traffic weight 2 for model A and 1 for model B. Amazon SageMaker distributes two-thirds of the traffic to Model A, and one-third to model B. 
   */
  createEndpointConfig(callback?: (err: AWSError, data: SageMaker.Types.CreateEndpointConfigOutput) => void): Request<SageMaker.Types.CreateEndpointConfigOutput, AWSError>;
  /**
   * Starts a hyperparameter tuning job. A hyperparameter tuning job finds the best version of a model by running many training jobs on your dataset using the algorithm you choose and values for hyperparameters within ranges that you specify. It then chooses the hyperparameter values that result in a model that performs the best, as measured by an objective metric that you choose.
   */
  createHyperParameterTuningJob(params: SageMaker.Types.CreateHyperParameterTuningJobRequest, callback?: (err: AWSError, data: SageMaker.Types.CreateHyperParameterTuningJobResponse) => void): Request<SageMaker.Types.CreateHyperParameterTuningJobResponse, AWSError>;
  /**
   * Starts a hyperparameter tuning job. A hyperparameter tuning job finds the best version of a model by running many training jobs on your dataset using the algorithm you choose and values for hyperparameters within ranges that you specify. It then chooses the hyperparameter values that result in a model that performs the best, as measured by an objective metric that you choose.
   */
  createHyperParameterTuningJob(callback?: (err: AWSError, data: SageMaker.Types.CreateHyperParameterTuningJobResponse) => void): Request<SageMaker.Types.CreateHyperParameterTuningJobResponse, AWSError>;
  /**
   * Creates a job that uses workers to label the data objects in your input dataset. You can use the labeled data to train machine learning models. You can select your workforce from one of three providers:   A private workforce that you create. It can include employees, contractors, and outside experts. Use a private workforce when want the data to stay within your organization or when a specific set of skills is required.   One or more vendors that you select from the AWS Marketplace. Vendors provide expertise in specific areas.    The Amazon Mechanical Turk workforce. This is the largest workforce, but it should only be used for public data or data that has been stripped of any personally identifiable information.   You can also use automated data labeling to reduce the number of data objects that need to be labeled by a human. Automated data labeling uses active learning to determine if a data object can be labeled by machine or if it needs to be sent to a human worker. For more information, see Using Automated Data Labeling. The data objects to be labeled are contained in an Amazon S3 bucket. You create a manifest file that describes the location of each object. For more information, see Using Input and Output Data. The output can be used as the manifest file for another labeling job or as training data for your machine learning models.
   */
  createLabelingJob(params: SageMaker.Types.CreateLabelingJobRequest, callback?: (err: AWSError, data: SageMaker.Types.CreateLabelingJobResponse) => void): Request<SageMaker.Types.CreateLabelingJobResponse, AWSError>;
  /**
   * Creates a job that uses workers to label the data objects in your input dataset. You can use the labeled data to train machine learning models. You can select your workforce from one of three providers:   A private workforce that you create. It can include employees, contractors, and outside experts. Use a private workforce when want the data to stay within your organization or when a specific set of skills is required.   One or more vendors that you select from the AWS Marketplace. Vendors provide expertise in specific areas.    The Amazon Mechanical Turk workforce. This is the largest workforce, but it should only be used for public data or data that has been stripped of any personally identifiable information.   You can also use automated data labeling to reduce the number of data objects that need to be labeled by a human. Automated data labeling uses active learning to determine if a data object can be labeled by machine or if it needs to be sent to a human worker. For more information, see Using Automated Data Labeling. The data objects to be labeled are contained in an Amazon S3 bucket. You create a manifest file that describes the location of each object. For more information, see Using Input and Output Data. The output can be used as the manifest file for another labeling job or as training data for your machine learning models.
   */
  createLabelingJob(callback?: (err: AWSError, data: SageMaker.Types.CreateLabelingJobResponse) => void): Request<SageMaker.Types.CreateLabelingJobResponse, AWSError>;
  /**
   * Creates a model in Amazon SageMaker. In the request, you name the model and describe a primary container. For the primary container, you specify the docker image containing inference code, artifacts (from prior training), and custom environment map that the inference code uses when you deploy the model for predictions. Use this API to create a model if you want to use Amazon SageMaker hosting services or run a batch transform job. To host your model, you create an endpoint configuration with the CreateEndpointConfig API, and then create an endpoint with the CreateEndpoint API. Amazon SageMaker then deploys all of the containers that you defined for the model in the hosting environment.  To run a batch transform using your model, you start a job with the CreateTransformJob API. Amazon SageMaker uses your model and your dataset to get inferences which are then saved to a specified S3 location. In the CreateModel request, you must define a container with the PrimaryContainer parameter. In the request, you also provide an IAM role that Amazon SageMaker can assume to access model artifacts and docker image for deployment on ML compute hosting instances or for batch transform jobs. In addition, you also use the IAM role to manage permissions the inference code needs. For example, if the inference code access any other AWS resources, you grant necessary permissions via this role.
   */
  createModel(params: SageMaker.Types.CreateModelInput, callback?: (err: AWSError, data: SageMaker.Types.CreateModelOutput) => void): Request<SageMaker.Types.CreateModelOutput, AWSError>;
  /**
   * Creates a model in Amazon SageMaker. In the request, you name the model and describe a primary container. For the primary container, you specify the docker image containing inference code, artifacts (from prior training), and custom environment map that the inference code uses when you deploy the model for predictions. Use this API to create a model if you want to use Amazon SageMaker hosting services or run a batch transform job. To host your model, you create an endpoint configuration with the CreateEndpointConfig API, and then create an endpoint with the CreateEndpoint API. Amazon SageMaker then deploys all of the containers that you defined for the model in the hosting environment.  To run a batch transform using your model, you start a job with the CreateTransformJob API. Amazon SageMaker uses your model and your dataset to get inferences which are then saved to a specified S3 location. In the CreateModel request, you must define a container with the PrimaryContainer parameter. In the request, you also provide an IAM role that Amazon SageMaker can assume to access model artifacts and docker image for deployment on ML compute hosting instances or for batch transform jobs. In addition, you also use the IAM role to manage permissions the inference code needs. For example, if the inference code access any other AWS resources, you grant necessary permissions via this role.
   */
  createModel(callback?: (err: AWSError, data: SageMaker.Types.CreateModelOutput) => void): Request<SageMaker.Types.CreateModelOutput, AWSError>;
  /**
   * Creates a model package that you can use to create Amazon SageMaker models or list on AWS Marketplace. Buyers can subscribe to model packages listed on AWS Marketplace to create models in Amazon SageMaker. To create a model package by specifying a Docker container that contains your inference code and the Amazon S3 location of your model artifacts, provide values for InferenceSpecification. To create a model from an algorithm resource that you created or subscribed to in AWS Marketplace, provide a value for SourceAlgorithmSpecification.
   */
  createModelPackage(params: SageMaker.Types.CreateModelPackageInput, callback?: (err: AWSError, data: SageMaker.Types.CreateModelPackageOutput) => void): Request<SageMaker.Types.CreateModelPackageOutput, AWSError>;
  /**
   * Creates a model package that you can use to create Amazon SageMaker models or list on AWS Marketplace. Buyers can subscribe to model packages listed on AWS Marketplace to create models in Amazon SageMaker. To create a model package by specifying a Docker container that contains your inference code and the Amazon S3 location of your model artifacts, provide values for InferenceSpecification. To create a model from an algorithm resource that you created or subscribed to in AWS Marketplace, provide a value for SourceAlgorithmSpecification.
   */
  createModelPackage(callback?: (err: AWSError, data: SageMaker.Types.CreateModelPackageOutput) => void): Request<SageMaker.Types.CreateModelPackageOutput, AWSError>;
  /**
   * Creates an Amazon SageMaker notebook instance. A notebook instance is a machine learning (ML) compute instance running on a Jupyter notebook.  In a CreateNotebookInstance request, specify the type of ML compute instance that you want to run. Amazon SageMaker launches the instance, installs common libraries that you can use to explore datasets for model training, and attaches an ML storage volume to the notebook instance.  Amazon SageMaker also provides a set of example notebooks. Each notebook demonstrates how to use Amazon SageMaker with a specific algorithm or with a machine learning framework.  After receiving the request, Amazon SageMaker does the following:   Creates a network interface in the Amazon SageMaker VPC.   (Option) If you specified SubnetId, Amazon SageMaker creates a network interface in your own VPC, which is inferred from the subnet ID that you provide in the input. When creating this network interface, Amazon SageMaker attaches the security group that you specified in the request to the network interface that it creates in your VPC.   Launches an EC2 instance of the type specified in the request in the Amazon SageMaker VPC. If you specified SubnetId of your VPC, Amazon SageMaker specifies both network interfaces when launching this instance. This enables inbound traffic from your own VPC to the notebook instance, assuming that the security groups allow it.   After creating the notebook instance, Amazon SageMaker returns its Amazon Resource Name (ARN). You can't change the name of a notebook instance after you create it. After Amazon SageMaker creates the notebook instance, you can connect to the Jupyter server and work in Jupyter notebooks. For example, you can write code to explore a dataset that you can use for model training, train a model, host models by creating Amazon SageMaker endpoints, and validate hosted models.  For more information, see How It Works. 
   */
  createNotebookInstance(params: SageMaker.Types.CreateNotebookInstanceInput, callback?: (err: AWSError, data: SageMaker.Types.CreateNotebookInstanceOutput) => void): Request<SageMaker.Types.CreateNotebookInstanceOutput, AWSError>;
  /**
   * Creates an Amazon SageMaker notebook instance. A notebook instance is a machine learning (ML) compute instance running on a Jupyter notebook.  In a CreateNotebookInstance request, specify the type of ML compute instance that you want to run. Amazon SageMaker launches the instance, installs common libraries that you can use to explore datasets for model training, and attaches an ML storage volume to the notebook instance.  Amazon SageMaker also provides a set of example notebooks. Each notebook demonstrates how to use Amazon SageMaker with a specific algorithm or with a machine learning framework.  After receiving the request, Amazon SageMaker does the following:   Creates a network interface in the Amazon SageMaker VPC.   (Option) If you specified SubnetId, Amazon SageMaker creates a network interface in your own VPC, which is inferred from the subnet ID that you provide in the input. When creating this network interface, Amazon SageMaker attaches the security group that you specified in the request to the network interface that it creates in your VPC.   Launches an EC2 instance of the type specified in the request in the Amazon SageMaker VPC. If you specified SubnetId of your VPC, Amazon SageMaker specifies both network interfaces when launching this instance. This enables inbound traffic from your own VPC to the notebook instance, assuming that the security groups allow it.   After creating the notebook instance, Amazon SageMaker returns its Amazon Resource Name (ARN). You can't change the name of a notebook instance after you create it. After Amazon SageMaker creates the notebook instance, you can connect to the Jupyter server and work in Jupyter notebooks. For example, you can write code to explore a dataset that you can use for model training, train a model, host models by creating Amazon SageMaker endpoints, and validate hosted models.  For more information, see How It Works. 
   */
  createNotebookInstance(callback?: (err: AWSError, data: SageMaker.Types.CreateNotebookInstanceOutput) => void): Request<SageMaker.Types.CreateNotebookInstanceOutput, AWSError>;
  /**
   * Creates a lifecycle configuration that you can associate with a notebook instance. A lifecycle configuration is a collection of shell scripts that run when you create or start a notebook instance. Each lifecycle configuration script has a limit of 16384 characters. The value of the $PATH environment variable that is available to both scripts is /sbin:bin:/usr/sbin:/usr/bin. View CloudWatch Logs for notebook instance lifecycle configurations in log group /aws/sagemaker/NotebookInstances in log stream [notebook-instance-name]/[LifecycleConfigHook]. Lifecycle configuration scripts cannot run for longer than 5 minutes. If a script runs for longer than 5 minutes, it fails and the notebook instance is not created or started. For information about notebook instance lifestyle configurations, see Step 2.1: (Optional) Customize a Notebook Instance.
   */
  createNotebookInstanceLifecycleConfig(params: SageMaker.Types.CreateNotebookInstanceLifecycleConfigInput, callback?: (err: AWSError, data: SageMaker.Types.CreateNotebookInstanceLifecycleConfigOutput) => void): Request<SageMaker.Types.CreateNotebookInstanceLifecycleConfigOutput, AWSError>;
  /**
   * Creates a lifecycle configuration that you can associate with a notebook instance. A lifecycle configuration is a collection of shell scripts that run when you create or start a notebook instance. Each lifecycle configuration script has a limit of 16384 characters. The value of the $PATH environment variable that is available to both scripts is /sbin:bin:/usr/sbin:/usr/bin. View CloudWatch Logs for notebook instance lifecycle configurations in log group /aws/sagemaker/NotebookInstances in log stream [notebook-instance-name]/[LifecycleConfigHook]. Lifecycle configuration scripts cannot run for longer than 5 minutes. If a script runs for longer than 5 minutes, it fails and the notebook instance is not created or started. For information about notebook instance lifestyle configurations, see Step 2.1: (Optional) Customize a Notebook Instance.
   */
  createNotebookInstanceLifecycleConfig(callback?: (err: AWSError, data: SageMaker.Types.CreateNotebookInstanceLifecycleConfigOutput) => void): Request<SageMaker.Types.CreateNotebookInstanceLifecycleConfigOutput, AWSError>;
  /**
   * Returns a URL that you can use to connect to the Jupyter server from a notebook instance. In the Amazon SageMaker console, when you choose Open next to a notebook instance, Amazon SageMaker opens a new tab showing the Jupyter server home page from the notebook instance. The console uses this API to get the URL and show the page. IAM authorization policies for this API are also enforced for every HTTP request and WebSocket frame that attempts to connect to the notebook instance.For example, you can restrict access to this API and to the URL that it returns to a list of IP addresses that you specify. Use the NotIpAddress condition operator and the aws:SourceIP condition context key to specify the list of IP addresses that you want to have access to the notebook instance. For more information, see Limit Access to a Notebook Instance by IP Address.  The URL that you get from a call to is valid only for 5 minutes. If you try to use the URL after the 5-minute limit expires, you are directed to the AWS console sign-in page. 
   */
  createPresignedNotebookInstanceUrl(params: SageMaker.Types.CreatePresignedNotebookInstanceUrlInput, callback?: (err: AWSError, data: SageMaker.Types.CreatePresignedNotebookInstanceUrlOutput) => void): Request<SageMaker.Types.CreatePresignedNotebookInstanceUrlOutput, AWSError>;
  /**
   * Returns a URL that you can use to connect to the Jupyter server from a notebook instance. In the Amazon SageMaker console, when you choose Open next to a notebook instance, Amazon SageMaker opens a new tab showing the Jupyter server home page from the notebook instance. The console uses this API to get the URL and show the page. IAM authorization policies for this API are also enforced for every HTTP request and WebSocket frame that attempts to connect to the notebook instance.For example, you can restrict access to this API and to the URL that it returns to a list of IP addresses that you specify. Use the NotIpAddress condition operator and the aws:SourceIP condition context key to specify the list of IP addresses that you want to have access to the notebook instance. For more information, see Limit Access to a Notebook Instance by IP Address.  The URL that you get from a call to is valid only for 5 minutes. If you try to use the URL after the 5-minute limit expires, you are directed to the AWS console sign-in page. 
   */
  createPresignedNotebookInstanceUrl(callback?: (err: AWSError, data: SageMaker.Types.CreatePresignedNotebookInstanceUrlOutput) => void): Request<SageMaker.Types.CreatePresignedNotebookInstanceUrlOutput, AWSError>;
  /**
   * Starts a model training job. After training completes, Amazon SageMaker saves the resulting model artifacts to an Amazon S3 location that you specify.  If you choose to host your model using Amazon SageMaker hosting services, you can use the resulting model artifacts as part of the model. You can also use the artifacts in a machine learning service other than Amazon SageMaker, provided that you know how to use them for inferences.  In the request body, you provide the following:     AlgorithmSpecification - Identifies the training algorithm to use.     HyperParameters - Specify these algorithm-specific parameters to enable the estimation of model parameters during training. Hyperparameters can be tuned to optimize this learning process. For a list of hyperparameters for each training algorithm provided by Amazon SageMaker, see Algorithms.     InputDataConfig - Describes the training dataset and the Amazon S3, EFS, or FSx location where it is stored.    OutputDataConfig - Identifies the Amazon S3 bucket where you want Amazon SageMaker to save the results of model training.      ResourceConfig - Identifies the resources, ML compute instances, and ML storage volumes to deploy for model training. In distributed training, you specify more than one instance.     EnableManagedSpotTraining - Optimize the cost of training machine learning models by up to 80% by using Amazon EC2 Spot instances. For more information, see Managed Spot Training.     RoleARN - The Amazon Resource Number (ARN) that Amazon SageMaker assumes to perform tasks on your behalf during model training. You must grant this role the necessary permissions so that Amazon SageMaker can successfully complete model training.     StoppingCondition - To help cap training costs, use MaxRuntimeInSeconds to set a time limit for training. Use MaxWaitTimeInSeconds to specify how long you are willing to to wait for a managed spot training job to complete.     For more information about Amazon SageMaker, see How It Works. 
   */
  createTrainingJob(params: SageMaker.Types.CreateTrainingJobRequest, callback?: (err: AWSError, data: SageMaker.Types.CreateTrainingJobResponse) => void): Request<SageMaker.Types.CreateTrainingJobResponse, AWSError>;
  /**
   * Starts a model training job. After training completes, Amazon SageMaker saves the resulting model artifacts to an Amazon S3 location that you specify.  If you choose to host your model using Amazon SageMaker hosting services, you can use the resulting model artifacts as part of the model. You can also use the artifacts in a machine learning service other than Amazon SageMaker, provided that you know how to use them for inferences.  In the request body, you provide the following:     AlgorithmSpecification - Identifies the training algorithm to use.     HyperParameters - Specify these algorithm-specific parameters to enable the estimation of model parameters during training. Hyperparameters can be tuned to optimize this learning process. For a list of hyperparameters for each training algorithm provided by Amazon SageMaker, see Algorithms.     InputDataConfig - Describes the training dataset and the Amazon S3, EFS, or FSx location where it is stored.    OutputDataConfig - Identifies the Amazon S3 bucket where you want Amazon SageMaker to save the results of model training.      ResourceConfig - Identifies the resources, ML compute instances, and ML storage volumes to deploy for model training. In distributed training, you specify more than one instance.     EnableManagedSpotTraining - Optimize the cost of training machine learning models by up to 80% by using Amazon EC2 Spot instances. For more information, see Managed Spot Training.     RoleARN - The Amazon Resource Number (ARN) that Amazon SageMaker assumes to perform tasks on your behalf during model training. You must grant this role the necessary permissions so that Amazon SageMaker can successfully complete model training.     StoppingCondition - To help cap training costs, use MaxRuntimeInSeconds to set a time limit for training. Use MaxWaitTimeInSeconds to specify how long you are willing to to wait for a managed spot training job to complete.     For more information about Amazon SageMaker, see How It Works. 
   */
  createTrainingJob(callback?: (err: AWSError, data: SageMaker.Types.CreateTrainingJobResponse) => void): Request<SageMaker.Types.CreateTrainingJobResponse, AWSError>;
  /**
   * Starts a transform job. A transform job uses a trained model to get inferences on a dataset and saves these results to an Amazon S3 location that you specify. To perform batch transformations, you create a transform job and use the data that you have readily available. In the request body, you provide the following:    TransformJobName - Identifies the transform job. The name must be unique within an AWS Region in an AWS account.    ModelName - Identifies the model to use. ModelName must be the name of an existing Amazon SageMaker model in the same AWS Region and AWS account. For information on creating a model, see CreateModel.    TransformInput - Describes the dataset to be transformed and the Amazon S3 location where it is stored.    TransformOutput - Identifies the Amazon S3 location where you want Amazon SageMaker to save the results from the transform job.    TransformResources - Identifies the ML compute instances for the transform job.    For more information about how batch transformation works Amazon SageMaker, see How It Works. 
   */
  createTransformJob(params: SageMaker.Types.CreateTransformJobRequest, callback?: (err: AWSError, data: SageMaker.Types.CreateTransformJobResponse) => void): Request<SageMaker.Types.CreateTransformJobResponse, AWSError>;
  /**
   * Starts a transform job. A transform job uses a trained model to get inferences on a dataset and saves these results to an Amazon S3 location that you specify. To perform batch transformations, you create a transform job and use the data that you have readily available. In the request body, you provide the following:    TransformJobName - Identifies the transform job. The name must be unique within an AWS Region in an AWS account.    ModelName - Identifies the model to use. ModelName must be the name of an existing Amazon SageMaker model in the same AWS Region and AWS account. For information on creating a model, see CreateModel.    TransformInput - Describes the dataset to be transformed and the Amazon S3 location where it is stored.    TransformOutput - Identifies the Amazon S3 location where you want Amazon SageMaker to save the results from the transform job.    TransformResources - Identifies the ML compute instances for the transform job.    For more information about how batch transformation works Amazon SageMaker, see How It Works. 
   */
  createTransformJob(callback?: (err: AWSError, data: SageMaker.Types.CreateTransformJobResponse) => void): Request<SageMaker.Types.CreateTransformJobResponse, AWSError>;
  /**
   * Creates a new work team for labeling your data. A work team is defined by one or more Amazon Cognito user pools. You must first create the user pools before you can create a work team. You cannot create more than 25 work teams in an account and region.
   */
  createWorkteam(params: SageMaker.Types.CreateWorkteamRequest, callback?: (err: AWSError, data: SageMaker.Types.CreateWorkteamResponse) => void): Request<SageMaker.Types.CreateWorkteamResponse, AWSError>;
  /**
   * Creates a new work team for labeling your data. A work team is defined by one or more Amazon Cognito user pools. You must first create the user pools before you can create a work team. You cannot create more than 25 work teams in an account and region.
   */
  createWorkteam(callback?: (err: AWSError, data: SageMaker.Types.CreateWorkteamResponse) => void): Request<SageMaker.Types.CreateWorkteamResponse, AWSError>;
  /**
   * Removes the specified algorithm from your account.
   */
  deleteAlgorithm(params: SageMaker.Types.DeleteAlgorithmInput, callback?: (err: AWSError, data: {}) => void): Request<{}, AWSError>;
  /**
   * Removes the specified algorithm from your account.
   */
  deleteAlgorithm(callback?: (err: AWSError, data: {}) => void): Request<{}, AWSError>;
  /**
   * Deletes the specified Git repository from your account.
   */
  deleteCodeRepository(params: SageMaker.Types.DeleteCodeRepositoryInput, callback?: (err: AWSError, data: {}) => void): Request<{}, AWSError>;
  /**
   * Deletes the specified Git repository from your account.
   */
  deleteCodeRepository(callback?: (err: AWSError, data: {}) => void): Request<{}, AWSError>;
  /**
   * Deletes an endpoint. Amazon SageMaker frees up all of the resources that were deployed when the endpoint was created.  Amazon SageMaker retires any custom KMS key grants associated with the endpoint, meaning you don't need to use the RevokeGrant API call.
   */
  deleteEndpoint(params: SageMaker.Types.DeleteEndpointInput, callback?: (err: AWSError, data: {}) => void): Request<{}, AWSError>;
  /**
   * Deletes an endpoint. Amazon SageMaker frees up all of the resources that were deployed when the endpoint was created.  Amazon SageMaker retires any custom KMS key grants associated with the endpoint, meaning you don't need to use the RevokeGrant API call.
   */
  deleteEndpoint(callback?: (err: AWSError, data: {}) => void): Request<{}, AWSError>;
  /**
   * Deletes an endpoint configuration. The DeleteEndpointConfig API deletes only the specified configuration. It does not delete endpoints created using the configuration. 
   */
  deleteEndpointConfig(params: SageMaker.Types.DeleteEndpointConfigInput, callback?: (err: AWSError, data: {}) => void): Request<{}, AWSError>;
  /**
   * Deletes an endpoint configuration. The DeleteEndpointConfig API deletes only the specified configuration. It does not delete endpoints created using the configuration. 
   */
  deleteEndpointConfig(callback?: (err: AWSError, data: {}) => void): Request<{}, AWSError>;
  /**
   * Deletes a model. The DeleteModel API deletes only the model entry that was created in Amazon SageMaker when you called the CreateModel API. It does not delete model artifacts, inference code, or the IAM role that you specified when creating the model. 
   */
  deleteModel(params: SageMaker.Types.DeleteModelInput, callback?: (err: AWSError, data: {}) => void): Request<{}, AWSError>;
  /**
   * Deletes a model. The DeleteModel API deletes only the model entry that was created in Amazon SageMaker when you called the CreateModel API. It does not delete model artifacts, inference code, or the IAM role that you specified when creating the model. 
   */
  deleteModel(callback?: (err: AWSError, data: {}) => void): Request<{}, AWSError>;
  /**
   * Deletes a model package. A model package is used to create Amazon SageMaker models or list on AWS Marketplace. Buyers can subscribe to model packages listed on AWS Marketplace to create models in Amazon SageMaker.
   */
  deleteModelPackage(params: SageMaker.Types.DeleteModelPackageInput, callback?: (err: AWSError, data: {}) => void): Request<{}, AWSError>;
  /**
   * Deletes a model package. A model package is used to create Amazon SageMaker models or list on AWS Marketplace. Buyers can subscribe to model packages listed on AWS Marketplace to create models in Amazon SageMaker.
   */
  deleteModelPackage(callback?: (err: AWSError, data: {}) => void): Request<{}, AWSError>;
  /**
   *  Deletes an Amazon SageMaker notebook instance. Before you can delete a notebook instance, you must call the StopNotebookInstance API.   When you delete a notebook instance, you lose all of your data. Amazon SageMaker removes the ML compute instance, and deletes the ML storage volume and the network interface associated with the notebook instance.  
   */
  deleteNotebookInstance(params: SageMaker.Types.DeleteNotebookInstanceInput, callback?: (err: AWSError, data: {}) => void): Request<{}, AWSError>;
  /**
   *  Deletes an Amazon SageMaker notebook instance. Before you can delete a notebook instance, you must call the StopNotebookInstance API.   When you delete a notebook instance, you lose all of your data. Amazon SageMaker removes the ML compute instance, and deletes the ML storage volume and the network interface associated with the notebook instance.  
   */
  deleteNotebookInstance(callback?: (err: AWSError, data: {}) => void): Request<{}, AWSError>;
  /**
   * Deletes a notebook instance lifecycle configuration.
   */
  deleteNotebookInstanceLifecycleConfig(params: SageMaker.Types.DeleteNotebookInstanceLifecycleConfigInput, callback?: (err: AWSError, data: {}) => void): Request<{}, AWSError>;
  /**
   * Deletes a notebook instance lifecycle configuration.
   */
  deleteNotebookInstanceLifecycleConfig(callback?: (err: AWSError, data: {}) => void): Request<{}, AWSError>;
  /**
   * Deletes the specified tags from an Amazon SageMaker resource. To list a resource's tags, use the ListTags API.   When you call this API to delete tags from a hyperparameter tuning job, the deleted tags are not removed from training jobs that the hyperparameter tuning job launched before you called this API. 
   */
  deleteTags(params: SageMaker.Types.DeleteTagsInput, callback?: (err: AWSError, data: SageMaker.Types.DeleteTagsOutput) => void): Request<SageMaker.Types.DeleteTagsOutput, AWSError>;
  /**
   * Deletes the specified tags from an Amazon SageMaker resource. To list a resource's tags, use the ListTags API.   When you call this API to delete tags from a hyperparameter tuning job, the deleted tags are not removed from training jobs that the hyperparameter tuning job launched before you called this API. 
   */
  deleteTags(callback?: (err: AWSError, data: SageMaker.Types.DeleteTagsOutput) => void): Request<SageMaker.Types.DeleteTagsOutput, AWSError>;
  /**
   * Deletes an existing work team. This operation can't be undone.
   */
  deleteWorkteam(params: SageMaker.Types.DeleteWorkteamRequest, callback?: (err: AWSError, data: SageMaker.Types.DeleteWorkteamResponse) => void): Request<SageMaker.Types.DeleteWorkteamResponse, AWSError>;
  /**
   * Deletes an existing work team. This operation can't be undone.
   */
  deleteWorkteam(callback?: (err: AWSError, data: SageMaker.Types.DeleteWorkteamResponse) => void): Request<SageMaker.Types.DeleteWorkteamResponse, AWSError>;
  /**
   * Returns a description of the specified algorithm that is in your account.
   */
  describeAlgorithm(params: SageMaker.Types.DescribeAlgorithmInput, callback?: (err: AWSError, data: SageMaker.Types.DescribeAlgorithmOutput) => void): Request<SageMaker.Types.DescribeAlgorithmOutput, AWSError>;
  /**
   * Returns a description of the specified algorithm that is in your account.
   */
  describeAlgorithm(callback?: (err: AWSError, data: SageMaker.Types.DescribeAlgorithmOutput) => void): Request<SageMaker.Types.DescribeAlgorithmOutput, AWSError>;
  /**
   * Gets details about the specified Git repository.
   */
  describeCodeRepository(params: SageMaker.Types.DescribeCodeRepositoryInput, callback?: (err: AWSError, data: SageMaker.Types.DescribeCodeRepositoryOutput) => void): Request<SageMaker.Types.DescribeCodeRepositoryOutput, AWSError>;
  /**
   * Gets details about the specified Git repository.
   */
  describeCodeRepository(callback?: (err: AWSError, data: SageMaker.Types.DescribeCodeRepositoryOutput) => void): Request<SageMaker.Types.DescribeCodeRepositoryOutput, AWSError>;
  /**
   * Returns information about a model compilation job. To create a model compilation job, use CreateCompilationJob. To get information about multiple model compilation jobs, use ListCompilationJobs.
   */
  describeCompilationJob(params: SageMaker.Types.DescribeCompilationJobRequest, callback?: (err: AWSError, data: SageMaker.Types.DescribeCompilationJobResponse) => void): Request<SageMaker.Types.DescribeCompilationJobResponse, AWSError>;
  /**
   * Returns information about a model compilation job. To create a model compilation job, use CreateCompilationJob. To get information about multiple model compilation jobs, use ListCompilationJobs.
   */
  describeCompilationJob(callback?: (err: AWSError, data: SageMaker.Types.DescribeCompilationJobResponse) => void): Request<SageMaker.Types.DescribeCompilationJobResponse, AWSError>;
  /**
   * Returns the description of an endpoint.
   */
  describeEndpoint(params: SageMaker.Types.DescribeEndpointInput, callback?: (err: AWSError, data: SageMaker.Types.DescribeEndpointOutput) => void): Request<SageMaker.Types.DescribeEndpointOutput, AWSError>;
  /**
   * Returns the description of an endpoint.
   */
  describeEndpoint(callback?: (err: AWSError, data: SageMaker.Types.DescribeEndpointOutput) => void): Request<SageMaker.Types.DescribeEndpointOutput, AWSError>;
  /**
   * Returns the description of an endpoint configuration created using the CreateEndpointConfig API.
   */
  describeEndpointConfig(params: SageMaker.Types.DescribeEndpointConfigInput, callback?: (err: AWSError, data: SageMaker.Types.DescribeEndpointConfigOutput) => void): Request<SageMaker.Types.DescribeEndpointConfigOutput, AWSError>;
  /**
   * Returns the description of an endpoint configuration created using the CreateEndpointConfig API.
   */
  describeEndpointConfig(callback?: (err: AWSError, data: SageMaker.Types.DescribeEndpointConfigOutput) => void): Request<SageMaker.Types.DescribeEndpointConfigOutput, AWSError>;
  /**
   * Gets a description of a hyperparameter tuning job.
   */
  describeHyperParameterTuningJob(params: SageMaker.Types.DescribeHyperParameterTuningJobRequest, callback?: (err: AWSError, data: SageMaker.Types.DescribeHyperParameterTuningJobResponse) => void): Request<SageMaker.Types.DescribeHyperParameterTuningJobResponse, AWSError>;
  /**
   * Gets a description of a hyperparameter tuning job.
   */
  describeHyperParameterTuningJob(callback?: (err: AWSError, data: SageMaker.Types.DescribeHyperParameterTuningJobResponse) => void): Request<SageMaker.Types.DescribeHyperParameterTuningJobResponse, AWSError>;
  /**
   * Gets information about a labeling job.
   */
  describeLabelingJob(params: SageMaker.Types.DescribeLabelingJobRequest, callback?: (err: AWSError, data: SageMaker.Types.DescribeLabelingJobResponse) => void): Request<SageMaker.Types.DescribeLabelingJobResponse, AWSError>;
  /**
   * Gets information about a labeling job.
   */
  describeLabelingJob(callback?: (err: AWSError, data: SageMaker.Types.DescribeLabelingJobResponse) => void): Request<SageMaker.Types.DescribeLabelingJobResponse, AWSError>;
  /**
   * Describes a model that you created using the CreateModel API.
   */
  describeModel(params: SageMaker.Types.DescribeModelInput, callback?: (err: AWSError, data: SageMaker.Types.DescribeModelOutput) => void): Request<SageMaker.Types.DescribeModelOutput, AWSError>;
  /**
   * Describes a model that you created using the CreateModel API.
   */
  describeModel(callback?: (err: AWSError, data: SageMaker.Types.DescribeModelOutput) => void): Request<SageMaker.Types.DescribeModelOutput, AWSError>;
  /**
   * Returns a description of the specified model package, which is used to create Amazon SageMaker models or list them on AWS Marketplace. To create models in Amazon SageMaker, buyers can subscribe to model packages listed on AWS Marketplace.
   */
  describeModelPackage(params: SageMaker.Types.DescribeModelPackageInput, callback?: (err: AWSError, data: SageMaker.Types.DescribeModelPackageOutput) => void): Request<SageMaker.Types.DescribeModelPackageOutput, AWSError>;
  /**
   * Returns a description of the specified model package, which is used to create Amazon SageMaker models or list them on AWS Marketplace. To create models in Amazon SageMaker, buyers can subscribe to model packages listed on AWS Marketplace.
   */
  describeModelPackage(callback?: (err: AWSError, data: SageMaker.Types.DescribeModelPackageOutput) => void): Request<SageMaker.Types.DescribeModelPackageOutput, AWSError>;
  /**
   * Returns information about a notebook instance.
   */
  describeNotebookInstance(params: SageMaker.Types.DescribeNotebookInstanceInput, callback?: (err: AWSError, data: SageMaker.Types.DescribeNotebookInstanceOutput) => void): Request<SageMaker.Types.DescribeNotebookInstanceOutput, AWSError>;
  /**
   * Returns information about a notebook instance.
   */
  describeNotebookInstance(callback?: (err: AWSError, data: SageMaker.Types.DescribeNotebookInstanceOutput) => void): Request<SageMaker.Types.DescribeNotebookInstanceOutput, AWSError>;
  /**
   * Returns a description of a notebook instance lifecycle configuration. For information about notebook instance lifestyle configurations, see Step 2.1: (Optional) Customize a Notebook Instance.
   */
  describeNotebookInstanceLifecycleConfig(params: SageMaker.Types.DescribeNotebookInstanceLifecycleConfigInput, callback?: (err: AWSError, data: SageMaker.Types.DescribeNotebookInstanceLifecycleConfigOutput) => void): Request<SageMaker.Types.DescribeNotebookInstanceLifecycleConfigOutput, AWSError>;
  /**
   * Returns a description of a notebook instance lifecycle configuration. For information about notebook instance lifestyle configurations, see Step 2.1: (Optional) Customize a Notebook Instance.
   */
  describeNotebookInstanceLifecycleConfig(callback?: (err: AWSError, data: SageMaker.Types.DescribeNotebookInstanceLifecycleConfigOutput) => void): Request<SageMaker.Types.DescribeNotebookInstanceLifecycleConfigOutput, AWSError>;
  /**
   * Gets information about a work team provided by a vendor. It returns details about the subscription with a vendor in the AWS Marketplace.
   */
  describeSubscribedWorkteam(params: SageMaker.Types.DescribeSubscribedWorkteamRequest, callback?: (err: AWSError, data: SageMaker.Types.DescribeSubscribedWorkteamResponse) => void): Request<SageMaker.Types.DescribeSubscribedWorkteamResponse, AWSError>;
  /**
   * Gets information about a work team provided by a vendor. It returns details about the subscription with a vendor in the AWS Marketplace.
   */
  describeSubscribedWorkteam(callback?: (err: AWSError, data: SageMaker.Types.DescribeSubscribedWorkteamResponse) => void): Request<SageMaker.Types.DescribeSubscribedWorkteamResponse, AWSError>;
  /**
   * Returns information about a training job.
