sagemaker.d.ts
326 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
import {Request} from '../lib/request';
import {Response} from '../lib/response';
import {AWSError} from '../lib/error';
import {Service} from '../lib/service';
import {WaiterConfiguration} from '../lib/service';
import {ServiceConfigurationOptions} from '../lib/service';
import {ConfigBase as Config} from '../lib/config';
interface Blob {}
declare class SageMaker extends Service {
/**
* Constructs a service object. This object has one method for each API operation.
*/
constructor(options?: SageMaker.Types.ClientConfiguration)
config: Config & SageMaker.Types.ClientConfiguration;
/**
* Adds or overwrites one or more tags for the specified Amazon SageMaker resource. You can add tags to notebook instances, training jobs, hyperparameter tuning jobs, batch transform jobs, models, labeling jobs, work teams, endpoint configurations, and endpoints. Each tag consists of a key and an optional value. Tag keys must be unique per resource. For more information about tags, see For more information, see AWS Tagging Strategies. Tags that you add to a hyperparameter tuning job by calling this API are also added to any training jobs that the hyperparameter tuning job launches after you call this API, but not to training jobs that the hyperparameter tuning job launched before you called this API. To make sure that the tags associated with a hyperparameter tuning job are also added to all training jobs that the hyperparameter tuning job launches, add the tags when you first create the tuning job by specifying them in the Tags parameter of CreateHyperParameterTuningJob
*/
addTags(params: SageMaker.Types.AddTagsInput, callback?: (err: AWSError, data: SageMaker.Types.AddTagsOutput) => void): Request<SageMaker.Types.AddTagsOutput, AWSError>;
/**
* Adds or overwrites one or more tags for the specified Amazon SageMaker resource. You can add tags to notebook instances, training jobs, hyperparameter tuning jobs, batch transform jobs, models, labeling jobs, work teams, endpoint configurations, and endpoints. Each tag consists of a key and an optional value. Tag keys must be unique per resource. For more information about tags, see For more information, see AWS Tagging Strategies. Tags that you add to a hyperparameter tuning job by calling this API are also added to any training jobs that the hyperparameter tuning job launches after you call this API, but not to training jobs that the hyperparameter tuning job launched before you called this API. To make sure that the tags associated with a hyperparameter tuning job are also added to all training jobs that the hyperparameter tuning job launches, add the tags when you first create the tuning job by specifying them in the Tags parameter of CreateHyperParameterTuningJob
*/
addTags(callback?: (err: AWSError, data: SageMaker.Types.AddTagsOutput) => void): Request<SageMaker.Types.AddTagsOutput, AWSError>;
/**
* Create a machine learning algorithm that you can use in Amazon SageMaker and list in the AWS Marketplace.
*/
createAlgorithm(params: SageMaker.Types.CreateAlgorithmInput, callback?: (err: AWSError, data: SageMaker.Types.CreateAlgorithmOutput) => void): Request<SageMaker.Types.CreateAlgorithmOutput, AWSError>;
/**
* Create a machine learning algorithm that you can use in Amazon SageMaker and list in the AWS Marketplace.
*/
createAlgorithm(callback?: (err: AWSError, data: SageMaker.Types.CreateAlgorithmOutput) => void): Request<SageMaker.Types.CreateAlgorithmOutput, AWSError>;
/**
* Creates a Git repository as a resource in your Amazon SageMaker account. You can associate the repository with notebook instances so that you can use Git source control for the notebooks you create. The Git repository is a resource in your Amazon SageMaker account, so it can be associated with more than one notebook instance, and it persists independently from the lifecycle of any notebook instances it is associated with. The repository can be hosted either in AWS CodeCommit or in any other Git repository.
*/
createCodeRepository(params: SageMaker.Types.CreateCodeRepositoryInput, callback?: (err: AWSError, data: SageMaker.Types.CreateCodeRepositoryOutput) => void): Request<SageMaker.Types.CreateCodeRepositoryOutput, AWSError>;
/**
* Creates a Git repository as a resource in your Amazon SageMaker account. You can associate the repository with notebook instances so that you can use Git source control for the notebooks you create. The Git repository is a resource in your Amazon SageMaker account, so it can be associated with more than one notebook instance, and it persists independently from the lifecycle of any notebook instances it is associated with. The repository can be hosted either in AWS CodeCommit or in any other Git repository.
*/
createCodeRepository(callback?: (err: AWSError, data: SageMaker.Types.CreateCodeRepositoryOutput) => void): Request<SageMaker.Types.CreateCodeRepositoryOutput, AWSError>;
/**
* Starts a model compilation job. After the model has been compiled, Amazon SageMaker saves the resulting model artifacts to an Amazon Simple Storage Service (Amazon S3) bucket that you specify. If you choose to host your model using Amazon SageMaker hosting services, you can use the resulting model artifacts as part of the model. You can also use the artifacts with AWS IoT Greengrass. In that case, deploy them as an ML resource. In the request body, you provide the following: A name for the compilation job Information about the input model artifacts The output location for the compiled model and the device (target) that the model runs on The Amazon Resource Name (ARN) of the IAM role that Amazon SageMaker assumes to perform the model compilation job You can also provide a Tag to track the model compilation job's resource use and costs. The response body contains the CompilationJobArn for the compiled job. To stop a model compilation job, use StopCompilationJob. To get information about a particular model compilation job, use DescribeCompilationJob. To get information about multiple model compilation jobs, use ListCompilationJobs.
*/
createCompilationJob(params: SageMaker.Types.CreateCompilationJobRequest, callback?: (err: AWSError, data: SageMaker.Types.CreateCompilationJobResponse) => void): Request<SageMaker.Types.CreateCompilationJobResponse, AWSError>;
/**
* Starts a model compilation job. After the model has been compiled, Amazon SageMaker saves the resulting model artifacts to an Amazon Simple Storage Service (Amazon S3) bucket that you specify. If you choose to host your model using Amazon SageMaker hosting services, you can use the resulting model artifacts as part of the model. You can also use the artifacts with AWS IoT Greengrass. In that case, deploy them as an ML resource. In the request body, you provide the following: A name for the compilation job Information about the input model artifacts The output location for the compiled model and the device (target) that the model runs on The Amazon Resource Name (ARN) of the IAM role that Amazon SageMaker assumes to perform the model compilation job You can also provide a Tag to track the model compilation job's resource use and costs. The response body contains the CompilationJobArn for the compiled job. To stop a model compilation job, use StopCompilationJob. To get information about a particular model compilation job, use DescribeCompilationJob. To get information about multiple model compilation jobs, use ListCompilationJobs.
*/
createCompilationJob(callback?: (err: AWSError, data: SageMaker.Types.CreateCompilationJobResponse) => void): Request<SageMaker.Types.CreateCompilationJobResponse, AWSError>;
/**
* Creates an endpoint using the endpoint configuration specified in the request. Amazon SageMaker uses the endpoint to provision resources and deploy models. You create the endpoint configuration with the CreateEndpointConfig API. Use this API only for hosting models using Amazon SageMaker hosting services. You must not delete an EndpointConfig in use by an endpoint that is live or while the UpdateEndpoint or CreateEndpoint operations are being performed on the endpoint. To update an endpoint, you must create a new EndpointConfig. The endpoint name must be unique within an AWS Region in your AWS account. When it receives the request, Amazon SageMaker creates the endpoint, launches the resources (ML compute instances), and deploys the model(s) on them. When Amazon SageMaker receives the request, it sets the endpoint status to Creating. After it creates the endpoint, it sets the status to InService. Amazon SageMaker can then process incoming requests for inferences. To check the status of an endpoint, use the DescribeEndpoint API. For an example, see Exercise 1: Using the K-Means Algorithm Provided by Amazon SageMaker. If any of the models hosted at this endpoint get model data from an Amazon S3 location, Amazon SageMaker uses AWS Security Token Service to download model artifacts from the S3 path you provided. AWS STS is activated in your IAM user account by default. If you previously deactivated AWS STS for a region, you need to reactivate AWS STS for that region. For more information, see Activating and Deactivating AWS STS i an AWS Region in the AWS Identity and Access Management User Guide.
*/
createEndpoint(params: SageMaker.Types.CreateEndpointInput, callback?: (err: AWSError, data: SageMaker.Types.CreateEndpointOutput) => void): Request<SageMaker.Types.CreateEndpointOutput, AWSError>;
/**
* Creates an endpoint using the endpoint configuration specified in the request. Amazon SageMaker uses the endpoint to provision resources and deploy models. You create the endpoint configuration with the CreateEndpointConfig API. Use this API only for hosting models using Amazon SageMaker hosting services. You must not delete an EndpointConfig in use by an endpoint that is live or while the UpdateEndpoint or CreateEndpoint operations are being performed on the endpoint. To update an endpoint, you must create a new EndpointConfig. The endpoint name must be unique within an AWS Region in your AWS account. When it receives the request, Amazon SageMaker creates the endpoint, launches the resources (ML compute instances), and deploys the model(s) on them. When Amazon SageMaker receives the request, it sets the endpoint status to Creating. After it creates the endpoint, it sets the status to InService. Amazon SageMaker can then process incoming requests for inferences. To check the status of an endpoint, use the DescribeEndpoint API. For an example, see Exercise 1: Using the K-Means Algorithm Provided by Amazon SageMaker. If any of the models hosted at this endpoint get model data from an Amazon S3 location, Amazon SageMaker uses AWS Security Token Service to download model artifacts from the S3 path you provided. AWS STS is activated in your IAM user account by default. If you previously deactivated AWS STS for a region, you need to reactivate AWS STS for that region. For more information, see Activating and Deactivating AWS STS i an AWS Region in the AWS Identity and Access Management User Guide.
*/
createEndpoint(callback?: (err: AWSError, data: SageMaker.Types.CreateEndpointOutput) => void): Request<SageMaker.Types.CreateEndpointOutput, AWSError>;
/**
* Creates an endpoint configuration that Amazon SageMaker hosting services uses to deploy models. In the configuration, you identify one or more models, created using the CreateModel API, to deploy and the resources that you want Amazon SageMaker to provision. Then you call the CreateEndpoint API. Use this API only if you want to use Amazon SageMaker hosting services to deploy models into production. In the request, you define one or more ProductionVariants, each of which identifies a model. Each ProductionVariant parameter also describes the resources that you want Amazon SageMaker to provision. This includes the number and type of ML compute instances to deploy. If you are hosting multiple models, you also assign a VariantWeight to specify how much traffic you want to allocate to each model. For example, suppose that you want to host two models, A and B, and you assign traffic weight 2 for model A and 1 for model B. Amazon SageMaker distributes two-thirds of the traffic to Model A, and one-third to model B.
*/
createEndpointConfig(params: SageMaker.Types.CreateEndpointConfigInput, callback?: (err: AWSError, data: SageMaker.Types.CreateEndpointConfigOutput) => void): Request<SageMaker.Types.CreateEndpointConfigOutput, AWSError>;
/**
* Creates an endpoint configuration that Amazon SageMaker hosting services uses to deploy models. In the configuration, you identify one or more models, created using the CreateModel API, to deploy and the resources that you want Amazon SageMaker to provision. Then you call the CreateEndpoint API. Use this API only if you want to use Amazon SageMaker hosting services to deploy models into production. In the request, you define one or more ProductionVariants, each of which identifies a model. Each ProductionVariant parameter also describes the resources that you want Amazon SageMaker to provision. This includes the number and type of ML compute instances to deploy. If you are hosting multiple models, you also assign a VariantWeight to specify how much traffic you want to allocate to each model. For example, suppose that you want to host two models, A and B, and you assign traffic weight 2 for model A and 1 for model B. Amazon SageMaker distributes two-thirds of the traffic to Model A, and one-third to model B.
*/
createEndpointConfig(callback?: (err: AWSError, data: SageMaker.Types.CreateEndpointConfigOutput) => void): Request<SageMaker.Types.CreateEndpointConfigOutput, AWSError>;
/**
* Starts a hyperparameter tuning job. A hyperparameter tuning job finds the best version of a model by running many training jobs on your dataset using the algorithm you choose and values for hyperparameters within ranges that you specify. It then chooses the hyperparameter values that result in a model that performs the best, as measured by an objective metric that you choose.
*/
createHyperParameterTuningJob(params: SageMaker.Types.CreateHyperParameterTuningJobRequest, callback?: (err: AWSError, data: SageMaker.Types.CreateHyperParameterTuningJobResponse) => void): Request<SageMaker.Types.CreateHyperParameterTuningJobResponse, AWSError>;
/**
* Starts a hyperparameter tuning job. A hyperparameter tuning job finds the best version of a model by running many training jobs on your dataset using the algorithm you choose and values for hyperparameters within ranges that you specify. It then chooses the hyperparameter values that result in a model that performs the best, as measured by an objective metric that you choose.
*/
createHyperParameterTuningJob(callback?: (err: AWSError, data: SageMaker.Types.CreateHyperParameterTuningJobResponse) => void): Request<SageMaker.Types.CreateHyperParameterTuningJobResponse, AWSError>;
/**
* Creates a job that uses workers to label the data objects in your input dataset. You can use the labeled data to train machine learning models. You can select your workforce from one of three providers: A private workforce that you create. It can include employees, contractors, and outside experts. Use a private workforce when want the data to stay within your organization or when a specific set of skills is required. One or more vendors that you select from the AWS Marketplace. Vendors provide expertise in specific areas. The Amazon Mechanical Turk workforce. This is the largest workforce, but it should only be used for public data or data that has been stripped of any personally identifiable information. You can also use automated data labeling to reduce the number of data objects that need to be labeled by a human. Automated data labeling uses active learning to determine if a data object can be labeled by machine or if it needs to be sent to a human worker. For more information, see Using Automated Data Labeling. The data objects to be labeled are contained in an Amazon S3 bucket. You create a manifest file that describes the location of each object. For more information, see Using Input and Output Data. The output can be used as the manifest file for another labeling job or as training data for your machine learning models.
*/
createLabelingJob(params: SageMaker.Types.CreateLabelingJobRequest, callback?: (err: AWSError, data: SageMaker.Types.CreateLabelingJobResponse) => void): Request<SageMaker.Types.CreateLabelingJobResponse, AWSError>;
/**
* Creates a job that uses workers to label the data objects in your input dataset. You can use the labeled data to train machine learning models. You can select your workforce from one of three providers: A private workforce that you create. It can include employees, contractors, and outside experts. Use a private workforce when want the data to stay within your organization or when a specific set of skills is required. One or more vendors that you select from the AWS Marketplace. Vendors provide expertise in specific areas. The Amazon Mechanical Turk workforce. This is the largest workforce, but it should only be used for public data or data that has been stripped of any personally identifiable information. You can also use automated data labeling to reduce the number of data objects that need to be labeled by a human. Automated data labeling uses active learning to determine if a data object can be labeled by machine or if it needs to be sent to a human worker. For more information, see Using Automated Data Labeling. The data objects to be labeled are contained in an Amazon S3 bucket. You create a manifest file that describes the location of each object. For more information, see Using Input and Output Data. The output can be used as the manifest file for another labeling job or as training data for your machine learning models.