   */
  describeTrainingJob(params: SageMaker.Types.DescribeTrainingJobRequest, callback?: (err: AWSError, data: SageMaker.Types.DescribeTrainingJobResponse) => void): Request<SageMaker.Types.DescribeTrainingJobResponse, AWSError>;
  /**
   * Returns information about a training job.
   */
  describeTrainingJob(callback?: (err: AWSError, data: SageMaker.Types.DescribeTrainingJobResponse) => void): Request<SageMaker.Types.DescribeTrainingJobResponse, AWSError>;
  /**
   * Returns information about a transform job.
   */
  describeTransformJob(params: SageMaker.Types.DescribeTransformJobRequest, callback?: (err: AWSError, data: SageMaker.Types.DescribeTransformJobResponse) => void): Request<SageMaker.Types.DescribeTransformJobResponse, AWSError>;
  /**
   * Returns information about a transform job.
   */
  describeTransformJob(callback?: (err: AWSError, data: SageMaker.Types.DescribeTransformJobResponse) => void): Request<SageMaker.Types.DescribeTransformJobResponse, AWSError>;
  /**
   * Gets information about a specific work team. You can see information such as the create date, the last updated date, membership information, and the work team's Amazon Resource Name (ARN).
   */
  describeWorkteam(params: SageMaker.Types.DescribeWorkteamRequest, callback?: (err: AWSError, data: SageMaker.Types.DescribeWorkteamResponse) => void): Request<SageMaker.Types.DescribeWorkteamResponse, AWSError>;
  /**
   * Gets information about a specific work team. You can see information such as the create date, the last updated date, membership information, and the work team's Amazon Resource Name (ARN).
   */
  describeWorkteam(callback?: (err: AWSError, data: SageMaker.Types.DescribeWorkteamResponse) => void): Request<SageMaker.Types.DescribeWorkteamResponse, AWSError>;
  /**
   * An auto-complete API for the search functionality in the Amazon SageMaker console. It returns suggestions of possible matches for the property name to use in Search queries. Provides suggestions for HyperParameters, Tags, and Metrics.
   */
  getSearchSuggestions(params: SageMaker.Types.GetSearchSuggestionsRequest, callback?: (err: AWSError, data: SageMaker.Types.GetSearchSuggestionsResponse) => void): Request<SageMaker.Types.GetSearchSuggestionsResponse, AWSError>;
  /**
   * An auto-complete API for the search functionality in the Amazon SageMaker console. It returns suggestions of possible matches for the property name to use in Search queries. Provides suggestions for HyperParameters, Tags, and Metrics.
   */
  getSearchSuggestions(callback?: (err: AWSError, data: SageMaker.Types.GetSearchSuggestionsResponse) => void): Request<SageMaker.Types.GetSearchSuggestionsResponse, AWSError>;
  /**
   * Lists the machine learning algorithms that have been created.
   */
  listAlgorithms(params: SageMaker.Types.ListAlgorithmsInput, callback?: (err: AWSError, data: SageMaker.Types.ListAlgorithmsOutput) => void): Request<SageMaker.Types.ListAlgorithmsOutput, AWSError>;
  /**
   * Lists the machine learning algorithms that have been created.
   */
  listAlgorithms(callback?: (err: AWSError, data: SageMaker.Types.ListAlgorithmsOutput) => void): Request<SageMaker.Types.ListAlgorithmsOutput, AWSError>;
  /**
   * Gets a list of the Git repositories in your account.
   */
  listCodeRepositories(params: SageMaker.Types.ListCodeRepositoriesInput, callback?: (err: AWSError, data: SageMaker.Types.ListCodeRepositoriesOutput) => void): Request<SageMaker.Types.ListCodeRepositoriesOutput, AWSError>;
  /**
   * Gets a list of the Git repositories in your account.
   */
  listCodeRepositories(callback?: (err: AWSError, data: SageMaker.Types.ListCodeRepositoriesOutput) => void): Request<SageMaker.Types.ListCodeRepositoriesOutput, AWSError>;
  /**
   * Lists model compilation jobs that satisfy various filters. To create a model compilation job, use CreateCompilationJob. To get information about a particular model compilation job you have created, use DescribeCompilationJob.
   */
  listCompilationJobs(params: SageMaker.Types.ListCompilationJobsRequest, callback?: (err: AWSError, data: SageMaker.Types.ListCompilationJobsResponse) => void): Request<SageMaker.Types.ListCompilationJobsResponse, AWSError>;
  /**
   * Lists model compilation jobs that satisfy various filters. To create a model compilation job, use CreateCompilationJob. To get information about a particular model compilation job you have created, use DescribeCompilationJob.
   */
  listCompilationJobs(callback?: (err: AWSError, data: SageMaker.Types.ListCompilationJobsResponse) => void): Request<SageMaker.Types.ListCompilationJobsResponse, AWSError>;
  /**
   * Lists endpoint configurations.
   */
  listEndpointConfigs(params: SageMaker.Types.ListEndpointConfigsInput, callback?: (err: AWSError, data: SageMaker.Types.ListEndpointConfigsOutput) => void): Request<SageMaker.Types.ListEndpointConfigsOutput, AWSError>;
  /**
   * Lists endpoint configurations.
   */
  listEndpointConfigs(callback?: (err: AWSError, data: SageMaker.Types.ListEndpointConfigsOutput) => void): Request<SageMaker.Types.ListEndpointConfigsOutput, AWSError>;
  /**
   * Lists endpoints.
   */
  listEndpoints(params: SageMaker.Types.ListEndpointsInput, callback?: (err: AWSError, data: SageMaker.Types.ListEndpointsOutput) => void): Request<SageMaker.Types.ListEndpointsOutput, AWSError>;
  /**
   * Lists endpoints.
   */
  listEndpoints(callback?: (err: AWSError, data: SageMaker.Types.ListEndpointsOutput) => void): Request<SageMaker.Types.ListEndpointsOutput, AWSError>;
  /**
   * Gets a list of HyperParameterTuningJobSummary objects that describe the hyperparameter tuning jobs launched in your account.
   */
  listHyperParameterTuningJobs(params: SageMaker.Types.ListHyperParameterTuningJobsRequest, callback?: (err: AWSError, data: SageMaker.Types.ListHyperParameterTuningJobsResponse) => void): Request<SageMaker.Types.ListHyperParameterTuningJobsResponse, AWSError>;
  /**
   * Gets a list of HyperParameterTuningJobSummary objects that describe the hyperparameter tuning jobs launched in your account.
   */
  listHyperParameterTuningJobs(callback?: (err: AWSError, data: SageMaker.Types.ListHyperParameterTuningJobsResponse) => void): Request<SageMaker.Types.ListHyperParameterTuningJobsResponse, AWSError>;
  /**
   * Gets a list of labeling jobs.
   */
  listLabelingJobs(params: SageMaker.Types.ListLabelingJobsRequest, callback?: (err: AWSError, data: SageMaker.Types.ListLabelingJobsResponse) => void): Request<SageMaker.Types.ListLabelingJobsResponse, AWSError>;
  /**
   * Gets a list of labeling jobs.
   */
  listLabelingJobs(callback?: (err: AWSError, data: SageMaker.Types.ListLabelingJobsResponse) => void): Request<SageMaker.Types.ListLabelingJobsResponse, AWSError>;
  /**
   * Gets a list of labeling jobs assigned to a specified work team.
   */
  listLabelingJobsForWorkteam(params: SageMaker.Types.ListLabelingJobsForWorkteamRequest, callback?: (err: AWSError, data: SageMaker.Types.ListLabelingJobsForWorkteamResponse) => void): Request<SageMaker.Types.ListLabelingJobsForWorkteamResponse, AWSError>;
  /**
   * Gets a list of labeling jobs assigned to a specified work team.
   */
  listLabelingJobsForWorkteam(callback?: (err: AWSError, data: SageMaker.Types.ListLabelingJobsForWorkteamResponse) => void): Request<SageMaker.Types.ListLabelingJobsForWorkteamResponse, AWSError>;
  /**
   * Lists the model packages that have been created.
   */
  listModelPackages(params: SageMaker.Types.ListModelPackagesInput, callback?: (err: AWSError, data: SageMaker.Types.ListModelPackagesOutput) => void): Request<SageMaker.Types.ListModelPackagesOutput, AWSError>;
  /**
   * Lists the model packages that have been created.
   */
  listModelPackages(callback?: (err: AWSError, data: SageMaker.Types.ListModelPackagesOutput) => void): Request<SageMaker.Types.ListModelPackagesOutput, AWSError>;
  /**
   * Lists models created with the CreateModel API.
   */
  listModels(params: SageMaker.Types.ListModelsInput, callback?: (err: AWSError, data: SageMaker.Types.ListModelsOutput) => void): Request<SageMaker.Types.ListModelsOutput, AWSError>;
  /**
   * Lists models created with the CreateModel API.
   */
  listModels(callback?: (err: AWSError, data: SageMaker.Types.ListModelsOutput) => void): Request<SageMaker.Types.ListModelsOutput, AWSError>;
  /**
   * Lists notebook instance lifestyle configurations created with the CreateNotebookInstanceLifecycleConfig API.
   */
  listNotebookInstanceLifecycleConfigs(params: SageMaker.Types.ListNotebookInstanceLifecycleConfigsInput, callback?: (err: AWSError, data: SageMaker.Types.ListNotebookInstanceLifecycleConfigsOutput) => void): Request<SageMaker.Types.ListNotebookInstanceLifecycleConfigsOutput, AWSError>;
  /**
   * Lists notebook instance lifestyle configurations created with the CreateNotebookInstanceLifecycleConfig API.
   */
  listNotebookInstanceLifecycleConfigs(callback?: (err: AWSError, data: SageMaker.Types.ListNotebookInstanceLifecycleConfigsOutput) => void): Request<SageMaker.Types.ListNotebookInstanceLifecycleConfigsOutput, AWSError>;
  /**
   * Returns a list of the Amazon SageMaker notebook instances in the requester's account in an AWS Region. 
   */
  listNotebookInstances(params: SageMaker.Types.ListNotebookInstancesInput, callback?: (err: AWSError, data: SageMaker.Types.ListNotebookInstancesOutput) => void): Request<SageMaker.Types.ListNotebookInstancesOutput, AWSError>;
  /**
   * Returns a list of the Amazon SageMaker notebook instances in the requester's account in an AWS Region. 
   */
  listNotebookInstances(callback?: (err: AWSError, data: SageMaker.Types.ListNotebookInstancesOutput) => void): Request<SageMaker.Types.ListNotebookInstancesOutput, AWSError>;
  /**
   * Gets a list of the work teams that you are subscribed to in the AWS Marketplace. The list may be empty if no work team satisfies the filter specified in the NameContains parameter.
   */
  listSubscribedWorkteams(params: SageMaker.Types.ListSubscribedWorkteamsRequest, callback?: (err: AWSError, data: SageMaker.Types.ListSubscribedWorkteamsResponse) => void): Request<SageMaker.Types.ListSubscribedWorkteamsResponse, AWSError>;
  /**
   * Gets a list of the work teams that you are subscribed to in the AWS Marketplace. The list may be empty if no work team satisfies the filter specified in the NameContains parameter.
   */
  listSubscribedWorkteams(callback?: (err: AWSError, data: SageMaker.Types.ListSubscribedWorkteamsResponse) => void): Request<SageMaker.Types.ListSubscribedWorkteamsResponse, AWSError>;
  /**
   * Returns the tags for the specified Amazon SageMaker resource.
   */
  listTags(params: SageMaker.Types.ListTagsInput, callback?: (err: AWSError, data: SageMaker.Types.ListTagsOutput) => void): Request<SageMaker.Types.ListTagsOutput, AWSError>;
  /**
   * Returns the tags for the specified Amazon SageMaker resource.
   */
  listTags(callback?: (err: AWSError, data: SageMaker.Types.ListTagsOutput) => void): Request<SageMaker.Types.ListTagsOutput, AWSError>;
  /**
   * Lists training jobs.
   */
  listTrainingJobs(params: SageMaker.Types.ListTrainingJobsRequest, callback?: (err: AWSError, data: SageMaker.Types.ListTrainingJobsResponse) => void): Request<SageMaker.Types.ListTrainingJobsResponse, AWSError>;
  /**
   * Lists training jobs.
   */
  listTrainingJobs(callback?: (err: AWSError, data: SageMaker.Types.ListTrainingJobsResponse) => void): Request<SageMaker.Types.ListTrainingJobsResponse, AWSError>;
  /**
   * Gets a list of TrainingJobSummary objects that describe the training jobs that a hyperparameter tuning job launched.
   */
  listTrainingJobsForHyperParameterTuningJob(params: SageMaker.Types.ListTrainingJobsForHyperParameterTuningJobRequest, callback?: (err: AWSError, data: SageMaker.Types.ListTrainingJobsForHyperParameterTuningJobResponse) => void): Request<SageMaker.Types.ListTrainingJobsForHyperParameterTuningJobResponse, AWSError>;
  /**
   * Gets a list of TrainingJobSummary objects that describe the training jobs that a hyperparameter tuning job launched.
   */
  listTrainingJobsForHyperParameterTuningJob(callback?: (err: AWSError, data: SageMaker.Types.ListTrainingJobsForHyperParameterTuningJobResponse) => void): Request<SageMaker.Types.ListTrainingJobsForHyperParameterTuningJobResponse, AWSError>;
  /**
   * Lists transform jobs.
   */
  listTransformJobs(params: SageMaker.Types.ListTransformJobsRequest, callback?: (err: AWSError, data: SageMaker.Types.ListTransformJobsResponse) => void): Request<SageMaker.Types.ListTransformJobsResponse, AWSError>;
  /**
   * Lists transform jobs.
   */
  listTransformJobs(callback?: (err: AWSError, data: SageMaker.Types.ListTransformJobsResponse) => void): Request<SageMaker.Types.ListTransformJobsResponse, AWSError>;
  /**
   * Gets a list of work teams that you have defined in a region. The list may be empty if no work team satisfies the filter specified in the NameContains parameter.
   */
  listWorkteams(params: SageMaker.Types.ListWorkteamsRequest, callback?: (err: AWSError, data: SageMaker.Types.ListWorkteamsResponse) => void): Request<SageMaker.Types.ListWorkteamsResponse, AWSError>;
  /**
   * Gets a list of work teams that you have defined in a region. The list may be empty if no work team satisfies the filter specified in the NameContains parameter.
   */
  listWorkteams(callback?: (err: AWSError, data: SageMaker.Types.ListWorkteamsResponse) => void): Request<SageMaker.Types.ListWorkteamsResponse, AWSError>;
  /**
   * Renders the UI template so that you can preview the worker's experience. 
   */
  renderUiTemplate(params: SageMaker.Types.RenderUiTemplateRequest, callback?: (err: AWSError, data: SageMaker.Types.RenderUiTemplateResponse) => void): Request<SageMaker.Types.RenderUiTemplateResponse, AWSError>;
  /**
   * Renders the UI template so that you can preview the worker's experience. 
   */
  renderUiTemplate(callback?: (err: AWSError, data: SageMaker.Types.RenderUiTemplateResponse) => void): Request<SageMaker.Types.RenderUiTemplateResponse, AWSError>;
  /**
   * Finds Amazon SageMaker resources that match a search query. Matching resource objects are returned as a list of SearchResult objects in the response. You can sort the search results by any resource property in a ascending or descending order. You can query against the following value types: numerical, text, Booleans, and timestamps.
   */
  search(params: SageMaker.Types.SearchRequest, callback?: (err: AWSError, data: SageMaker.Types.SearchResponse) => void): Request<SageMaker.Types.SearchResponse, AWSError>;
  /**
   * Finds Amazon SageMaker resources that match a search query. Matching resource objects are returned as a list of SearchResult objects in the response. You can sort the search results by any resource property in a ascending or descending order. You can query against the following value types: numerical, text, Booleans, and timestamps.
   */
  search(callback?: (err: AWSError, data: SageMaker.Types.SearchResponse) => void): Request<SageMaker.Types.SearchResponse, AWSError>;
  /**
   * Launches an ML compute instance with the latest version of the libraries and attaches your ML storage volume. After configuring the notebook instance, Amazon SageMaker sets the notebook instance status to InService. A notebook instance's status must be InService before you can connect to your Jupyter notebook. 
   */
  startNotebookInstance(params: SageMaker.Types.StartNotebookInstanceInput, callback?: (err: AWSError, data: {}) => void): Request<{}, AWSError>;
  /**
   * Launches an ML compute instance with the latest version of the libraries and attaches your ML storage volume. After configuring the notebook instance, Amazon SageMaker sets the notebook instance status to InService. A notebook instance's status must be InService before you can connect to your Jupyter notebook. 
   */
  startNotebookInstance(callback?: (err: AWSError, data: {}) => void): Request<{}, AWSError>;
  /**
   * Stops a model compilation job.  To stop a job, Amazon SageMaker sends the algorithm the SIGTERM signal. This gracefully shuts the job down. If the job hasn't stopped, it sends the SIGKILL signal. When it receives a StopCompilationJob request, Amazon SageMaker changes the CompilationJobSummary$CompilationJobStatus of the job to Stopping. After Amazon SageMaker stops the job, it sets the CompilationJobSummary$CompilationJobStatus to Stopped. 
   */
  stopCompilationJob(params: SageMaker.Types.StopCompilationJobRequest, callback?: (err: AWSError, data: {}) => void): Request<{}, AWSError>;
  /**
   * Stops a model compilation job.  To stop a job, Amazon SageMaker sends the algorithm the SIGTERM signal. This gracefully shuts the job down. If the job hasn't stopped, it sends the SIGKILL signal. When it receives a StopCompilationJob request, Amazon SageMaker changes the CompilationJobSummary$CompilationJobStatus of the job to Stopping. After Amazon SageMaker stops the job, it sets the CompilationJobSummary$CompilationJobStatus to Stopped. 
   */
  stopCompilationJob(callback?: (err: AWSError, data: {}) => void): Request<{}, AWSError>;
  /**
   * Stops a running hyperparameter tuning job and all running training jobs that the tuning job launched. All model artifacts output from the training jobs are stored in Amazon Simple Storage Service (Amazon S3). All data that the training jobs write to Amazon CloudWatch Logs are still available in CloudWatch. After the tuning job moves to the Stopped state, it releases all reserved resources for the tuning job.
   */
  stopHyperParameterTuningJob(params: SageMaker.Types.StopHyperParameterTuningJobRequest, callback?: (err: AWSError, data: {}) => void): Request<{}, AWSError>;
  /**
   * Stops a running hyperparameter tuning job and all running training jobs that the tuning job launched. All model artifacts output from the training jobs are stored in Amazon Simple Storage Service (Amazon S3). All data that the training jobs write to Amazon CloudWatch Logs are still available in CloudWatch. After the tuning job moves to the Stopped state, it releases all reserved resources for the tuning job.
   */
  stopHyperParameterTuningJob(callback?: (err: AWSError, data: {}) => void): Request<{}, AWSError>;
  /**
   * Stops a running labeling job. A job that is stopped cannot be restarted. Any results obtained before the job is stopped are placed in the Amazon S3 output bucket.
   */
  stopLabelingJob(params: SageMaker.Types.StopLabelingJobRequest, callback?: (err: AWSError, data: {}) => void): Request<{}, AWSError>;
  /**
   * Stops a running labeling job. A job that is stopped cannot be restarted. Any results obtained before the job is stopped are placed in the Amazon S3 output bucket.
   */
  stopLabelingJob(callback?: (err: AWSError, data: {}) => void): Request<{}, AWSError>;
  /**
   * Terminates the ML compute instance. Before terminating the instance, Amazon SageMaker disconnects the ML storage volume from it. Amazon SageMaker preserves the ML storage volume. Amazon SageMaker stops charging you for the ML compute instance when you call StopNotebookInstance. To access data on the ML storage volume for a notebook instance that has been terminated, call the StartNotebookInstance API. StartNotebookInstance launches another ML compute instance, configures it, and attaches the preserved ML storage volume so you can continue your work. 
   */
  stopNotebookInstance(params: SageMaker.Types.StopNotebookInstanceInput, callback?: (err: AWSError, data: {}) => void): Request<{}, AWSError>;
  /**
   * Terminates the ML compute instance. Before terminating the instance, Amazon SageMaker disconnects the ML storage volume from it. Amazon SageMaker preserves the ML storage volume. Amazon SageMaker stops charging you for the ML compute instance when you call StopNotebookInstance. To access data on the ML storage volume for a notebook instance that has been terminated, call the StartNotebookInstance API. StartNotebookInstance launches another ML compute instance, configures it, and attaches the preserved ML storage volume so you can continue your work. 
   */
  stopNotebookInstance(callback?: (err: AWSError, data: {}) => void): Request<{}, AWSError>;
  /**
   * Stops a training job. To stop a job, Amazon SageMaker sends the algorithm the SIGTERM signal, which delays job termination for 120 seconds. Algorithms might use this 120-second window to save the model artifacts, so the results of the training is not lost.  When it receives a StopTrainingJob request, Amazon SageMaker changes the status of the job to Stopping. After Amazon SageMaker stops the job, it sets the status to Stopped.
   */
  stopTrainingJob(params: SageMaker.Types.StopTrainingJobRequest, callback?: (err: AWSError, data: {}) => void): Request<{}, AWSError>;
  /**
   * Stops a training job. To stop a job, Amazon SageMaker sends the algorithm the SIGTERM signal, which delays job termination for 120 seconds. Algorithms might use this 120-second window to save the model artifacts, so the results of the training is not lost.  When it receives a StopTrainingJob request, Amazon SageMaker changes the status of the job to Stopping. After Amazon SageMaker stops the job, it sets the status to Stopped.
   */
  stopTrainingJob(callback?: (err: AWSError, data: {}) => void): Request<{}, AWSError>;
  /**
   * Stops a transform job. When Amazon SageMaker receives a StopTransformJob request, the status of the job changes to Stopping. After Amazon SageMaker stops the job, the status is set to Stopped. When you stop a transform job before it is completed, Amazon SageMaker doesn't store the job's output in Amazon S3.
   */
  stopTransformJob(params: SageMaker.Types.StopTransformJobRequest, callback?: (err: AWSError, data: {}) => void): Request<{}, AWSError>;
  /**
   * Stops a transform job. When Amazon SageMaker receives a StopTransformJob request, the status of the job changes to Stopping. After Amazon SageMaker stops the job, the status is set to Stopped. When you stop a transform job before it is completed, Amazon SageMaker doesn't store the job's output in Amazon S3.
   */
  stopTransformJob(callback?: (err: AWSError, data: {}) => void): Request<{}, AWSError>;
  /**
   * Updates the specified Git repository with the specified values.
   */
  updateCodeRepository(params: SageMaker.Types.UpdateCodeRepositoryInput, callback?: (err: AWSError, data: SageMaker.Types.UpdateCodeRepositoryOutput) => void): Request<SageMaker.Types.UpdateCodeRepositoryOutput, AWSError>;
  /**
   * Updates the specified Git repository with the specified values.
   */
  updateCodeRepository(callback?: (err: AWSError, data: SageMaker.Types.UpdateCodeRepositoryOutput) => void): Request<SageMaker.Types.UpdateCodeRepositoryOutput, AWSError>;
  /**
   * Deploys the new EndpointConfig specified in the request, switches to using newly created endpoint, and then deletes resources provisioned for the endpoint using the previous EndpointConfig (there is no availability loss).  When Amazon SageMaker receives the request, it sets the endpoint status to Updating. After updating the endpoint, it sets the status to InService. To check the status of an endpoint, use the DescribeEndpoint API.   You must not delete an EndpointConfig in use by an endpoint that is live or while the UpdateEndpoint or CreateEndpoint operations are being performed on the endpoint. To update an endpoint, you must create a new EndpointConfig. 
   */
  updateEndpoint(params: SageMaker.Types.UpdateEndpointInput, callback?: (err: AWSError, data: SageMaker.Types.UpdateEndpointOutput) => void): Request<SageMaker.Types.UpdateEndpointOutput, AWSError>;
  /**
   * Deploys the new EndpointConfig specified in the request, switches to using newly created endpoint, and then deletes resources provisioned for the endpoint using the previous EndpointConfig (there is no availability loss).  When Amazon SageMaker receives the request, it sets the endpoint status to Updating. After updating the endpoint, it sets the status to InService. To check the status of an endpoint, use the DescribeEndpoint API.   You must not delete an EndpointConfig in use by an endpoint that is live or while the UpdateEndpoint or CreateEndpoint operations are being performed on the endpoint. To update an endpoint, you must create a new EndpointConfig. 
   */
  updateEndpoint(callback?: (err: AWSError, data: SageMaker.Types.UpdateEndpointOutput) => void): Request<SageMaker.Types.UpdateEndpointOutput, AWSError>;
  /**
   * Updates variant weight of one or more variants associated with an existing endpoint, or capacity of one variant associated with an existing endpoint. When it receives the request, Amazon SageMaker sets the endpoint status to Updating. After updating the endpoint, it sets the status to InService. To check the status of an endpoint, use the DescribeEndpoint API. 
   */
  updateEndpointWeightsAndCapacities(params: SageMaker.Types.UpdateEndpointWeightsAndCapacitiesInput, callback?: (err: AWSError, data: SageMaker.Types.UpdateEndpointWeightsAndCapacitiesOutput) => void): Request<SageMaker.Types.UpdateEndpointWeightsAndCapacitiesOutput, AWSError>;
  /**
   * Updates variant weight of one or more variants associated with an existing endpoint, or capacity of one variant associated with an existing endpoint. When it receives the request, Amazon SageMaker sets the endpoint status to Updating. After updating the endpoint, it sets the status to InService. To check the status of an endpoint, use the DescribeEndpoint API. 
   */
  updateEndpointWeightsAndCapacities(callback?: (err: AWSError, data: SageMaker.Types.UpdateEndpointWeightsAndCapacitiesOutput) => void): Request<SageMaker.Types.UpdateEndpointWeightsAndCapacitiesOutput, AWSError>;
  /**
   * Updates a notebook instance. NotebookInstance updates include upgrading or downgrading the ML compute instance used for your notebook instance to accommodate changes in your workload requirements.
   */
  updateNotebookInstance(params: SageMaker.Types.UpdateNotebookInstanceInput, callback?: (err: AWSError, data: SageMaker.Types.UpdateNotebookInstanceOutput) => void): Request<SageMaker.Types.UpdateNotebookInstanceOutput, AWSError>;
  /**
   * Updates a notebook instance. NotebookInstance updates include upgrading or downgrading the ML compute instance used for your notebook instance to accommodate changes in your workload requirements.
   */
  updateNotebookInstance(callback?: (err: AWSError, data: SageMaker.Types.UpdateNotebookInstanceOutput) => void): Request<SageMaker.Types.UpdateNotebookInstanceOutput, AWSError>;
  /**
   * Updates a notebook instance lifecycle configuration created with the CreateNotebookInstanceLifecycleConfig API.
   */
  updateNotebookInstanceLifecycleConfig(params: SageMaker.Types.UpdateNotebookInstanceLifecycleConfigInput, callback?: (err: AWSError, data: SageMaker.Types.UpdateNotebookInstanceLifecycleConfigOutput) => void): Request<SageMaker.Types.UpdateNotebookInstanceLifecycleConfigOutput, AWSError>;
  /**
   * Updates a notebook instance lifecycle configuration created with the CreateNotebookInstanceLifecycleConfig API.
   */
  updateNotebookInstanceLifecycleConfig(callback?: (err: AWSError, data: SageMaker.Types.UpdateNotebookInstanceLifecycleConfigOutput) => void): Request<SageMaker.Types.UpdateNotebookInstanceLifecycleConfigOutput, AWSError>;
  /**
   * Updates an existing work team with new member definitions or description.
   */
  updateWorkteam(params: SageMaker.Types.UpdateWorkteamRequest, callback?: (err: AWSError, data: SageMaker.Types.UpdateWorkteamResponse) => void): Request<SageMaker.Types.UpdateWorkteamResponse, AWSError>;
  /**
   * Updates an existing work team with new member definitions or description.
   */
  updateWorkteam(callback?: (err: AWSError, data: SageMaker.Types.UpdateWorkteamResponse) => void): Request<SageMaker.Types.UpdateWorkteamResponse, AWSError>;
  /**
   * Waits for the notebookInstanceInService state by periodically calling the underlying SageMaker.describeNotebookInstanceoperation every 30 seconds (at most 60 times).
   */
  waitFor(state: "notebookInstanceInService", params: SageMaker.Types.DescribeNotebookInstanceInput & {$waiter?: WaiterConfiguration}, callback?: (err: AWSError, data: SageMaker.Types.DescribeNotebookInstanceOutput) => void): Request<SageMaker.Types.DescribeNotebookInstanceOutput, AWSError>;
  /**
   * Waits for the notebookInstanceInService state by periodically calling the underlying SageMaker.describeNotebookInstanceoperation every 30 seconds (at most 60 times).
   */
  waitFor(state: "notebookInstanceInService", callback?: (err: AWSError, data: SageMaker.Types.DescribeNotebookInstanceOutput) => void): Request<SageMaker.Types.DescribeNotebookInstanceOutput, AWSError>;
  /**
   * Waits for the notebookInstanceStopped state by periodically calling the underlying SageMaker.describeNotebookInstanceoperation every 30 seconds (at most 60 times).
   */
  waitFor(state: "notebookInstanceStopped", params: SageMaker.Types.DescribeNotebookInstanceInput & {$waiter?: WaiterConfiguration}, callback?: (err: AWSError, data: SageMaker.Types.DescribeNotebookInstanceOutput) => void): Request<SageMaker.Types.DescribeNotebookInstanceOutput, AWSError>;
  /**
   * Waits for the notebookInstanceStopped state by periodically calling the underlying SageMaker.describeNotebookInstanceoperation every 30 seconds (at most 60 times).
   */
  waitFor(state: "notebookInstanceStopped", callback?: (err: AWSError, data: SageMaker.Types.DescribeNotebookInstanceOutput) => void): Request<SageMaker.Types.DescribeNotebookInstanceOutput, AWSError>;
  /**
   * Waits for the notebookInstanceDeleted state by periodically calling the underlying SageMaker.describeNotebookInstanceoperation every 30 seconds (at most 60 times).
   */
  waitFor(state: "notebookInstanceDeleted", params: SageMaker.Types.DescribeNotebookInstanceInput & {$waiter?: WaiterConfiguration}, callback?: (err: AWSError, data: SageMaker.Types.DescribeNotebookInstanceOutput) => void): Request<SageMaker.Types.DescribeNotebookInstanceOutput, AWSError>;
  /**
   * Waits for the notebookInstanceDeleted state by periodically calling the underlying SageMaker.describeNotebookInstanceoperation every 30 seconds (at most 60 times).
   */
  waitFor(state: "notebookInstanceDeleted", callback?: (err: AWSError, data: SageMaker.Types.DescribeNotebookInstanceOutput) => void): Request<SageMaker.Types.DescribeNotebookInstanceOutput, AWSError>;
  /**
   * Waits for the trainingJobCompletedOrStopped state by periodically calling the underlying SageMaker.describeTrainingJoboperation every 120 seconds (at most 180 times).
   */
  waitFor(state: "trainingJobCompletedOrStopped", params: SageMaker.Types.DescribeTrainingJobRequest & {$waiter?: WaiterConfiguration}, callback?: (err: AWSError, data: SageMaker.Types.DescribeTrainingJobResponse) => void): Request<SageMaker.Types.DescribeTrainingJobResponse, AWSError>;
  /**
   * Waits for the trainingJobCompletedOrStopped state by periodically calling the underlying SageMaker.describeTrainingJoboperation every 120 seconds (at most 180 times).
   */
  waitFor(state: "trainingJobCompletedOrStopped", callback?: (err: AWSError, data: SageMaker.Types.DescribeTrainingJobResponse) => void): Request<SageMaker.Types.DescribeTrainingJobResponse, AWSError>;
  /**
   * Waits for the endpointInService state by periodically calling the underlying SageMaker.describeEndpointoperation every 30 seconds (at most 120 times).
   */
  waitFor(state: "endpointInService", params: SageMaker.Types.DescribeEndpointInput & {$waiter?: WaiterConfiguration}, callback?: (err: AWSError, data: SageMaker.Types.DescribeEndpointOutput) => void): Request<SageMaker.Types.DescribeEndpointOutput, AWSError>;
  /**
   * Waits for the endpointInService state by periodically calling the underlying SageMaker.describeEndpointoperation every 30 seconds (at most 120 times).
   */
  waitFor(state: "endpointInService", callback?: (err: AWSError, data: SageMaker.Types.DescribeEndpointOutput) => void): Request<SageMaker.Types.DescribeEndpointOutput, AWSError>;
  /**
   * Waits for the endpointDeleted state by periodically calling the underlying SageMaker.describeEndpointoperation every 30 seconds (at most 60 times).
   */
  waitFor(state: "endpointDeleted", params: SageMaker.Types.DescribeEndpointInput & {$waiter?: WaiterConfiguration}, callback?: (err: AWSError, data: SageMaker.Types.DescribeEndpointOutput) => void): Request<SageMaker.Types.DescribeEndpointOutput, AWSError>;
  /**
   * Waits for the endpointDeleted state by periodically calling the underlying SageMaker.describeEndpointoperation every 30 seconds (at most 60 times).
   */
  waitFor(state: "endpointDeleted", callback?: (err: AWSError, data: SageMaker.Types.DescribeEndpointOutput) => void): Request<SageMaker.Types.DescribeEndpointOutput, AWSError>;
  /**
   * Waits for the transformJobCompletedOrStopped state by periodically calling the underlying SageMaker.describeTransformJoboperation every 60 seconds (at most 60 times).
   */
  waitFor(state: "transformJobCompletedOrStopped", params: SageMaker.Types.DescribeTransformJobRequest & {$waiter?: WaiterConfiguration}, callback?: (err: AWSError, data: SageMaker.Types.DescribeTransformJobResponse) => void): Request<SageMaker.Types.DescribeTransformJobResponse, AWSError>;
  /**
   * Waits for the transformJobCompletedOrStopped state by periodically calling the underlying SageMaker.describeTransformJoboperation every 60 seconds (at most 60 times).
   */
  waitFor(state: "transformJobCompletedOrStopped", callback?: (err: AWSError, data: SageMaker.Types.DescribeTransformJobResponse) => void): Request<SageMaker.Types.DescribeTransformJobResponse, AWSError>;
}
declare namespace SageMaker {
  export type Accept = string;
  export type AccountId = string;
  export interface AddTagsInput {
    /**
     * The Amazon Resource Name (ARN) of the resource that you want to tag.
     */
    ResourceArn: ResourceArn;
    /**
     * An array of Tag objects. Each tag is a key-value pair. Only the key parameter is required. If you don't specify a value, Amazon SageMaker sets the value to an empty string. 
     */
    Tags: TagList;
  }
  export interface AddTagsOutput {
    /**
     * A list of tags associated with the Amazon SageMaker resource.
     */
    Tags?: TagList;
  }
  export type AdditionalCodeRepositoryNamesOrUrls = CodeRepositoryNameOrUrl[];
  export type AlgorithmArn = string;
  export type AlgorithmImage = string;
  export type AlgorithmSortBy = "Name"|"CreationTime"|string;
  export interface AlgorithmSpecification {
    /**
     * The registry path of the Docker image that contains the training algorithm. For information about docker registry paths for built-in algorithms, see Algorithms Provided by Amazon SageMaker: Common Parameters. Amazon SageMaker supports both registry/repository[:tag] and registry/repository[@digest] image path formats. For more information, see Using Your Own Algorithms with Amazon SageMaker.
     */
    TrainingImage?: AlgorithmImage;
    /**
     * The name of the algorithm resource to use for the training job. This must be an algorithm resource that you created or subscribe to on AWS Marketplace. If you specify a value for this parameter, you can't specify a value for TrainingImage.
     */
    AlgorithmName?: ArnOrName;
    /**
     * The input mode that the algorithm supports. For the input modes that Amazon SageMaker algorithms support, see Algorithms. If an algorithm supports the File input mode, Amazon SageMaker downloads the training data from S3 to the provisioned ML storage Volume, and mounts the directory to docker volume for training container. If an algorithm supports the Pipe input mode, Amazon SageMaker streams data directly from S3 to the container.   In File mode, make sure you provision ML storage volume with sufficient capacity to accommodate the data download from S3. In addition to the training data, the ML storage volume also stores the output model. The algorithm container use ML storage volume to also store intermediate information, if any.   For distributed algorithms using File mode, training data is distributed uniformly, and your training duration is predictable if the input data objects size is approximately same. Amazon SageMaker does not split the files any further for model training. If the object sizes are skewed, training won't be optimal as the data distribution is also skewed where one host in a training cluster is overloaded, thus becoming bottleneck in training. 