*/
createLabelingJob(callback?: (err: AWSError, data: SageMaker.Types.CreateLabelingJobResponse) => void): Request<SageMaker.Types.CreateLabelingJobResponse, AWSError>;
/**
* Creates a model in Amazon SageMaker. In the request, you name the model and describe a primary container. For the primary container, you specify the docker image containing inference code, artifacts (from prior training), and custom environment map that the inference code uses when you deploy the model for predictions. Use this API to create a model if you want to use Amazon SageMaker hosting services or run a batch transform job. To host your model, you create an endpoint configuration with the CreateEndpointConfig API, and then create an endpoint with the CreateEndpoint API. Amazon SageMaker then deploys all of the containers that you defined for the model in the hosting environment. To run a batch transform using your model, you start a job with the CreateTransformJob API. Amazon SageMaker uses your model and your dataset to get inferences which are then saved to a specified S3 location. In the CreateModel request, you must define a container with the PrimaryContainer parameter. In the request, you also provide an IAM role that Amazon SageMaker can assume to access model artifacts and docker image for deployment on ML compute hosting instances or for batch transform jobs. In addition, you also use the IAM role to manage permissions the inference code needs. For example, if the inference code access any other AWS resources, you grant necessary permissions via this role.
*/
createModel(params: SageMaker.Types.CreateModelInput, callback?: (err: AWSError, data: SageMaker.Types.CreateModelOutput) => void): Request<SageMaker.Types.CreateModelOutput, AWSError>;
/**
* Creates a model in Amazon SageMaker. In the request, you name the model and describe a primary container. For the primary container, you specify the docker image containing inference code, artifacts (from prior training), and custom environment map that the inference code uses when you deploy the model for predictions. Use this API to create a model if you want to use Amazon SageMaker hosting services or run a batch transform job. To host your model, you create an endpoint configuration with the CreateEndpointConfig API, and then create an endpoint with the CreateEndpoint API. Amazon SageMaker then deploys all of the containers that you defined for the model in the hosting environment. To run a batch transform using your model, you start a job with the CreateTransformJob API. Amazon SageMaker uses your model and your dataset to get inferences which are then saved to a specified S3 location. In the CreateModel request, you must define a container with the PrimaryContainer parameter. In the request, you also provide an IAM role that Amazon SageMaker can assume to access model artifacts and docker image for deployment on ML compute hosting instances or for batch transform jobs. In addition, you also use the IAM role to manage permissions the inference code needs. For example, if the inference code access any other AWS resources, you grant necessary permissions via this role.
*/
createModel(callback?: (err: AWSError, data: SageMaker.Types.CreateModelOutput) => void): Request<SageMaker.Types.CreateModelOutput, AWSError>;
/**
* Creates a model package that you can use to create Amazon SageMaker models or list on AWS Marketplace. Buyers can subscribe to model packages listed on AWS Marketplace to create models in Amazon SageMaker. To create a model package by specifying a Docker container that contains your inference code and the Amazon S3 location of your model artifacts, provide values for InferenceSpecification. To create a model from an algorithm resource that you created or subscribed to in AWS Marketplace, provide a value for SourceAlgorithmSpecification.
*/
createModelPackage(params: SageMaker.Types.CreateModelPackageInput, callback?: (err: AWSError, data: SageMaker.Types.CreateModelPackageOutput) => void): Request<SageMaker.Types.CreateModelPackageOutput, AWSError>;
/**
* Creates a model package that you can use to create Amazon SageMaker models or list on AWS Marketplace. Buyers can subscribe to model packages listed on AWS Marketplace to create models in Amazon SageMaker. To create a model package by specifying a Docker container that contains your inference code and the Amazon S3 location of your model artifacts, provide values for InferenceSpecification. To create a model from an algorithm resource that you created or subscribed to in AWS Marketplace, provide a value for SourceAlgorithmSpecification.
*/
createModelPackage(callback?: (err: AWSError, data: SageMaker.Types.CreateModelPackageOutput) => void): Request<SageMaker.Types.CreateModelPackageOutput, AWSError>;
/**
* Creates an Amazon SageMaker notebook instance. A notebook instance is a machine learning (ML) compute instance running on a Jupyter notebook. In a CreateNotebookInstance request, specify the type of ML compute instance that you want to run. Amazon SageMaker launches the instance, installs common libraries that you can use to explore datasets for model training, and attaches an ML storage volume to the notebook instance. Amazon SageMaker also provides a set of example notebooks. Each notebook demonstrates how to use Amazon SageMaker with a specific algorithm or with a machine learning framework. After receiving the request, Amazon SageMaker does the following: Creates a network interface in the Amazon SageMaker VPC. (Option) If you specified SubnetId, Amazon SageMaker creates a network interface in your own VPC, which is inferred from the subnet ID that you provide in the input. When creating this network interface, Amazon SageMaker attaches the security group that you specified in the request to the network interface that it creates in your VPC. Launches an EC2 instance of the type specified in the request in the Amazon SageMaker VPC. If you specified SubnetId of your VPC, Amazon SageMaker specifies both network interfaces when launching this instance. This enables inbound traffic from your own VPC to the notebook instance, assuming that the security groups allow it. After creating the notebook instance, Amazon SageMaker returns its Amazon Resource Name (ARN). You can't change the name of a notebook instance after you create it. After Amazon SageMaker creates the notebook instance, you can connect to the Jupyter server and work in Jupyter notebooks. For example, you can write code to explore a dataset that you can use for model training, train a model, host models by creating Amazon SageMaker endpoints, and validate hosted models. For more information, see How It Works.
*/
createNotebookInstance(params: SageMaker.Types.CreateNotebookInstanceInput, callback?: (err: AWSError, data: SageMaker.Types.CreateNotebookInstanceOutput) => void): Request<SageMaker.Types.CreateNotebookInstanceOutput, AWSError>;
/**
* Creates an Amazon SageMaker notebook instance. A notebook instance is a machine learning (ML) compute instance running on a Jupyter notebook. In a CreateNotebookInstance request, specify the type of ML compute instance that you want to run. Amazon SageMaker launches the instance, installs common libraries that you can use to explore datasets for model training, and attaches an ML storage volume to the notebook instance. Amazon SageMaker also provides a set of example notebooks. Each notebook demonstrates how to use Amazon SageMaker with a specific algorithm or with a machine learning framework. After receiving the request, Amazon SageMaker does the following: Creates a network interface in the Amazon SageMaker VPC. (Option) If you specified SubnetId, Amazon SageMaker creates a network interface in your own VPC, which is inferred from the subnet ID that you provide in the input. When creating this network interface, Amazon SageMaker attaches the security group that you specified in the request to the network interface that it creates in your VPC. Launches an EC2 instance of the type specified in the request in the Amazon SageMaker VPC. If you specified SubnetId of your VPC, Amazon SageMaker specifies both network interfaces when launching this instance. This enables inbound traffic from your own VPC to the notebook instance, assuming that the security groups allow it. After creating the notebook instance, Amazon SageMaker returns its Amazon Resource Name (ARN). You can't change the name of a notebook instance after you create it. After Amazon SageMaker creates the notebook instance, you can connect to the Jupyter server and work in Jupyter notebooks. For example, you can write code to explore a dataset that you can use for model training, train a model, host models by creating Amazon SageMaker endpoints, and validate hosted models. For more information, see How It Works.
*/
createNotebookInstance(callback?: (err: AWSError, data: SageMaker.Types.CreateNotebookInstanceOutput) => void): Request<SageMaker.Types.CreateNotebookInstanceOutput, AWSError>;
/**
* Creates a lifecycle configuration that you can associate with a notebook instance. A lifecycle configuration is a collection of shell scripts that run when you create or start a notebook instance. Each lifecycle configuration script has a limit of 16384 characters. The value of the $PATH environment variable that is available to both scripts is /sbin:bin:/usr/sbin:/usr/bin. View CloudWatch Logs for notebook instance lifecycle configurations in log group /aws/sagemaker/NotebookInstances in log stream [notebook-instance-name]/[LifecycleConfigHook]. Lifecycle configuration scripts cannot run for longer than 5 minutes. If a script runs for longer than 5 minutes, it fails and the notebook instance is not created or started. For information about notebook instance lifestyle configurations, see Step 2.1: (Optional) Customize a Notebook Instance.
*/
createNotebookInstanceLifecycleConfig(params: SageMaker.Types.CreateNotebookInstanceLifecycleConfigInput, callback?: (err: AWSError, data: SageMaker.Types.CreateNotebookInstanceLifecycleConfigOutput) => void): Request<SageMaker.Types.CreateNotebookInstanceLifecycleConfigOutput, AWSError>;
/**
* Creates a lifecycle configuration that you can associate with a notebook instance. A lifecycle configuration is a collection of shell scripts that run when you create or start a notebook instance. Each lifecycle configuration script has a limit of 16384 characters. The value of the $PATH environment variable that is available to both scripts is /sbin:bin:/usr/sbin:/usr/bin. View CloudWatch Logs for notebook instance lifecycle configurations in log group /aws/sagemaker/NotebookInstances in log stream [notebook-instance-name]/[LifecycleConfigHook]. Lifecycle configuration scripts cannot run for longer than 5 minutes. If a script runs for longer than 5 minutes, it fails and the notebook instance is not created or started. For information about notebook instance lifestyle configurations, see Step 2.1: (Optional) Customize a Notebook Instance.
*/
createNotebookInstanceLifecycleConfig(callback?: (err: AWSError, data: SageMaker.Types.CreateNotebookInstanceLifecycleConfigOutput) => void): Request<SageMaker.Types.CreateNotebookInstanceLifecycleConfigOutput, AWSError>;
/**
* Returns a URL that you can use to connect to the Jupyter server from a notebook instance. In the Amazon SageMaker console, when you choose Open next to a notebook instance, Amazon SageMaker opens a new tab showing the Jupyter server home page from the notebook instance. The console uses this API to get the URL and show the page. IAM authorization policies for this API are also enforced for every HTTP request and WebSocket frame that attempts to connect to the notebook instance.For example, you can restrict access to this API and to the URL that it returns to a list of IP addresses that you specify. Use the NotIpAddress condition operator and the aws:SourceIP condition context key to specify the list of IP addresses that you want to have access to the notebook instance. For more information, see Limit Access to a Notebook Instance by IP Address. The URL that you get from a call to is valid only for 5 minutes. If you try to use the URL after the 5-minute limit expires, you are directed to the AWS console sign-in page.
*/
createPresignedNotebookInstanceUrl(params: SageMaker.Types.CreatePresignedNotebookInstanceUrlInput, callback?: (err: AWSError, data: SageMaker.Types.CreatePresignedNotebookInstanceUrlOutput) => void): Request<SageMaker.Types.CreatePresignedNotebookInstanceUrlOutput, AWSError>;
/**
* Returns a URL that you can use to connect to the Jupyter server from a notebook instance. In the Amazon SageMaker console, when you choose Open next to a notebook instance, Amazon SageMaker opens a new tab showing the Jupyter server home page from the notebook instance. The console uses this API to get the URL and show the page. IAM authorization policies for this API are also enforced for every HTTP request and WebSocket frame that attempts to connect to the notebook instance.For example, you can restrict access to this API and to the URL that it returns to a list of IP addresses that you specify. Use the NotIpAddress condition operator and the aws:SourceIP condition context key to specify the list of IP addresses that you want to have access to the notebook instance. For more information, see Limit Access to a Notebook Instance by IP Address. The URL that you get from a call to is valid only for 5 minutes. If you try to use the URL after the 5-minute limit expires, you are directed to the AWS console sign-in page.
*/
createPresignedNotebookInstanceUrl(callback?: (err: AWSError, data: SageMaker.Types.CreatePresignedNotebookInstanceUrlOutput) => void): Request<SageMaker.Types.CreatePresignedNotebookInstanceUrlOutput, AWSError>;
/**
* Starts a model training job. After training completes, Amazon SageMaker saves the resulting model artifacts to an Amazon S3 location that you specify. If you choose to host your model using Amazon SageMaker hosting services, you can use the resulting model artifacts as part of the model. You can also use the artifacts in a machine learning service other than Amazon SageMaker, provided that you know how to use them for inferences. In the request body, you provide the following: AlgorithmSpecification - Identifies the training algorithm to use. HyperParameters - Specify these algorithm-specific parameters to enable the estimation of model parameters during training. Hyperparameters can be tuned to optimize this learning process. For a list of hyperparameters for each training algorithm provided by Amazon SageMaker, see Algorithms. InputDataConfig - Describes the training dataset and the Amazon S3, EFS, or FSx location where it is stored. OutputDataConfig - Identifies the Amazon S3 bucket where you want Amazon SageMaker to save the results of model training. ResourceConfig - Identifies the resources, ML compute instances, and ML storage volumes to deploy for model training. In distributed training, you specify more than one instance. EnableManagedSpotTraining - Optimize the cost of training machine learning models by up to 80% by using Amazon EC2 Spot instances. For more information, see Managed Spot Training. RoleARN - The Amazon Resource Number (ARN) that Amazon SageMaker assumes to perform tasks on your behalf during model training. You must grant this role the necessary permissions so that Amazon SageMaker can successfully complete model training. StoppingCondition - To help cap training costs, use MaxRuntimeInSeconds to set a time limit for training. Use MaxWaitTimeInSeconds to specify how long you are willing to to wait for a managed spot training job to complete. For more information about Amazon SageMaker, see How It Works.
*/
createTrainingJob(params: SageMaker.Types.CreateTrainingJobRequest, callback?: (err: AWSError, data: SageMaker.Types.CreateTrainingJobResponse) => void): Request<SageMaker.Types.CreateTrainingJobResponse, AWSError>;
/**
* Starts a model training job. After training completes, Amazon SageMaker saves the resulting model artifacts to an Amazon S3 location that you specify. If you choose to host your model using Amazon SageMaker hosting services, you can use the resulting model artifacts as part of the model. You can also use the artifacts in a machine learning service other than Amazon SageMaker, provided that you know how to use them for inferences. In the request body, you provide the following: AlgorithmSpecification - Identifies the training algorithm to use. HyperParameters - Specify these algorithm-specific parameters to enable the estimation of model parameters during training. Hyperparameters can be tuned to optimize this learning process. For a list of hyperparameters for each training algorithm provided by Amazon SageMaker, see Algorithms. InputDataConfig - Describes the training dataset and the Amazon S3, EFS, or FSx location where it is stored. OutputDataConfig - Identifies the Amazon S3 bucket where you want Amazon SageMaker to save the results of model training. ResourceConfig - Identifies the resources, ML compute instances, and ML storage volumes to deploy for model training. In distributed training, you specify more than one instance. EnableManagedSpotTraining - Optimize the cost of training machine learning models by up to 80% by using Amazon EC2 Spot instances. For more information, see Managed Spot Training. RoleARN - The Amazon Resource Number (ARN) that Amazon SageMaker assumes to perform tasks on your behalf during model training. You must grant this role the necessary permissions so that Amazon SageMaker can successfully complete model training. StoppingCondition - To help cap training costs, use MaxRuntimeInSeconds to set a time limit for training. Use MaxWaitTimeInSeconds to specify how long you are willing to to wait for a managed spot training job to complete. For more information about Amazon SageMaker, see How It Works.