     */
    TrainingInputMode: TrainingInputMode;
    /**
     * A list of metric definition objects. Each object specifies the metric name and regular expressions used to parse algorithm logs. Amazon SageMaker publishes each metric to Amazon CloudWatch.
     */
    MetricDefinitions?: MetricDefinitionList;
  }
  export type AlgorithmStatus = "Pending"|"InProgress"|"Completed"|"Failed"|"Deleting"|string;
  export interface AlgorithmStatusDetails {
    /**
     * The status of algorithm validation.
     */
    ValidationStatuses?: AlgorithmStatusItemList;
    /**
     * The status of the scan of the algorithm's Docker image container.
     */
    ImageScanStatuses?: AlgorithmStatusItemList;
  }
  export interface AlgorithmStatusItem {
    /**
     * The name of the algorithm for which the overall status is being reported.
     */
    Name: EntityName;
    /**
     * The current status.
     */
    Status: DetailedAlgorithmStatus;
    /**
     * if the overall status is Failed, the reason for the failure.
     */
    FailureReason?: String;
  }
  export type AlgorithmStatusItemList = AlgorithmStatusItem[];
  export interface AlgorithmSummary {
    /**
     * The name of the algorithm that is described by the summary.
     */
    AlgorithmName: EntityName;
    /**
     * The Amazon Resource Name (ARN) of the algorithm.
     */
    AlgorithmArn: AlgorithmArn;
    /**
     * A brief description of the algorithm.
     */
    AlgorithmDescription?: EntityDescription;
    /**
     * A timestamp that shows when the algorithm was created.
     */
    CreationTime: CreationTime;
    /**
     * The overall status of the algorithm.
     */
    AlgorithmStatus: AlgorithmStatus;
  }
  export type AlgorithmSummaryList = AlgorithmSummary[];
  export interface AlgorithmValidationProfile {
    /**
     * The name of the profile for the algorithm. The name must have 1 to 63 characters. Valid characters are a-z, A-Z, 0-9, and - (hyphen).
     */
    ProfileName: EntityName;
    /**
     * The TrainingJobDefinition object that describes the training job that Amazon SageMaker runs to validate your algorithm.
     */
    TrainingJobDefinition: TrainingJobDefinition;
    /**
     * The TransformJobDefinition object that describes the transform job that Amazon SageMaker runs to validate your algorithm.
     */
    TransformJobDefinition?: TransformJobDefinition;
  }
  export type AlgorithmValidationProfiles = AlgorithmValidationProfile[];
  export interface AlgorithmValidationSpecification {
    /**
     * The IAM roles that Amazon SageMaker uses to run the training jobs.
     */
    ValidationRole: RoleArn;
    /**
     * An array of AlgorithmValidationProfile objects, each of which specifies a training job and batch transform job that Amazon SageMaker runs to validate your algorithm.
     */
    ValidationProfiles: AlgorithmValidationProfiles;
  }
  export interface AnnotationConsolidationConfig {
    /**
     * The Amazon Resource Name (ARN) of a Lambda function implements the logic for annotation consolidation. For the built-in bounding box, image classification, semantic segmentation, and text classification task types, Amazon SageMaker Ground Truth provides the following Lambda functions:    Bounding box - Finds the most similar boxes from different workers based on the Jaccard index of the boxes.  arn:aws:lambda:us-east-1:432418664414:function:ACS-BoundingBox   arn:aws:lambda:us-east-2:266458841044:function:ACS-BoundingBox   arn:aws:lambda:us-west-2:081040173940:function:ACS-BoundingBox   arn:aws:lambda:eu-west-1:568282634449:function:ACS-BoundingBox   arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-BoundingBox   arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-BoundingBox   arn:aws:lambda:ap-south-1:565803892007:function:ACS-BoundingBox   arn:aws:lambda:eu-central-1:203001061592:function:ACS-BoundingBox   arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-BoundingBox   arn:aws:lambda:eu-west-2:487402164563:function:ACS-BoundingBox   arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-BoundingBox   arn:aws:lambda:ca-central-1:918755190332:function:ACS-BoundingBox     Image classification - Uses a variant of the Expectation Maximization approach to estimate the true class of an image based on annotations from individual workers.  arn:aws:lambda:us-east-1:432418664414:function:ACS-ImageMultiClass   arn:aws:lambda:us-east-2:266458841044:function:ACS-ImageMultiClass   arn:aws:lambda:us-west-2:081040173940:function:ACS-ImageMultiClass   arn:aws:lambda:eu-west-1:568282634449:function:ACS-ImageMultiClass   arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-ImageMultiClass   arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-ImageMultiClass   arn:aws:lambda:ap-south-1:565803892007:function:ACS-ImageMultiClass   arn:aws:lambda:eu-central-1:203001061592:function:ACS-ImageMultiClass   arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-ImageMultiClass   arn:aws:lambda:eu-west-2:487402164563:function:ACS-ImageMultiClass   arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-ImageMultiClass   arn:aws:lambda:ca-central-1:918755190332:function:ACS-ImageMultiClass     Semantic segmentation - Treats each pixel in an image as a multi-class classification and treats pixel annotations from workers as "votes" for the correct label.  arn:aws:lambda:us-east-1:432418664414:function:ACS-SemanticSegmentation   arn:aws:lambda:us-east-2:266458841044:function:ACS-SemanticSegmentation   arn:aws:lambda:us-west-2:081040173940:function:ACS-SemanticSegmentation   arn:aws:lambda:eu-west-1:568282634449:function:ACS-SemanticSegmentation   arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-SemanticSegmentation   arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-SemanticSegmentation   arn:aws:lambda:ap-south-1:565803892007:function:ACS-SemanticSegmentation   arn:aws:lambda:eu-central-1:203001061592:function:ACS-SemanticSegmentation   arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-SemanticSegmentation   arn:aws:lambda:eu-west-2:487402164563:function:ACS-SemanticSegmentation   arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-SemanticSegmentation   arn:aws:lambda:ca-central-1:918755190332:function:ACS-SemanticSegmentation     Text classification - Uses a variant of the Expectation Maximization approach to estimate the true class of text based on annotations from individual workers.  arn:aws:lambda:us-east-1:432418664414:function:ACS-TextMultiClass   arn:aws:lambda:us-east-2:266458841044:function:ACS-TextMultiClass   arn:aws:lambda:us-west-2:081040173940:function:ACS-TextMultiClass   arn:aws:lambda:eu-west-1:568282634449:function:ACS-TextMultiClass   arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-TextMultiClass   arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-TextMultiClass   arn:aws:lambda:ap-south-1:565803892007:function:ACS-TextMultiClass   arn:aws:lambda:eu-central-1:203001061592:function:ACS-TextMultiClass   arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-TextMultiClass   arn:aws:lambda:eu-west-2:487402164563:function:ACS-TextMultiClass   arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-TextMultiClass   arn:aws:lambda:ca-central-1:918755190332:function:ACS-TextMultiClass     Named entity eecognition - Groups similar selections and calculates aggregate boundaries, resolving to most-assigned label.  arn:aws:lambda:us-east-1:432418664414:function:ACS-NamedEntityRecognition   arn:aws:lambda:us-east-2:266458841044:function:ACS-NamedEntityRecognition   arn:aws:lambda:us-west-2:081040173940:function:ACS-NamedEntityRecognition   arn:aws:lambda:eu-west-1:568282634449:function:ACS-NamedEntityRecognition   arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-NamedEntityRecognition   arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-NamedEntityRecognition   arn:aws:lambda:ap-south-1:565803892007:function:ACS-NamedEntityRecognition   arn:aws:lambda:eu-central-1:203001061592:function:ACS-NamedEntityRecognition   arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-NamedEntityRecognition   arn:aws:lambda:eu-west-2:487402164563:function:ACS-NamedEntityRecognition   arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-NamedEntityRecognition   arn:aws:lambda:ca-central-1:918755190332:function:ACS-NamedEntityRecognition    For more information, see Annotation Consolidation.
     */
    AnnotationConsolidationLambdaArn: LambdaFunctionArn;
  }
  export type ArnOrName = string;
  export type AssemblyType = "None"|"Line"|string;
  export type AttributeName = string;
  export type AttributeNames = AttributeName[];
  export type BatchStrategy = "MultiRecord"|"SingleRecord"|string;
  export type BillableTimeInSeconds = number;
  export type Boolean = boolean;
  export type BooleanOperator = "And"|"Or"|string;
  export type Branch = string;
  export interface CategoricalParameterRange {
    /**
     * The name of the categorical hyperparameter to tune.
     */
    Name: ParameterKey;
    /**
     * A list of the categories for the hyperparameter.
     */
    Values: ParameterValues;
  }
  export interface CategoricalParameterRangeSpecification {
    /**
     * The allowed categories for the hyperparameter.
     */
    Values: ParameterValues;
  }
  export type CategoricalParameterRanges = CategoricalParameterRange[];
  export type Cents = number;
  export type CertifyForMarketplace = boolean;
  export interface Channel {
    /**
     * The name of the channel. 
     */
    ChannelName: ChannelName;
    /**
     * The location of the channel data.
     */
    DataSource: DataSource;
    /**
     * The MIME type of the data.
     */
    ContentType?: ContentType;
    /**
     * If training data is compressed, the compression type. The default value is None. CompressionType is used only in Pipe input mode. In File mode, leave this field unset or set it to None.
     */
    CompressionType?: CompressionType;
    /**
     *  Specify RecordIO as the value when input data is in raw format but the training algorithm requires the RecordIO format. In this case, Amazon SageMaker wraps each individual S3 object in a RecordIO record. If the input data is already in RecordIO format, you don't need to set this attribute. For more information, see Create a Dataset Using RecordIO.  In File mode, leave this field unset or set it to None.
     */
    RecordWrapperType?: RecordWrapper;
    /**
     * (Optional) The input mode to use for the data channel in a training job. If you don't set a value for InputMode, Amazon SageMaker uses the value set for TrainingInputMode. Use this parameter to override the TrainingInputMode setting in a AlgorithmSpecification request when you have a channel that needs a different input mode from the training job's general setting. To download the data from Amazon Simple Storage Service (Amazon S3) to the provisioned ML storage volume, and mount the directory to a Docker volume, use File input mode. To stream data directly from Amazon S3 to the container, choose Pipe input mode. To use a model for incremental training, choose File input model.
     */
    InputMode?: TrainingInputMode;
    /**
     * A configuration for a shuffle option for input data in a channel. If you use S3Prefix for S3DataType, this shuffles the results of the S3 key prefix matches. If you use ManifestFile, the order of the S3 object references in the ManifestFile is shuffled. If you use AugmentedManifestFile, the order of the JSON lines in the AugmentedManifestFile is shuffled. The shuffling order is determined using the Seed value. For Pipe input mode, shuffling is done at the start of every epoch. With large datasets this ensures that the order of the training data is different for each epoch, it helps reduce bias and possible overfitting. In a multi-node training job when ShuffleConfig is combined with S3DataDistributionType of ShardedByS3Key, the data is shuffled across nodes so that the content sent to a particular node on the first epoch might be sent to a different node on the second epoch.
     */
    ShuffleConfig?: ShuffleConfig;
  }
  export type ChannelName = string;
  export interface ChannelSpecification {
    /**
     * The name of the channel.
     */
    Name: ChannelName;
    /**
     * A brief description of the channel.
     */
    Description?: EntityDescription;
    /**
     * Indicates whether the channel is required by the algorithm.
     */
    IsRequired?: Boolean;
    /**
     * The supported MIME types for the data.
     */
    SupportedContentTypes: ContentTypes;
    /**
     * The allowed compression types, if data compression is used.
     */
    SupportedCompressionTypes?: CompressionTypes;
    /**
     * The allowed input mode, either FILE or PIPE. In FILE mode, Amazon SageMaker copies the data from the input source onto the local Amazon Elastic Block Store (Amazon EBS) volumes before starting your training algorithm. This is the most commonly used input mode. In PIPE mode, Amazon SageMaker streams input data from the source directly to your algorithm without using the EBS volume.
     */
    SupportedInputModes: InputModes;
  }
  export type ChannelSpecifications = ChannelSpecification[];
  export interface CheckpointConfig {
    /**
     * Identifies the S3 path where you want Amazon SageMaker to store checkpoints. For example, s3://bucket-name/key-name-prefix.
     */
    S3Uri: S3Uri;
    /**
     * (Optional) The local directory where checkpoints are written. The default directory is /opt/ml/checkpoints/. 
     */
    LocalPath?: DirectoryPath;
  }
  export type CodeRepositoryArn = string;
  export type CodeRepositoryContains = string;
  export type CodeRepositoryNameContains = string;
  export type CodeRepositoryNameOrUrl = string;
  export type CodeRepositorySortBy = "Name"|"CreationTime"|"LastModifiedTime"|string;
  export type CodeRepositorySortOrder = "Ascending"|"Descending"|string;
  export interface CodeRepositorySummary {
    /**
     * The name of the Git repository.
     */
    CodeRepositoryName: EntityName;
    /**
     * The Amazon Resource Name (ARN) of the Git repository.
     */
    CodeRepositoryArn: CodeRepositoryArn;
    /**
     * The date and time that the Git repository was created.
     */
    CreationTime: CreationTime;
    /**
     * The date and time that the Git repository was last modified.
     */
    LastModifiedTime: LastModifiedTime;
    /**
     * Configuration details for the Git repository, including the URL where it is located and the ARN of the AWS Secrets Manager secret that contains the credentials used to access the repository.
     */
    GitConfig?: GitConfig;
  }
  export type CodeRepositorySummaryList = CodeRepositorySummary[];
  export type CognitoClientId = string;
  export interface CognitoMemberDefinition {
    /**
     * An identifier for a user pool. The user pool must be in the same region as the service that you are calling.
     */
    UserPool: CognitoUserPool;
    /**
     * An identifier for a user group.
     */
    UserGroup: CognitoUserGroup;
    /**
     * An identifier for an application client. You must create the app client ID using Amazon Cognito.
     */
    ClientId: CognitoClientId;
  }
  export type CognitoUserGroup = string;
  export type CognitoUserPool = string;
  export type CompilationJobArn = string;
  export type CompilationJobStatus = "INPROGRESS"|"COMPLETED"|"FAILED"|"STARTING"|"STOPPING"|"STOPPED"|string;
  export type CompilationJobSummaries = CompilationJobSummary[];
  export interface CompilationJobSummary {
    /**
     * The name of the model compilation job that you want a summary for.
     */
    CompilationJobName: EntityName;
    /**
     * The Amazon Resource Name (ARN) of the model compilation job.
     */
    CompilationJobArn: CompilationJobArn;
    /**
     * The time when the model compilation job was created.
     */
    CreationTime: CreationTime;
    /**
     * The time when the model compilation job started.
     */
    CompilationStartTime?: Timestamp;
    /**
     * The time when the model compilation job completed.
     */
    CompilationEndTime?: Timestamp;
    /**
     * The type of device that the model will run on after compilation has completed.
     */
    CompilationTargetDevice: TargetDevice;
    /**
     * The time when the model compilation job was last modified.
     */
    LastModifiedTime?: LastModifiedTime;
    /**
     * The status of the model compilation job.
     */
    CompilationJobStatus: CompilationJobStatus;
  }
  export type CompressionType = "None"|"Gzip"|string;
  export type CompressionTypes = CompressionType[];
  export interface ContainerDefinition {
    /**
     * This parameter is ignored for models that contain only a PrimaryContainer. When a ContainerDefinition is part of an inference pipeline, the value of ths parameter uniquely identifies the container for the purposes of logging and metrics. For information, see Use Logs and Metrics to Monitor an Inference Pipeline. If you don't specify a value for this parameter for a ContainerDefinition that is part of an inference pipeline, a unique name is automatically assigned based on the position of the ContainerDefinition in the pipeline. If you specify a value for the ContainerHostName for any ContainerDefinition that is part of an inference pipeline, you must specify a value for the ContainerHostName parameter of every ContainerDefinition in that pipeline.
     */
    ContainerHostname?: ContainerHostname;
    /**
     * The Amazon EC2 Container Registry (Amazon ECR) path where inference code is stored. If you are using your own custom algorithm instead of an algorithm provided by Amazon SageMaker, the inference code must meet Amazon SageMaker requirements. Amazon SageMaker supports both registry/repository[:tag] and registry/repository[@digest] image path formats. For more information, see Using Your Own Algorithms with Amazon SageMaker 
     */
    Image?: Image;
    /**
     * The S3 path where the model artifacts, which result from model training, are stored. This path must point to a single gzip compressed tar archive (.tar.gz suffix). The S3 path is required for Amazon SageMaker built-in algorithms, but not if you use your own algorithms. For more information on built-in algorithms, see Common Parameters.  If you provide a value for this parameter, Amazon SageMaker uses AWS Security Token Service to download model artifacts from the S3 path you provide. AWS STS is activated in your IAM user account by default. If you previously deactivated AWS STS for a region, you need to reactivate AWS STS for that region. For more information, see Activating and Deactivating AWS STS in an AWS Region in the AWS Identity and Access Management User Guide.  If you use a built-in algorithm to create a model, Amazon SageMaker requires that you provide a S3 path to the model artifacts in ModelDataUrl. 
     */
    ModelDataUrl?: Url;
    /**
     * The environment variables to set in the Docker container. Each key and value in the Environment string to string map can have length of up to 1024. We support up to 16 entries in the map. 
     */
    Environment?: EnvironmentMap;
    /**
     * The name or Amazon Resource Name (ARN) of the model package to use to create the model.
     */
    ModelPackageName?: ArnOrName;
  }
  export type ContainerDefinitionList = ContainerDefinition[];
  export type ContainerHostname = string;
  export type ContentClassifier = "FreeOfPersonallyIdentifiableInformation"|"FreeOfAdultContent"|string;
  export type ContentClassifiers = ContentClassifier[];
  export type ContentType = string;
  export type ContentTypes = ContentType[];
  export interface ContinuousParameterRange {
    /**
     * The name of the continuous hyperparameter to tune.
     */
    Name: ParameterKey;
    /**
     * The minimum value for the hyperparameter. The tuning job uses floating-point values between this value and MaxValuefor tuning.
     */
    MinValue: ParameterValue;
    /**
     * The maximum value for the hyperparameter. The tuning job uses floating-point values between MinValue value and this value for tuning.
     */
    MaxValue: ParameterValue;
    /**
     * The scale that hyperparameter tuning uses to search the hyperparameter range. For information about choosing a hyperparameter scale, see Hyperparameter Scaling. One of the following values:  Auto  Amazon SageMaker hyperparameter tuning chooses the best scale for the hyperparameter.  Linear  Hyperparameter tuning searches the values in the hyperparameter range by using a linear scale.  Logarithmic  Hyperparameter tuning searches the values in the hyperparameter range by using a logarithmic scale. Logarithmic scaling works only for ranges that have only values greater than 0.  ReverseLogarithmic  Hyperparemeter tuning searches the values in the hyperparameter range by using a reverse logarithmic scale. Reverse logarithmic scaling works only for ranges that are entirely within the range 0&lt;=x&lt;1.0.  
     */
    ScalingType?: HyperParameterScalingType;
  }
  export interface ContinuousParameterRangeSpecification {
    /**
     * The minimum floating-point value allowed.
     */
    MinValue: ParameterValue;
    /**
     * The maximum floating-point value allowed.
     */
    MaxValue: ParameterValue;
  }
  export type ContinuousParameterRanges = ContinuousParameterRange[];
  export interface CreateAlgorithmInput {
    /**
     * The name of the algorithm.
     */
    AlgorithmName: EntityName;
    /**
     * A description of the algorithm.
     */
    AlgorithmDescription?: EntityDescription;
    /**
     * Specifies details about training jobs run by this algorithm, including the following:   The Amazon ECR path of the container and the version digest of the algorithm.   The hyperparameters that the algorithm supports.   The instance types that the algorithm supports for training.   Whether the algorithm supports distributed training.   The metrics that the algorithm emits to Amazon CloudWatch.   Which metrics that the algorithm emits can be used as the objective metric for hyperparameter tuning jobs.   The input channels that the algorithm supports for training data. For example, an algorithm might support train, validation, and test channels.  
     */
    TrainingSpecification: TrainingSpecification;
    /**
     * Specifies details about inference jobs that the algorithm runs, including the following:   The Amazon ECR paths of containers that contain the inference code and model artifacts.   The instance types that the algorithm supports for transform jobs and real-time endpoints used for inference.   The input and output content formats that the algorithm supports for inference.  
     */
    InferenceSpecification?: InferenceSpecification;
    /**
     * Specifies configurations for one or more training jobs and that Amazon SageMaker runs to test the algorithm's training code and, optionally, one or more batch transform jobs that Amazon SageMaker runs to test the algorithm's inference code.
     */
    ValidationSpecification?: AlgorithmValidationSpecification;
    /**
     * Whether to certify the algorithm so that it can be listed in AWS Marketplace.
     */
    CertifyForMarketplace?: CertifyForMarketplace;
  }
  export interface CreateAlgorithmOutput {
    /**
     * The Amazon Resource Name (ARN) of the new algorithm.
     */
    AlgorithmArn: AlgorithmArn;
  }
  export interface CreateCodeRepositoryInput {
    /**
     * The name of the Git repository. The name must have 1 to 63 characters. Valid characters are a-z, A-Z, 0-9, and - (hyphen).
     */
    CodeRepositoryName: EntityName;
    /**
     * Specifies details about the repository, including the URL where the repository is located, the default branch, and credentials to use to access the repository.
     */
    GitConfig: GitConfig;
  }
  export interface CreateCodeRepositoryOutput {
    /**
     * The Amazon Resource Name (ARN) of the new repository.
     */
    CodeRepositoryArn: CodeRepositoryArn;
  }
  export interface CreateCompilationJobRequest {
    /**
     * A name for the model compilation job. The name must be unique within the AWS Region and within your AWS account. 
     */
    CompilationJobName: EntityName;
    /**
     * The Amazon Resource Name (ARN) of an IAM role that enables Amazon SageMaker to perform tasks on your behalf.  During model compilation, Amazon SageMaker needs your permission to:   Read input data from an S3 bucket   Write model artifacts to an S3 bucket   Write logs to Amazon CloudWatch Logs   Publish metrics to Amazon CloudWatch   You grant permissions for all of these tasks to an IAM role. To pass this role to Amazon SageMaker, the caller of this API must have the iam:PassRole permission. For more information, see Amazon SageMaker Roles. 
     */
    RoleArn: RoleArn;
    /**
     * Provides information about the location of input model artifacts, the name and shape of the expected data inputs, and the framework in which the model was trained.
     */
    InputConfig: InputConfig;
    /**
     * Provides information about the output location for the compiled model and the target device the model runs on.
     */
    OutputConfig: OutputConfig;
    /**
     * Specifies a limit to how long a model compilation job can run. When the job reaches the time limit, Amazon SageMaker ends the compilation job. Use this API to cap model training costs.
     */
    StoppingCondition: StoppingCondition;
  }
  export interface CreateCompilationJobResponse {
    /**
     * If the action is successful, the service sends back an HTTP 200 response. Amazon SageMaker returns the following data in JSON format:    CompilationJobArn: The Amazon Resource Name (ARN) of the compiled job.  
     */
    CompilationJobArn: CompilationJobArn;
  }
  export interface CreateEndpointConfigInput {
    /**
     * The name of the endpoint configuration. You specify this name in a CreateEndpoint request. 
     */
    EndpointConfigName: EndpointConfigName;
    /**
     * An list of ProductionVariant objects, one for each model that you want to host at this endpoint.
     */
    ProductionVariants: ProductionVariantList;
    /**
     * A list of key-value pairs. For more information, see Using Cost Allocation Tags in the  AWS Billing and Cost Management User Guide. 
     */
    Tags?: TagList;
    /**
     * The Amazon Resource Name (ARN) of a AWS Key Management Service key that Amazon SageMaker uses to encrypt data on the storage volume attached to the ML compute instance that hosts the endpoint.  Nitro-based instances do not support encryption with AWS KMS. If any of the models that you specify in the ProductionVariants parameter use nitro-based instances, do not specify a value for the KmsKeyId parameter. If you specify a value for KmsKeyId when using any nitro-based instances, the call to CreateEndpointConfig fails. For a list of nitro-based instances, see Nitro-based Instances in the Amazon Elastic Compute Cloud User Guide for Linux Instances. For more information about storage volumes on nitro-based instances, see Amazon EBS and NVMe on Linux Instances. 
     */
    KmsKeyId?: KmsKeyId;
  }
  export interface CreateEndpointConfigOutput {
    /**
     * The Amazon Resource Name (ARN) of the endpoint configuration. 
     */
    EndpointConfigArn: EndpointConfigArn;
  }
  export interface CreateEndpointInput {
    /**
     * The name of the endpoint. The name must be unique within an AWS Region in your AWS account.
     */
    EndpointName: EndpointName;
    /**
     * The name of an endpoint configuration. For more information, see CreateEndpointConfig. 
     */
    EndpointConfigName: EndpointConfigName;
    /**
     * An array of key-value pairs. For more information, see Using Cost Allocation Tagsin the AWS Billing and Cost Management User Guide. 
     */
    Tags?: TagList;
  }
  export interface CreateEndpointOutput {
    /**
     * The Amazon Resource Name (ARN) of the endpoint.
     */
    EndpointArn: EndpointArn;
  }
  export interface CreateHyperParameterTuningJobRequest {
    /**
     * The name of the tuning job. This name is the prefix for the names of all training jobs that this tuning job launches. The name must be unique within the same AWS account and AWS Region. The name must have { } to { } characters. Valid characters are a-z, A-Z, 0-9, and : + = @ _ % - (hyphen). The name is not case sensitive.
     */
    HyperParameterTuningJobName: HyperParameterTuningJobName;
    /**
     * The HyperParameterTuningJobConfig object that describes the tuning job, including the search strategy, the objective metric used to evaluate training jobs, ranges of parameters to search, and resource limits for the tuning job. For more information, see automatic-model-tuning 
     */
    HyperParameterTuningJobConfig: HyperParameterTuningJobConfig;
    /**
     * The HyperParameterTrainingJobDefinition object that describes the training jobs that this tuning job launches, including static hyperparameters, input data configuration, output data configuration, resource configuration, and stopping condition.
     */
    TrainingJobDefinition?: HyperParameterTrainingJobDefinition;
    /**
     * Specifies the configuration for starting the hyperparameter tuning job using one or more previous tuning jobs as a starting point. The results of previous tuning jobs are used to inform which combinations of hyperparameters to search over in the new tuning job. All training jobs launched by the new hyperparameter tuning job are evaluated by using the objective metric. If you specify IDENTICAL_DATA_AND_ALGORITHM as the WarmStartType value for the warm start configuration, the training job that performs the best in the new tuning job is compared to the best training jobs from the parent tuning jobs. From these, the training job that performs the best as measured by the objective metric is returned as the overall best training job.  All training jobs launched by parent hyperparameter tuning jobs and the new hyperparameter tuning jobs count against the limit of training jobs for the tuning job. 
     */
    WarmStartConfig?: HyperParameterTuningJobWarmStartConfig;
    /**
     * An array of key-value pairs. You can use tags to categorize your AWS resources in different ways, for example, by purpose, owner, or environment. For more information, see AWS Tagging Strategies. Tags that you specify for the tuning job are also added to all training jobs that the tuning job launches.
     */
    Tags?: TagList;
  }
  export interface CreateHyperParameterTuningJobResponse {
    /**
     * The Amazon Resource Name (ARN) of the tuning job. Amazon SageMaker assigns an ARN to a hyperparameter tuning job when you create it.
     */
    HyperParameterTuningJobArn: HyperParameterTuningJobArn;
  }
  export interface CreateLabelingJobRequest {
    /**
     * The name of the labeling job. This name is used to identify the job in a list of labeling jobs.
     */
    LabelingJobName: LabelingJobName;
    /**
     * The attribute name to use for the label in the output manifest file. This is the key for the key/value pair formed with the label that a worker assigns to the object. The name can't end with "-metadata". If you are running a semantic segmentation labeling job, the attribute name must end with "-ref". If you are running any other kind of labeling job, the attribute name must not end with "-ref".
     */
    LabelAttributeName: LabelAttributeName;
    /**
     * Input data for the labeling job, such as the Amazon S3 location of the data objects and the location of the manifest file that describes the data objects.
     */
    InputConfig: LabelingJobInputConfig;
    /**
     * The location of the output data and the AWS Key Management Service key ID for the key used to encrypt the output data, if any.
     */
    OutputConfig: LabelingJobOutputConfig;
    /**
     * The Amazon Resource Number (ARN) that Amazon SageMaker assumes to perform tasks on your behalf during data labeling. You must grant this role the necessary permissions so that Amazon SageMaker can successfully complete data labeling.
     */
    RoleArn: RoleArn;
    /**
     * The S3 URL of the file that defines the categories used to label the data objects. The file is a JSON structure in the following format:  {    "document-version": "2018-11-28"    "labels": [    {    "label": "label 1"    },    {    "label": "label 2"    },    ...    {    "label": "label n"    }    ]   } 
     */
    LabelCategoryConfigS3Uri?: S3Uri;
    /**
     * A set of conditions for stopping the labeling job. If any of the conditions are met, the job is automatically stopped. You can use these conditions to control the cost of data labeling.
     */
    StoppingConditions?: LabelingJobStoppingConditions;
    /**
     * Configures the information required to perform automated data labeling.
     */
    LabelingJobAlgorithmsConfig?: LabelingJobAlgorithmsConfig;
    /**
     * Configures the information required for human workers to complete a labeling task.
     */
    HumanTaskConfig: HumanTaskConfig;
    /**
     * An array of key/value pairs. For more information, see Using Cost Allocation Tags in the AWS Billing and Cost Management User Guide.
     */
    Tags?: TagList;
  }
  export interface CreateLabelingJobResponse {
    /**
     * The Amazon Resource Name (ARN) of the labeling job. You use this ARN to identify the labeling job.
     */
    LabelingJobArn: LabelingJobArn;
  }
  export interface CreateModelInput {
    /**
     * The name of the new model.
     */
    ModelName: ModelName;
    /**
     * The location of the primary docker image containing inference code, associated artifacts, and custom environment map that the inference code uses when the model is deployed for predictions. 
     */
    PrimaryContainer?: ContainerDefinition;
    /**
     * Specifies the containers in the inference pipeline.
     */
    Containers?: ContainerDefinitionList;
    /**
     * The Amazon Resource Name (ARN) of the IAM role that Amazon SageMaker can assume to access model artifacts and docker image for deployment on ML compute instances or for batch transform jobs. Deploying on ML compute instances is part of model hosting. For more information, see Amazon SageMaker Roles.   To be able to pass this role to Amazon SageMaker, the caller of this API must have the iam:PassRole permission. 
     */
    ExecutionRoleArn: RoleArn;
    /**
     * An array of key-value pairs. For more information, see Using Cost Allocation Tags in the AWS Billing and Cost Management User Guide. 
     */
    Tags?: TagList;
    /**
     * A VpcConfig object that specifies the VPC that you want your model to connect to. Control access to and from your model container by configuring the VPC. VpcConfig is used in hosting services and in batch transform. For more information, see Protect Endpoints by Using an Amazon Virtual Private Cloud and Protect Data in Batch Transform Jobs by Using an Amazon Virtual Private Cloud.
     */
    VpcConfig?: VpcConfig;
    /**
     * Isolates the model container. No inbound or outbound network calls can be made to or from the model container.  The Semantic Segmentation built-in algorithm does not support network isolation. 
     */
    EnableNetworkIsolation?: Boolean;
  }
  export interface CreateModelOutput {
    /**
     * The ARN of the model created in Amazon SageMaker.
     */
    ModelArn: ModelArn;
  }
  export interface CreateModelPackageInput {
    /**
     * The name of the model package. The name must have 1 to 63 characters. Valid characters are a-z, A-Z, 0-9, and - (hyphen).
     */
    ModelPackageName: EntityName;
    /**
     * A description of the model package.
     */
    ModelPackageDescription?: EntityDescription;
    /**
     * Specifies details about inference jobs that can be run with models based on this model package, including the following:   The Amazon ECR paths of containers that contain the inference code and model artifacts.   The instance types that the model package supports for transform jobs and real-time endpoints used for inference.   The input and output content formats that the model package supports for inference.  
     */
    InferenceSpecification?: InferenceSpecification;
    /**
     * Specifies configurations for one or more transform jobs that Amazon SageMaker runs to test the model package.
     */
    ValidationSpecification?: ModelPackageValidationSpecification;
    /**
     * Details about the algorithm that was used to create the model package.
     */
    SourceAlgorithmSpecification?: SourceAlgorithmSpecification;
    /**
     * Whether to certify the model package for listing on AWS Marketplace.
     */
    CertifyForMarketplace?: CertifyForMarketplace;
  }
  export interface CreateModelPackageOutput {
    /**
     * The Amazon Resource Name (ARN) of the new model package.
     */
    ModelPackageArn: ModelPackageArn;
  }
  export interface CreateNotebookInstanceInput {
    /**
     * The name of the new notebook instance.
     */
    NotebookInstanceName: NotebookInstanceName;
    /**
     * The type of ML compute instance to launch for the notebook instance.
     */
    InstanceType: InstanceType;
    /**
     * The ID of the subnet in a VPC to which you would like to have a connectivity from your ML compute instance. 
     */
    SubnetId?: SubnetId;
    /**
     * The VPC security group IDs, in the form sg-xxxxxxxx. The security groups must be for the same VPC as specified in the subnet. 
     */
    SecurityGroupIds?: SecurityGroupIds;
    /**
     *  When you send any requests to AWS resources from the notebook instance, Amazon SageMaker assumes this role to perform tasks on your behalf. You must grant this role necessary permissions so Amazon SageMaker can perform these tasks. The policy must allow the Amazon SageMaker service principal (sagemaker.amazonaws.com) permissionsto to assume this role. For more information, see Amazon SageMaker Roles.   To be able to pass this role to Amazon SageMaker, the caller of this API must have the iam:PassRole permission. 
     */
    RoleArn: RoleArn;
    /**
     * The Amazon Resource Name (ARN) of a AWS Key Management Service key that Amazon SageMaker uses to encrypt data on the storage volume attached to your notebook instance. The KMS key you provide must be enabled. For information, see Enabling and Disabling Keys in the AWS Key Management Service Developer Guide.
     */
    KmsKeyId?: KmsKeyId;
    /**
     * A list of tags to associate with the notebook instance. You can add tags later by using the CreateTags API.
     */
    Tags?: TagList;
    /**
     * The name of a lifecycle configuration to associate with the notebook instance. For information about lifestyle configurations, see Step 2.1: (Optional) Customize a Notebook Instance.
     */
    LifecycleConfigName?: NotebookInstanceLifecycleConfigName;
    /**
     * Sets whether Amazon SageMaker provides internet access to the notebook instance. If you set this to Disabled this notebook instance will be able to access resources only in your VPC, and will not be able to connect to Amazon SageMaker training and endpoint services unless your configure a NAT Gateway in your VPC. For more information, see Notebook Instances Are Internet-Enabled by Default. You can set the value of this parameter to Disabled only if you set a value for the SubnetId parameter.
     */
    DirectInternetAccess?: DirectInternetAccess;
    /**
     * The size, in GB, of the ML storage volume to attach to the notebook instance. The default value is 5 GB.
     */
    VolumeSizeInGB?: NotebookInstanceVolumeSizeInGB;
    /**
     * A list of Elastic Inference (EI) instance types to associate with this notebook instance. Currently, only one instance type can be associated with a notebook instance. For more information, see Using Elastic Inference in Amazon SageMaker.
     */
    AcceleratorTypes?: NotebookInstanceAcceleratorTypes;
    /**
     * A Git repository to associate with the notebook instance as its default code repository. This can be either the name of a Git repository stored as a resource in your account, or the URL of a Git repository in AWS CodeCommit or in any other Git repository. When you open a notebook instance, it opens in the directory that contains this repository. For more information, see Associating Git Repositories with Amazon SageMaker Notebook Instances.
     */
    DefaultCodeRepository?: CodeRepositoryNameOrUrl;
    /**
     * An array of up to three Git repositories to associate with the notebook instance. These can be either the names of Git repositories stored as resources in your account, or the URL of Git repositories in AWS CodeCommit or in any other Git repository. These repositories are cloned at the same level as the default repository of your notebook instance. For more information, see Associating Git Repositories with Amazon SageMaker Notebook Instances.
     */
    AdditionalCodeRepositories?: AdditionalCodeRepositoryNamesOrUrls;
    /**
     * Whether root access is enabled or disabled for users of the notebook instance. The default value is Enabled.  Lifecycle configurations need root access to be able to set up a notebook instance. Because of this, lifecycle configurations associated with a notebook instance always run with root access even if you disable root access for users. 