*/
createTrainingJob(callback?: (err: AWSError, data: SageMaker.Types.CreateTrainingJobResponse) => void): Request<SageMaker.Types.CreateTrainingJobResponse, AWSError>;
/**
* Starts a transform job. A transform job uses a trained model to get inferences on a dataset and saves these results to an Amazon S3 location that you specify. To perform batch transformations, you create a transform job and use the data that you have readily available. In the request body, you provide the following: TransformJobName - Identifies the transform job. The name must be unique within an AWS Region in an AWS account. ModelName - Identifies the model to use. ModelName must be the name of an existing Amazon SageMaker model in the same AWS Region and AWS account. For information on creating a model, see CreateModel. TransformInput - Describes the dataset to be transformed and the Amazon S3 location where it is stored. TransformOutput - Identifies the Amazon S3 location where you want Amazon SageMaker to save the results from the transform job. TransformResources - Identifies the ML compute instances for the transform job. For more information about how batch transformation works Amazon SageMaker, see How It Works.
*/
createTransformJob(params: SageMaker.Types.CreateTransformJobRequest, callback?: (err: AWSError, data: SageMaker.Types.CreateTransformJobResponse) => void): Request<SageMaker.Types.CreateTransformJobResponse, AWSError>;
/**
* Starts a transform job. A transform job uses a trained model to get inferences on a dataset and saves these results to an Amazon S3 location that you specify. To perform batch transformations, you create a transform job and use the data that you have readily available. In the request body, you provide the following: TransformJobName - Identifies the transform job. The name must be unique within an AWS Region in an AWS account. ModelName - Identifies the model to use. ModelName must be the name of an existing Amazon SageMaker model in the same AWS Region and AWS account. For information on creating a model, see CreateModel. TransformInput - Describes the dataset to be transformed and the Amazon S3 location where it is stored. TransformOutput - Identifies the Amazon S3 location where you want Amazon SageMaker to save the results from the transform job. TransformResources - Identifies the ML compute instances for the transform job. For more information about how batch transformation works Amazon SageMaker, see How It Works.
*/
createTransformJob(callback?: (err: AWSError, data: SageMaker.Types.CreateTransformJobResponse) => void): Request<SageMaker.Types.CreateTransformJobResponse, AWSError>;
/**
* Creates a new work team for labeling your data. A work team is defined by one or more Amazon Cognito user pools. You must first create the user pools before you can create a work team. You cannot create more than 25 work teams in an account and region.
*/
createWorkteam(params: SageMaker.Types.CreateWorkteamRequest, callback?: (err: AWSError, data: SageMaker.Types.CreateWorkteamResponse) => void): Request<SageMaker.Types.CreateWorkteamResponse, AWSError>;
/**
* Creates a new work team for labeling your data. A work team is defined by one or more Amazon Cognito user pools. You must first create the user pools before you can create a work team. You cannot create more than 25 work teams in an account and region.
*/
createWorkteam(callback?: (err: AWSError, data: SageMaker.Types.CreateWorkteamResponse) => void): Request<SageMaker.Types.CreateWorkteamResponse, AWSError>;
/**
* Removes the specified algorithm from your account.
*/
deleteAlgorithm(params: SageMaker.Types.DeleteAlgorithmInput, callback?: (err: AWSError, data: {}) => void): Request<{}, AWSError>;
/**
* Removes the specified algorithm from your account.
*/
deleteAlgorithm(callback?: (err: AWSError, data: {}) => void): Request<{}, AWSError>;
/**
* Deletes the specified Git repository from your account.
*/
deleteCodeRepository(params: SageMaker.Types.DeleteCodeRepositoryInput, callback?: (err: AWSError, data: {}) => void): Request<{}, AWSError>;
/**
* Deletes the specified Git repository from your account.
*/
deleteCodeRepository(callback?: (err: AWSError, data: {}) => void): Request<{}, AWSError>;
/**
* Deletes an endpoint. Amazon SageMaker frees up all of the resources that were deployed when the endpoint was created. Amazon SageMaker retires any custom KMS key grants associated with the endpoint, meaning you don't need to use the RevokeGrant API call.
*/
deleteEndpoint(params: SageMaker.Types.DeleteEndpointInput, callback?: (err: AWSError, data: {}) => void): Request<{}, AWSError>;
/**
* Deletes an endpoint. Amazon SageMaker frees up all of the resources that were deployed when the endpoint was created. Amazon SageMaker retires any custom KMS key grants associated with the endpoint, meaning you don't need to use the RevokeGrant API call.
*/
deleteEndpoint(callback?: (err: AWSError, data: {}) => void): Request<{}, AWSError>;
/**
* Deletes an endpoint configuration. The DeleteEndpointConfig API deletes only the specified configuration. It does not delete endpoints created using the configuration.
*/
deleteEndpointConfig(params: SageMaker.Types.DeleteEndpointConfigInput, callback?: (err: AWSError, data: {}) => void): Request<{}, AWSError>;
/**
* Deletes an endpoint configuration. The DeleteEndpointConfig API deletes only the specified configuration. It does not delete endpoints created using the configuration.
*/
deleteEndpointConfig(callback?: (err: AWSError, data: {}) => void): Request<{}, AWSError>;
/**
* Deletes a model. The DeleteModel API deletes only the model entry that was created in Amazon SageMaker when you called the CreateModel API. It does not delete model artifacts, inference code, or the IAM role that you specified when creating the model.
*/
deleteModel(params: SageMaker.Types.DeleteModelInput, callback?: (err: AWSError, data: {}) => void): Request<{}, AWSError>;
/**
* Deletes a model. The DeleteModel API deletes only the model entry that was created in Amazon SageMaker when you called the CreateModel API. It does not delete model artifacts, inference code, or the IAM role that you specified when creating the model.
*/
deleteModel(callback?: (err: AWSError, data: {}) => void): Request<{}, AWSError>;
/**
* Deletes a model package. A model package is used to create Amazon SageMaker models or list on AWS Marketplace. Buyers can subscribe to model packages listed on AWS Marketplace to create models in Amazon SageMaker.
*/
deleteModelPackage(params: SageMaker.Types.DeleteModelPackageInput, callback?: (err: AWSError, data: {}) => void): Request<{}, AWSError>;
/**
* Deletes a model package. A model package is used to create Amazon SageMaker models or list on AWS Marketplace. Buyers can subscribe to model packages listed on AWS Marketplace to create models in Amazon SageMaker.
*/
deleteModelPackage(callback?: (err: AWSError, data: {}) => void): Request<{}, AWSError>;
/**
* Deletes an Amazon SageMaker notebook instance. Before you can delete a notebook instance, you must call the StopNotebookInstance API. When you delete a notebook instance, you lose all of your data. Amazon SageMaker removes the ML compute instance, and deletes the ML storage volume and the network interface associated with the notebook instance.
*/
deleteNotebookInstance(params: SageMaker.Types.DeleteNotebookInstanceInput, callback?: (err: AWSError, data: {}) => void): Request<{}, AWSError>;
/**
* Deletes an Amazon SageMaker notebook instance. Before you can delete a notebook instance, you must call the StopNotebookInstance API. When you delete a notebook instance, you lose all of your data. Amazon SageMaker removes the ML compute instance, and deletes the ML storage volume and the network interface associated with the notebook instance.
*/
deleteNotebookInstance(callback?: (err: AWSError, data: {}) => void): Request<{}, AWSError>;
/**
* Deletes a notebook instance lifecycle configuration.
*/
deleteNotebookInstanceLifecycleConfig(params: SageMaker.Types.DeleteNotebookInstanceLifecycleConfigInput, callback?: (err: AWSError, data: {}) => void): Request<{}, AWSError>;
/**
* Deletes a notebook instance lifecycle configuration.
*/
deleteNotebookInstanceLifecycleConfig(callback?: (err: AWSError, data: {}) => void): Request<{}, AWSError>;
/**
* Deletes the specified tags from an Amazon SageMaker resource. To list a resource's tags, use the ListTags API. When you call this API to delete tags from a hyperparameter tuning job, the deleted tags are not removed from training jobs that the hyperparameter tuning job launched before you called this API.
*/
deleteTags(params: SageMaker.Types.DeleteTagsInput, callback?: (err: AWSError, data: SageMaker.Types.DeleteTagsOutput) => void): Request<SageMaker.Types.DeleteTagsOutput, AWSError>;
/**
* Deletes the specified tags from an Amazon SageMaker resource. To list a resource's tags, use the ListTags API. When you call this API to delete tags from a hyperparameter tuning job, the deleted tags are not removed from training jobs that the hyperparameter tuning job launched before you called this API.
*/
deleteTags(callback?: (err: AWSError, data: SageMaker.Types.DeleteTagsOutput) => void): Request<SageMaker.Types.DeleteTagsOutput, AWSError>;
/**
* Deletes an existing work team. This operation can't be undone.
*/
deleteWorkteam(params: SageMaker.Types.DeleteWorkteamRequest, callback?: (err: AWSError, data: SageMaker.Types.DeleteWorkteamResponse) => void): Request<SageMaker.Types.DeleteWorkteamResponse, AWSError>;
/**
* Deletes an existing work team. This operation can't be undone.
*/
deleteWorkteam(callback?: (err: AWSError, data: SageMaker.Types.DeleteWorkteamResponse) => void): Request<SageMaker.Types.DeleteWorkteamResponse, AWSError>;
/**
* Returns a description of the specified algorithm that is in your account.
*/
describeAlgorithm(params: SageMaker.Types.DescribeAlgorithmInput, callback?: (err: AWSError, data: SageMaker.Types.DescribeAlgorithmOutput) => void): Request<SageMaker.Types.DescribeAlgorithmOutput, AWSError>;
/**
* Returns a description of the specified algorithm that is in your account.
*/
describeAlgorithm(callback?: (err: AWSError, data: SageMaker.Types.DescribeAlgorithmOutput) => void): Request<SageMaker.Types.DescribeAlgorithmOutput, AWSError>;
/**
* Gets details about the specified Git repository.
*/
describeCodeRepository(params: SageMaker.Types.DescribeCodeRepositoryInput, callback?: (err: AWSError, data: SageMaker.Types.DescribeCodeRepositoryOutput) => void): Request<SageMaker.Types.DescribeCodeRepositoryOutput, AWSError>;
/**
* Gets details about the specified Git repository.
*/
describeCodeRepository(callback?: (err: AWSError, data: SageMaker.Types.DescribeCodeRepositoryOutput) => void): Request<SageMaker.Types.DescribeCodeRepositoryOutput, AWSError>;
/**
* Returns information about a model compilation job. To create a model compilation job, use CreateCompilationJob. To get information about multiple model compilation jobs, use ListCompilationJobs.
*/
describeCompilationJob(params: SageMaker.Types.DescribeCompilationJobRequest, callback?: (err: AWSError, data: SageMaker.Types.DescribeCompilationJobResponse) => void): Request<SageMaker.Types.DescribeCompilationJobResponse, AWSError>;
/**
* Returns information about a model compilation job. To create a model compilation job, use CreateCompilationJob. To get information about multiple model compilation jobs, use ListCompilationJobs.
*/
describeCompilationJob(callback?: (err: AWSError, data: SageMaker.Types.DescribeCompilationJobResponse) => void): Request<SageMaker.Types.DescribeCompilationJobResponse, AWSError>;
/**
* Returns the description of an endpoint.
*/
describeEndpoint(params: SageMaker.Types.DescribeEndpointInput, callback?: (err: AWSError, data: SageMaker.Types.DescribeEndpointOutput) => void): Request<SageMaker.Types.DescribeEndpointOutput, AWSError>;
/**
* Returns the description of an endpoint.
*/
describeEndpoint(callback?: (err: AWSError, data: SageMaker.Types.DescribeEndpointOutput) => void): Request<SageMaker.Types.DescribeEndpointOutput, AWSError>;
/**
* Returns the description of an endpoint configuration created using the CreateEndpointConfig API.
*/
describeEndpointConfig(params: SageMaker.Types.DescribeEndpointConfigInput, callback?: (err: AWSError, data: SageMaker.Types.DescribeEndpointConfigOutput) => void): Request<SageMaker.Types.DescribeEndpointConfigOutput, AWSError>;
/**
* Returns the description of an endpoint configuration created using the CreateEndpointConfig API.
*/
describeEndpointConfig(callback?: (err: AWSError, data: SageMaker.Types.DescribeEndpointConfigOutput) => void): Request<SageMaker.Types.DescribeEndpointConfigOutput, AWSError>;
/**
* Gets a description of a hyperparameter tuning job.
*/
describeHyperParameterTuningJob(params: SageMaker.Types.DescribeHyperParameterTuningJobRequest, callback?: (err: AWSError, data: SageMaker.Types.DescribeHyperParameterTuningJobResponse) => void): Request<SageMaker.Types.DescribeHyperParameterTuningJobResponse, AWSError>;
/**
* Gets a description of a hyperparameter tuning job.
*/
describeHyperParameterTuningJob(callback?: (err: AWSError, data: SageMaker.Types.DescribeHyperParameterTuningJobResponse) => void): Request<SageMaker.Types.DescribeHyperParameterTuningJobResponse, AWSError>;
/**
* Gets information about a labeling job.
*/
describeLabelingJob(params: SageMaker.Types.DescribeLabelingJobRequest, callback?: (err: AWSError, data: SageMaker.Types.DescribeLabelingJobResponse) => void): Request<SageMaker.Types.DescribeLabelingJobResponse, AWSError>;
/**
* Gets information about a labeling job.
*/
describeLabelingJob(callback?: (err: AWSError, data: SageMaker.Types.DescribeLabelingJobResponse) => void): Request<SageMaker.Types.DescribeLabelingJobResponse, AWSError>;
/**
* Describes a model that you created using the CreateModel API.