     */
    RootAccess?: RootAccess;
  }
  export interface CreateNotebookInstanceLifecycleConfigInput {
    /**
     * The name of the lifecycle configuration.
     */
    NotebookInstanceLifecycleConfigName: NotebookInstanceLifecycleConfigName;
    /**
     * A shell script that runs only once, when you create a notebook instance. The shell script must be a base64-encoded string.
     */
    OnCreate?: NotebookInstanceLifecycleConfigList;
    /**
     * A shell script that runs every time you start a notebook instance, including when you create the notebook instance. The shell script must be a base64-encoded string.
     */
    OnStart?: NotebookInstanceLifecycleConfigList;
  }
  export interface CreateNotebookInstanceLifecycleConfigOutput {
    /**
     * The Amazon Resource Name (ARN) of the lifecycle configuration.
     */
    NotebookInstanceLifecycleConfigArn?: NotebookInstanceLifecycleConfigArn;
  }
  export interface CreateNotebookInstanceOutput {
    /**
     * The Amazon Resource Name (ARN) of the notebook instance. 
     */
    NotebookInstanceArn?: NotebookInstanceArn;
  }
  export interface CreatePresignedNotebookInstanceUrlInput {
    /**
     * The name of the notebook instance.
     */
    NotebookInstanceName: NotebookInstanceName;
    /**
     * The duration of the session, in seconds. The default is 12 hours.
     */
    SessionExpirationDurationInSeconds?: SessionExpirationDurationInSeconds;
  }
  export interface CreatePresignedNotebookInstanceUrlOutput {
    /**
     * A JSON object that contains the URL string. 
     */
    AuthorizedUrl?: NotebookInstanceUrl;
  }
  export interface CreateTrainingJobRequest {
    /**
     * The name of the training job. The name must be unique within an AWS Region in an AWS account. 
     */
    TrainingJobName: TrainingJobName;
    /**
     * Algorithm-specific parameters that influence the quality of the model. You set hyperparameters before you start the learning process. For a list of hyperparameters for each training algorithm provided by Amazon SageMaker, see Algorithms.  You can specify a maximum of 100 hyperparameters. Each hyperparameter is a key-value pair. Each key and value is limited to 256 characters, as specified by the Length Constraint. 
     */
    HyperParameters?: HyperParameters;
    /**
     * The registry path of the Docker image that contains the training algorithm and algorithm-specific metadata, including the input mode. For more information about algorithms provided by Amazon SageMaker, see Algorithms. For information about providing your own algorithms, see Using Your Own Algorithms with Amazon SageMaker. 
     */
    AlgorithmSpecification: AlgorithmSpecification;
    /**
     * The Amazon Resource Name (ARN) of an IAM role that Amazon SageMaker can assume to perform tasks on your behalf.  During model training, Amazon SageMaker needs your permission to read input data from an S3 bucket, download a Docker image that contains training code, write model artifacts to an S3 bucket, write logs to Amazon CloudWatch Logs, and publish metrics to Amazon CloudWatch. You grant permissions for all of these tasks to an IAM role. For more information, see Amazon SageMaker Roles.   To be able to pass this role to Amazon SageMaker, the caller of this API must have the iam:PassRole permission. 
     */
    RoleArn: RoleArn;
    /**
     * An array of Channel objects. Each channel is a named input source. InputDataConfig describes the input data and its location.  Algorithms can accept input data from one or more channels. For example, an algorithm might have two channels of input data, training_data and validation_data. The configuration for each channel provides the S3, EFS, or FSx location where the input data is stored. It also provides information about the stored data: the MIME type, compression method, and whether the data is wrapped in RecordIO format.  Depending on the input mode that the algorithm supports, Amazon SageMaker either copies input data files from an S3 bucket to a local directory in the Docker container, or makes it available as input streams. For example, if you specify an EFS location, input data files will be made available as input streams. They do not need to be downloaded.
     */
    InputDataConfig?: InputDataConfig;
    /**
     * Specifies the path to the S3 location where you want to store model artifacts. Amazon SageMaker creates subfolders for the artifacts. 
     */
    OutputDataConfig: OutputDataConfig;
    /**
     * The resources, including the ML compute instances and ML storage volumes, to use for model training.  ML storage volumes store model artifacts and incremental states. Training algorithms might also use ML storage volumes for scratch space. If you want Amazon SageMaker to use the ML storage volume to store the training data, choose File as the TrainingInputMode in the algorithm specification. For distributed training algorithms, specify an instance count greater than 1.
     */
    ResourceConfig: ResourceConfig;
    /**
     * A VpcConfig object that specifies the VPC that you want your training job to connect to. Control access to and from your training container by configuring the VPC. For more information, see Protect Training Jobs by Using an Amazon Virtual Private Cloud.
     */
    VpcConfig?: VpcConfig;
    /**
     * Specifies a limit to how long a model training job can run. When the job reaches the time limit, Amazon SageMaker ends the training job. Use this API to cap model training costs. To stop a job, Amazon SageMaker sends the algorithm the SIGTERM signal, which delays job termination for 120 seconds. Algorithms can use this 120-second window to save the model artifacts, so the results of training are not lost. 
     */
    StoppingCondition: StoppingCondition;
    /**
     * An array of key-value pairs. For more information, see Using Cost Allocation Tags in the AWS Billing and Cost Management User Guide. 
     */
    Tags?: TagList;
    /**
     * Isolates the training container. No inbound or outbound network calls can be made, except for calls between peers within a training cluster for distributed training. If you enable network isolation for training jobs that are configured to use a VPC, Amazon SageMaker downloads and uploads customer data and model artifacts through the specified VPC, but the training container does not have network access.  The Semantic Segmentation built-in algorithm does not support network isolation. 
     */
    EnableNetworkIsolation?: Boolean;
    /**
     * To encrypt all communications between ML compute instances in distributed training, choose True. Encryption provides greater security for distributed training, but training might take longer. How long it takes depends on the amount of communication between compute instances, especially if you use a deep learning algorithm in distributed training. For more information, see Protect Communications Between ML Compute Instances in a Distributed Training Job.
     */
    EnableInterContainerTrafficEncryption?: Boolean;
    /**
     * To train models using managed spot training, choose True. Managed spot training provides a fully managed and scalable infrastructure for training machine learning models. this option is useful when training jobs can be interrupted and when there is flexibility when the training job is run.  The complete and intermediate results of jobs are stored in an Amazon S3 bucket, and can be used as a starting point to train models incrementally. Amazon SageMaker provides metrics and logs in CloudWatch. They can be used to see when managed spot training jobs are running, interrupted, resumed, or completed. 
     */
    EnableManagedSpotTraining?: Boolean;
    /**
     * Contains information about the output location for managed spot training checkpoint data.
     */
    CheckpointConfig?: CheckpointConfig;
  }
  export interface CreateTrainingJobResponse {
    /**
     * The Amazon Resource Name (ARN) of the training job.
     */
    TrainingJobArn: TrainingJobArn;
  }
  export interface CreateTransformJobRequest {
    /**
     * The name of the transform job. The name must be unique within an AWS Region in an AWS account. 
     */
    TransformJobName: TransformJobName;
    /**
     * The name of the model that you want to use for the transform job. ModelName must be the name of an existing Amazon SageMaker model within an AWS Region in an AWS account.
     */
    ModelName: ModelName;
    /**
     * The maximum number of parallel requests that can be sent to each instance in a transform job. If MaxConcurrentTransforms is set to 0 or left unset, Amazon SageMaker checks the optional execution-parameters to determine the optimal settings for your chosen algorithm. If the execution-parameters endpoint is not enabled, the default value is 1. For more information on execution-parameters, see How Containers Serve Requests. For built-in algorithms, you don't need to set a value for MaxConcurrentTransforms.
     */
    MaxConcurrentTransforms?: MaxConcurrentTransforms;
    /**
     * The maximum allowed size of the payload, in MB. A payload is the data portion of a record (without metadata). The value in MaxPayloadInMB must be greater than, or equal to, the size of a single record. To estimate the size of a record in MB, divide the size of your dataset by the number of records. To ensure that the records fit within the maximum payload size, we recommend using a slightly larger value. The default value is 6 MB.  For cases where the payload might be arbitrarily large and is transmitted using HTTP chunked encoding, set the value to 0. This feature works only in supported algorithms. Currently, Amazon SageMaker built-in algorithms do not support HTTP chunked encoding.
     */
    MaxPayloadInMB?: MaxPayloadInMB;
    /**
     * Specifies the number of records to include in a mini-batch for an HTTP inference request. A record  is a single unit of input data that inference can be made on. For example, a single line in a CSV file is a record.  To enable the batch strategy, you must set SplitType to Line, RecordIO, or TFRecord. To use only one record when making an HTTP invocation request to a container, set BatchStrategy to SingleRecord and SplitType to Line. To fit as many records in a mini-batch as can fit within the MaxPayloadInMB limit, set BatchStrategy to MultiRecord and SplitType to Line.
     */
    BatchStrategy?: BatchStrategy;
    /**
     * The environment variables to set in the Docker container. We support up to 16 key and values entries in the map.
     */
    Environment?: TransformEnvironmentMap;
    /**
     * Describes the input source and the way the transform job consumes it.
     */
    TransformInput: TransformInput;
    /**
     * Describes the results of the transform job.
     */
    TransformOutput: TransformOutput;
    /**
     * Describes the resources, including ML instance types and ML instance count, to use for the transform job.
     */
    TransformResources: TransformResources;
    /**
     * The data structure used to specify the data to be used for inference in a batch transform job and to associate the data that is relevant to the prediction results in the output. The input filter provided allows you to exclude input data that is not needed for inference in a batch transform job. The output filter provided allows you to include input data relevant to interpreting the predictions in the output from the job. For more information, see Associate Prediction Results with their Corresponding Input Records.
     */
    DataProcessing?: DataProcessing;
    /**
     * (Optional) An array of key-value pairs. For more information, see Using Cost Allocation Tags in the AWS Billing and Cost Management User Guide.
     */
    Tags?: TagList;
  }
  export interface CreateTransformJobResponse {
    /**
     * The Amazon Resource Name (ARN) of the transform job.
     */
    TransformJobArn: TransformJobArn;
  }
  export interface CreateWorkteamRequest {
    /**
     * The name of the work team. Use this name to identify the work team.
     */
    WorkteamName: WorkteamName;
    /**
     * A list of MemberDefinition objects that contains objects that identify the Amazon Cognito user pool that makes up the work team. For more information, see Amazon Cognito User Pools. All of the CognitoMemberDefinition objects that make up the member definition must have the same ClientId and UserPool values.
     */
    MemberDefinitions: MemberDefinitions;
    /**
     * A description of the work team.
     */
    Description: String200;
    /**
     * Configures notification of workers regarding available or expiring work items.
     */
    NotificationConfiguration?: NotificationConfiguration;
    /**
     * An array of key-value pairs. For more information, see Resource Tag and Using Cost Allocation Tags in the  AWS Billing and Cost Management User Guide.
     */
    Tags?: TagList;
  }
  export interface CreateWorkteamResponse {
    /**
     * The Amazon Resource Name (ARN) of the work team. You can use this ARN to identify the work team.
     */
    WorkteamArn?: WorkteamArn;
  }
  export type CreationTime = Date;
  export type DataInputConfig = string;
  export interface DataProcessing {
    /**
     * A JSONPath expression used to select a portion of the input data to pass to the algorithm. Use the InputFilter parameter to exclude fields, such as an ID column, from the input. If you want Amazon SageMaker to pass the entire input dataset to the algorithm, accept the default value $. Examples: "$", "$[1:]", "$.features" 
     */
    InputFilter?: JsonPath;
    /**
     * A JSONPath expression used to select a portion of the joined dataset to save in the output file for a batch transform job. If you want Amazon SageMaker to store the entire input dataset in the output file, leave the default value, $. If you specify indexes that aren't within the dimension size of the joined dataset, you get an error. Examples: "$", "$[0,5:]", "$['id','SageMakerOutput']" 
     */
    OutputFilter?: JsonPath;
    /**
     * Specifies the source of the data to join with the transformed data. The valid values are None and Input The default value is None which specifies not to join the input with the transformed data. If you want the batch transform job to join the original input data with the transformed data, set JoinSource to Input.  For JSON or JSONLines objects, such as a JSON array, Amazon SageMaker adds the transformed data to the input JSON object in an attribute called SageMakerOutput. The joined result for JSON must be a key-value pair object. If the input is not a key-value pair object, Amazon SageMaker creates a new JSON file. In the new JSON file, and the input data is stored under the SageMakerInput key and the results are stored in SageMakerOutput. For CSV files, Amazon SageMaker combines the transformed data with the input data at the end of the input data and stores it in the output file. The joined data has the joined input data followed by the transformed data and the output is a CSV file. 
     */
    JoinSource?: JoinSource;
  }
  export interface DataSource {
    /**
     * The S3 location of the data source that is associated with a channel.
     */
    S3DataSource?: S3DataSource;
    /**
     * The file system that is associated with a channel.
     */
    FileSystemDataSource?: FileSystemDataSource;
  }
  export interface DeleteAlgorithmInput {
    /**
     * The name of the algorithm to delete.
     */
    AlgorithmName: EntityName;
  }
  export interface DeleteCodeRepositoryInput {
    /**
     * The name of the Git repository to delete.
     */
    CodeRepositoryName: EntityName;
  }
  export interface DeleteEndpointConfigInput {
    /**
     * The name of the endpoint configuration that you want to delete.
     */
    EndpointConfigName: EndpointConfigName;
  }
  export interface DeleteEndpointInput {
    /**
     * The name of the endpoint that you want to delete.
     */
    EndpointName: EndpointName;
  }
  export interface DeleteModelInput {
    /**
     * The name of the model to delete.
     */
    ModelName: ModelName;
  }
  export interface DeleteModelPackageInput {
    /**
     * The name of the model package. The name must have 1 to 63 characters. Valid characters are a-z, A-Z, 0-9, and - (hyphen).
     */
    ModelPackageName: EntityName;
  }
  export interface DeleteNotebookInstanceInput {
    /**
     * The name of the Amazon SageMaker notebook instance to delete.
     */
    NotebookInstanceName: NotebookInstanceName;
  }
  export interface DeleteNotebookInstanceLifecycleConfigInput {
    /**
     * The name of the lifecycle configuration to delete.
     */
    NotebookInstanceLifecycleConfigName: NotebookInstanceLifecycleConfigName;
  }
  export interface DeleteTagsInput {
    /**
     * The Amazon Resource Name (ARN) of the resource whose tags you want to delete.
     */
    ResourceArn: ResourceArn;
    /**
     * An array or one or more tag keys to delete.
     */
    TagKeys: TagKeyList;
  }
  export interface DeleteTagsOutput {
  }
  export interface DeleteWorkteamRequest {
    /**
     * The name of the work team to delete.
     */
    WorkteamName: WorkteamName;
  }
  export interface DeleteWorkteamResponse {
    /**
     * Returns true if the work team was successfully deleted; otherwise, returns false.
     */
    Success: Success;
  }
  export interface DeployedImage {
    /**
     * The image path you specified when you created the model.
     */
    SpecifiedImage?: Image;
    /**
     * The specific digest path of the image hosted in this ProductionVariant.
     */
    ResolvedImage?: Image;
    /**
     * The date and time when the image path for the model resolved to the ResolvedImage 
     */
    ResolutionTime?: Timestamp;
  }
  export type DeployedImages = DeployedImage[];
  export interface DescribeAlgorithmInput {
    /**
     * The name of the algorithm to describe.
     */
    AlgorithmName: ArnOrName;
  }
  export interface DescribeAlgorithmOutput {
    /**
     * The name of the algorithm being described.
     */
    AlgorithmName: EntityName;
    /**
     * The Amazon Resource Name (ARN) of the algorithm.
     */
    AlgorithmArn: AlgorithmArn;
    /**
     * A brief summary about the algorithm.
     */
    AlgorithmDescription?: EntityDescription;
    /**
     * A timestamp specifying when the algorithm was created.
     */
    CreationTime: CreationTime;
    /**
     * Details about training jobs run by this algorithm.
     */
    TrainingSpecification: TrainingSpecification;
    /**
     * Details about inference jobs that the algorithm runs.
     */
    InferenceSpecification?: InferenceSpecification;
    /**
     * Details about configurations for one or more training jobs that Amazon SageMaker runs to test the algorithm.
     */
    ValidationSpecification?: AlgorithmValidationSpecification;
    /**
     * The current status of the algorithm.
     */
    AlgorithmStatus: AlgorithmStatus;
    /**
     * Details about the current status of the algorithm.
     */
    AlgorithmStatusDetails: AlgorithmStatusDetails;
    /**
     * The product identifier of the algorithm.
     */
    ProductId?: ProductId;
    /**
     * Whether the algorithm is certified to be listed in AWS Marketplace.
     */
    CertifyForMarketplace?: CertifyForMarketplace;
  }
  export interface DescribeCodeRepositoryInput {
    /**
     * The name of the Git repository to describe.
     */
    CodeRepositoryName: EntityName;
  }
  export interface DescribeCodeRepositoryOutput {
    /**
     * The name of the Git repository.
     */
    CodeRepositoryName: EntityName;
    /**
     * The Amazon Resource Name (ARN) of the Git repository.
     */
    CodeRepositoryArn: CodeRepositoryArn;
    /**
     * The date and time that the repository was created.
     */
    CreationTime: CreationTime;
    /**
     * The date and time that the repository was last changed.
     */
    LastModifiedTime: LastModifiedTime;
    /**
     * Configuration details about the repository, including the URL where the repository is located, the default branch, and the Amazon Resource Name (ARN) of the AWS Secrets Manager secret that contains the credentials used to access the repository.
     */
    GitConfig?: GitConfig;
  }
  export interface DescribeCompilationJobRequest {
    /**
     * The name of the model compilation job that you want information about.
     */
    CompilationJobName: EntityName;
  }
  export interface DescribeCompilationJobResponse {
    /**
     * The name of the model compilation job.
     */
    CompilationJobName: EntityName;
    /**
     * The Amazon Resource Name (ARN) of an IAM role that Amazon SageMaker assumes to perform the model compilation job.
     */
    CompilationJobArn: CompilationJobArn;
    /**
     * The status of the model compilation job.
     */
    CompilationJobStatus: CompilationJobStatus;
    /**
     * The time when the model compilation job started the CompilationJob instances.  You are billed for the time between this timestamp and the timestamp in the DescribeCompilationJobResponse$CompilationEndTime field. In Amazon CloudWatch Logs, the start time might be later than this time. That's because it takes time to download the compilation job, which depends on the size of the compilation job container. 
     */
    CompilationStartTime?: Timestamp;
    /**
     * The time when the model compilation job on a compilation job instance ended. For a successful or stopped job, this is when the job's model artifacts have finished uploading. For a failed job, this is when Amazon SageMaker detected that the job failed. 
     */
    CompilationEndTime?: Timestamp;
    /**
     * Specifies a limit to how long a model compilation job can run. When the job reaches the time limit, Amazon SageMaker ends the compilation job. Use this API to cap model training costs.
     */
    StoppingCondition: StoppingCondition;
    /**
     * The time that the model compilation job was created.
     */
    CreationTime: CreationTime;
    /**
     * The time that the status of the model compilation job was last modified.
     */
    LastModifiedTime: LastModifiedTime;
    /**
     * If a model compilation job failed, the reason it failed. 
     */
    FailureReason: FailureReason;
    /**
     * Information about the location in Amazon S3 that has been configured for storing the model artifacts used in the compilation job.
     */
    ModelArtifacts: ModelArtifacts;
    /**
     * The Amazon Resource Name (ARN) of the model compilation job.
     */
    RoleArn: RoleArn;
    /**
     * Information about the location in Amazon S3 of the input model artifacts, the name and shape of the expected data inputs, and the framework in which the model was trained.
     */
    InputConfig: InputConfig;
    /**
     * Information about the output location for the compiled model and the target device that the model runs on.
     */
    OutputConfig: OutputConfig;
  }
  export interface DescribeEndpointConfigInput {
    /**
     * The name of the endpoint configuration.
     */
    EndpointConfigName: EndpointConfigName;
  }
  export interface DescribeEndpointConfigOutput {
    /**
     * Name of the Amazon SageMaker endpoint configuration.
     */
    EndpointConfigName: EndpointConfigName;
    /**
     * The Amazon Resource Name (ARN) of the endpoint configuration.
     */
    EndpointConfigArn: EndpointConfigArn;
    /**
     * An array of ProductionVariant objects, one for each model that you want to host at this endpoint.
     */
    ProductionVariants: ProductionVariantList;
    /**
     * AWS KMS key ID Amazon SageMaker uses to encrypt data when storing it on the ML storage volume attached to the instance.
     */
    KmsKeyId?: KmsKeyId;
    /**
     * A timestamp that shows when the endpoint configuration was created.
     */
    CreationTime: Timestamp;
  }
  export interface DescribeEndpointInput {
    /**
     * The name of the endpoint.
     */
    EndpointName: EndpointName;
  }
  export interface DescribeEndpointOutput {
    /**
     * Name of the endpoint.
     */
    EndpointName: EndpointName;
    /**
     * The Amazon Resource Name (ARN) of the endpoint.
     */
    EndpointArn: EndpointArn;
    /**
     * The name of the endpoint configuration associated with this endpoint.
     */
    EndpointConfigName: EndpointConfigName;
    /**
     *  An array of ProductionVariantSummary objects, one for each model hosted behind this endpoint. 
     */
    ProductionVariants?: ProductionVariantSummaryList;
    /**
     * The status of the endpoint.    OutOfService: Endpoint is not available to take incoming requests.    Creating: CreateEndpoint is executing.    Updating: UpdateEndpoint or UpdateEndpointWeightsAndCapacities is executing.    SystemUpdating: Endpoint is undergoing maintenance and cannot be updated or deleted or re-scaled until it has completed. This maintenance operation does not change any customer-specified values such as VPC config, KMS encryption, model, instance type, or instance count.    RollingBack: Endpoint fails to scale up or down or change its variant weight and is in the process of rolling back to its previous configuration. Once the rollback completes, endpoint returns to an InService status. This transitional status only applies to an endpoint that has autoscaling enabled and is undergoing variant weight or capacity changes as part of an UpdateEndpointWeightsAndCapacities call or when the UpdateEndpointWeightsAndCapacities operation is called explicitly.    InService: Endpoint is available to process incoming requests.    Deleting: DeleteEndpoint is executing.    Failed: Endpoint could not be created, updated, or re-scaled. Use DescribeEndpointOutput$FailureReason for information about the failure. DeleteEndpoint is the only operation that can be performed on a failed endpoint.  
     */
    EndpointStatus: EndpointStatus;
    /**
     * If the status of the endpoint is Failed, the reason why it failed. 
     */
    FailureReason?: FailureReason;
    /**
     * A timestamp that shows when the endpoint was created.
     */
    CreationTime: Timestamp;
    /**
     * A timestamp that shows when the endpoint was last modified.
     */
    LastModifiedTime: Timestamp;
  }
  export interface DescribeHyperParameterTuningJobRequest {
    /**
     * The name of the tuning job to describe.
     */
    HyperParameterTuningJobName: HyperParameterTuningJobName;
  }
  export interface DescribeHyperParameterTuningJobResponse {
    /**
     * The name of the tuning job.
     */
    HyperParameterTuningJobName: HyperParameterTuningJobName;
    /**
     * The Amazon Resource Name (ARN) of the tuning job.
     */
    HyperParameterTuningJobArn: HyperParameterTuningJobArn;
    /**
     * The HyperParameterTuningJobConfig object that specifies the configuration of the tuning job.
     */
    HyperParameterTuningJobConfig: HyperParameterTuningJobConfig;
    /**
     * The HyperParameterTrainingJobDefinition object that specifies the definition of the training jobs that this tuning job launches.
     */
    TrainingJobDefinition?: HyperParameterTrainingJobDefinition;
    /**
     * The status of the tuning job: InProgress, Completed, Failed, Stopping, or Stopped.
     */
    HyperParameterTuningJobStatus: HyperParameterTuningJobStatus;
    /**
     * The date and time that the tuning job started.
     */
    CreationTime: Timestamp;
    /**
     * The date and time that the tuning job ended.
     */
    HyperParameterTuningEndTime?: Timestamp;
    /**
     * The date and time that the status of the tuning job was modified. 
     */
    LastModifiedTime?: Timestamp;
    /**
     * The TrainingJobStatusCounters object that specifies the number of training jobs, categorized by status, that this tuning job launched.
     */
    TrainingJobStatusCounters: TrainingJobStatusCounters;
    /**
     * The ObjectiveStatusCounters object that specifies the number of training jobs, categorized by the status of their final objective metric, that this tuning job launched.
     */
    ObjectiveStatusCounters: ObjectiveStatusCounters;
    /**
     * A TrainingJobSummary object that describes the training job that completed with the best current HyperParameterTuningJobObjective.
     */
    BestTrainingJob?: HyperParameterTrainingJobSummary;
    /**
     * If the hyperparameter tuning job is an warm start tuning job with a WarmStartType of IDENTICAL_DATA_AND_ALGORITHM, this is the TrainingJobSummary for the training job with the best objective metric value of all training jobs launched by this tuning job and all parent jobs specified for the warm start tuning job.
     */
    OverallBestTrainingJob?: HyperParameterTrainingJobSummary;
    /**
     * The configuration for starting the hyperparameter parameter tuning job using one or more previous tuning jobs as a starting point. The results of previous tuning jobs are used to inform which combinations of hyperparameters to search over in the new tuning job.
     */
    WarmStartConfig?: HyperParameterTuningJobWarmStartConfig;
    /**
     * If the tuning job failed, the reason it failed.
     */
    FailureReason?: FailureReason;
  }
  export interface DescribeLabelingJobRequest {
    /**
     * The name of the labeling job to return information for.
     */
    LabelingJobName: LabelingJobName;
  }
  export interface DescribeLabelingJobResponse {
    /**
     * The processing status of the labeling job. 
     */
    LabelingJobStatus: LabelingJobStatus;
    /**
     * Provides a breakdown of the number of data objects labeled by humans, the number of objects labeled by machine, the number of objects than couldn't be labeled, and the total number of objects labeled. 
     */
    LabelCounters: LabelCounters;
    /**
     * If the job failed, the reason that it failed. 
     */
    FailureReason?: FailureReason;
    /**
     * The date and time that the labeling job was created.
     */
    CreationTime: Timestamp;
    /**
     * The date and time that the labeling job was last updated.
     */
    LastModifiedTime: Timestamp;
    /**
     * A unique identifier for work done as part of a labeling job.
     */
    JobReferenceCode: JobReferenceCode;
    /**
     * The name assigned to the labeling job when it was created.
     */
    LabelingJobName: LabelingJobName;
    /**
     * The Amazon Resource Name (ARN) of the labeling job.
     */
    LabelingJobArn: LabelingJobArn;
    /**
     * The attribute used as the label in the output manifest file.
     */
    LabelAttributeName?: LabelAttributeName;
    /**
     * Input configuration information for the labeling job, such as the Amazon S3 location of the data objects and the location of the manifest file that describes the data objects.
     */
    InputConfig: LabelingJobInputConfig;
    /**
     * The location of the job's output data and the AWS Key Management Service key ID for the key used to encrypt the output data, if any.
     */
    OutputConfig: LabelingJobOutputConfig;
    /**
     * The Amazon Resource Name (ARN) that Amazon SageMaker assumes to perform tasks on your behalf during data labeling.
     */
    RoleArn: RoleArn;
    /**
     * The S3 location of the JSON file that defines the categories used to label data objects. The file is a JSON structure in the following format:  {    "document-version": "2018-11-28"    "labels": [    {    "label": "label 1"    },    {    "label": "label 2"    },    ...    {    "label": "label n"    }    ]   } 
     */
    LabelCategoryConfigS3Uri?: S3Uri;
    /**
     * A set of conditions for stopping a labeling job. If any of the conditions are met, the job is automatically stopped.
     */
    StoppingConditions?: LabelingJobStoppingConditions;
    /**
     * Configuration information for automated data labeling.
     */
    LabelingJobAlgorithmsConfig?: LabelingJobAlgorithmsConfig;
    /**
     * Configuration information required for human workers to complete a labeling task.
     */
    HumanTaskConfig: HumanTaskConfig;
    /**
     * An array of key/value pairs. For more information, see Using Cost Allocation Tags in the AWS Billing and Cost Management User Guide.
     */
    Tags?: TagList;
    /**
     * The location of the output produced by the labeling job.
     */
    LabelingJobOutput?: LabelingJobOutput;
  }
  export interface DescribeModelInput {
    /**
     * The name of the model.
     */
    ModelName: ModelName;
  }
  export interface DescribeModelOutput {
    /**
     * Name of the Amazon SageMaker model.
     */
    ModelName: ModelName;
    /**
     * The location of the primary inference code, associated artifacts, and custom environment map that the inference code uses when it is deployed in production. 
     */
    PrimaryContainer?: ContainerDefinition;
    /**
     * The containers in the inference pipeline.
     */
    Containers?: ContainerDefinitionList;
    /**
     * The Amazon Resource Name (ARN) of the IAM role that you specified for the model.
     */
    ExecutionRoleArn: RoleArn;
    /**
     * A VpcConfig object that specifies the VPC that this model has access to. For more information, see Protect Endpoints by Using an Amazon Virtual Private Cloud 
     */
    VpcConfig?: VpcConfig;
    /**
     * A timestamp that shows when the model was created.
     */
    CreationTime: Timestamp;
    /**
     * The Amazon Resource Name (ARN) of the model.
     */
    ModelArn: ModelArn;
    /**
     * If True, no inbound or outbound network calls can be made to or from the model container.  The Semantic Segmentation built-in algorithm does not support network isolation. 
     */
    EnableNetworkIsolation?: Boolean;
  }
  export interface DescribeModelPackageInput {
    /**
     * The name of the model package to describe.
     */
    ModelPackageName: ArnOrName;
  }
  export interface DescribeModelPackageOutput {
    /**
     * The name of the model package being described.
     */
    ModelPackageName: EntityName;
    /**
     * The Amazon Resource Name (ARN) of the model package.
     */
    ModelPackageArn: ModelPackageArn;
    /**
     * A brief summary of the model package.
     */
    ModelPackageDescription?: EntityDescription;
    /**
     * A timestamp specifying when the model package was created.
     */
    CreationTime: CreationTime;
    /**
     * Details about inference jobs that can be run with models based on this model package.
     */
    InferenceSpecification?: InferenceSpecification;
    /**
     * Details about the algorithm that was used to create the model package.
     */
    SourceAlgorithmSpecification?: SourceAlgorithmSpecification;
    /**
     * Configurations for one or more transform jobs that Amazon SageMaker runs to test the model package.
     */
    ValidationSpecification?: ModelPackageValidationSpecification;
    /**
     * The current status of the model package.
     */
    ModelPackageStatus: ModelPackageStatus;
    /**
     * Details about the current status of the model package.
     */
    ModelPackageStatusDetails: ModelPackageStatusDetails;
    /**
     * Whether the model package is certified for listing on AWS Marketplace.
     */
    CertifyForMarketplace?: CertifyForMarketplace;
  }
  export interface DescribeNotebookInstanceInput {
    /**
     * The name of the notebook instance that you want information about.
     */
    NotebookInstanceName: NotebookInstanceName;
  }
  export interface DescribeNotebookInstanceLifecycleConfigInput {
    /**
     * The name of the lifecycle configuration to describe.
     */
    NotebookInstanceLifecycleConfigName: NotebookInstanceLifecycleConfigName;
  }
  export interface DescribeNotebookInstanceLifecycleConfigOutput {
    /**
     * The Amazon Resource Name (ARN) of the lifecycle configuration.
     */
    NotebookInstanceLifecycleConfigArn?: NotebookInstanceLifecycleConfigArn;
    /**
     * The name of the lifecycle configuration.
     */
    NotebookInstanceLifecycleConfigName?: NotebookInstanceLifecycleConfigName;
    /**
     * The shell script that runs only once, when you create a notebook instance.
     */
    OnCreate?: NotebookInstanceLifecycleConfigList;
    /**
     * The shell script that runs every time you start a notebook instance, including when you create the notebook instance.
     */
    OnStart?: NotebookInstanceLifecycleConfigList;
    /**
     * A timestamp that tells when the lifecycle configuration was last modified.
     */
    LastModifiedTime?: LastModifiedTime;
    /**
     * A timestamp that tells when the lifecycle configuration was created.
     */
    CreationTime?: CreationTime;
  }
  export interface DescribeNotebookInstanceOutput {
    /**
     * The Amazon Resource Name (ARN) of the notebook instance.
     */
    NotebookInstanceArn?: NotebookInstanceArn;
    /**
     * The name of the Amazon SageMaker notebook instance. 
     */
    NotebookInstanceName?: NotebookInstanceName;
    /**
     * The status of the notebook instance.
     */
    NotebookInstanceStatus?: NotebookInstanceStatus;
    /**
     * If status is Failed, the reason it failed.
     */
    FailureReason?: FailureReason;
    /**
     * The URL that you use to connect to the Jupyter notebook that is running in your notebook instance. 
     */
    Url?: NotebookInstanceUrl;
    /**
     * The type of ML compute instance running on the notebook instance.
     */
    InstanceType?: InstanceType;
    /**
     * The ID of the VPC subnet.
     */
    SubnetId?: SubnetId;
    /**
     * The IDs of the VPC security groups.
     */
    SecurityGroups?: SecurityGroupIds;
    /**
     * The Amazon Resource Name (ARN) of the IAM role associated with the instance. 
     */
    RoleArn?: RoleArn;
    /**
     * The AWS KMS key ID Amazon SageMaker uses to encrypt data when storing it on the ML storage volume attached to the instance. 
     */
    KmsKeyId?: KmsKeyId;
    /**
     * The network interface IDs that Amazon SageMaker created at the time of creating the instance. 
     */
    NetworkInterfaceId?: NetworkInterfaceId;
    /**
     * A timestamp. Use this parameter to retrieve the time when the notebook instance was last modified. 
     */
    LastModifiedTime?: LastModifiedTime;
    /**
     * A timestamp. Use this parameter to return the time when the notebook instance was created
     */
    CreationTime?: CreationTime;
    /**
     * Returns the name of a notebook instance lifecycle configuration. For information about notebook instance lifestyle configurations, see Step 2.1: (Optional) Customize a Notebook Instance 
     */
    NotebookInstanceLifecycleConfigName?: NotebookInstanceLifecycleConfigName;
    /**
     * Describes whether Amazon SageMaker provides internet access to the notebook instance. If this value is set to Disabled, the notebook instance does not have internet access, and cannot connect to Amazon SageMaker training and endpoint services. For more information, see Notebook Instances Are Internet-Enabled by Default.
     */
    DirectInternetAccess?: DirectInternetAccess;
    /**
     * The size, in GB, of the ML storage volume attached to the notebook instance.
     */
    VolumeSizeInGB?: NotebookInstanceVolumeSizeInGB;
    /**
     * A list of the Elastic Inference (EI) instance types associated with this notebook instance. Currently only one EI instance type can be associated with a notebook instance. For more information, see Using Elastic Inference in Amazon SageMaker.
     */
    AcceleratorTypes?: NotebookInstanceAcceleratorTypes;
    /**
     * The Git repository associated with the notebook instance as its default code repository. This can be either the name of a Git repository stored as a resource in your account, or the URL of a Git repository in AWS CodeCommit or in any other Git repository. When you open a notebook instance, it opens in the directory that contains this repository. For more information, see Associating Git Repositories with Amazon SageMaker Notebook Instances.
     */
    DefaultCodeRepository?: CodeRepositoryNameOrUrl;
    /**
     * An array of up to three Git repositories associated with the notebook instance. These can be either the names of Git repositories stored as resources in your account, or the URL of Git repositories in AWS CodeCommit or in any other Git repository. These repositories are cloned at the same level as the default repository of your notebook instance. For more information, see Associating Git Repositories with Amazon SageMaker Notebook Instances.
     */
    AdditionalCodeRepositories?: AdditionalCodeRepositoryNamesOrUrls;
    /**
     * Whether root access is enabled or disabled for users of the notebook instance.  Lifecycle configurations need root access to be able to set up a notebook instance. Because of this, lifecycle configurations associated with a notebook instance always run with root access even if you disable root access for users. 
     */
    RootAccess?: RootAccess;
  }
  export interface DescribeSubscribedWorkteamRequest {
    /**
     * The Amazon Resource Name (ARN) of the subscribed work team to describe.
     */
    WorkteamArn: WorkteamArn;
  }
  export interface DescribeSubscribedWorkteamResponse {
    /**
     * A Workteam instance that contains information about the work team.
     */
    SubscribedWorkteam: SubscribedWorkteam;
  }
  export interface DescribeTrainingJobRequest {
    /**
     * The name of the training job.
     */
    TrainingJobName: TrainingJobName;
  }
  export interface DescribeTrainingJobResponse {
    /**
     *  Name of the model training job. 
     */
    TrainingJobName: TrainingJobName;
    /**
     * The Amazon Resource Name (ARN) of the training job.
     */
    TrainingJobArn: TrainingJobArn;
    /**
     * The Amazon Resource Name (ARN) of the associated hyperparameter tuning job if the training job was launched by a hyperparameter tuning job.
     */
    TuningJobArn?: HyperParameterTuningJobArn;
    /**
     * The Amazon Resource Name (ARN) of the Amazon SageMaker Ground Truth labeling job that created the transform or training job.
     */
    LabelingJobArn?: LabelingJobArn;
    /**
     * Information about the Amazon S3 location that is configured for storing model artifacts. 
     */
    ModelArtifacts: ModelArtifacts;
    /**
     * The status of the training job. Amazon SageMaker provides the following training job statuses:    InProgress - The training is in progress.    Completed - The training job has completed.    Failed - The training job has failed. To see the reason for the failure, see the FailureReason field in the response to a DescribeTrainingJobResponse call.    Stopping - The training job is stopping.    Stopped - The training job has stopped.   For more detailed information, see SecondaryStatus. 
     */
    TrainingJobStatus: TrainingJobStatus;
    /**
     *  Provides detailed information about the state of the training job. For detailed information on the secondary status of the training job, see StatusMessage under SecondaryStatusTransition. Amazon SageMaker provides primary statuses and secondary statuses that apply to each of them:  InProgress     Starting - Starting the training job.    Downloading - An optional stage for algorithms that support File training input mode. It indicates that data is being downloaded to the ML storage volumes.    Training - Training is in progress.    Interrupted - The job stopped because the managed spot training instances were interrupted.     Uploading - Training is complete and the model artifacts are being uploaded to the S3 location.    Completed     Completed - The training job has completed.    Failed     Failed - The training job has failed. The reason for the failure is returned in the FailureReason field of DescribeTrainingJobResponse.    Stopped     MaxRuntimeExceeded - The job stopped because it exceeded the maximum allowed runtime.    MaxWaitTmeExceeded - The job stopped because it exceeded the maximum allowed wait time.    Stopped - The training job has stopped.    Stopping     Stopping - Stopping the training job.      Valid values for SecondaryStatus are subject to change.   We no longer support the following secondary statuses:    LaunchingMLInstances     PreparingTrainingStack     DownloadingTrainingImage   
     */
    SecondaryStatus: SecondaryStatus;
    /**
     * If the training job failed, the reason it failed. 
     */
    FailureReason?: FailureReason;
    /**
     * Algorithm-specific parameters. 
     */
    HyperParameters?: HyperParameters;
    /**
     * Information about the algorithm used for training, and algorithm metadata. 
     */
    AlgorithmSpecification: AlgorithmSpecification;
    /**
     * The AWS Identity and Access Management (IAM) role configured for the training job. 
     */
    RoleArn?: RoleArn;
    /**
     * An array of Channel objects that describes each data input channel. 
     */
    InputDataConfig?: InputDataConfig;
    /**
     * The S3 path where model artifacts that you configured when creating the job are stored. Amazon SageMaker creates subfolders for model artifacts. 
     */
    OutputDataConfig?: OutputDataConfig;
    /**
     * Resources, including ML compute instances and ML storage volumes, that are configured for model training. 
     */
    ResourceConfig: ResourceConfig;
    /**
     * A VpcConfig object that specifies the VPC that this training job has access to. For more information, see Protect Training Jobs by Using an Amazon Virtual Private Cloud.
     */
    VpcConfig?: VpcConfig;
    /**
     * Specifies a limit to how long a model training job can run. It also specifies the maximum time to wait for a spot instance. When the job reaches the time limit, Amazon SageMaker ends the training job. Use this API to cap model training costs. To stop a job, Amazon SageMaker sends the algorithm the SIGTERM signal, which delays job termination for 120 seconds. Algorithms can use this 120-second window to save the model artifacts, so the results of training are not lost. 
     */
    StoppingCondition: StoppingCondition;
    /**
     * A timestamp that indicates when the training job was created.
     */
    CreationTime: Timestamp;
    /**
     * Indicates the time when the training job starts on training instances. You are billed for the time interval between this time and the value of TrainingEndTime. The start time in CloudWatch Logs might be later than this time. The difference is due to the time it takes to download the training data and to the size of the training container.
     */
    TrainingStartTime?: Timestamp;
    /**
     * Indicates the time when the training job ends on training instances. You are billed for the time interval between the value of TrainingStartTime and this time. For successful jobs and stopped jobs, this is the time after model artifacts are uploaded. For failed jobs, this is the time when Amazon SageMaker detects a job failure.
     */
    TrainingEndTime?: Timestamp;
    /**
     * A timestamp that indicates when the status of the training job was last modified.
     */
    LastModifiedTime?: Timestamp;
    /**
     * A history of all of the secondary statuses that the training job has transitioned through.
     */
    SecondaryStatusTransitions?: SecondaryStatusTransitions;
    /**
     * A collection of MetricData objects that specify the names, values, and dates and times that the training algorithm emitted to Amazon CloudWatch.
     */
    FinalMetricDataList?: FinalMetricDataList;
    /**
     * If you want to allow inbound or outbound network calls, except for calls between peers within a training cluster for distributed training, choose True. If you enable network isolation for training jobs that are configured to use a VPC, Amazon SageMaker downloads and uploads customer data and model artifacts through the specified VPC, but the training container does not have network access.  The Semantic Segmentation built-in algorithm does not support network isolation. 
     */
    EnableNetworkIsolation?: Boolean;
    /**
     * To encrypt all communications between ML compute instances in distributed training, choose True. Encryption provides greater security for distributed training, but training might take longer. How long it takes depends on the amount of communication between compute instances, especially if you use a deep learning algorithms in distributed training.
     */
    EnableInterContainerTrafficEncryption?: Boolean;
    /**
     * A Boolean indicating whether managed spot training is enabled (True) or not (False).
     */
    EnableManagedSpotTraining?: Boolean;
    CheckpointConfig?: CheckpointConfig;
    /**
     * The training time in seconds.
     */
    TrainingTimeInSeconds?: TrainingTimeInSeconds;
    /**
     * The billable time in seconds. You can calculate the savings from using managed spot training using the formula (1 - BillableTimeInSeconds / TrainingTimeInSeconds) * 100. For example, if BillableTimeInSeconds is 100 and TrainingTimeInSeconds is 500, the savings is 80%.
     */
    BillableTimeInSeconds?: BillableTimeInSeconds;
  }
  export interface DescribeTransformJobRequest {
    /**
     * The name of the transform job that you want to view details of.
     */
    TransformJobName: TransformJobName;
  }
  export interface DescribeTransformJobResponse {
    /**
     * The name of the transform job.
     */
    TransformJobName: TransformJobName;
    /**
     * The Amazon Resource Name (ARN) of the transform job.
     */
    TransformJobArn: TransformJobArn;
    /**
     * The status of the transform job. If the transform job failed, the reason is returned in the FailureReason field.
     */
    TransformJobStatus: TransformJobStatus;
    /**
     * If the transform job failed, FailureReason describes why it failed. A transform job creates a log file, which includes error messages, and stores it as an Amazon S3 object. For more information, see Log Amazon SageMaker Events with Amazon CloudWatch.
     */
    FailureReason?: FailureReason;
    /**
     * The name of the model used in the transform job.
     */
    ModelName: ModelName;
    /**
     * The maximum number of parallel requests on each instance node that can be launched in a transform job. The default value is 1.
     */
    MaxConcurrentTransforms?: MaxConcurrentTransforms;
    /**
     * The maximum payload size, in MB, used in the transform job.
     */
    MaxPayloadInMB?: MaxPayloadInMB;
    /**
     * Specifies the number of records to include in a mini-batch for an HTTP inference request. A record  is a single unit of input data that inference can be made on. For example, a single line in a CSV file is a record.  To enable the batch strategy, you must set SplitType to Line, RecordIO, or TFRecord.
     */
    BatchStrategy?: BatchStrategy;
    /**
     * The environment variables to set in the Docker container. We support up to 16 key and values entries in the map.
     */
    Environment?: TransformEnvironmentMap;
    /**
     * Describes the dataset to be transformed and the Amazon S3 location where it is stored.
     */
    TransformInput: TransformInput;
    /**
     * Identifies the Amazon S3 location where you want Amazon SageMaker to save the results from the transform job.
     */
    TransformOutput?: TransformOutput;
    /**
     * Describes the resources, including ML instance types and ML instance count, to use for the transform job.
     */
    TransformResources: TransformResources;
    /**
     * A timestamp that shows when the transform Job was created.
     */
    CreationTime: Timestamp;
    /**
     * Indicates when the transform job starts on ML instances. You are billed for the time interval between this time and the value of TransformEndTime.
     */
    TransformStartTime?: Timestamp;
    /**
     * Indicates when the transform job has been completed, or has stopped or failed. You are billed for the time interval between this time and the value of TransformStartTime.
     */
    TransformEndTime?: Timestamp;
    /**
     * The Amazon Resource Name (ARN) of the Amazon SageMaker Ground Truth labeling job that created the transform or training job.
     */
    LabelingJobArn?: LabelingJobArn;
    DataProcessing?: DataProcessing;
  }
  export interface DescribeWorkteamRequest {
    /**
     * The name of the work team to return a description of.
     */
    WorkteamName: WorkteamName;
  }
  export interface DescribeWorkteamResponse {
    /**
     * A Workteam instance that contains information about the work team. 
     */
    Workteam: Workteam;
  }
  export interface DesiredWeightAndCapacity {
    /**
     * The name of the variant to update.
     */
    VariantName: VariantName;
    /**
     * The variant's weight.
     */
    DesiredWeight?: VariantWeight;
    /**
     * The variant's capacity.
     */
    DesiredInstanceCount?: TaskCount;
  }
  export type DesiredWeightAndCapacityList = DesiredWeightAndCapacity[];
  export type DetailedAlgorithmStatus = "NotStarted"|"InProgress"|"Completed"|"Failed"|string;
  export type DetailedModelPackageStatus = "NotStarted"|"InProgress"|"Completed"|"Failed"|string;
  export type DirectInternetAccess = "Enabled"|"Disabled"|string;
  export type DirectoryPath = string;
  export type DisassociateAdditionalCodeRepositories = boolean;
  export type DisassociateDefaultCodeRepository = boolean;
  export type DisassociateNotebookInstanceAcceleratorTypes = boolean;
  export type DisassociateNotebookInstanceLifecycleConfig = boolean;
  export type Dollars = number;
  export type EndpointArn = string;
  export type EndpointConfigArn = string;
  export type EndpointConfigName = string;
  export type EndpointConfigNameContains = string;
  export type EndpointConfigSortKey = "Name"|"CreationTime"|string;
  export interface EndpointConfigSummary {
    /**
     * The name of the endpoint configuration.
     */
    EndpointConfigName: EndpointConfigName;
    /**
     * The Amazon Resource Name (ARN) of the endpoint configuration.
     */
    EndpointConfigArn: EndpointConfigArn;
    /**
     * A timestamp that shows when the endpoint configuration was created.
     */
    CreationTime: Timestamp;
  }
  export type EndpointConfigSummaryList = EndpointConfigSummary[];
  export type EndpointName = string;
  export type EndpointNameContains = string;
  export type EndpointSortKey = "Name"|"CreationTime"|"Status"|string;
  export type EndpointStatus = "OutOfService"|"Creating"|"Updating"|"SystemUpdating"|"RollingBack"|"InService"|"Deleting"|"Failed"|string;
  export interface EndpointSummary {
    /**
     * The name of the endpoint.
     */
    EndpointName: EndpointName;
    /**
     * The Amazon Resource Name (ARN) of the endpoint.
     */
    EndpointArn: EndpointArn;
    /**
     * A timestamp that shows when the endpoint was created.
     */
    CreationTime: Timestamp;
    /**
     * A timestamp that shows when the endpoint was last modified.
     */
    LastModifiedTime: Timestamp;
    /**
     * The status of the endpoint.    OutOfService: Endpoint is not available to take incoming requests.    Creating: CreateEndpoint is executing.    Updating: UpdateEndpoint or UpdateEndpointWeightsAndCapacities is executing.    SystemUpdating: Endpoint is undergoing maintenance and cannot be updated or deleted or re-scaled until it has completed. This maintenance operation does not change any customer-specified values such as VPC config, KMS encryption, model, instance type, or instance count.    RollingBack: Endpoint fails to scale up or down or change its variant weight and is in the process of rolling back to its previous configuration. Once the rollback completes, endpoint returns to an InService status. This transitional status only applies to an endpoint that has autoscaling enabled and is undergoing variant weight or capacity changes as part of an UpdateEndpointWeightsAndCapacities call or when the UpdateEndpointWeightsAndCapacities operation is called explicitly.    InService: Endpoint is available to process incoming requests.    Deleting: DeleteEndpoint is executing.    Failed: Endpoint could not be created, updated, or re-scaled. Use DescribeEndpointOutput$FailureReason for information about the failure. DeleteEndpoint is the only operation that can be performed on a failed endpoint.   To get a list of endpoints with a specified status, use the ListEndpointsInput$StatusEquals filter.
     */
    EndpointStatus: EndpointStatus;
  }
  export type EndpointSummaryList = EndpointSummary[];
  export type EntityDescription = string;
  export type EntityName = string;
  export type EnvironmentKey = string;
  export type EnvironmentMap = {[key: string]: EnvironmentValue};
  export type EnvironmentValue = string;
  export type FailureReason = string;
  export type FileSystemAccessMode = "rw"|"ro"|string;
  export interface FileSystemDataSource {
    /**
     * The file system id.
     */
    FileSystemId: FileSystemId;
    /**
     * The access mode of the mount of the directory associated with the channel. A directory can be mounted either in ro (read-only) or rw (read-write) mode.
     */
    FileSystemAccessMode: FileSystemAccessMode;
    /**
     * The file system type. 
     */
    FileSystemType: FileSystemType;
    /**
     * The full path to the directory to associate with the channel.
     */
    DirectoryPath: DirectoryPath;
  }
  export type FileSystemId = string;
  export type FileSystemType = "EFS"|"FSxLustre"|string;
  export interface Filter {
    /**
     * A property name. For example, TrainingJobName. For the list of valid property names returned in a search result for each supported resource, see TrainingJob properties. You must specify a valid property name for the resource.
     */
    Name: ResourcePropertyName;
    /**
     * A Boolean binary operator that is used to evaluate the filter. The operator field contains one of the following values:  Equals  The specified resource in Name equals the specified Value.  NotEquals  The specified resource in Name does not equal the specified Value.  GreaterThan  The specified resource in Name is greater than the specified Value. Not supported for text-based properties.  GreaterThanOrEqualTo  The specified resource in Name is greater than or equal to the specified Value. Not supported for text-based properties.  LessThan  The specified resource in Name is less than the specified Value. Not supported for text-based properties.  LessThanOrEqualTo  The specified resource in Name is less than or equal to the specified Value. Not supported for text-based properties.  Contains  Only supported for text-based properties. The word-list of the property contains the specified Value.   If you have specified a filter Value, the default is Equals.
     */
    Operator?: Operator;
    /**
     * A value used with Resource and Operator to determine if objects satisfy the filter's condition. For numerical properties, Value must be an integer or floating-point decimal. For timestamp properties, Value must be an ISO 8601 date-time string of the following format: YYYY-mm-dd'T'HH:MM:SS.
     */
    Value?: FilterValue;
  }
  export type FilterList = Filter[];
  export type FilterValue = string;
  export interface FinalHyperParameterTuningJobObjectiveMetric {
    /**
     * Whether to minimize or maximize the objective metric. Valid values are Minimize and Maximize.
     */
    Type?: HyperParameterTuningJobObjectiveType;
    /**
     * The name of the objective metric.
     */
    MetricName: MetricName;
    /**
     * The value of the objective metric.
     */
    Value: MetricValue;
  }
  export type FinalMetricDataList = MetricData[];
  export type Float = number;
  export type Framework = "TENSORFLOW"|"MXNET"|"ONNX"|"PYTORCH"|"XGBOOST"|string;
  export interface GetSearchSuggestionsRequest {
    /**
     * The name of the Amazon SageMaker resource to Search for. The only valid Resource value is TrainingJob.
     */
    Resource: ResourceType;
    /**
     * Limits the property names that are included in the response.
     */
    SuggestionQuery?: SuggestionQuery;
  }
  export interface GetSearchSuggestionsResponse {
    /**
     * A list of property names for a Resource that match a SuggestionQuery.
     */
    PropertyNameSuggestions?: PropertyNameSuggestionList;
  }
  export interface GitConfig {
    /**
     * The URL where the Git repository is located.
     */
    RepositoryUrl: GitConfigUrl;
    /**
     * The default branch for the Git repository.
     */
    Branch?: Branch;
    /**
     * The Amazon Resource Name (ARN) of the AWS Secrets Manager secret that contains the credentials used to access the git repository. The secret must have a staging label of AWSCURRENT and must be in the following format:  {"username": UserName, "password": Password} 
     */
    SecretArn?: SecretArn;
  }
  export interface GitConfigForUpdate {
    /**
     * The Amazon Resource Name (ARN) of the AWS Secrets Manager secret that contains the credentials used to access the git repository. The secret must have a staging label of AWSCURRENT and must be in the following format:  {"username": UserName, "password": Password} 
     */
    SecretArn?: SecretArn;
  }
  export type GitConfigUrl = string;
  export interface HumanTaskConfig {
    /**
     * The Amazon Resource Name (ARN) of the work team assigned to complete the tasks.
     */
    WorkteamArn: WorkteamArn;
    /**
     * Information about the user interface that workers use to complete the labeling task.
     */
    UiConfig: UiConfig;
    /**
     * The Amazon Resource Name (ARN) of a Lambda function that is run before a data object is sent to a human worker. Use this function to provide input to a custom labeling job. For the built-in bounding box, image classification, semantic segmentation, and text classification task types, Amazon SageMaker Ground Truth provides the following Lambda functions:  US East (Northern Virginia) (us-east-1):     arn:aws:lambda:us-east-1:432418664414:function:PRE-BoundingBox     arn:aws:lambda:us-east-1:432418664414:function:PRE-ImageMultiClass     arn:aws:lambda:us-east-1:432418664414:function:PRE-SemanticSegmentation     arn:aws:lambda:us-east-1:432418664414:function:PRE-TextMultiClass     arn:aws:lambda:us-east-1:432418664414:function:PRE-NamedEntityRecognition     US East (Ohio) (us-east-2):     arn:aws:lambda:us-east-2:266458841044:function:PRE-BoundingBox     arn:aws:lambda:us-east-2:266458841044:function:PRE-ImageMultiClass     arn:aws:lambda:us-east-2:266458841044:function:PRE-SemanticSegmentation     arn:aws:lambda:us-east-2:266458841044:function:PRE-TextMultiClass     arn:aws:lambda:us-east-2:266458841044:function:PRE-NamedEntityRecognition     US West (Oregon) (us-west-2):     arn:aws:lambda:us-west-2:081040173940:function:PRE-BoundingBox     arn:aws:lambda:us-west-2:081040173940:function:PRE-ImageMultiClass     arn:aws:lambda:us-west-2:081040173940:function:PRE-SemanticSegmentation     arn:aws:lambda:us-west-2:081040173940:function:PRE-TextMultiClass     arn:aws:lambda:us-west-2:081040173940:function:PRE-NamedEntityRecognition     Canada (Central) (ca-central-1):     arn:awslambda:ca-central-1:918755190332:function:PRE-BoundingBox     arn:awslambda:ca-central-1:918755190332:function:PRE-ImageMultiClass     arn:awslambda:ca-central-1:918755190332:function:PRE-SemanticSegmentation     arn:awslambda:ca-central-1:918755190332:function:PRE-TextMultiClass     arn:awslambda:ca-central-1:918755190332:function:PRE-NamedEntityRecognition     EU (Ireland) (eu-west-1):     arn:aws:lambda:eu-west-1:568282634449:function:PRE-BoundingBox     arn:aws:lambda:eu-west-1:568282634449:function:PRE-ImageMultiClass     arn:aws:lambda:eu-west-1:568282634449:function:PRE-SemanticSegmentation     arn:aws:lambda:eu-west-1:568282634449:function:PRE-TextMultiClass     arn:aws:lambda:eu-west-1:568282634449:function:PRE-NamedEntityRecognition     EU (London) (eu-west-2):     arn:awslambda:eu-west-2:487402164563:function:PRE-BoundingBox     arn:awslambda:eu-west-2:487402164563:function:PRE-ImageMultiClass     arn:awslambda:eu-west-2:487402164563:function:PRE-SemanticSegmentation     arn:awslambda:eu-west-2:487402164563:function:PRE-TextMultiClass     arn:awslambda:eu-west-2:487402164563:function:PRE-NamedEntityRecognition     EU Frankfurt (eu-central-1):     arn:awslambda:eu-central-1:203001061592:function:PRE-BoundingBox     arn:awslambda:eu-central-1:203001061592:function:PRE-ImageMultiClass     arn:awslambda:eu-central-1:203001061592:function:PRE-SemanticSegmentation     arn:awslambda:eu-central-1:203001061592:function:PRE-TextMultiClass     arn:awslambda:eu-central-1:203001061592:function:PRE-NamedEntityRecognition     Asia Pacific (Tokyo) (ap-northeast-1):     arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-BoundingBox     arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-ImageMultiClass     arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-SemanticSegmentation     arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-TextMultiClass     arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-NamedEntityRecognition     Asia Pacific (Seoul) (ap-northeast-2):     arn:awslambda:ap-northeast-2:845288260483:function:PRE-BoundingBox     arn:awslambda:ap-northeast-2:845288260483:function:PRE-ImageMultiClass     arn:awslambda:ap-northeast-2:845288260483:function:PRE-SemanticSegmentation     arn:awslambda:ap-northeast-2:845288260483:function:PRE-TextMultiClass     arn:awslambda:ap-northeast-2:845288260483:function:PRE-NamedEntityRecognition     Asia Pacific (Mumbai) (ap-south-1):     arn:awslambda:ap-south-1:565803892007:function:PRE-BoundingBox     arn:awslambda:ap-south-1:565803892007:function:PRE-ImageMultiClass     arn:awslambda:ap-south-1:565803892007:function:PRE-SemanticSegmentation     arn:awslambda:ap-south-1:565803892007:function:PRE-TextMultiClass     arn:awslambda:ap-south-1:565803892007:function:PRE-NamedEntityRecognition     Asia Pacific (Singapore) (ap-southeast-1):     arn:awslambda:ap-southeast-1:377565633583:function:PRE-BoundingBox     arn:awslambda:ap-southeast-1:377565633583:function:PRE-ImageMultiClass     arn:awslambda:ap-southeast-1:377565633583:function:PRE-SemanticSegmentation     arn:awslambda:ap-southeast-1:377565633583:function:PRE-TextMultiClass     arn:awslambda:ap-southeast-1:377565633583:function:PRE-NamedEntityRecognition     Asia Pacific (Sydney) (ap-southeast-2):     arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-BoundingBox     arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-ImageMultiClass     arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-SemanticSegmentation     arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-TextMultiClass     arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-NamedEntityRecognition   
     */
    PreHumanTaskLambdaArn: LambdaFunctionArn;
    /**
     * Keywords used to describe the task so that workers on Amazon Mechanical Turk can discover the task.
     */
    TaskKeywords?: TaskKeywords;
    /**
     * A title for the task for your human workers.
     */
    TaskTitle: TaskTitle;
    /**
     * A description of the task for your human workers.
     */
    TaskDescription: TaskDescription;
    /**
     * The number of human workers that will label an object. 
     */
    NumberOfHumanWorkersPerDataObject: NumberOfHumanWorkersPerDataObject;
    /**
     * The amount of time that a worker has to complete a task.
     */
    TaskTimeLimitInSeconds: TaskTimeLimitInSeconds;
    /**
     * The length of time that a task remains available for labeling by human workers. If you choose the Amazon Mechanical Turk workforce, the maximum is 12 hours (43200). For private and vendor workforces, the maximum is as listed.
     */
    TaskAvailabilityLifetimeInSeconds?: TaskAvailabilityLifetimeInSeconds;
    /**
     * Defines the maximum number of data objects that can be labeled by human workers at the same time. Each object may have more than one worker at one time.
     */
    MaxConcurrentTaskCount?: MaxConcurrentTaskCount;
    /**
     * Configures how labels are consolidated across human workers.
     */
    AnnotationConsolidationConfig: AnnotationConsolidationConfig;
    /**
     * The price that you pay for each task performed by an Amazon Mechanical Turk worker.
     */
    PublicWorkforceTaskPrice?: PublicWorkforceTaskPrice;
  }
  export interface HyperParameterAlgorithmSpecification {
    /**
     *  The registry path of the Docker image that contains the training algorithm. For information about Docker registry paths for built-in algorithms, see Algorithms Provided by Amazon SageMaker: Common Parameters. Amazon SageMaker supports both registry/repository[:tag] and registry/repository[@digest] image path formats. For more information, see Using Your Own Algorithms with Amazon SageMaker.
     */
    TrainingImage?: AlgorithmImage;
    /**
     * The input mode that the algorithm supports: File or Pipe. In File input mode, Amazon SageMaker downloads the training data from Amazon S3 to the storage volume that is attached to the training instance and mounts the directory to the Docker volume for the training container. In Pipe input mode, Amazon SageMaker streams data directly from Amazon S3 to the container.  If you specify File mode, make sure that you provision the storage volume that is attached to the training instance with enough capacity to accommodate the training data downloaded from Amazon S3, the model artifacts, and intermediate information.  For more information about input modes, see Algorithms. 
     */
    TrainingInputMode: TrainingInputMode;
    /**
     * The name of the resource algorithm to use for the hyperparameter tuning job. If you specify a value for this parameter, do not specify a value for TrainingImage.
     */
    AlgorithmName?: ArnOrName;
    /**
     * An array of MetricDefinition objects that specify the metrics that the algorithm emits.
     */
    MetricDefinitions?: MetricDefinitionList;
  }
  export type HyperParameterScalingType = "Auto"|"Linear"|"Logarithmic"|"ReverseLogarithmic"|string;
  export interface HyperParameterSpecification {
    /**
     * The name of this hyperparameter. The name must be unique.
     */
    Name: ParameterName;
    /**
     * A brief description of the hyperparameter.
     */
    Description?: EntityDescription;
    /**
     * The type of this hyperparameter. The valid types are Integer, Continuous, Categorical, and FreeText.
     */
    Type: ParameterType;
    /**
     * The allowed range for this hyperparameter.
     */
    Range?: ParameterRange;
    /**
     * Indicates whether this hyperparameter is tunable in a hyperparameter tuning job.
     */
    IsTunable?: Boolean;
    /**
     * Indicates whether this hyperparameter is required.
     */
    IsRequired?: Boolean;
    /**
     * The default value for this hyperparameter. If a default value is specified, a hyperparameter cannot be required.
     */
    DefaultValue?: ParameterValue;
  }
  export type HyperParameterSpecifications = HyperParameterSpecification[];
  export interface HyperParameterTrainingJobDefinition {
    /**
     * Specifies the values of hyperparameters that do not change for the tuning job.
     */
    StaticHyperParameters?: HyperParameters;
    /**
     * The HyperParameterAlgorithmSpecification object that specifies the resource algorithm to use for the training jobs that the tuning job launches.
     */
    AlgorithmSpecification: HyperParameterAlgorithmSpecification;
    /**
     * The Amazon Resource Name (ARN) of the IAM role associated with the training jobs that the tuning job launches.
     */
    RoleArn: RoleArn;
    /**
     * An array of Channel objects that specify the input for the training jobs that the tuning job launches.
     */
    InputDataConfig?: InputDataConfig;
    /**
     * The VpcConfig object that specifies the VPC that you want the training jobs that this hyperparameter tuning job launches to connect to. Control access to and from your training container by configuring the VPC. For more information, see Protect Training Jobs by Using an Amazon Virtual Private Cloud.
     */
    VpcConfig?: VpcConfig;
    /**
     * Specifies the path to the Amazon S3 bucket where you store model artifacts from the training jobs that the tuning job launches.
     */
    OutputDataConfig: OutputDataConfig;
    /**
     * The resources, including the compute instances and storage volumes, to use for the training jobs that the tuning job launches. Storage volumes store model artifacts and incremental states. Training algorithms might also use storage volumes for scratch space. If you want Amazon SageMaker to use the storage volume to store the training data, choose File as the TrainingInputMode in the algorithm specification. For distributed training algorithms, specify an instance count greater than 1.
     */
    ResourceConfig: ResourceConfig;
    /**
     * Specifies a limit to how long a model hyperparameter training job can run. It also specifies how long you are willing to wait for a managed spot training job to complete. When the job reaches the a limit, Amazon SageMaker ends the training job. Use this API to cap model training costs.
     */
    StoppingCondition: StoppingCondition;
    /**
     * Isolates the training container. No inbound or outbound network calls can be made, except for calls between peers within a training cluster for distributed training. If network isolation is used for training jobs that are configured to use a VPC, Amazon SageMaker downloads and uploads customer data and model artifacts through the specified VPC, but the training container does not have network access.  The Semantic Segmentation built-in algorithm does not support network isolation. 
     */
    EnableNetworkIsolation?: Boolean;
    /**
     * To encrypt all communications between ML compute instances in distributed training, choose True. Encryption provides greater security for distributed training, but training might take longer. How long it takes depends on the amount of communication between compute instances, especially if you use a deep learning algorithm in distributed training.
     */
    EnableInterContainerTrafficEncryption?: Boolean;
    /**
     * A Boolean indicating whether managed spot training is enabled (True) or not (False).
     */
    EnableManagedSpotTraining?: Boolean;
    CheckpointConfig?: CheckpointConfig;
  }
  export type HyperParameterTrainingJobSummaries = HyperParameterTrainingJobSummary[];
  export interface HyperParameterTrainingJobSummary {
    /**
     * The name of the training job.
     */
    TrainingJobName: TrainingJobName;
    /**
     * The Amazon Resource Name (ARN) of the training job.
     */
    TrainingJobArn: TrainingJobArn;
    /**
     * The HyperParameter tuning job that launched the training job.
     */
    TuningJobName?: HyperParameterTuningJobName;
    /**
     * The date and time that the training job was created.
     */
    CreationTime: Timestamp;
    /**
     * The date and time that the training job started.
     */
    TrainingStartTime?: Timestamp;
    /**
     * Specifies the time when the training job ends on training instances. You are billed for the time interval between the value of TrainingStartTime and this time. For successful jobs and stopped jobs, this is the time after model artifacts are uploaded. For failed jobs, this is the time when Amazon SageMaker detects a job failure.
     */
    TrainingEndTime?: Timestamp;
    /**
     * The status of the training job.
     */
    TrainingJobStatus: TrainingJobStatus;
    /**
     * A list of the hyperparameters for which you specified ranges to search.
     */
    TunedHyperParameters: HyperParameters;
    /**
     * The reason that the training job failed. 
     */
    FailureReason?: FailureReason;
    /**
     * The FinalHyperParameterTuningJobObjectiveMetric object that specifies the value of the objective metric of the tuning job that launched this training job.
     */
    FinalHyperParameterTuningJobObjectiveMetric?: FinalHyperParameterTuningJobObjectiveMetric;
    /**
     * The status of the objective metric for the training job:   Succeeded: The final objective metric for the training job was evaluated by the hyperparameter tuning job and used in the hyperparameter tuning process.     Pending: The training job is in progress and evaluation of its final objective metric is pending.     Failed: The final objective metric for the training job was not evaluated, and was not used in the hyperparameter tuning process. This typically occurs when the training job failed or did not emit an objective metric.  
     */
    ObjectiveStatus?: ObjectiveStatus;
  }
  export type HyperParameterTuningJobArn = string;
  export interface HyperParameterTuningJobConfig {
    /**
     * Specifies how hyperparameter tuning chooses the combinations of hyperparameter values to use for the training job it launches. To use the Bayesian search stategy, set this to Bayesian. To randomly search, set it to Random. For information about search strategies, see How Hyperparameter Tuning Works.
     */
    Strategy: HyperParameterTuningJobStrategyType;
    /**
     * The HyperParameterTuningJobObjective object that specifies the objective metric for this tuning job.
     */
    HyperParameterTuningJobObjective?: HyperParameterTuningJobObjective;
    /**
     * The ResourceLimits object that specifies the maximum number of training jobs and parallel training jobs for this tuning job.
     */
    ResourceLimits: ResourceLimits;
    /**
     * The ParameterRanges object that specifies the ranges of hyperparameters that this tuning job searches.
     */
    ParameterRanges?: ParameterRanges;
    /**
     * Specifies whether to use early stopping for training jobs launched by the hyperparameter tuning job. This can be one of the following values (the default value is OFF):  OFF  Training jobs launched by the hyperparameter tuning job do not use early stopping.  AUTO  Amazon SageMaker stops training jobs launched by the hyperparameter tuning job when they are unlikely to perform better than previously completed training jobs. For more information, see Stop Training Jobs Early.  
     */
    TrainingJobEarlyStoppingType?: TrainingJobEarlyStoppingType;
  }
  export type HyperParameterTuningJobName = string;
  export interface HyperParameterTuningJobObjective {
    /**
     * Whether to minimize or maximize the objective metric.
     */
    Type: HyperParameterTuningJobObjectiveType;
    /**
     * The name of the metric to use for the objective metric.
     */
    MetricName: MetricName;
  }
  export type HyperParameterTuningJobObjectiveType = "Maximize"|"Minimize"|string;
  export type HyperParameterTuningJobObjectives = HyperParameterTuningJobObjective[];
  export type HyperParameterTuningJobSortByOptions = "Name"|"Status"|"CreationTime"|string;
  export type HyperParameterTuningJobStatus = "Completed"|"InProgress"|"Failed"|"Stopped"|"Stopping"|string;
  export type HyperParameterTuningJobStrategyType = "Bayesian"|"Random"|string;
  export type HyperParameterTuningJobSummaries = HyperParameterTuningJobSummary[];
  export interface HyperParameterTuningJobSummary {
    /**
     * The name of the tuning job.
     */
    HyperParameterTuningJobName: HyperParameterTuningJobName;
    /**
     * The Amazon Resource Name (ARN) of the tuning job.
     */
    HyperParameterTuningJobArn: HyperParameterTuningJobArn;
    /**
     * The status of the tuning job.
     */
    HyperParameterTuningJobStatus: HyperParameterTuningJobStatus;
    /**
     * Specifies the search strategy hyperparameter tuning uses to choose which hyperparameters to use for each iteration. Currently, the only valid value is Bayesian.
     */
    Strategy: HyperParameterTuningJobStrategyType;
    /**
     * The date and time that the tuning job was created.
     */
    CreationTime: Timestamp;
    /**
     * The date and time that the tuning job ended.
     */
    HyperParameterTuningEndTime?: Timestamp;
    /**
     * The date and time that the tuning job was modified.
     */
    LastModifiedTime?: Timestamp;
    /**
     * The TrainingJobStatusCounters object that specifies the numbers of training jobs, categorized by status, that this tuning job launched.
     */
    TrainingJobStatusCounters: TrainingJobStatusCounters;
    /**
     * The ObjectiveStatusCounters object that specifies the numbers of training jobs, categorized by objective metric status, that this tuning job launched.
     */
    ObjectiveStatusCounters: ObjectiveStatusCounters;
    /**
     * The ResourceLimits object that specifies the maximum number of training jobs and parallel training jobs allowed for this tuning job.
     */
    ResourceLimits?: ResourceLimits;
  }
  export interface HyperParameterTuningJobWarmStartConfig {
    /**
     * An array of hyperparameter tuning jobs that are used as the starting point for the new hyperparameter tuning job. For more information about warm starting a hyperparameter tuning job, see Using a Previous Hyperparameter Tuning Job as a Starting Point. Hyperparameter tuning jobs created before October 1, 2018 cannot be used as parent jobs for warm start tuning jobs.