*/
describeModel(params: SageMaker.Types.DescribeModelInput, callback?: (err: AWSError, data: SageMaker.Types.DescribeModelOutput) => void): Request<SageMaker.Types.DescribeModelOutput, AWSError>;
/**
* Describes a model that you created using the CreateModel API.
*/
describeModel(callback?: (err: AWSError, data: SageMaker.Types.DescribeModelOutput) => void): Request<SageMaker.Types.DescribeModelOutput, AWSError>;
/**
* Returns a description of the specified model package, which is used to create Amazon SageMaker models or list them on AWS Marketplace. To create models in Amazon SageMaker, buyers can subscribe to model packages listed on AWS Marketplace.
*/
describeModelPackage(params: SageMaker.Types.DescribeModelPackageInput, callback?: (err: AWSError, data: SageMaker.Types.DescribeModelPackageOutput) => void): Request<SageMaker.Types.DescribeModelPackageOutput, AWSError>;
/**
* Returns a description of the specified model package, which is used to create Amazon SageMaker models or list them on AWS Marketplace. To create models in Amazon SageMaker, buyers can subscribe to model packages listed on AWS Marketplace.
*/
describeModelPackage(callback?: (err: AWSError, data: SageMaker.Types.DescribeModelPackageOutput) => void): Request<SageMaker.Types.DescribeModelPackageOutput, AWSError>;
/**
* Returns information about a notebook instance.
*/
describeNotebookInstance(params: SageMaker.Types.DescribeNotebookInstanceInput, callback?: (err: AWSError, data: SageMaker.Types.DescribeNotebookInstanceOutput) => void): Request<SageMaker.Types.DescribeNotebookInstanceOutput, AWSError>;
/**
* Returns information about a notebook instance.
*/
describeNotebookInstance(callback?: (err: AWSError, data: SageMaker.Types.DescribeNotebookInstanceOutput) => void): Request<SageMaker.Types.DescribeNotebookInstanceOutput, AWSError>;
/**
* Returns a description of a notebook instance lifecycle configuration. For information about notebook instance lifestyle configurations, see Step 2.1: (Optional) Customize a Notebook Instance.
*/
describeNotebookInstanceLifecycleConfig(params: SageMaker.Types.DescribeNotebookInstanceLifecycleConfigInput, callback?: (err: AWSError, data: SageMaker.Types.DescribeNotebookInstanceLifecycleConfigOutput) => void): Request<SageMaker.Types.DescribeNotebookInstanceLifecycleConfigOutput, AWSError>;
/**
* Returns a description of a notebook instance lifecycle configuration. For information about notebook instance lifestyle configurations, see Step 2.1: (Optional) Customize a Notebook Instance.
*/
describeNotebookInstanceLifecycleConfig(callback?: (err: AWSError, data: SageMaker.Types.DescribeNotebookInstanceLifecycleConfigOutput) => void): Request<SageMaker.Types.DescribeNotebookInstanceLifecycleConfigOutput, AWSError>;
/**
* Gets information about a work team provided by a vendor. It returns details about the subscription with a vendor in the AWS Marketplace.
*/
describeSubscribedWorkteam(params: SageMaker.Types.DescribeSubscribedWorkteamRequest, callback?: (err: AWSError, data: SageMaker.Types.DescribeSubscribedWorkteamResponse) => void): Request<SageMaker.Types.DescribeSubscribedWorkteamResponse, AWSError>;
/**
* Gets information about a work team provided by a vendor. It returns details about the subscription with a vendor in the AWS Marketplace.
*/
describeSubscribedWorkteam(callback?: (err: AWSError, data: SageMaker.Types.DescribeSubscribedWorkteamResponse) => void): Request<SageMaker.Types.DescribeSubscribedWorkteamResponse, AWSError>;
/**
* Returns information about a training job.
*/
describeTrainingJob(params: SageMaker.Types.DescribeTrainingJobRequest, callback?: (err: AWSError, data: SageMaker.Types.DescribeTrainingJobResponse) => void): Request<SageMaker.Types.DescribeTrainingJobResponse, AWSError>;
/**
* Returns information about a training job.
*/
describeTrainingJob(callback?: (err: AWSError, data: SageMaker.Types.DescribeTrainingJobResponse) => void): Request<SageMaker.Types.DescribeTrainingJobResponse, AWSError>;
/**
* Returns information about a transform job.
*/
describeTransformJob(params: SageMaker.Types.DescribeTransformJobRequest, callback?: (err: AWSError, data: SageMaker.Types.DescribeTransformJobResponse) => void): Request<SageMaker.Types.DescribeTransformJobResponse, AWSError>;
/**
* Returns information about a transform job.
*/
describeTransformJob(callback?: (err: AWSError, data: SageMaker.Types.DescribeTransformJobResponse) => void): Request<SageMaker.Types.DescribeTransformJobResponse, AWSError>;
/**
* Gets information about a specific work team. You can see information such as the create date, the last updated date, membership information, and the work team's Amazon Resource Name (ARN).
*/
describeWorkteam(params: SageMaker.Types.DescribeWorkteamRequest, callback?: (err: AWSError, data: SageMaker.Types.DescribeWorkteamResponse) => void): Request<SageMaker.Types.DescribeWorkteamResponse, AWSError>;
/**
* Gets information about a specific work team. You can see information such as the create date, the last updated date, membership information, and the work team's Amazon Resource Name (ARN).
*/
describeWorkteam(callback?: (err: AWSError, data: SageMaker.Types.DescribeWorkteamResponse) => void): Request<SageMaker.Types.DescribeWorkteamResponse, AWSError>;
/**
* An auto-complete API for the search functionality in the Amazon SageMaker console. It returns suggestions of possible matches for the property name to use in Search queries. Provides suggestions for HyperParameters, Tags, and Metrics.
*/
getSearchSuggestions(params: SageMaker.Types.GetSearchSuggestionsRequest, callback?: (err: AWSError, data: SageMaker.Types.GetSearchSuggestionsResponse) => void): Request<SageMaker.Types.GetSearchSuggestionsResponse, AWSError>;
/**
* An auto-complete API for the search functionality in the Amazon SageMaker console. It returns suggestions of possible matches for the property name to use in Search queries. Provides suggestions for HyperParameters, Tags, and Metrics.
*/
getSearchSuggestions(callback?: (err: AWSError, data: SageMaker.Types.GetSearchSuggestionsResponse) => void): Request<SageMaker.Types.GetSearchSuggestionsResponse, AWSError>;
/**
* Lists the machine learning algorithms that have been created.
*/
listAlgorithms(params: SageMaker.Types.ListAlgorithmsInput, callback?: (err: AWSError, data: SageMaker.Types.ListAlgorithmsOutput) => void): Request<SageMaker.Types.ListAlgorithmsOutput, AWSError>;
/**
* Lists the machine learning algorithms that have been created.
*/
listAlgorithms(callback?: (err: AWSError, data: SageMaker.Types.ListAlgorithmsOutput) => void): Request<SageMaker.Types.ListAlgorithmsOutput, AWSError>;
/**
* Gets a list of the Git repositories in your account.
*/
listCodeRepositories(params: SageMaker.Types.ListCodeRepositoriesInput, callback?: (err: AWSError, data: SageMaker.Types.ListCodeRepositoriesOutput) => void): Request<SageMaker.Types.ListCodeRepositoriesOutput, AWSError>;
/**
* Gets a list of the Git repositories in your account.