     */
    ParentHyperParameterTuningJobs: ParentHyperParameterTuningJobs;
    /**
     * Specifies one of the following:  IDENTICAL_DATA_AND_ALGORITHM  The new hyperparameter tuning job uses the same input data and training image as the parent tuning jobs. You can change the hyperparameter ranges to search and the maximum number of training jobs that the hyperparameter tuning job launches. You cannot use a new version of the training algorithm, unless the changes in the new version do not affect the algorithm itself. For example, changes that improve logging or adding support for a different data format are allowed. You can also change hyperparameters from tunable to static, and from static to tunable, but the total number of static plus tunable hyperparameters must remain the same as it is in all parent jobs. The objective metric for the new tuning job must be the same as for all parent jobs.  TRANSFER_LEARNING  The new hyperparameter tuning job can include input data, hyperparameter ranges, maximum number of concurrent training jobs, and maximum number of training jobs that are different than those of its parent hyperparameter tuning jobs. The training image can also be a different version from the version used in the parent hyperparameter tuning job. You can also change hyperparameters from tunable to static, and from static to tunable, but the total number of static plus tunable hyperparameters must remain the same as it is in all parent jobs. The objective metric for the new tuning job must be the same as for all parent jobs.  
     */
    WarmStartType: HyperParameterTuningJobWarmStartType;
  }
  export type HyperParameterTuningJobWarmStartType = "IdenticalDataAndAlgorithm"|"TransferLearning"|string;
  export type HyperParameters = {[key: string]: ParameterValue};
  export type Image = string;
  export type ImageDigest = string;
  export interface InferenceSpecification {
    /**
     * The Amazon ECR registry path of the Docker image that contains the inference code.
     */
    Containers: ModelPackageContainerDefinitionList;
    /**
     * A list of the instance types on which a transformation job can be run or on which an endpoint can be deployed.
     */
    SupportedTransformInstanceTypes: TransformInstanceTypes;
    /**
     * A list of the instance types that are used to generate inferences in real-time.
     */
    SupportedRealtimeInferenceInstanceTypes: RealtimeInferenceInstanceTypes;
    /**
     * The supported MIME types for the input data.
     */
    SupportedContentTypes: ContentTypes;
    /**
     * The supported MIME types for the output data.
     */
    SupportedResponseMIMETypes: ResponseMIMETypes;
  }
  export interface InputConfig {
    /**
     * The S3 path where the model artifacts, which result from model training, are stored. This path must point to a single gzip compressed tar archive (.tar.gz suffix).
     */
    S3Uri: S3Uri;
    /**
     * Specifies the name and shape of the expected data inputs for your trained model with a JSON dictionary form. The data inputs are InputConfig$Framework specific.     TensorFlow: You must specify the name and shape (NHWC format) of the expected data inputs using a dictionary format for your trained model. The dictionary formats required for the console and CLI are different.   Examples for one input:   If using the console, {"input":[1,1024,1024,3]}    If using the CLI, {\"input\":[1,1024,1024,3]}      Examples for two inputs:   If using the console, {"data1": [1,28,28,1], "data2":[1,28,28,1]}    If using the CLI, {\"data1\": [1,28,28,1], \"data2\":[1,28,28,1]}         MXNET/ONNX: You must specify the name and shape (NCHW format) of the expected data inputs in order using a dictionary format for your trained model. The dictionary formats required for the console and CLI are different.   Examples for one input:   If using the console, {"data":[1,3,1024,1024]}    If using the CLI, {\"data\":[1,3,1024,1024]}      Examples for two inputs:   If using the console, {"var1": [1,1,28,28], "var2":[1,1,28,28]}     If using the CLI, {\"var1\": [1,1,28,28], \"var2\":[1,1,28,28]}         PyTorch: You can either specify the name and shape (NCHW format) of expected data inputs in order using a dictionary format for your trained model or you can specify the shape only using a list format. The dictionary formats required for the console and CLI are different. The list formats for the console and CLI are the same.   Examples for one input in dictionary format:   If using the console, {"input0":[1,3,224,224]}    If using the CLI, {\"input0\":[1,3,224,224]}      Example for one input in list format: [[1,3,224,224]]    Examples for two inputs in dictionary format:   If using the console, {"input0":[1,3,224,224], "input1":[1,3,224,224]}    If using the CLI, {\"input0\":[1,3,224,224], \"input1\":[1,3,224,224]}       Example for two inputs in list format: [[1,3,224,224], [1,3,224,224]]       XGBOOST: input data name and shape are not needed.  
     */
    DataInputConfig: DataInputConfig;
    /**
     * Identifies the framework in which the model was trained. For example: TENSORFLOW.
     */
    Framework: Framework;
  }
  export type InputDataConfig = Channel[];
  export type InputModes = TrainingInputMode[];
  export type InstanceType = "ml.t2.medium"|"ml.t2.large"|"ml.t2.xlarge"|"ml.t2.2xlarge"|"ml.t3.medium"|"ml.t3.large"|"ml.t3.xlarge"|"ml.t3.2xlarge"|"ml.m4.xlarge"|"ml.m4.2xlarge"|"ml.m4.4xlarge"|"ml.m4.10xlarge"|"ml.m4.16xlarge"|"ml.m5.xlarge"|"ml.m5.2xlarge"|"ml.m5.4xlarge"|"ml.m5.12xlarge"|"ml.m5.24xlarge"|"ml.c4.xlarge"|"ml.c4.2xlarge"|"ml.c4.4xlarge"|"ml.c4.8xlarge"|"ml.c5.xlarge"|"ml.c5.2xlarge"|"ml.c5.4xlarge"|"ml.c5.9xlarge"|"ml.c5.18xlarge"|"ml.c5d.xlarge"|"ml.c5d.2xlarge"|"ml.c5d.4xlarge"|"ml.c5d.9xlarge"|"ml.c5d.18xlarge"|"ml.p2.xlarge"|"ml.p2.8xlarge"|"ml.p2.16xlarge"|"ml.p3.2xlarge"|"ml.p3.8xlarge"|"ml.p3.16xlarge"|string;
  export interface IntegerParameterRange {
    /**
     * The name of the hyperparameter to search.
     */
    Name: ParameterKey;
    /**
     * The minimum value of the hyperparameter to search.
     */
    MinValue: ParameterValue;
    /**
     * The maximum value of the hyperparameter to search.
     */
    MaxValue: ParameterValue;
    /**
     * The scale that hyperparameter tuning uses to search the hyperparameter range. For information about choosing a hyperparameter scale, see Hyperparameter Scaling. One of the following values:  Auto  Amazon SageMaker hyperparameter tuning chooses the best scale for the hyperparameter.  Linear  Hyperparameter tuning searches the values in the hyperparameter range by using a linear scale.  Logarithmic  Hyperparemeter tuning searches the values in the hyperparameter range by using a logarithmic scale. Logarithmic scaling works only for ranges that have only values greater than 0.  
     */
    ScalingType?: HyperParameterScalingType;
  }
  export interface IntegerParameterRangeSpecification {
    /**
     * The minimum integer value allowed.
     */
    MinValue: ParameterValue;
    /**
     * The maximum integer value allowed.
     */
    MaxValue: ParameterValue;
  }
  export type IntegerParameterRanges = IntegerParameterRange[];
  export type JobReferenceCode = string;
  export type JobReferenceCodeContains = string;
  export type JoinSource = "Input"|"None"|string;
  export type JsonPath = string;
  export type KmsKeyId = string;
  export type LabelAttributeName = string;
  export type LabelCounter = number;
  export interface LabelCounters {
    /**
     * The total number of objects labeled.
     */
    TotalLabeled?: LabelCounter;
    /**
     * The total number of objects labeled by a human worker.
     */
    HumanLabeled?: LabelCounter;
    /**
     * The total number of objects labeled by automated data labeling.
     */
    MachineLabeled?: LabelCounter;
    /**
     * The total number of objects that could not be labeled due to an error.
     */
    FailedNonRetryableError?: LabelCounter;
    /**
     * The total number of objects not yet labeled.
     */
    Unlabeled?: LabelCounter;
  }
  export interface LabelCountersForWorkteam {
    /**
     * The total number of data objects labeled by a human worker.
     */
    HumanLabeled?: LabelCounter;
    /**
     * The total number of data objects that need to be labeled by a human worker.
     */
    PendingHuman?: LabelCounter;
    /**
     * The total number of tasks in the labeling job.
     */
    Total?: LabelCounter;
  }
  export type LabelingJobAlgorithmSpecificationArn = string;
  export interface LabelingJobAlgorithmsConfig {
    /**
     * Specifies the Amazon Resource Name (ARN) of the algorithm used for auto-labeling. You must select one of the following ARNs:    Image classification   arn:aws:sagemaker:region:027400017018:labeling-job-algorithm-specification/image-classification     Text classification   arn:aws:sagemaker:region:027400017018:labeling-job-algorithm-specification/text-classification     Object detection   arn:aws:sagemaker:region:027400017018:labeling-job-algorithm-specification/object-detection     Semantic Segmentation   arn:aws:sagemaker:region:027400017018:labeling-job-algorithm-specification/semantic-segmentation   
     */
    LabelingJobAlgorithmSpecificationArn: LabelingJobAlgorithmSpecificationArn;
    /**
     * At the end of an auto-label job Amazon SageMaker Ground Truth sends the Amazon Resource Nam (ARN) of the final model used for auto-labeling. You can use this model as the starting point for subsequent similar jobs by providing the ARN of the model here. 
     */
    InitialActiveLearningModelArn?: ModelArn;
    /**
     * Provides configuration information for a labeling job.
     */
    LabelingJobResourceConfig?: LabelingJobResourceConfig;
  }
  export type LabelingJobArn = string;
  export interface LabelingJobDataAttributes {
    /**
     * Declares that your content is free of personally identifiable information or adult content. Amazon SageMaker may restrict the Amazon Mechanical Turk workers that can view your task based on this information.
     */
    ContentClassifiers?: ContentClassifiers;
  }
  export interface LabelingJobDataSource {
    /**
     * The Amazon S3 location of the input data objects.
     */
    S3DataSource: LabelingJobS3DataSource;
  }
  export interface LabelingJobForWorkteamSummary {
    /**
     * The name of the labeling job that the work team is assigned to.
     */
    LabelingJobName?: LabelingJobName;
    /**
     * A unique identifier for a labeling job. You can use this to refer to a specific labeling job.
     */
    JobReferenceCode: JobReferenceCode;
    /**
     * 
     */
    WorkRequesterAccountId: AccountId;
    /**
     * The date and time that the labeling job was created.
     */
    CreationTime: Timestamp;
    /**
     * Provides information about the progress of a labeling job.
     */
    LabelCounters?: LabelCountersForWorkteam;
    /**
     * The configured number of workers per data object.
     */
    NumberOfHumanWorkersPerDataObject?: NumberOfHumanWorkersPerDataObject;
  }
  export type LabelingJobForWorkteamSummaryList = LabelingJobForWorkteamSummary[];
  export interface LabelingJobInputConfig {
    /**
     * The location of the input data.
     */
    DataSource: LabelingJobDataSource;
    /**
     * Attributes of the data specified by the customer.
     */
    DataAttributes?: LabelingJobDataAttributes;
  }
  export type LabelingJobName = string;
  export interface LabelingJobOutput {
    /**
     * The Amazon S3 bucket location of the manifest file for labeled data. 
     */
    OutputDatasetS3Uri: S3Uri;
    /**
     * The Amazon Resource Name (ARN) for the most recent Amazon SageMaker model trained as part of automated data labeling. 
     */
    FinalActiveLearningModelArn?: ModelArn;
  }
  export interface LabelingJobOutputConfig {
    /**
     * The Amazon S3 location to write output data.
     */
    S3OutputPath: S3Uri;
    /**
     * The AWS Key Management Service ID of the key used to encrypt the output data, if any. If you use a KMS key ID or an alias of your master key, the Amazon SageMaker execution role must include permissions to call kms:Encrypt. If you don't provide a KMS key ID, Amazon SageMaker uses the default KMS key for Amazon S3 for your role's account. Amazon SageMaker uses server-side encryption with KMS-managed keys for LabelingJobOutputConfig. If you use a bucket policy with an s3:PutObject permission that only allows objects with server-side encryption, set the condition key of s3:x-amz-server-side-encryption to "aws:kms". For more information, see KMS-Managed Encryption Keys in the Amazon Simple Storage Service Developer Guide.  The KMS key policy must grant permission to the IAM role that you specify in your CreateLabelingJob request. For more information, see Using Key Policies in AWS KMS in the AWS Key Management Service Developer Guide.
     */
    KmsKeyId?: KmsKeyId;
  }
  export interface LabelingJobResourceConfig {
    /**
     * The AWS Key Management Service (AWS KMS) key that Amazon SageMaker uses to encrypt data on the storage volume attached to the ML compute instance(s) that run the training job. The VolumeKmsKeyId can be any of the following formats:   // KMS Key ID  "1234abcd-12ab-34cd-56ef-1234567890ab"    // Amazon Resource Name (ARN) of a KMS Key  "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"   
     */
    VolumeKmsKeyId?: KmsKeyId;
  }
  export interface LabelingJobS3DataSource {
    /**
     * The Amazon S3 location of the manifest file that describes the input data objects.
     */
    ManifestS3Uri: S3Uri;
  }
  export type LabelingJobStatus = "InProgress"|"Completed"|"Failed"|"Stopping"|"Stopped"|string;
  export interface LabelingJobStoppingConditions {
    /**
     * The maximum number of objects that can be labeled by human workers.
     */
    MaxHumanLabeledObjectCount?: MaxHumanLabeledObjectCount;
    /**
     * The maximum number of input data objects that should be labeled.
     */
    MaxPercentageOfInputDatasetLabeled?: MaxPercentageOfInputDatasetLabeled;
  }
  export interface LabelingJobSummary {
    /**
     * The name of the labeling job.
     */
    LabelingJobName: LabelingJobName;
    /**
     * The Amazon Resource Name (ARN) assigned to the labeling job when it was created.
     */
    LabelingJobArn: LabelingJobArn;
    /**
     * The date and time that the job was created (timestamp).
     */
    CreationTime: Timestamp;
    /**
     * The date and time that the job was last modified (timestamp).
     */
    LastModifiedTime: Timestamp;
    /**
     * The current status of the labeling job. 
     */
    LabelingJobStatus: LabelingJobStatus;
    /**
     * Counts showing the progress of the labeling job.
     */
    LabelCounters: LabelCounters;
    /**
     * The Amazon Resource Name (ARN) of the work team assigned to the job.
     */
    WorkteamArn: WorkteamArn;
    /**
     * The Amazon Resource Name (ARN) of a Lambda function. The function is run before each data object is sent to a worker.
     */
    PreHumanTaskLambdaArn: LambdaFunctionArn;
    /**
     * The Amazon Resource Name (ARN) of the Lambda function used to consolidate the annotations from individual workers into a label for a data object. For more information, see Annotation Consolidation.
     */
    AnnotationConsolidationLambdaArn?: LambdaFunctionArn;
    /**
     * If the LabelingJobStatus field is Failed, this field contains a description of the error.
     */
    FailureReason?: FailureReason;
    /**
     * The location of the output produced by the labeling job.
     */
    LabelingJobOutput?: LabelingJobOutput;
    /**
     * Input configuration for the labeling job.
     */
    InputConfig?: LabelingJobInputConfig;
  }
  export type LabelingJobSummaryList = LabelingJobSummary[];
  export type LambdaFunctionArn = string;
  export type LastModifiedTime = Date;
  export interface ListAlgorithmsInput {
    /**
     * A filter that returns only algorithms created after the specified time (timestamp).
     */
    CreationTimeAfter?: CreationTime;
    /**
     * A filter that returns only algorithms created before the specified time (timestamp).
     */
    CreationTimeBefore?: CreationTime;
    /**
     * The maximum number of algorithms to return in the response.
     */
    MaxResults?: MaxResults;
    /**
     * A string in the algorithm name. This filter returns only algorithms whose name contains the specified string.
     */
    NameContains?: NameContains;
    /**
     * If the response to a previous ListAlgorithms request was truncated, the response includes a NextToken. To retrieve the next set of algorithms, use the token in the next request.
     */
    NextToken?: NextToken;
    /**
     * The parameter by which to sort the results. The default is CreationTime.
     */
    SortBy?: AlgorithmSortBy;
    /**
     * The sort order for the results. The default is Ascending.
     */
    SortOrder?: SortOrder;
  }
  export interface ListAlgorithmsOutput {
    /**
     * &gt;An array of AlgorithmSummary objects, each of which lists an algorithm.
     */
    AlgorithmSummaryList: AlgorithmSummaryList;
    /**
     * If the response is truncated, Amazon SageMaker returns this token. To retrieve the next set of algorithms, use it in the subsequent request.
     */
    NextToken?: NextToken;
  }
  export interface ListCodeRepositoriesInput {
    /**
     * A filter that returns only Git repositories that were created after the specified time.
     */
    CreationTimeAfter?: CreationTime;
    /**
     * A filter that returns only Git repositories that were created before the specified time.
     */
    CreationTimeBefore?: CreationTime;
    /**
     * A filter that returns only Git repositories that were last modified after the specified time.
     */
    LastModifiedTimeAfter?: Timestamp;
    /**
     * A filter that returns only Git repositories that were last modified before the specified time.
     */
    LastModifiedTimeBefore?: Timestamp;
    /**
     * The maximum number of Git repositories to return in the response.
     */
    MaxResults?: MaxResults;
    /**
     * A string in the Git repositories name. This filter returns only repositories whose name contains the specified string.
     */
    NameContains?: CodeRepositoryNameContains;
    /**
     * If the result of a ListCodeRepositoriesOutput request was truncated, the response includes a NextToken. To get the next set of Git repositories, use the token in the next request.
     */
    NextToken?: NextToken;
    /**
     * The field to sort results by. The default is Name.
     */
    SortBy?: CodeRepositorySortBy;
    /**
     * The sort order for results. The default is Ascending.
     */
    SortOrder?: CodeRepositorySortOrder;
  }
  export interface ListCodeRepositoriesOutput {
    /**
     * Gets a list of summaries of the Git repositories. Each summary specifies the following values for the repository:    Name   Amazon Resource Name (ARN)   Creation time   Last modified time   Configuration information, including the URL location of the repository and the ARN of the AWS Secrets Manager secret that contains the credentials used to access the repository.  
     */
    CodeRepositorySummaryList: CodeRepositorySummaryList;
    /**
     * If the result of a ListCodeRepositoriesOutput request was truncated, the response includes a NextToken. To get the next set of Git repositories, use the token in the next request.
     */
    NextToken?: NextToken;
  }
  export interface ListCompilationJobsRequest {
    /**
     * If the result of the previous ListCompilationJobs request was truncated, the response includes a NextToken. To retrieve the next set of model compilation jobs, use the token in the next request.
     */
    NextToken?: NextToken;
    /**
     * The maximum number of model compilation jobs to return in the response.
     */
    MaxResults?: MaxResults;
    /**
     * A filter that returns the model compilation jobs that were created after a specified time. 
     */
    CreationTimeAfter?: CreationTime;
    /**
     * A filter that returns the model compilation jobs that were created before a specified time.
     */
    CreationTimeBefore?: CreationTime;
    /**
     * A filter that returns the model compilation jobs that were modified after a specified time.
     */
    LastModifiedTimeAfter?: LastModifiedTime;
    /**
     * A filter that returns the model compilation jobs that were modified before a specified time.
     */
    LastModifiedTimeBefore?: LastModifiedTime;
    /**
     * A filter that returns the model compilation jobs whose name contains a specified string.
     */
    NameContains?: NameContains;
    /**
     * A filter that retrieves model compilation jobs with a specific DescribeCompilationJobResponse$CompilationJobStatus status.
     */
    StatusEquals?: CompilationJobStatus;
    /**
     * The field by which to sort results. The default is CreationTime.
     */
    SortBy?: ListCompilationJobsSortBy;
    /**
     * The sort order for results. The default is Ascending.
     */
    SortOrder?: SortOrder;
  }
  export interface ListCompilationJobsResponse {
    /**
     * An array of CompilationJobSummary objects, each describing a model compilation job. 
     */
    CompilationJobSummaries: CompilationJobSummaries;
    /**
     * If the response is truncated, Amazon SageMaker returns this NextToken. To retrieve the next set of model compilation jobs, use this token in the next request.
     */
    NextToken?: NextToken;
  }
  export type ListCompilationJobsSortBy = "Name"|"CreationTime"|"Status"|string;
  export interface ListEndpointConfigsInput {
    /**
     * The field to sort results by. The default is CreationTime.
     */
    SortBy?: EndpointConfigSortKey;
    /**
     * The sort order for results. The default is Descending.
     */
    SortOrder?: OrderKey;
    /**
     * If the result of the previous ListEndpointConfig request was truncated, the response includes a NextToken. To retrieve the next set of endpoint configurations, use the token in the next request. 
     */
    NextToken?: PaginationToken;
    /**
     * The maximum number of training jobs to return in the response.
     */
    MaxResults?: MaxResults;
    /**
     * A string in the endpoint configuration name. This filter returns only endpoint configurations whose name contains the specified string. 
     */
    NameContains?: EndpointConfigNameContains;
    /**
     * A filter that returns only endpoint configurations created before the specified time (timestamp).
     */
    CreationTimeBefore?: Timestamp;
    /**
     * A filter that returns only endpoint configurations with a creation time greater than or equal to the specified time (timestamp).
     */
    CreationTimeAfter?: Timestamp;
  }
  export interface ListEndpointConfigsOutput {
    /**
     * An array of endpoint configurations.
     */
    EndpointConfigs: EndpointConfigSummaryList;
    /**
     *  If the response is truncated, Amazon SageMaker returns this token. To retrieve the next set of endpoint configurations, use it in the subsequent request 
     */
    NextToken?: PaginationToken;
  }
  export interface ListEndpointsInput {
    /**
     * Sorts the list of results. The default is CreationTime.
     */
    SortBy?: EndpointSortKey;
    /**
     * The sort order for results. The default is Descending.
     */
    SortOrder?: OrderKey;
    /**
     * If the result of a ListEndpoints request was truncated, the response includes a NextToken. To retrieve the next set of endpoints, use the token in the next request.
     */
    NextToken?: PaginationToken;
    /**
     * The maximum number of endpoints to return in the response.
     */
    MaxResults?: MaxResults;
    /**
     * A string in endpoint names. This filter returns only endpoints whose name contains the specified string.
     */
    NameContains?: EndpointNameContains;
    /**
     * A filter that returns only endpoints that were created before the specified time (timestamp).
     */
    CreationTimeBefore?: Timestamp;
    /**
     * A filter that returns only endpoints with a creation time greater than or equal to the specified time (timestamp).
     */
    CreationTimeAfter?: Timestamp;
    /**
     *  A filter that returns only endpoints that were modified before the specified timestamp. 
     */
    LastModifiedTimeBefore?: Timestamp;
    /**
     *  A filter that returns only endpoints that were modified after the specified timestamp. 
     */
    LastModifiedTimeAfter?: Timestamp;
    /**
     *  A filter that returns only endpoints with the specified status.
     */
    StatusEquals?: EndpointStatus;
  }
  export interface ListEndpointsOutput {
    /**
     *  An array or endpoint objects. 
     */
    Endpoints: EndpointSummaryList;
    /**
     *  If the response is truncated, Amazon SageMaker returns this token. To retrieve the next set of training jobs, use it in the subsequent request. 
     */
    NextToken?: PaginationToken;
  }
  export interface ListHyperParameterTuningJobsRequest {
    /**
     * If the result of the previous ListHyperParameterTuningJobs request was truncated, the response includes a NextToken. To retrieve the next set of tuning jobs, use the token in the next request.
     */
    NextToken?: NextToken;
    /**
     * The maximum number of tuning jobs to return. The default value is 10.
     */
    MaxResults?: MaxResults;
    /**
     * The field to sort results by. The default is Name.
     */
    SortBy?: HyperParameterTuningJobSortByOptions;
    /**
     * The sort order for results. The default is Ascending.
     */
    SortOrder?: SortOrder;
    /**
     * A string in the tuning job name. This filter returns only tuning jobs whose name contains the specified string.
     */
    NameContains?: NameContains;
    /**
     * A filter that returns only tuning jobs that were created after the specified time.
     */
    CreationTimeAfter?: Timestamp;
    /**
     * A filter that returns only tuning jobs that were created before the specified time.
     */
    CreationTimeBefore?: Timestamp;
    /**
     * A filter that returns only tuning jobs that were modified after the specified time.
     */
    LastModifiedTimeAfter?: Timestamp;
    /**
     * A filter that returns only tuning jobs that were modified before the specified time.
     */
    LastModifiedTimeBefore?: Timestamp;
    /**
     * A filter that returns only tuning jobs with the specified status.
     */
    StatusEquals?: HyperParameterTuningJobStatus;
  }
  export interface ListHyperParameterTuningJobsResponse {
    /**
     * A list of HyperParameterTuningJobSummary objects that describe the tuning jobs that the ListHyperParameterTuningJobs request returned.
     */
    HyperParameterTuningJobSummaries: HyperParameterTuningJobSummaries;
    /**
     * If the result of this ListHyperParameterTuningJobs request was truncated, the response includes a NextToken. To retrieve the next set of tuning jobs, use the token in the next request.
     */
    NextToken?: NextToken;
  }
  export interface ListLabelingJobsForWorkteamRequest {
    /**
     * The Amazon Resource Name (ARN) of the work team for which you want to see labeling jobs for.
     */
    WorkteamArn: WorkteamArn;
    /**
     * The maximum number of labeling jobs to return in each page of the response.
     */
    MaxResults?: MaxResults;
    /**
     * If the result of the previous ListLabelingJobsForWorkteam request was truncated, the response includes a NextToken. To retrieve the next set of labeling jobs, use the token in the next request.
     */
    NextToken?: NextToken;
    /**
     * A filter that returns only labeling jobs created after the specified time (timestamp).
     */
    CreationTimeAfter?: Timestamp;
    /**
     * A filter that returns only labeling jobs created before the specified time (timestamp).
     */
    CreationTimeBefore?: Timestamp;
    /**
     * A filter the limits jobs to only the ones whose job reference code contains the specified string.
     */
    JobReferenceCodeContains?: JobReferenceCodeContains;
    /**
     * The field to sort results by. The default is CreationTime.
     */
    SortBy?: ListLabelingJobsForWorkteamSortByOptions;
    /**
     * The sort order for results. The default is Ascending.
     */
    SortOrder?: SortOrder;
  }
  export interface ListLabelingJobsForWorkteamResponse {
    /**
     * An array of LabelingJobSummary objects, each describing a labeling job.
     */
    LabelingJobSummaryList: LabelingJobForWorkteamSummaryList;
    /**
     * If the response is truncated, Amazon SageMaker returns this token. To retrieve the next set of labeling jobs, use it in the subsequent request.
     */
    NextToken?: NextToken;
  }
  export type ListLabelingJobsForWorkteamSortByOptions = "CreationTime"|string;
  export interface ListLabelingJobsRequest {
    /**
     * A filter that returns only labeling jobs created after the specified time (timestamp).
     */
    CreationTimeAfter?: Timestamp;
    /**
     * A filter that returns only labeling jobs created before the specified time (timestamp).
     */
    CreationTimeBefore?: Timestamp;
    /**
     * A filter that returns only labeling jobs modified after the specified time (timestamp).
     */
    LastModifiedTimeAfter?: Timestamp;
    /**
     * A filter that returns only labeling jobs modified before the specified time (timestamp).
     */
    LastModifiedTimeBefore?: Timestamp;
    /**
     * The maximum number of labeling jobs to return in each page of the response.
     */
    MaxResults?: MaxResults;
    /**
     * If the result of the previous ListLabelingJobs request was truncated, the response includes a NextToken. To retrieve the next set of labeling jobs, use the token in the next request.
     */
    NextToken?: NextToken;
    /**
     * A string in the labeling job name. This filter returns only labeling jobs whose name contains the specified string.
     */
    NameContains?: NameContains;
    /**
     * The field to sort results by. The default is CreationTime.
     */
    SortBy?: SortBy;
    /**
     * The sort order for results. The default is Ascending.
     */
    SortOrder?: SortOrder;
    /**
     * A filter that retrieves only labeling jobs with a specific status.
     */
    StatusEquals?: LabelingJobStatus;
  }
  export interface ListLabelingJobsResponse {
    /**
     * An array of LabelingJobSummary objects, each describing a labeling job.
     */
    LabelingJobSummaryList?: LabelingJobSummaryList;
    /**
     * If the response is truncated, Amazon SageMaker returns this token. To retrieve the next set of labeling jobs, use it in the subsequent request.
     */
    NextToken?: NextToken;
  }
  export interface ListModelPackagesInput {
    /**
     * A filter that returns only model packages created after the specified time (timestamp).
     */
    CreationTimeAfter?: CreationTime;
    /**
     * A filter that returns only model packages created before the specified time (timestamp).
     */
    CreationTimeBefore?: CreationTime;
    /**
     * The maximum number of model packages to return in the response.
     */
    MaxResults?: MaxResults;
    /**
     * A string in the model package name. This filter returns only model packages whose name contains the specified string.
     */
    NameContains?: NameContains;
    /**
     * If the response to a previous ListModelPackages request was truncated, the response includes a NextToken. To retrieve the next set of model packages, use the token in the next request.
     */
    NextToken?: NextToken;
    /**
     * The parameter by which to sort the results. The default is CreationTime.
     */
    SortBy?: ModelPackageSortBy;
    /**
     * The sort order for the results. The default is Ascending.
     */
    SortOrder?: SortOrder;
  }
  export interface ListModelPackagesOutput {
    /**
     * An array of ModelPackageSummary objects, each of which lists a model package.
     */
    ModelPackageSummaryList: ModelPackageSummaryList;
    /**
     * If the response is truncated, Amazon SageMaker returns this token. To retrieve the next set of model packages, use it in the subsequent request.
     */
    NextToken?: NextToken;
  }
  export interface ListModelsInput {
    /**
     * Sorts the list of results. The default is CreationTime.
     */
    SortBy?: ModelSortKey;
    /**
     * The sort order for results. The default is Descending.
     */
    SortOrder?: OrderKey;
    /**
     * If the response to a previous ListModels request was truncated, the response includes a NextToken. To retrieve the next set of models, use the token in the next request.
     */
    NextToken?: PaginationToken;
    /**
     * The maximum number of models to return in the response.
     */
    MaxResults?: MaxResults;
    /**
     * A string in the training job name. This filter returns only models in the training job whose name contains the specified string.
     */
    NameContains?: ModelNameContains;
    /**
     * A filter that returns only models created before the specified time (timestamp).
     */
    CreationTimeBefore?: Timestamp;
    /**
     * A filter that returns only models with a creation time greater than or equal to the specified time (timestamp).
     */
    CreationTimeAfter?: Timestamp;
  }
  export interface ListModelsOutput {
    /**
     * An array of ModelSummary objects, each of which lists a model.
     */
    Models: ModelSummaryList;
    /**
     *  If the response is truncated, Amazon SageMaker returns this token. To retrieve the next set of models, use it in the subsequent request. 
     */
    NextToken?: PaginationToken;
  }
  export interface ListNotebookInstanceLifecycleConfigsInput {
    /**
     * If the result of a ListNotebookInstanceLifecycleConfigs request was truncated, the response includes a NextToken. To get the next set of lifecycle configurations, use the token in the next request.
     */
    NextToken?: NextToken;
    /**
     * The maximum number of lifecycle configurations to return in the response.
     */
    MaxResults?: MaxResults;
    /**
     * Sorts the list of results. The default is CreationTime.
     */
    SortBy?: NotebookInstanceLifecycleConfigSortKey;
    /**
     * The sort order for results.
     */
    SortOrder?: NotebookInstanceLifecycleConfigSortOrder;
    /**
     * A string in the lifecycle configuration name. This filter returns only lifecycle configurations whose name contains the specified string.
     */
    NameContains?: NotebookInstanceLifecycleConfigNameContains;
    /**
     * A filter that returns only lifecycle configurations that were created before the specified time (timestamp).
     */
    CreationTimeBefore?: CreationTime;
    /**
     * A filter that returns only lifecycle configurations that were created after the specified time (timestamp).
     */
    CreationTimeAfter?: CreationTime;
    /**
     * A filter that returns only lifecycle configurations that were modified before the specified time (timestamp).
     */
    LastModifiedTimeBefore?: LastModifiedTime;
    /**
     * A filter that returns only lifecycle configurations that were modified after the specified time (timestamp).
     */
    LastModifiedTimeAfter?: LastModifiedTime;
  }
  export interface ListNotebookInstanceLifecycleConfigsOutput {
    /**
     * If the response is truncated, Amazon SageMaker returns this token. To get the next set of lifecycle configurations, use it in the next request. 
     */
    NextToken?: NextToken;
    /**
     * An array of NotebookInstanceLifecycleConfiguration objects, each listing a lifecycle configuration.
     */
    NotebookInstanceLifecycleConfigs?: NotebookInstanceLifecycleConfigSummaryList;
  }
  export interface ListNotebookInstancesInput {
    /**
     *  If the previous call to the ListNotebookInstances is truncated, the response includes a NextToken. You can use this token in your subsequent ListNotebookInstances request to fetch the next set of notebook instances.   You might specify a filter or a sort order in your request. When response is truncated, you must use the same values for the filer and sort order in the next request.  
     */
    NextToken?: NextToken;
    /**
     * The maximum number of notebook instances to return.
     */
    MaxResults?: MaxResults;
    /**
     * The field to sort results by. The default is Name.
     */
    SortBy?: NotebookInstanceSortKey;
    /**
     * The sort order for results. 
     */
    SortOrder?: NotebookInstanceSortOrder;
    /**
     * A string in the notebook instances' name. This filter returns only notebook instances whose name contains the specified string.
     */
    NameContains?: NotebookInstanceNameContains;
    /**
     * A filter that returns only notebook instances that were created before the specified time (timestamp). 
     */
    CreationTimeBefore?: CreationTime;
    /**
     * A filter that returns only notebook instances that were created after the specified time (timestamp).
     */
    CreationTimeAfter?: CreationTime;
    /**
     * A filter that returns only notebook instances that were modified before the specified time (timestamp).
     */
    LastModifiedTimeBefore?: LastModifiedTime;
    /**
     * A filter that returns only notebook instances that were modified after the specified time (timestamp).
     */
    LastModifiedTimeAfter?: LastModifiedTime;
    /**
     * A filter that returns only notebook instances with the specified status.
     */
    StatusEquals?: NotebookInstanceStatus;
    /**
     * A string in the name of a notebook instances lifecycle configuration associated with this notebook instance. This filter returns only notebook instances associated with a lifecycle configuration with a name that contains the specified string.
     */
    NotebookInstanceLifecycleConfigNameContains?: NotebookInstanceLifecycleConfigName;
    /**
     * A string in the name or URL of a Git repository associated with this notebook instance. This filter returns only notebook instances associated with a git repository with a name that contains the specified string.
     */
    DefaultCodeRepositoryContains?: CodeRepositoryContains;
    /**
     * A filter that returns only notebook instances with associated with the specified git repository.
     */
    AdditionalCodeRepositoryEquals?: CodeRepositoryNameOrUrl;
  }
  export interface ListNotebookInstancesOutput {
    /**
     * If the response to the previous ListNotebookInstances request was truncated, Amazon SageMaker returns this token. To retrieve the next set of notebook instances, use the token in the next request.
     */
    NextToken?: NextToken;
    /**
     * An array of NotebookInstanceSummary objects, one for each notebook instance.
     */
    NotebookInstances?: NotebookInstanceSummaryList;
  }
  export interface ListSubscribedWorkteamsRequest {
    /**
     * A string in the work team name. This filter returns only work teams whose name contains the specified string.
     */
    NameContains?: WorkteamName;
    /**
     * If the result of the previous ListSubscribedWorkteams request was truncated, the response includes a NextToken. To retrieve the next set of labeling jobs, use the token in the next request.
     */
    NextToken?: NextToken;
    /**
     * The maximum number of work teams to return in each page of the response.
     */
    MaxResults?: MaxResults;
  }
  export interface ListSubscribedWorkteamsResponse {
    /**
     * An array of Workteam objects, each describing a work team.
     */
    SubscribedWorkteams: SubscribedWorkteams;
    /**
     * If the response is truncated, Amazon SageMaker returns this token. To retrieve the next set of work teams, use it in the subsequent request.
     */
    NextToken?: NextToken;
  }
  export interface ListTagsInput {
    /**
     * The Amazon Resource Name (ARN) of the resource whose tags you want to retrieve.
     */
    ResourceArn: ResourceArn;
    /**
     *  If the response to the previous ListTags request is truncated, Amazon SageMaker returns this token. To retrieve the next set of tags, use it in the subsequent request. 
     */
    NextToken?: NextToken;
    /**
     * Maximum number of tags to return.
     */
    MaxResults?: ListTagsMaxResults;
  }
  export type ListTagsMaxResults = number;
  export interface ListTagsOutput {
    /**
     * An array of Tag objects, each with a tag key and a value.
     */
    Tags?: TagList;
    /**
     *  If response is truncated, Amazon SageMaker includes a token in the response. You can use this token in your subsequent request to fetch next set of tokens. 
     */
    NextToken?: NextToken;
  }
  export interface ListTrainingJobsForHyperParameterTuningJobRequest {
    /**
     * The name of the tuning job whose training jobs you want to list.
     */
    HyperParameterTuningJobName: HyperParameterTuningJobName;
    /**
     * If the result of the previous ListTrainingJobsForHyperParameterTuningJob request was truncated, the response includes a NextToken. To retrieve the next set of training jobs, use the token in the next request.
     */
    NextToken?: NextToken;
    /**
     * The maximum number of training jobs to return. The default value is 10.
     */
    MaxResults?: MaxResults;
    /**
     * A filter that returns only training jobs with the specified status.
     */
    StatusEquals?: TrainingJobStatus;
    /**
     * The field to sort results by. The default is Name. If the value of this field is FinalObjectiveMetricValue, any training jobs that did not return an objective metric are not listed.
     */
    SortBy?: TrainingJobSortByOptions;
    /**
     * The sort order for results. The default is Ascending.
     */
    SortOrder?: SortOrder;
  }
  export interface ListTrainingJobsForHyperParameterTuningJobResponse {
    /**
     * A list of TrainingJobSummary objects that describe the training jobs that the ListTrainingJobsForHyperParameterTuningJob request returned.
     */
    TrainingJobSummaries: HyperParameterTrainingJobSummaries;
    /**
     * If the result of this ListTrainingJobsForHyperParameterTuningJob request was truncated, the response includes a NextToken. To retrieve the next set of training jobs, use the token in the next request.
     */
    NextToken?: NextToken;
  }
  export interface ListTrainingJobsRequest {
    /**
     * If the result of the previous ListTrainingJobs request was truncated, the response includes a NextToken. To retrieve the next set of training jobs, use the token in the next request. 
     */
    NextToken?: NextToken;
    /**
     * The maximum number of training jobs to return in the response.
     */
    MaxResults?: MaxResults;
    /**
     * A filter that returns only training jobs created after the specified time (timestamp).
     */
    CreationTimeAfter?: Timestamp;
    /**
     * A filter that returns only training jobs created before the specified time (timestamp).
     */
    CreationTimeBefore?: Timestamp;
    /**
     * A filter that returns only training jobs modified after the specified time (timestamp).
     */
    LastModifiedTimeAfter?: Timestamp;
    /**
     * A filter that returns only training jobs modified before the specified time (timestamp).
     */
    LastModifiedTimeBefore?: Timestamp;
    /**
     * A string in the training job name. This filter returns only training jobs whose name contains the specified string.
     */
    NameContains?: NameContains;
    /**
     * A filter that retrieves only training jobs with a specific status.
     */
    StatusEquals?: TrainingJobStatus;
    /**
     * The field to sort results by. The default is CreationTime.
     */
    SortBy?: SortBy;
    /**
     * The sort order for results. The default is Ascending.
     */
    SortOrder?: SortOrder;
  }
  export interface ListTrainingJobsResponse {
    /**
     * An array of TrainingJobSummary objects, each listing a training job.
     */
    TrainingJobSummaries: TrainingJobSummaries;
    /**
     * If the response is truncated, Amazon SageMaker returns this token. To retrieve the next set of training jobs, use it in the subsequent request.
     */
    NextToken?: NextToken;
  }
  export interface ListTransformJobsRequest {
    /**
     * A filter that returns only transform jobs created after the specified time.
     */
    CreationTimeAfter?: Timestamp;
    /**
     * A filter that returns only transform jobs created before the specified time.
     */
    CreationTimeBefore?: Timestamp;
    /**
     * A filter that returns only transform jobs modified after the specified time.
     */
    LastModifiedTimeAfter?: Timestamp;
    /**
     * A filter that returns only transform jobs modified before the specified time.
     */
    LastModifiedTimeBefore?: Timestamp;
    /**
     * A string in the transform job name. This filter returns only transform jobs whose name contains the specified string.
     */
    NameContains?: NameContains;
    /**
     * A filter that retrieves only transform jobs with a specific status.
     */
    StatusEquals?: TransformJobStatus;
    /**
     * The field to sort results by. The default is CreationTime.
     */
    SortBy?: SortBy;
    /**
     * The sort order for results. The default is Descending.
     */
    SortOrder?: SortOrder;
    /**
     * If the result of the previous ListTransformJobs request was truncated, the response includes a NextToken. To retrieve the next set of transform jobs, use the token in the next request.
     */
    NextToken?: NextToken;
    /**
     * The maximum number of transform jobs to return in the response. The default value is 10.
     */
    MaxResults?: MaxResults;
  }
  export interface ListTransformJobsResponse {
    /**
     * An array of TransformJobSummary objects.
     */
    TransformJobSummaries: TransformJobSummaries;
    /**
     * If the response is truncated, Amazon SageMaker returns this token. To retrieve the next set of transform jobs, use it in the next request.
     */
    NextToken?: NextToken;
  }
  export interface ListWorkteamsRequest {
    /**
     * The field to sort results by. The default is CreationTime.
     */
    SortBy?: ListWorkteamsSortByOptions;
    /**
     * The sort order for results. The default is Ascending.
     */
    SortOrder?: SortOrder;
    /**
     * A string in the work team's name. This filter returns only work teams whose name contains the specified string.
     */
    NameContains?: WorkteamName;
    /**
     * If the result of the previous ListWorkteams request was truncated, the response includes a NextToken. To retrieve the next set of labeling jobs, use the token in the next request.
     */
    NextToken?: NextToken;
    /**
     * The maximum number of work teams to return in each page of the response.
     */
    MaxResults?: MaxResults;
  }
  export interface ListWorkteamsResponse {
    /**
     * An array of Workteam objects, each describing a work team.
     */
    Workteams: Workteams;
    /**
     * If the response is truncated, Amazon SageMaker returns this token. To retrieve the next set of work teams, use it in the subsequent request.
     */
    NextToken?: NextToken;
  }
  export type ListWorkteamsSortByOptions = "Name"|"CreateDate"|string;
  export type MaxConcurrentTaskCount = number;
  export type MaxConcurrentTransforms = number;
  export type MaxHumanLabeledObjectCount = number;
  export type MaxNumberOfTrainingJobs = number;
  export type MaxParallelTrainingJobs = number;
  export type MaxPayloadInMB = number;
  export type MaxPercentageOfInputDatasetLabeled = number;
  export type MaxResults = number;
  export type MaxRuntimeInSeconds = number;
  export type MaxWaitTimeInSeconds = number;
  export interface MemberDefinition {
    /**
     * The Amazon Cognito user group that is part of the work team.
     */
    CognitoMemberDefinition?: CognitoMemberDefinition;
  }
  export type MemberDefinitions = MemberDefinition[];
  export interface MetricData {
    /**
     * The name of the metric.
     */
    MetricName?: MetricName;
    /**
     * The value of the metric.
     */
    Value?: Float;
    /**
     * The date and time that the algorithm emitted the metric.
     */
    Timestamp?: Timestamp;
  }
  export interface MetricDefinition {
    /**
     * The name of the metric.
     */
    Name: MetricName;
    /**
     * A regular expression that searches the output of a training job and gets the value of the metric. For more information about using regular expressions to define metrics, see Defining Objective Metrics.
     */
    Regex: MetricRegex;
  }
  export type MetricDefinitionList = MetricDefinition[];
  export type MetricName = string;
  export type MetricRegex = string;
  export type MetricValue = number;
  export type ModelArn = string;
  export interface ModelArtifacts {
    /**
     * The path of the S3 object that contains the model artifacts. For example, s3://bucket-name/keynameprefix/model.tar.gz.
     */
    S3ModelArtifacts: S3Uri;
  }
  export type ModelName = string;
  export type ModelNameContains = string;
  export type ModelPackageArn = string;
  export interface ModelPackageContainerDefinition {
    /**
     * The DNS host name for the Docker container.
     */
    ContainerHostname?: ContainerHostname;
    /**
     * The Amazon EC2 Container Registry (Amazon ECR) path where inference code is stored. If you are using your own custom algorithm instead of an algorithm provided by Amazon SageMaker, the inference code must meet Amazon SageMaker requirements. Amazon SageMaker supports both registry/repository[:tag] and registry/repository[@digest] image path formats. For more information, see Using Your Own Algorithms with Amazon SageMaker.
     */
    Image: Image;
    /**
     * An MD5 hash of the training algorithm that identifies the Docker image used for training.
     */
    ImageDigest?: ImageDigest;
    /**
     * The Amazon S3 path where the model artifacts, which result from model training, are stored. This path must point to a single gzip compressed tar archive (.tar.gz suffix).
     */
    ModelDataUrl?: Url;
    /**
     * The AWS Marketplace product ID of the model package.
     */
    ProductId?: ProductId;
  }
  export type ModelPackageContainerDefinitionList = ModelPackageContainerDefinition[];
  export type ModelPackageSortBy = "Name"|"CreationTime"|string;
  export type ModelPackageStatus = "Pending"|"InProgress"|"Completed"|"Failed"|"Deleting"|string;
  export interface ModelPackageStatusDetails {
    /**
     * The validation status of the model package.
     */
    ValidationStatuses: ModelPackageStatusItemList;
    /**
     * The status of the scan of the Docker image container for the model package.
     */
    ImageScanStatuses?: ModelPackageStatusItemList;
  }
  export interface ModelPackageStatusItem {
    /**
     * The name of the model package for which the overall status is being reported.
     */
    Name: EntityName;
    /**
     * The current status.
     */
    Status: DetailedModelPackageStatus;
    /**
     * if the overall status is Failed, the reason for the failure.
     */
    FailureReason?: String;
  }
  export type ModelPackageStatusItemList = ModelPackageStatusItem[];
  export interface ModelPackageSummary {
    /**
     * The name of the model package.
     */
    ModelPackageName: EntityName;
    /**
     * The Amazon Resource Name (ARN) of the model package.
     */
    ModelPackageArn: ModelPackageArn;
    /**
     * A brief description of the model package.
     */
    ModelPackageDescription?: EntityDescription;
    /**
     * A timestamp that shows when the model package was created.
     */
    CreationTime: CreationTime;
    /**
     * The overall status of the model package.
     */
    ModelPackageStatus: ModelPackageStatus;
  }
  export type ModelPackageSummaryList = ModelPackageSummary[];
  export interface ModelPackageValidationProfile {
    /**
     * The name of the profile for the model package.
     */
    ProfileName: EntityName;
    /**
     * The TransformJobDefinition object that describes the transform job used for the validation of the model package.
     */
    TransformJobDefinition: TransformJobDefinition;
  }
  export type ModelPackageValidationProfiles = ModelPackageValidationProfile[];
  export interface ModelPackageValidationSpecification {
    /**
     * The IAM roles to be used for the validation of the model package.
     */
    ValidationRole: RoleArn;
    /**
     * An array of ModelPackageValidationProfile objects, each of which specifies a batch transform job that Amazon SageMaker runs to validate your model package.
     */
    ValidationProfiles: ModelPackageValidationProfiles;
  }
  export type ModelSortKey = "Name"|"CreationTime"|string;
  export interface ModelSummary {
    /**
     * The name of the model that you want a summary for.
     */
    ModelName: ModelName;
    /**
     * The Amazon Resource Name (ARN) of the model.
     */
    ModelArn: ModelArn;
    /**
     * A timestamp that indicates when the model was created.
     */
    CreationTime: Timestamp;
  }
  export type ModelSummaryList = ModelSummary[];
  export type NameContains = string;
  export interface NestedFilters {
    /**
     * The name of the property to use in the nested filters. The value must match a listed property name, such as InputDataConfig .
     */
    NestedPropertyName: ResourcePropertyName;
    /**
     * A list of filters. Each filter acts on a property. Filters must contain at least one Filters value. For example, a NestedFilters call might include a filter on the PropertyName parameter of the InputDataConfig property: InputDataConfig.DataSource.S3DataSource.S3Uri.
     */
    Filters: FilterList;
  }
  export type NestedFiltersList = NestedFilters[];
  export type NetworkInterfaceId = string;
  export type NextToken = string;
  export type NotebookInstanceAcceleratorType = "ml.eia1.medium"|"ml.eia1.large"|"ml.eia1.xlarge"|"ml.eia2.medium"|"ml.eia2.large"|"ml.eia2.xlarge"|string;
  export type NotebookInstanceAcceleratorTypes = NotebookInstanceAcceleratorType[];
  export type NotebookInstanceArn = string;
  export type NotebookInstanceLifecycleConfigArn = string;
  export type NotebookInstanceLifecycleConfigContent = string;
  export type NotebookInstanceLifecycleConfigList = NotebookInstanceLifecycleHook[];
  export type NotebookInstanceLifecycleConfigName = string;
  export type NotebookInstanceLifecycleConfigNameContains = string;
  export type NotebookInstanceLifecycleConfigSortKey = "Name"|"CreationTime"|"LastModifiedTime"|string;
  export type NotebookInstanceLifecycleConfigSortOrder = "Ascending"|"Descending"|string;
  export interface NotebookInstanceLifecycleConfigSummary {
    /**
     * The name of the lifecycle configuration.
     */
    NotebookInstanceLifecycleConfigName: NotebookInstanceLifecycleConfigName;
    /**
     * The Amazon Resource Name (ARN) of the lifecycle configuration.
     */
    NotebookInstanceLifecycleConfigArn: NotebookInstanceLifecycleConfigArn;
    /**
     * A timestamp that tells when the lifecycle configuration was created.
     */
    CreationTime?: CreationTime;
    /**
     * A timestamp that tells when the lifecycle configuration was last modified.
     */
    LastModifiedTime?: LastModifiedTime;
  }
  export type NotebookInstanceLifecycleConfigSummaryList = NotebookInstanceLifecycleConfigSummary[];
  export interface NotebookInstanceLifecycleHook {
    /**
     * A base64-encoded string that contains a shell script for a notebook instance lifecycle configuration.
     */
    Content?: NotebookInstanceLifecycleConfigContent;
  }
  export type NotebookInstanceName = string;
  export type NotebookInstanceNameContains = string;
  export type NotebookInstanceSortKey = "Name"|"CreationTime"|"Status"|string;
  export type NotebookInstanceSortOrder = "Ascending"|"Descending"|string;
  export type NotebookInstanceStatus = "Pending"|"InService"|"Stopping"|"Stopped"|"Failed"|"Deleting"|"Updating"|string;
  export interface NotebookInstanceSummary {
    /**
     * The name of the notebook instance that you want a summary for.
     */
    NotebookInstanceName: NotebookInstanceName;
    /**
     * The Amazon Resource Name (ARN) of the notebook instance.
     */
    NotebookInstanceArn: NotebookInstanceArn;
    /**
     * The status of the notebook instance.
     */
    NotebookInstanceStatus?: NotebookInstanceStatus;
    /**
     * The URL that you use to connect to the Jupyter instance running in your notebook instance. 
     */
    Url?: NotebookInstanceUrl;
    /**
     * The type of ML compute instance that the notebook instance is running on.
     */
    InstanceType?: InstanceType;
    /**
     * A timestamp that shows when the notebook instance was created.
     */
    CreationTime?: CreationTime;
    /**
     * A timestamp that shows when the notebook instance was last modified.
     */
    LastModifiedTime?: LastModifiedTime;
    /**
     * The name of a notebook instance lifecycle configuration associated with this notebook instance. For information about notebook instance lifestyle configurations, see Step 2.1: (Optional) Customize a Notebook Instance.
     */
    NotebookInstanceLifecycleConfigName?: NotebookInstanceLifecycleConfigName;
    /**
     * The Git repository associated with the notebook instance as its default code repository. This can be either the name of a Git repository stored as a resource in your account, or the URL of a Git repository in AWS CodeCommit or in any other Git repository. When you open a notebook instance, it opens in the directory that contains this repository. For more information, see Associating Git Repositories with Amazon SageMaker Notebook Instances.
     */
    DefaultCodeRepository?: CodeRepositoryNameOrUrl;
    /**
     * An array of up to three Git repositories associated with the notebook instance. These can be either the names of Git repositories stored as resources in your account, or the URL of Git repositories in AWS CodeCommit or in any other Git repository. These repositories are cloned at the same level as the default repository of your notebook instance. For more information, see Associating Git Repositories with Amazon SageMaker Notebook Instances.
     */
    AdditionalCodeRepositories?: AdditionalCodeRepositoryNamesOrUrls;
  }
  export type NotebookInstanceSummaryList = NotebookInstanceSummary[];
  export type NotebookInstanceUrl = string;
  export type NotebookInstanceVolumeSizeInGB = number;
  export interface NotificationConfiguration {
    /**
     * The ARN for the SNS topic to which notifications should be published.
     */
    NotificationTopicArn?: NotificationTopicArn;
  }
  export type NotificationTopicArn = string;
  export type NumberOfHumanWorkersPerDataObject = number;
  export type ObjectiveStatus = "Succeeded"|"Pending"|"Failed"|string;
  export type ObjectiveStatusCounter = number;
  export interface ObjectiveStatusCounters {
    /**
     * The number of training jobs whose final objective metric was evaluated by the hyperparameter tuning job and used in the hyperparameter tuning process.
     */
    Succeeded?: ObjectiveStatusCounter;
    /**
     * The number of training jobs that are in progress and pending evaluation of their final objective metric.
     */
    Pending?: ObjectiveStatusCounter;
    /**
     * The number of training jobs whose final objective metric was not evaluated and used in the hyperparameter tuning process. This typically occurs when the training job failed or did not emit an objective metric.
     */
    Failed?: ObjectiveStatusCounter;
  }
  export type Operator = "Equals"|"NotEquals"|"GreaterThan"|"GreaterThanOrEqualTo"|"LessThan"|"LessThanOrEqualTo"|"Contains"|string;
  export type OrderKey = "Ascending"|"Descending"|string;
  export interface OutputConfig {
    /**
     * Identifies the S3 path where you want Amazon SageMaker to store the model artifacts. For example, s3://bucket-name/key-name-prefix.
     */
    S3OutputLocation: S3Uri;
    /**
     * Identifies the device that you want to run your model on after it has been compiled. For example: ml_c5.
     */
    TargetDevice: TargetDevice;
  }
  export interface OutputDataConfig {
    /**
     * The AWS Key Management Service (AWS KMS) key that Amazon SageMaker uses to encrypt the model artifacts at rest using Amazon S3 server-side encryption. The KmsKeyId can be any of the following formats:    // KMS Key ID  "1234abcd-12ab-34cd-56ef-1234567890ab"    // Amazon Resource Name (ARN) of a KMS Key  "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"    // KMS Key Alias  "alias/ExampleAlias"    // Amazon Resource Name (ARN) of a KMS Key Alias  "arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias"    If you use a KMS key ID or an alias of your master key, the Amazon SageMaker execution role must include permissions to call kms:Encrypt. If you don't provide a KMS key ID, Amazon SageMaker uses the default KMS key for Amazon S3 for your role's account. Amazon SageMaker uses server-side encryption with KMS-managed keys for OutputDataConfig. If you use a bucket policy with an s3:PutObject permission that only allows objects with server-side encryption, set the condition key of s3:x-amz-server-side-encryption to "aws:kms". For more information, see KMS-Managed Encryption Keys in the Amazon Simple Storage Service Developer Guide.  The KMS key policy must grant permission to the IAM role that you specify in your CreateTrainingJob, CreateTransformJob, or CreateHyperParameterTuningJob requests. For more information, see Using Key Policies in AWS KMS in the AWS Key Management Service Developer Guide.
     */
    KmsKeyId?: KmsKeyId;
    /**
     * Identifies the S3 path where you want Amazon SageMaker to store the model artifacts. For example, s3://bucket-name/key-name-prefix. 
     */
    S3OutputPath: S3Uri;
  }
  export type PaginationToken = string;
  export type ParameterKey = string;
  export type ParameterName = string;
  export interface ParameterRange {
    /**
     * A IntegerParameterRangeSpecification object that defines the possible values for an integer hyperparameter.
     */
    IntegerParameterRangeSpecification?: IntegerParameterRangeSpecification;
    /**
     * A ContinuousParameterRangeSpecification object that defines the possible values for a continuous hyperparameter.
     */
    ContinuousParameterRangeSpecification?: ContinuousParameterRangeSpecification;
    /**
     * A CategoricalParameterRangeSpecification object that defines the possible values for a categorical hyperparameter.
     */
    CategoricalParameterRangeSpecification?: CategoricalParameterRangeSpecification;
  }
  export interface ParameterRanges {
    /**
     * The array of IntegerParameterRange objects that specify ranges of integer hyperparameters that a hyperparameter tuning job searches.
     */
    IntegerParameterRanges?: IntegerParameterRanges;
    /**
     * The array of ContinuousParameterRange objects that specify ranges of continuous hyperparameters that a hyperparameter tuning job searches.
     */
    ContinuousParameterRanges?: ContinuousParameterRanges;
    /**
     * The array of CategoricalParameterRange objects that specify ranges of categorical hyperparameters that a hyperparameter tuning job searches.
     */
    CategoricalParameterRanges?: CategoricalParameterRanges;
  }
  export type ParameterType = "Integer"|"Continuous"|"Categorical"|"FreeText"|string;
  export type ParameterValue = string;
  export type ParameterValues = ParameterValue[];
  export interface ParentHyperParameterTuningJob {
    /**
     * The name of the hyperparameter tuning job to be used as a starting point for a new hyperparameter tuning job.
     */
    HyperParameterTuningJobName?: HyperParameterTuningJobName;
  }
  export type ParentHyperParameterTuningJobs = ParentHyperParameterTuningJob[];
  export type ProductId = string;
  export type ProductListings = String[];
  export interface ProductionVariant {
    /**
     * The name of the production variant.
     */
    VariantName: VariantName;
    /**
     * The name of the model that you want to host. This is the name that you specified when creating the model.
     */
    ModelName: ModelName;
    /**
     * Number of instances to launch initially.
     */
    InitialInstanceCount: TaskCount;
    /**
     * The ML compute instance type.
     */
    InstanceType: ProductionVariantInstanceType;
    /**
     * Determines initial traffic distribution among all of the models that you specify in the endpoint configuration. The traffic to a production variant is determined by the ratio of the VariantWeight to the sum of all VariantWeight values across all ProductionVariants. If unspecified, it defaults to 1.0. 
     */
    InitialVariantWeight?: VariantWeight;
    /**
     * The size of the Elastic Inference (EI) instance to use for the production variant. EI instances provide on-demand GPU computing for inference. For more information, see Using Elastic Inference in Amazon SageMaker.
     */
    AcceleratorType?: ProductionVariantAcceleratorType;
  }
  export type ProductionVariantAcceleratorType = "ml.eia1.medium"|"ml.eia1.large"|"ml.eia1.xlarge"|"ml.eia2.medium"|"ml.eia2.large"|"ml.eia2.xlarge"|string;
  export type ProductionVariantInstanceType = "ml.t2.medium"|"ml.t2.large"|"ml.t2.xlarge"|"ml.t2.2xlarge"|"ml.m4.xlarge"|"ml.m4.2xlarge"|"ml.m4.4xlarge"|"ml.m4.10xlarge"|"ml.m4.16xlarge"|"ml.m5.large"|"ml.m5.xlarge"|"ml.m5.2xlarge"|"ml.m5.4xlarge"|"ml.m5.12xlarge"|"ml.m5.24xlarge"|"ml.m5d.large"|"ml.m5d.xlarge"|"ml.m5d.2xlarge"|"ml.m5d.4xlarge"|"ml.m5d.12xlarge"|"ml.m5d.24xlarge"|"ml.c4.large"|"ml.c4.xlarge"|"ml.c4.2xlarge"|"ml.c4.4xlarge"|"ml.c4.8xlarge"|"ml.p2.xlarge"|"ml.p2.8xlarge"|"ml.p2.16xlarge"|"ml.p3.2xlarge"|"ml.p3.8xlarge"|"ml.p3.16xlarge"|"ml.c5.large"|"ml.c5.xlarge"|"ml.c5.2xlarge"|"ml.c5.4xlarge"|"ml.c5.9xlarge"|"ml.c5.18xlarge"|"ml.c5d.large"|"ml.c5d.xlarge"|"ml.c5d.2xlarge"|"ml.c5d.4xlarge"|"ml.c5d.9xlarge"|"ml.c5d.18xlarge"|"ml.g4dn.xlarge"|"ml.g4dn.2xlarge"|"ml.g4dn.4xlarge"|"ml.g4dn.8xlarge"|"ml.g4dn.12xlarge"|"ml.g4dn.16xlarge"|"ml.r5.large"|"ml.r5.xlarge"|"ml.r5.2xlarge"|"ml.r5.4xlarge"|"ml.r5.12xlarge"|"ml.r5.24xlarge"|"ml.r5d.large"|"ml.r5d.xlarge"|"ml.r5d.2xlarge"|"ml.r5d.4xlarge"|"ml.r5d.12xlarge"|"ml.r5d.24xlarge"|string;
  export type ProductionVariantList = ProductionVariant[];
  export interface ProductionVariantSummary {
    /**
     * The name of the variant.
     */
    VariantName: VariantName;
    /**
     * An array of DeployedImage objects that specify the Amazon EC2 Container Registry paths of the inference images deployed on instances of this ProductionVariant.
     */
    DeployedImages?: DeployedImages;
    /**
     * The weight associated with the variant.
     */
    CurrentWeight?: VariantWeight;
    /**
     * The requested weight, as specified in the UpdateEndpointWeightsAndCapacities request. 
     */
    DesiredWeight?: VariantWeight;
    /**
     * The number of instances associated with the variant.
     */
    CurrentInstanceCount?: TaskCount;
    /**
     * The number of instances requested in the UpdateEndpointWeightsAndCapacities request. 
     */
    DesiredInstanceCount?: TaskCount;
  }
  export type ProductionVariantSummaryList = ProductionVariantSummary[];
  export type PropertyNameHint = string;
  export interface PropertyNameQuery {
    /**
     * Text that is part of a property's name. The property names of hyperparameter, metric, and tag key names that begin with the specified text in the PropertyNameHint.
     */
    PropertyNameHint: PropertyNameHint;
  }
  export interface PropertyNameSuggestion {
    /**
     * A suggested property name based on what you entered in the search textbox in the Amazon SageMaker console.
     */
    PropertyName?: ResourcePropertyName;
  }
  export type PropertyNameSuggestionList = PropertyNameSuggestion[];
  export interface PublicWorkforceTaskPrice {
    /**
     * Defines the amount of money paid to an Amazon Mechanical Turk worker in United States dollars.
     */
    AmountInUsd?: USD;
  }
  export type RealtimeInferenceInstanceTypes = ProductionVariantInstanceType[];
  export type RecordWrapper = "None"|"RecordIO"|string;
  export interface RenderUiTemplateRequest {
    /**
     * A Template object containing the worker UI template to render.
     */
    UiTemplate: UiTemplate;
    /**
     * A RenderableTask object containing a representative task to render.
     */
    Task: RenderableTask;
    /**
     * The Amazon Resource Name (ARN) that has access to the S3 objects that are used by the template.
     */
    RoleArn: RoleArn;
  }
  export interface RenderUiTemplateResponse {
    /**
     * A Liquid template that renders the HTML for the worker UI.
     */
    RenderedContent: String;
    /**
     * A list of one or more RenderingError objects if any were encountered while rendering the template. If there were no errors, the list is empty.
     */
    Errors: RenderingErrorList;
  }
  export interface RenderableTask {
    /**
     * A JSON object that contains values for the variables defined in the template. It is made available to the template under the substitution variable task.input. For example, if you define a variable task.input.text in your template, you can supply the variable in the JSON object as "text": "sample text".
     */
    Input: TaskInput;
  }
  export interface RenderingError {
    /**
     * A unique identifier for a specific class of errors.
     */
    Code: String;
    /**
     * A human-readable message describing the error.
     */
    Message: String;
  }
  export type RenderingErrorList = RenderingError[];
  export type ResourceArn = string;
  export interface ResourceConfig {
    /**
     * The ML compute instance type. 
     */
    InstanceType: TrainingInstanceType;
    /**
     * The number of ML compute instances to use. For distributed training, provide a value greater than 1. 
     */
    InstanceCount: TrainingInstanceCount;
    /**
     * The size of the ML storage volume that you want to provision.  ML storage volumes store model artifacts and incremental states. Training algorithms might also use the ML storage volume for scratch space. If you want to store the training data in the ML storage volume, choose File as the TrainingInputMode in the algorithm specification.  You must specify sufficient ML storage for your scenario.    Amazon SageMaker supports only the General Purpose SSD (gp2) ML storage volume type.  
     */
    VolumeSizeInGB: VolumeSizeInGB;
    /**
     * The AWS Key Management Service (AWS KMS) key that Amazon SageMaker uses to encrypt data on the storage volume attached to the ML compute instance(s) that run the training job. The VolumeKmsKeyId can be any of the following formats:   // KMS Key ID  "1234abcd-12ab-34cd-56ef-1234567890ab"    // Amazon Resource Name (ARN) of a KMS Key  "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"   
     */
    VolumeKmsKeyId?: KmsKeyId;
  }
  export interface ResourceLimits {
    /**
     * The maximum number of training jobs that a hyperparameter tuning job can launch.
     */
    MaxNumberOfTrainingJobs: MaxNumberOfTrainingJobs;
    /**
     * The maximum number of concurrent training jobs that a hyperparameter tuning job can launch.
     */
    MaxParallelTrainingJobs: MaxParallelTrainingJobs;
  }
  export type ResourcePropertyName = string;
  export type ResourceType = "TrainingJob"|string;
  export type ResponseMIMEType = string;
  export type ResponseMIMETypes = ResponseMIMEType[];
  export type RoleArn = string;
  export type RootAccess = "Enabled"|"Disabled"|string;
  export type S3DataDistribution = "FullyReplicated"|"ShardedByS3Key"|string;
  export interface S3DataSource {
    /**
     * If you choose S3Prefix, S3Uri identifies a key name prefix. Amazon SageMaker uses all objects that match the specified key name prefix for model training.  If you choose ManifestFile, S3Uri identifies an object that is a manifest file containing a list of object keys that you want Amazon SageMaker to use for model training.  If you choose AugmentedManifestFile, S3Uri identifies an object that is an augmented manifest file in JSON lines format. This file contains the data you want to use for model training. AugmentedManifestFile can only be used if the Channel's input mode is Pipe.
     */
    S3DataType: S3DataType;
    /**
     * Depending on the value specified for the S3DataType, identifies either a key name prefix or a manifest. For example:     A key name prefix might look like this: s3://bucketname/exampleprefix.     A manifest might look like this: s3://bucketname/example.manifest   The manifest is an S3 object which is a JSON file with the following format:   [    {"prefix": "s3://customer_bucket/some/prefix/"},    "relative/path/to/custdata-1",    "relative/path/custdata-2",    ...    ]   The preceding JSON matches the following s3Uris:   s3://customer_bucket/some/prefix/relative/path/to/custdata-1   s3://customer_bucket/some/prefix/relative/path/custdata-2   ...  The complete set of s3uris in this manifest is the input data for the channel for this datasource. The object that each s3uris points to must be readable by the IAM role that Amazon SageMaker uses to perform tasks on your behalf.   
     */
    S3Uri: S3Uri;
    /**
     * If you want Amazon SageMaker to replicate the entire dataset on each ML compute instance that is launched for model training, specify FullyReplicated.  If you want Amazon SageMaker to replicate a subset of data on each ML compute instance that is launched for model training, specify ShardedByS3Key. If there are n ML compute instances launched for a training job, each instance gets approximately 1/n of the number of S3 objects. In this case, model training on each machine uses only the subset of training data.  Don't choose more ML compute instances for training than available S3 objects. If you do, some nodes won't get any data and you will pay for nodes that aren't getting any training data. This applies in both File and Pipe modes. Keep this in mind when developing algorithms.  In distributed training, where you use multiple ML compute EC2 instances, you might choose ShardedByS3Key. If the algorithm requires copying training data to the ML storage volume (when TrainingInputMode is set to File), this copies 1/n of the number of objects. 
     */
    S3DataDistributionType?: S3DataDistribution;
    /**
     * A list of one or more attribute names to use that are found in a specified augmented manifest file.
     */
    AttributeNames?: AttributeNames;
  }
  export type S3DataType = "ManifestFile"|"S3Prefix"|"AugmentedManifestFile"|string;
  export type S3Uri = string;
  export interface SearchExpression {
    /**
     * A list of filter objects.
     */
    Filters?: FilterList;
    /**
     * A list of nested filter objects.
     */
    NestedFilters?: NestedFiltersList;
    /**
     * A list of search expression objects.
     */
    SubExpressions?: SearchExpressionList;
    /**
     * A Boolean operator used to evaluate the search expression. If you want every conditional statement in all lists to be satisfied for the entire search expression to be true, specify And. If only a single conditional statement needs to be true for the entire search expression to be true, specify Or. The default value is And.
     */
    Operator?: BooleanOperator;
  }
  export type SearchExpressionList = SearchExpression[];
  export interface SearchRecord {
    /**
     * A TrainingJob object that is returned as part of a Search request.
     */
    TrainingJob?: TrainingJob;
  }
  export interface SearchRequest {
    /**
     * The name of the Amazon SageMaker resource to search for. Currently, the only valid Resource value is TrainingJob.
     */
    Resource: ResourceType;
    /**
     * A Boolean conditional statement. Resource objects must satisfy this condition to be included in search results. You must provide at least one subexpression, filter, or nested filter. The maximum number of recursive SubExpressions, NestedFilters, and Filters that can be included in a SearchExpression object is 50.
     */
    SearchExpression?: SearchExpression;
    /**
     * The name of the resource property used to sort the SearchResults. The default is LastModifiedTime.
     */
    SortBy?: ResourcePropertyName;
    /**
     * How SearchResults are ordered. Valid values are Ascending or Descending. The default is Descending.
     */
    SortOrder?: SearchSortOrder;
    /**
     * If more than MaxResults resource objects match the specified SearchExpression, the SearchResponse includes a NextToken. The NextToken can be passed to the next SearchRequest to continue retrieving results for the specified SearchExpression and Sort parameters.
     */
    NextToken?: NextToken;
    /**
     * The maximum number of results to return in a SearchResponse.
     */
    MaxResults?: MaxResults;
  }
  export interface SearchResponse {
    /**
     * A list of SearchResult objects.
     */
    Results?: SearchResultsList;
    /**
     * If the result of the previous Search request was truncated, the response includes a NextToken. To retrieve the next set of results, use the token in the next request.
     */
    NextToken?: NextToken;
  }
  export type SearchResultsList = SearchRecord[];
  export type SearchSortOrder = "Ascending"|"Descending"|string;
  export type SecondaryStatus = "Starting"|"LaunchingMLInstances"|"PreparingTrainingStack"|"Downloading"|"DownloadingTrainingImage"|"Training"|"Uploading"|"Stopping"|"Stopped"|"MaxRuntimeExceeded"|"Completed"|"Failed"|"Interrupted"|"MaxWaitTimeExceeded"|string;
  export interface SecondaryStatusTransition {
    /**
     * Contains a secondary status information from a training job. Status might be one of the following secondary statuses:  InProgress     Starting - Starting the training job.    Downloading - An optional stage for algorithms that support File training input mode. It indicates that data is being downloaded to the ML storage volumes.    Training - Training is in progress.    Uploading - Training is complete and the model artifacts are being uploaded to the S3 location.    Completed     Completed - The training job has completed.    Failed     Failed - The training job has failed. The reason for the failure is returned in the FailureReason field of DescribeTrainingJobResponse.    Stopped     MaxRuntimeExceeded - The job stopped because it exceeded the maximum allowed runtime.    Stopped - The training job has stopped.    Stopping     Stopping - Stopping the training job.     We no longer support the following secondary statuses:    LaunchingMLInstances     PreparingTrainingStack     DownloadingTrainingImage   
     */
    Status: SecondaryStatus;
    /**
     * A timestamp that shows when the training job transitioned to the current secondary status state.
     */
    StartTime: Timestamp;
    /**
     * A timestamp that shows when the training job transitioned out of this secondary status state into another secondary status state or when the training job has ended.
     */
    EndTime?: Timestamp;
    /**
     * A detailed description of the progress within a secondary status.  Amazon SageMaker provides secondary statuses and status messages that apply to each of them:  Starting    Starting the training job.   Launching requested ML instances.   Insufficient capacity error from EC2 while launching instances, retrying!   Launched instance was unhealthy, replacing it!   Preparing the instances for training.    Training    Downloading the training image.   Training image download completed. Training in progress.      Status messages are subject to change. Therefore, we recommend not including them in code that programmatically initiates actions. For examples, don't use status messages in if statements.  To have an overview of your training job's progress, view TrainingJobStatus and SecondaryStatus in DescribeTrainingJob, and StatusMessage together. For example, at the start of a training job, you might see the following:    TrainingJobStatus - InProgress    SecondaryStatus - Training    StatusMessage - Downloading the training image  
     */
    StatusMessage?: StatusMessage;
  }
  export type SecondaryStatusTransitions = SecondaryStatusTransition[];
  export type SecretArn = string;
  export type SecurityGroupId = string;
  export type SecurityGroupIds = SecurityGroupId[];
  export type Seed = number;
  export type SessionExpirationDurationInSeconds = number;
  export interface ShuffleConfig {
    /**
     * Determines the shuffling order in ShuffleConfig value.
     */
    Seed: Seed;
  }
  export type SortBy = "Name"|"CreationTime"|"Status"|string;
  export type SortOrder = "Ascending"|"Descending"|string;
  export interface SourceAlgorithm {
    /**
     * The Amazon S3 path where the model artifacts, which result from model training, are stored. This path must point to a single gzip compressed tar archive (.tar.gz suffix).
     */
    ModelDataUrl?: Url;
    /**
     * The name of an algorithm that was used to create the model package. The algorithm must be either an algorithm resource in your Amazon SageMaker account or an algorithm in AWS Marketplace that you are subscribed to.
     */
    AlgorithmName: ArnOrName;
  }
  export type SourceAlgorithmList = SourceAlgorithm[];
  export interface SourceAlgorithmSpecification {
    /**
     * A list of the algorithms that were used to create a model package.
     */
    SourceAlgorithms: SourceAlgorithmList;
  }
  export type SplitType = "None"|"Line"|"RecordIO"|"TFRecord"|string;
  export interface StartNotebookInstanceInput {
    /**
     * The name of the notebook instance to start.
     */
    NotebookInstanceName: NotebookInstanceName;
  }
  export type StatusMessage = string;
  export interface StopCompilationJobRequest {
    /**
     * The name of the model compilation job to stop.
     */
    CompilationJobName: EntityName;
  }
  export interface StopHyperParameterTuningJobRequest {
    /**
     * The name of the tuning job to stop.
     */
    HyperParameterTuningJobName: HyperParameterTuningJobName;
  }
  export interface StopLabelingJobRequest {
    /**
     * The name of the labeling job to stop.
     */
    LabelingJobName: LabelingJobName;
  }
  export interface StopNotebookInstanceInput {
    /**
     * The name of the notebook instance to terminate.
     */
    NotebookInstanceName: NotebookInstanceName;
  }
  export interface StopTrainingJobRequest {
    /**
     * The name of the training job to stop.
     */
    TrainingJobName: TrainingJobName;
  }
  export interface StopTransformJobRequest {
    /**
     * The name of the transform job to stop.
     */
    TransformJobName: TransformJobName;
  }
  export interface StoppingCondition {
    /**
     * The maximum length of time, in seconds, that the training or compilation job can run. If job does not complete during this time, Amazon SageMaker ends the job. If value is not specified, default value is 1 day. The maximum value is 28 days.
     */
    MaxRuntimeInSeconds?: MaxRuntimeInSeconds;
    /**
     * The maximum length of time, in seconds, how long you are willing to wait for a managed spot training job to complete. It is the amount of time spent waiting for Spot capacity plus the amount of time the training job runs. It must be equal to or greater than MaxRuntimeInSeconds. 
     */
    MaxWaitTimeInSeconds?: MaxWaitTimeInSeconds;
  }
  export type String = string;
  export type String200 = string;
  export type SubnetId = string;
  export type Subnets = SubnetId[];
  export interface SubscribedWorkteam {
    /**
     * The Amazon Resource Name (ARN) of the vendor that you have subscribed.
     */
    WorkteamArn: WorkteamArn;
    /**
     * The title of the service provided by the vendor in the Amazon Marketplace.
     */
    MarketplaceTitle?: String200;
    /**
     * The name of the vendor in the Amazon Marketplace.
     */
    SellerName?: String;
    /**
     * The description of the vendor from the Amazon Marketplace.
     */
    MarketplaceDescription?: String200;
    /**
     * 
     */
    ListingId?: String;
  }
  export type SubscribedWorkteams = SubscribedWorkteam[];
  export type Success = boolean;
  export interface SuggestionQuery {
    /**
     * A type of SuggestionQuery. Defines a property name hint. Only property names that match the specified hint are included in the response.
     */
    PropertyNameQuery?: PropertyNameQuery;
  }
  export interface Tag {
    /**
     * The tag key.
     */
    Key: TagKey;
    /**
     * The tag value.
     */
    Value: TagValue;
  }
  export type TagKey = string;
  export type TagKeyList = TagKey[];
  export type TagList = Tag[];
  export type TagValue = string;
  export type TargetDevice = "lambda"|"ml_m4"|"ml_m5"|"ml_c4"|"ml_c5"|"ml_p2"|"ml_p3"|"jetson_tx1"|"jetson_tx2"|"jetson_nano"|"rasp3b"|"deeplens"|"rk3399"|"rk3288"|"aisage"|"sbe_c"|"qcs605"|"qcs603"|string;
  export type TaskAvailabilityLifetimeInSeconds = number;
  export type TaskCount = number;
  export type TaskDescription = string;
  export type TaskInput = string;
  export type TaskKeyword = string;
  export type TaskKeywords = TaskKeyword[];
  export type TaskTimeLimitInSeconds = number;
  export type TaskTitle = string;
  export type TemplateContent = string;
  export type TenthFractionsOfACent = number;
  export type Timestamp = Date;
  export type TrainingInputMode = "Pipe"|"File"|string;
  export type TrainingInstanceCount = number;
  export type TrainingInstanceType = "ml.m4.xlarge"|"ml.m4.2xlarge"|"ml.m4.4xlarge"|"ml.m4.10xlarge"|"ml.m4.16xlarge"|"ml.m5.large"|"ml.m5.xlarge"|"ml.m5.2xlarge"|"ml.m5.4xlarge"|"ml.m5.12xlarge"|"ml.m5.24xlarge"|"ml.c4.xlarge"|"ml.c4.2xlarge"|"ml.c4.4xlarge"|"ml.c4.8xlarge"|"ml.p2.xlarge"|"ml.p2.8xlarge"|"ml.p2.16xlarge"|"ml.p3.2xlarge"|"ml.p3.8xlarge"|"ml.p3.16xlarge"|"ml.p3dn.24xlarge"|"ml.c5.xlarge"|"ml.c5.2xlarge"|"ml.c5.4xlarge"|"ml.c5.9xlarge"|"ml.c5.18xlarge"|string;
  export type TrainingInstanceTypes = TrainingInstanceType[];
  export interface TrainingJob {
    /**
     * The name of the training job.
     */
    TrainingJobName?: TrainingJobName;
    /**
     * The Amazon Resource Name (ARN) of the training job.
     */
    TrainingJobArn?: TrainingJobArn;
    /**
     * The Amazon Resource Name (ARN) of the associated hyperparameter tuning job if the training job was launched by a hyperparameter tuning job.
     */
    TuningJobArn?: HyperParameterTuningJobArn;
    /**
     * The Amazon Resource Name (ARN) of the labeling job.
     */
    LabelingJobArn?: LabelingJobArn;
    /**
     * Information about the Amazon S3 location that is configured for storing model artifacts.
     */
    ModelArtifacts?: ModelArtifacts;
    /**
     * The status of the training job. Training job statuses are:    InProgress - The training is in progress.    Completed - The training job has completed.    Failed - The training job has failed. To see the reason for the failure, see the FailureReason field in the response to a DescribeTrainingJobResponse call.    Stopping - The training job is stopping.    Stopped - The training job has stopped.   For more detailed information, see SecondaryStatus. 
     */
    TrainingJobStatus?: TrainingJobStatus;
    /**
     *  Provides detailed information about the state of the training job. For detailed information about the secondary status of the training job, see StatusMessage under SecondaryStatusTransition. Amazon SageMaker provides primary statuses and secondary statuses that apply to each of them:  InProgress     Starting - Starting the training job.    Downloading - An optional stage for algorithms that support File training input mode. It indicates that data is being downloaded to the ML storage volumes.    Training - Training is in progress.    Uploading - Training is complete and the model artifacts are being uploaded to the S3 location.    Completed     Completed - The training job has completed.    Failed     Failed - The training job has failed. The reason for the failure is returned in the FailureReason field of DescribeTrainingJobResponse.    Stopped     MaxRuntimeExceeded - The job stopped because it exceeded the maximum allowed runtime.    Stopped - The training job has stopped.    Stopping     Stopping - Stopping the training job.      Valid values for SecondaryStatus are subject to change.   We no longer support the following secondary statuses:    LaunchingMLInstances     PreparingTrainingStack     DownloadingTrainingImage   
     */
    SecondaryStatus?: SecondaryStatus;
    /**
     * If the training job failed, the reason it failed.
     */
    FailureReason?: FailureReason;
    /**
     * Algorithm-specific parameters.
     */
    HyperParameters?: HyperParameters;
    /**
     * Information about the algorithm used for training, and algorithm metadata.
     */
    AlgorithmSpecification?: AlgorithmSpecification;
    /**
     * The AWS Identity and Access Management (IAM) role configured for the training job.
     */
    RoleArn?: RoleArn;
    /**
     * An array of Channel objects that describes each data input channel.
     */
    InputDataConfig?: InputDataConfig;
    /**
     * The S3 path where model artifacts that you configured when creating the job are stored. Amazon SageMaker creates subfolders for model artifacts.
     */
    OutputDataConfig?: OutputDataConfig;
    /**
     * Resources, including ML compute instances and ML storage volumes, that are configured for model training.
     */
    ResourceConfig?: ResourceConfig;
    /**
     * A VpcConfig object that specifies the VPC that this training job has access to. For more information, see Protect Training Jobs by Using an Amazon Virtual Private Cloud.
     */
    VpcConfig?: VpcConfig;
    /**
     * Specifies a limit to how long a model training job can run. When the job reaches the time limit, Amazon SageMaker ends the training job. Use this API to cap model training costs. To stop a job, Amazon SageMaker sends the algorithm the SIGTERM signal, which delays job termination for 120 seconds. Algorithms can use this 120-second window to save the model artifacts, so the results of training are not lost. 
     */
    StoppingCondition?: StoppingCondition;
    /**
     * A timestamp that indicates when the training job was created.
     */
    CreationTime?: Timestamp;
    /**
     * Indicates the time when the training job starts on training instances. You are billed for the time interval between this time and the value of TrainingEndTime. The start time in CloudWatch Logs might be later than this time. The difference is due to the time it takes to download the training data and to the size of the training container.
     */
    TrainingStartTime?: Timestamp;
    /**
     * Indicates the time when the training job ends on training instances. You are billed for the time interval between the value of TrainingStartTime and this time. For successful jobs and stopped jobs, this is the time after model artifacts are uploaded. For failed jobs, this is the time when Amazon SageMaker detects a job failure.
     */
    TrainingEndTime?: Timestamp;
    /**
     * A timestamp that indicates when the status of the training job was last modified.
     */
    LastModifiedTime?: Timestamp;
    /**
     * A history of all of the secondary statuses that the training job has transitioned through.
     */
    SecondaryStatusTransitions?: SecondaryStatusTransitions;
    /**
     * A list of final metric values that are set when the training job completes. Used only if the training job was configured to use metrics.
     */
    FinalMetricDataList?: FinalMetricDataList;
    /**
     * If the TrainingJob was created with network isolation, the value is set to true. If network isolation is enabled, nodes can't communicate beyond the VPC they run in.
     */
    EnableNetworkIsolation?: Boolean;
    /**
     * To encrypt all communications between ML compute instances in distributed training, choose True. Encryption provides greater security for distributed training, but training might take longer. How long it takes depends on the amount of communication between compute instances, especially if you use a deep learning algorithm in distributed training.
     */
    EnableInterContainerTrafficEncryption?: Boolean;
    /**
     * An array of key-value pairs. For more information, see Using Cost Allocation Tags in the AWS Billing and Cost Management User Guide.
     */
    Tags?: TagList;
  }
  export type TrainingJobArn = string;
  export interface TrainingJobDefinition {
    /**
     * The input mode used by the algorithm for the training job. For the input modes that Amazon SageMaker algorithms support, see Algorithms. If an algorithm supports the File input mode, Amazon SageMaker downloads the training data from S3 to the provisioned ML storage Volume, and mounts the directory to docker volume for training container. If an algorithm supports the Pipe input mode, Amazon SageMaker streams data directly from S3 to the container.
     */
    TrainingInputMode: TrainingInputMode;
    /**
     * The hyperparameters used for the training job.
     */
    HyperParameters?: HyperParameters;
    /**
     * An array of Channel objects, each of which specifies an input source.
     */
    InputDataConfig: InputDataConfig;
    /**
     * the path to the S3 bucket where you want to store model artifacts. Amazon SageMaker creates subfolders for the artifacts.
     */
    OutputDataConfig: OutputDataConfig;
    /**
     * The resources, including the ML compute instances and ML storage volumes, to use for model training.
     */
    ResourceConfig: ResourceConfig;
    /**
     * Specifies a limit to how long a model training job can run. When the job reaches the time limit, Amazon SageMaker ends the training job. Use this API to cap model training costs. To stop a job, Amazon SageMaker sends the algorithm the SIGTERM signal, which delays job termination for 120 seconds. Algorithms can use this 120-second window to save the model artifacts.
     */
    StoppingCondition: StoppingCondition;
  }
  export type TrainingJobEarlyStoppingType = "Off"|"Auto"|string;
  export type TrainingJobName = string;
  export type TrainingJobSortByOptions = "Name"|"CreationTime"|"Status"|"FinalObjectiveMetricValue"|string;
  export type TrainingJobStatus = "InProgress"|"Completed"|"Failed"|"Stopping"|"Stopped"|string;
  export type TrainingJobStatusCounter = number;
  export interface TrainingJobStatusCounters {
    /**
     * The number of completed training jobs launched by the hyperparameter tuning job.
     */
    Completed?: TrainingJobStatusCounter;
    /**
     * The number of in-progress training jobs launched by a hyperparameter tuning job.
     */
    InProgress?: TrainingJobStatusCounter;
    /**
     * The number of training jobs that failed, but can be retried. A failed training job can be retried only if it failed because an internal service error occurred.
     */
    RetryableError?: TrainingJobStatusCounter;
    /**
     * The number of training jobs that failed and can't be retried. A failed training job can't be retried if it failed because a client error occurred.
     */
    NonRetryableError?: TrainingJobStatusCounter;
    /**
     * The number of training jobs launched by a hyperparameter tuning job that were manually stopped.
     */
    Stopped?: TrainingJobStatusCounter;
  }
  export type TrainingJobSummaries = TrainingJobSummary[];
  export interface TrainingJobSummary {
    /**
     * The name of the training job that you want a summary for.
     */
    TrainingJobName: TrainingJobName;
    /**
     * The Amazon Resource Name (ARN) of the training job.
     */
    TrainingJobArn: TrainingJobArn;
    /**
     * A timestamp that shows when the training job was created.
     */
    CreationTime: Timestamp;
    /**
     * A timestamp that shows when the training job ended. This field is set only if the training job has one of the terminal statuses (Completed, Failed, or Stopped). 
     */
    TrainingEndTime?: Timestamp;
    /**
     *  Timestamp when the training job was last modified. 
     */
    LastModifiedTime?: Timestamp;
    /**
     * The status of the training job.
     */
    TrainingJobStatus: TrainingJobStatus;
  }
  export interface TrainingSpecification {
    /**
     * The Amazon ECR registry path of the Docker image that contains the training algorithm.
     */
    TrainingImage: Image;
    /**
     * An MD5 hash of the training algorithm that identifies the Docker image used for training.
     */
    TrainingImageDigest?: ImageDigest;
    /**
     * A list of the HyperParameterSpecification objects, that define the supported hyperparameters. This is required if the algorithm supports automatic model tuning.&gt;
     */
    SupportedHyperParameters?: HyperParameterSpecifications;
    /**
     * A list of the instance types that this algorithm can use for training.
     */
    SupportedTrainingInstanceTypes: TrainingInstanceTypes;
    /**
     * Indicates whether the algorithm supports distributed training. If set to false, buyers can’t request more than one instance during training.
     */
    SupportsDistributedTraining?: Boolean;
    /**
     * A list of MetricDefinition objects, which are used for parsing metrics generated by the algorithm.
     */
    MetricDefinitions?: MetricDefinitionList;
    /**
     * A list of ChannelSpecification objects, which specify the input sources to be used by the algorithm.
     */
    TrainingChannels: ChannelSpecifications;
    /**
     * A list of the metrics that the algorithm emits that can be used as the objective metric in a hyperparameter tuning job.
     */
    SupportedTuningJobObjectiveMetrics?: HyperParameterTuningJobObjectives;
  }
  export type TrainingTimeInSeconds = number;
  export interface TransformDataSource {
    /**
     * The S3 location of the data source that is associated with a channel.
     */
    S3DataSource: TransformS3DataSource;
  }
  export type TransformEnvironmentKey = string;
  export type TransformEnvironmentMap = {[key: string]: TransformEnvironmentValue};
  export type TransformEnvironmentValue = string;
  export interface TransformInput {
    /**
     * Describes the location of the channel data, which is, the S3 location of the input data that the model can consume.
     */
    DataSource: TransformDataSource;
    /**
     * The multipurpose internet mail extension (MIME) type of the data. Amazon SageMaker uses the MIME type with each http call to transfer data to the transform job.
     */
    ContentType?: ContentType;
    /**
     * If your transform data is compressed, specify the compression type. Amazon SageMaker automatically decompresses the data for the transform job accordingly. The default value is None.
     */
    CompressionType?: CompressionType;
    /**
     * The method to use to split the transform job's data files into smaller batches. Splitting is necessary when the total size of each object is too large to fit in a single request. You can also use data splitting to improve performance by processing multiple concurrent mini-batches. The default value for SplitType is None, which indicates that input data files are not split, and request payloads contain the entire contents of an input object. Set the value of this parameter to Line to split records on a newline character boundary. SplitType also supports a number of record-oriented binary data formats. When splitting is enabled, the size of a mini-batch depends on the values of the BatchStrategy and MaxPayloadInMB parameters. When the value of BatchStrategy is MultiRecord, Amazon SageMaker sends the maximum number of records in each request, up to the MaxPayloadInMB limit. If the value of BatchStrategy is SingleRecord, Amazon SageMaker sends individual records in each request.  Some data formats represent a record as a binary payload wrapped with extra padding bytes. When splitting is applied to a binary data format, padding is removed if the value of BatchStrategy is set to SingleRecord. Padding is not removed if the value of BatchStrategy is set to MultiRecord. For more information about the RecordIO, see Data Format in the MXNet documentation. For more information about the TFRecord, see Consuming TFRecord data in the TensorFlow documentation. 
     */
    SplitType?: SplitType;
  }
  export type TransformInstanceCount = number;
  export type TransformInstanceType = "ml.m4.xlarge"|"ml.m4.2xlarge"|"ml.m4.4xlarge"|"ml.m4.10xlarge"|"ml.m4.16xlarge"|"ml.c4.xlarge"|"ml.c4.2xlarge"|"ml.c4.4xlarge"|"ml.c4.8xlarge"|"ml.p2.xlarge"|"ml.p2.8xlarge"|"ml.p2.16xlarge"|"ml.p3.2xlarge"|"ml.p3.8xlarge"|"ml.p3.16xlarge"|"ml.c5.xlarge"|"ml.c5.2xlarge"|"ml.c5.4xlarge"|"ml.c5.9xlarge"|"ml.c5.18xlarge"|"ml.m5.large"|"ml.m5.xlarge"|"ml.m5.2xlarge"|"ml.m5.4xlarge"|"ml.m5.12xlarge"|"ml.m5.24xlarge"|string;
  export type TransformInstanceTypes = TransformInstanceType[];
  export type TransformJobArn = string;
  export interface TransformJobDefinition {
    /**
     * The maximum number of parallel requests that can be sent to each instance in a transform job. The default value is 1.
     */
    MaxConcurrentTransforms?: MaxConcurrentTransforms;
    /**
     * The maximum payload size allowed, in MB. A payload is the data portion of a record (without metadata).
     */
    MaxPayloadInMB?: MaxPayloadInMB;
    /**
     * A string that determines the number of records included in a single mini-batch.  SingleRecord means only one record is used per mini-batch. MultiRecord means a mini-batch is set to contain as many records that can fit within the MaxPayloadInMB limit.
     */
    BatchStrategy?: BatchStrategy;
    /**
     * The environment variables to set in the Docker container. We support up to 16 key and values entries in the map.
     */
    Environment?: TransformEnvironmentMap;
    /**
     * A description of the input source and the way the transform job consumes it.
     */
    TransformInput: TransformInput;
    /**
     * Identifies the Amazon S3 location where you want Amazon SageMaker to save the results from the transform job.
     */
    TransformOutput: TransformOutput;
    /**
     * Identifies the ML compute instances for the transform job.
     */
    TransformResources: TransformResources;
  }
  export type TransformJobName = string;
  export type TransformJobStatus = "InProgress"|"Completed"|"Failed"|"Stopping"|"Stopped"|string;
  export type TransformJobSummaries = TransformJobSummary[];
  export interface TransformJobSummary {
    /**
     * The name of the transform job.
     */
    TransformJobName: TransformJobName;
    /**
     * The Amazon Resource Name (ARN) of the transform job.
     */
    TransformJobArn: TransformJobArn;
    /**
     * A timestamp that shows when the transform Job was created.
     */
    CreationTime: Timestamp;
    /**
     * Indicates when the transform job ends on compute instances. For successful jobs and stopped jobs, this is the exact time recorded after the results are uploaded. For failed jobs, this is when Amazon SageMaker detected that the job failed.
     */
    TransformEndTime?: Timestamp;
    /**
     * Indicates when the transform job was last modified.
     */
    LastModifiedTime?: Timestamp;
    /**
     * The status of the transform job.
     */
    TransformJobStatus: TransformJobStatus;
    /**
     * If the transform job failed, the reason it failed.
     */
    FailureReason?: FailureReason;
  }
  export interface TransformOutput {
    /**
     * The Amazon S3 path where you want Amazon SageMaker to store the results of the transform job. For example, s3://bucket-name/key-name-prefix. For every S3 object used as input for the transform job, batch transform stores the transformed data with an .out suffix in a corresponding subfolder in the location in the output prefix. For example, for the input data stored at s3://bucket-name/input-name-prefix/dataset01/data.csv, batch transform stores the transformed data at s3://bucket-name/output-name-prefix/input-name-prefix/data.csv.out. Batch transform doesn't upload partially processed objects. For an input S3 object that contains multiple records, it creates an .out file only if the transform job succeeds on the entire file. When the input contains multiple S3 objects, the batch transform job processes the listed S3 objects and uploads only the output for successfully processed objects. If any object fails in the transform job batch transform marks the job as failed to prompt investigation.
     */
    S3OutputPath: S3Uri;
    /**
     * The MIME type used to specify the output data. Amazon SageMaker uses the MIME type with each http call to transfer data from the transform job.
     */
    Accept?: Accept;
    /**
     * Defines how to assemble the results of the transform job as a single S3 object. Choose a format that is most convenient to you. To concatenate the results in binary format, specify None. To add a newline character at the end of every transformed record, specify Line.
     */
    AssembleWith?: AssemblyType;
    /**
     * The AWS Key Management Service (AWS KMS) key that Amazon SageMaker uses to encrypt the model artifacts at rest using Amazon S3 server-side encryption. The KmsKeyId can be any of the following formats:    // KMS Key ID  "1234abcd-12ab-34cd-56ef-1234567890ab"    // Amazon Resource Name (ARN) of a KMS Key  "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"    // KMS Key Alias  "alias/ExampleAlias"    // Amazon Resource Name (ARN) of a KMS Key Alias  "arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias"    If you don't provide a KMS key ID, Amazon SageMaker uses the default KMS key for Amazon S3 for your role's account. For more information, see KMS-Managed Encryption Keys in the Amazon Simple Storage Service Developer Guide.  The KMS key policy must grant permission to the IAM role that you specify in your CreateTramsformJob request. For more information, see Using Key Policies in AWS KMS in the AWS Key Management Service Developer Guide.
     */
    KmsKeyId?: KmsKeyId;
  }
  export interface TransformResources {
    /**
     * The ML compute instance type for the transform job. If you are using built-in algorithms to transform moderately sized datasets, we recommend using ml.m4.xlarge or ml.m5.large instance types.
     */
    InstanceType: TransformInstanceType;
    /**
     * The number of ML compute instances to use in the transform job. For distributed transform jobs, specify a value greater than 1. The default value is 1.
     */
    InstanceCount: TransformInstanceCount;
    /**
     * The AWS Key Management Service (AWS KMS) key that Amazon SageMaker uses to encrypt data on the storage volume attached to the ML compute instance(s) that run the batch transform job. The VolumeKmsKeyId can be any of the following formats:   // KMS Key ID  "1234abcd-12ab-34cd-56ef-1234567890ab"    // Amazon Resource Name (ARN) of a KMS Key  "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"   
     */
    VolumeKmsKeyId?: KmsKeyId;
  }
  export interface TransformS3DataSource {
    /**
     * If you choose S3Prefix, S3Uri identifies a key name prefix. Amazon SageMaker uses all objects with the specified key name prefix for batch transform.  If you choose ManifestFile, S3Uri identifies an object that is a manifest file containing a list of object keys that you want Amazon SageMaker to use for batch transform.  The following values are compatible: ManifestFile, S3Prefix  The following value is not compatible: AugmentedManifestFile 
     */
    S3DataType: S3DataType;
    /**
     * Depending on the value specified for the S3DataType, identifies either a key name prefix or a manifest. For example:    A key name prefix might look like this: s3://bucketname/exampleprefix.     A manifest might look like this: s3://bucketname/example.manifest   The manifest is an S3 object which is a JSON file with the following format:   [    {"prefix": "s3://customer_bucket/some/prefix/"},    "relative/path/to/custdata-1",    "relative/path/custdata-2",    ...    ]   The preceding JSON matches the following S3Uris:   s3://customer_bucket/some/prefix/relative/path/to/custdata-1   s3://customer_bucket/some/prefix/relative/path/custdata-1   ...   The complete set of S3Uris in this manifest constitutes the input data for the channel for this datasource. The object that each S3Uris points to must be readable by the IAM role that Amazon SageMaker uses to perform tasks on your behalf.  
     */
    S3Uri: S3Uri;
  }
  export interface USD {
    /**
     * The whole number of dollars in the amount.
     */
    Dollars?: Dollars;
    /**
     * The fractional portion, in cents, of the amount. 
     */
    Cents?: Cents;
    /**
     * Fractions of a cent, in tenths.
     */
    TenthFractionsOfACent?: TenthFractionsOfACent;
  }
  export interface UiConfig {
    /**
     * The Amazon S3 bucket location of the UI template. For more information about the contents of a UI template, see  Creating Your Custom Labeling Task Template.
     */
    UiTemplateS3Uri: S3Uri;
  }
  export interface UiTemplate {
    /**
     * The content of the Liquid template for the worker user interface.
     */
    Content: TemplateContent;
  }
  export interface UpdateCodeRepositoryInput {
    /**
     * The name of the Git repository to update.
     */
    CodeRepositoryName: EntityName;
    /**
     * The configuration of the git repository, including the URL and the Amazon Resource Name (ARN) of the AWS Secrets Manager secret that contains the credentials used to access the repository. The secret must have a staging label of AWSCURRENT and must be in the following format:  {"username": UserName, "password": Password} 
     */
    GitConfig?: GitConfigForUpdate;
  }
  export interface UpdateCodeRepositoryOutput {
    /**
     * The ARN of the Git repository.
     */
    CodeRepositoryArn: CodeRepositoryArn;
  }
  export interface UpdateEndpointInput {
    /**
     * The name of the endpoint whose configuration you want to update.
     */
    EndpointName: EndpointName;
    /**
     * The name of the new endpoint configuration.
     */
    EndpointConfigName: EndpointConfigName;
  }
  export interface UpdateEndpointOutput {
    /**
     * The Amazon Resource Name (ARN) of the endpoint.
     */
    EndpointArn: EndpointArn;
  }
  export interface UpdateEndpointWeightsAndCapacitiesInput {
    /**
     * The name of an existing Amazon SageMaker endpoint.
     */
    EndpointName: EndpointName;
    /**
     * An object that provides new capacity and weight values for a variant.
     */
    DesiredWeightsAndCapacities: DesiredWeightAndCapacityList;
  }
  export interface UpdateEndpointWeightsAndCapacitiesOutput {
    /**
     * The Amazon Resource Name (ARN) of the updated endpoint.
     */
    EndpointArn: EndpointArn;
  }
  export interface UpdateNotebookInstanceInput {
    /**
     * The name of the notebook instance to update.
     */
    NotebookInstanceName: NotebookInstanceName;
    /**
     * The Amazon ML compute instance type.
     */
    InstanceType?: InstanceType;
    /**
     * The Amazon Resource Name (ARN) of the IAM role that Amazon SageMaker can assume to access the notebook instance. For more information, see Amazon SageMaker Roles.   To be able to pass this role to Amazon SageMaker, the caller of this API must have the iam:PassRole permission. 
     */
    RoleArn?: RoleArn;
    /**
     * The name of a lifecycle configuration to associate with the notebook instance. For information about lifestyle configurations, see Step 2.1: (Optional) Customize a Notebook Instance.
     */
    LifecycleConfigName?: NotebookInstanceLifecycleConfigName;
    /**
     * Set to true to remove the notebook instance lifecycle configuration currently associated with the notebook instance. This operation is idempotent. If you specify a lifecycle configuration that is not associated with the notebook instance when you call this method, it does not throw an error.
     */
    DisassociateLifecycleConfig?: DisassociateNotebookInstanceLifecycleConfig;
    /**
     * The size, in GB, of the ML storage volume to attach to the notebook instance. The default value is 5 GB. ML storage volumes are encrypted, so Amazon SageMaker can't determine the amount of available free space on the volume. Because of this, you can increase the volume size when you update a notebook instance, but you can't decrease the volume size. If you want to decrease the size of the ML storage volume in use, create a new notebook instance with the desired size.
     */
    VolumeSizeInGB?: NotebookInstanceVolumeSizeInGB;
    /**
     * The Git repository to associate with the notebook instance as its default code repository. This can be either the name of a Git repository stored as a resource in your account, or the URL of a Git repository in AWS CodeCommit or in any other Git repository. When you open a notebook instance, it opens in the directory that contains this repository. For more information, see Associating Git Repositories with Amazon SageMaker Notebook Instances.
     */
    DefaultCodeRepository?: CodeRepositoryNameOrUrl;
    /**
     * An array of up to three Git repositories to associate with the notebook instance. These can be either the names of Git repositories stored as resources in your account, or the URL of Git repositories in AWS CodeCommit or in any other Git repository. These repositories are cloned at the same level as the default repository of your notebook instance. For more information, see Associating Git Repositories with Amazon SageMaker Notebook Instances.
     */
    AdditionalCodeRepositories?: AdditionalCodeRepositoryNamesOrUrls;
    /**
     * A list of the Elastic Inference (EI) instance types to associate with this notebook instance. Currently only one EI instance type can be associated with a notebook instance. For more information, see Using Elastic Inference in Amazon SageMaker.
     */
    AcceleratorTypes?: NotebookInstanceAcceleratorTypes;
    /**
     * A list of the Elastic Inference (EI) instance types to remove from this notebook instance. This operation is idempotent. If you specify an accelerator type that is not associated with the notebook instance when you call this method, it does not throw an error.
     */
    DisassociateAcceleratorTypes?: DisassociateNotebookInstanceAcceleratorTypes;
    /**
     * The name or URL of the default Git repository to remove from this notebook instance. This operation is idempotent. If you specify a Git repository that is not associated with the notebook instance when you call this method, it does not throw an error.
     */
    DisassociateDefaultCodeRepository?: DisassociateDefaultCodeRepository;
    /**
     * A list of names or URLs of the default Git repositories to remove from this notebook instance. This operation is idempotent. If you specify a Git repository that is not associated with the notebook instance when you call this method, it does not throw an error.
     */
    DisassociateAdditionalCodeRepositories?: DisassociateAdditionalCodeRepositories;
    /**
     * Whether root access is enabled or disabled for users of the notebook instance. The default value is Enabled.  If you set this to Disabled, users don't have root access on the notebook instance, but lifecycle configuration scripts still run with root permissions. 
     */
    RootAccess?: RootAccess;
  }
  export interface UpdateNotebookInstanceLifecycleConfigInput {
    /**
     * The name of the lifecycle configuration.
     */
    NotebookInstanceLifecycleConfigName: NotebookInstanceLifecycleConfigName;
    /**
     * The shell script that runs only once, when you create a notebook instance. The shell script must be a base64-encoded string.
     */
    OnCreate?: NotebookInstanceLifecycleConfigList;
    /**
     * The shell script that runs every time you start a notebook instance, including when you create the notebook instance. The shell script must be a base64-encoded string.
     */
    OnStart?: NotebookInstanceLifecycleConfigList;
  }
  export interface UpdateNotebookInstanceLifecycleConfigOutput {
  }
  export interface UpdateNotebookInstanceOutput {
  }
  export interface UpdateWorkteamRequest {
    /**
     * The name of the work team to update.
     */
    WorkteamName: WorkteamName;
    /**
     * A list of MemberDefinition objects that contain the updated work team members.
     */
    MemberDefinitions?: MemberDefinitions;
    /**
     * An updated description for the work team.
     */
    Description?: String200;
    /**
     * Configures SNS topic notifications for available or expiring work items
     */
    NotificationConfiguration?: NotificationConfiguration;
  }
  export interface UpdateWorkteamResponse {
    /**
     * A Workteam object that describes the updated work team.
     */
    Workteam: Workteam;
  }
  export type Url = string;
  export type VariantName = string;
  export type VariantWeight = number;
  export type VolumeSizeInGB = number;
  export interface VpcConfig {
    /**
     * The VPC security group IDs, in the form sg-xxxxxxxx. Specify the security groups for the VPC that is specified in the Subnets field.
     */
    SecurityGroupIds: VpcSecurityGroupIds;
    /**
     * The ID of the subnets in the VPC to which you want to connect your training job or model.   Amazon EC2 P3 accelerated computing instances are not available in the c/d/e availability zones of region us-east-1. If you want to create endpoints with P3 instances in VPC mode in region us-east-1, create subnets in a/b/f availability zones instead. 
     */
    Subnets: Subnets;
  }
  export type VpcSecurityGroupIds = SecurityGroupId[];
  export interface Workteam {
    /**
     * The name of the work team.
     */
    WorkteamName: WorkteamName;
    /**
     * The Amazon Cognito user groups that make up the work team.
     */
    MemberDefinitions: MemberDefinitions;
    /**
     * The Amazon Resource Name (ARN) that identifies the work team.
     */
    WorkteamArn: WorkteamArn;
    /**
     * The Amazon Marketplace identifier for a vendor's work team.
     */
    ProductListingIds?: ProductListings;
    /**
     * A description of the work team.
     */
    Description: String200;
    /**
     * The URI of the labeling job's user interface. Workers open this URI to start labeling your data objects.
     */
    SubDomain?: String;
    /**
     * The date and time that the work team was created (timestamp).
     */
    CreateDate?: Timestamp;
    /**
     * The date and time that the work team was last updated (timestamp).
     */
    LastUpdatedDate?: Timestamp;
    /**
     * Configures SNS notifications of available or expiring work items for work teams.
     */
    NotificationConfiguration?: NotificationConfiguration;
  }
  export type WorkteamArn = string;
  export type WorkteamName = string;
  export type Workteams = Workteam[];
  /**
   * A string in YYYY-MM-DD format that represents the latest possible API version that can be used in this service. Specify 'latest' to use the latest possible version.
   */
  export type apiVersion = "2017-07-24"|"latest"|string;
  export interface ClientApiVersions {
    /**
     * A string in YYYY-MM-DD format that represents the latest possible API version that can be used in this service. Specify 'latest' to use the latest possible version.
     */
    apiVersion?: apiVersion;
  }
  export type ClientConfiguration = ServiceConfigurationOptions & ClientApiVersions;
  /**
   * Contains interfaces for use with the SageMaker client.
   */
  export import Types = SageMaker;
}
export = SageMaker;