*/
listCodeRepositories(callback?: (err: AWSError, data: SageMaker.Types.ListCodeRepositoriesOutput) => void): Request<SageMaker.Types.ListCodeRepositoriesOutput, AWSError>;
/**
* Lists model compilation jobs that satisfy various filters. To create a model compilation job, use CreateCompilationJob. To get information about a particular model compilation job you have created, use DescribeCompilationJob.
*/
listCompilationJobs(params: SageMaker.Types.ListCompilationJobsRequest, callback?: (err: AWSError, data: SageMaker.Types.ListCompilationJobsResponse) => void): Request<SageMaker.Types.ListCompilationJobsResponse, AWSError>;
/**
* Lists model compilation jobs that satisfy various filters. To create a model compilation job, use CreateCompilationJob. To get information about a particular model compilation job you have created, use DescribeCompilationJob.
*/
listCompilationJobs(callback?: (err: AWSError, data: SageMaker.Types.ListCompilationJobsResponse) => void): Request<SageMaker.Types.ListCompilationJobsResponse, AWSError>;
/**
* Lists endpoint configurations.
*/
listEndpointConfigs(params: SageMaker.Types.ListEndpointConfigsInput, callback?: (err: AWSError, data: SageMaker.Types.ListEndpointConfigsOutput) => void): Request<SageMaker.Types.ListEndpointConfigsOutput, AWSError>;
/**
* Lists endpoint configurations.
*/
listEndpointConfigs(callback?: (err: AWSError, data: SageMaker.Types.ListEndpointConfigsOutput) => void): Request<SageMaker.Types.ListEndpointConfigsOutput, AWSError>;
/**
* Lists endpoints.
*/
listEndpoints(params: SageMaker.Types.ListEndpointsInput, callback?: (err: AWSError, data: SageMaker.Types.ListEndpointsOutput) => void): Request<SageMaker.Types.ListEndpointsOutput, AWSError>;
/**
* Lists endpoints.
*/
listEndpoints(callback?: (err: AWSError, data: SageMaker.Types.ListEndpointsOutput) => void): Request<SageMaker.Types.ListEndpointsOutput, AWSError>;
/**
* Gets a list of HyperParameterTuningJobSummary objects that describe the hyperparameter tuning jobs launched in your account.
*/
listHyperParameterTuningJobs(params: SageMaker.Types.ListHyperParameterTuningJobsRequest, callback?: (err: AWSError, data: SageMaker.Types.ListHyperParameterTuningJobsResponse) => void): Request<SageMaker.Types.ListHyperParameterTuningJobsResponse, AWSError>;
/**
* Gets a list of HyperParameterTuningJobSummary objects that describe the hyperparameter tuning jobs launched in your account.
*/
listHyperParameterTuningJobs(callback?: (err: AWSError, data: SageMaker.Types.ListHyperParameterTuningJobsResponse) => void): Request<SageMaker.Types.ListHyperParameterTuningJobsResponse, AWSError>;
/**
* Gets a list of labeling jobs.
*/
listLabelingJobs(params: SageMaker.Types.ListLabelingJobsRequest, callback?: (err: AWSError, data: SageMaker.Types.ListLabelingJobsResponse) => void): Request<SageMaker.Types.ListLabelingJobsResponse, AWSError>;
/**
* Gets a list of labeling jobs.
*/
listLabelingJobs(callback?: (err: AWSError, data: SageMaker.Types.ListLabelingJobsResponse) => void): Request<SageMaker.Types.ListLabelingJobsResponse, AWSError>;
/**
* Gets a list of labeling jobs assigned to a specified work team.
*/
listLabelingJobsForWorkteam(params: SageMaker.Types.ListLabelingJobsForWorkteamRequest, callback?: (err: AWSError, data: SageMaker.Types.ListLabelingJobsForWorkteamResponse) => void): Request<SageMaker.Types.ListLabelingJobsForWorkteamResponse, AWSError>;
/**
* Gets a list of labeling jobs assigned to a specified work team.
*/
listLabelingJobsForWorkteam(callback?: (err: AWSError, data: SageMaker.Types.ListLabelingJobsForWorkteamResponse) => void): Request<SageMaker.Types.ListLabelingJobsForWorkteamResponse, AWSError>;
/**
* Lists the model packages that have been created.
*/
listModelPackages(params: SageMaker.Types.ListModelPackagesInput, callback?: (err: AWSError, data: SageMaker.Types.ListModelPackagesOutput) => void): Request<SageMaker.Types.ListModelPackagesOutput, AWSError>;
/**
* Lists the model packages that have been created.
*/
listModelPackages(callback?: (err: AWSError, data: SageMaker.Types.ListModelPackagesOutput) => void): Request<SageMaker.Types.ListModelPackagesOutput, AWSError>;
/**
* Lists models created with the CreateModel API.
*/
listModels(params: SageMaker.Types.ListModelsInput, callback?: (err: AWSError, data: SageMaker.Types.ListModelsOutput) => void): Request<SageMaker.Types.ListModelsOutput, AWSError>;
/**
* Lists models created with the CreateModel API.
*/
listModels(callback?: (err: AWSError, data: SageMaker.Types.ListModelsOutput) => void): Request<SageMaker.Types.ListModelsOutput, AWSError>;
/**
* Lists notebook instance lifestyle configurations created with the CreateNotebookInstanceLifecycleConfig API.
*/
listNotebookInstanceLifecycleConfigs(params: SageMaker.Types.ListNotebookInstanceLifecycleConfigsInput, callback?: (err: AWSError, data: SageMaker.Types.ListNotebookInstanceLifecycleConfigsOutput) => void): Request<SageMaker.Types.ListNotebookInstanceLifecycleConfigsOutput, AWSError>;
/**
* Lists notebook instance lifestyle configurations created with the CreateNotebookInstanceLifecycleConfig API.
*/
listNotebookInstanceLifecycleConfigs(callback?: (err: AWSError, data: SageMaker.Types.ListNotebookInstanceLifecycleConfigsOutput) => void): Request<SageMaker.Types.ListNotebookInstanceLifecycleConfigsOutput, AWSError>;
/**
* Returns a list of the Amazon SageMaker notebook instances in the requester's account in an AWS Region.
*/
listNotebookInstances(params: SageMaker.Types.ListNotebookInstancesInput, callback?: (err: AWSError, data: SageMaker.Types.ListNotebookInstancesOutput) => void): Request<SageMaker.Types.ListNotebookInstancesOutput, AWSError>;
/**
* Returns a list of the Amazon SageMaker notebook instances in the requester's account in an AWS Region.
*/
listNotebookInstances(callback?: (err: AWSError, data: SageMaker.Types.ListNotebookInstancesOutput) => void): Request<SageMaker.Types.ListNotebookInstancesOutput, AWSError>;
/**
* Gets a list of the work teams that you are subscribed to in the AWS Marketplace. The list may be empty if no work team satisfies the filter specified in the NameContains parameter.
*/
listSubscribedWorkteams(params: SageMaker.Types.ListSubscribedWorkteamsRequest, callback?: (err: AWSError, data: SageMaker.Types.ListSubscribedWorkteamsResponse) => void): Request<SageMaker.Types.ListSubscribedWorkteamsResponse, AWSError>;
/**
* Gets a list of the work teams that you are subscribed to in the AWS Marketplace. The list may be empty if no work team satisfies the filter specified in the NameContains parameter.
*/
listSubscribedWorkteams(callback?: (err: AWSError, data: SageMaker.Types.ListSubscribedWorkteamsResponse) => void): Request<SageMaker.Types.ListSubscribedWorkteamsResponse, AWSError>;
/**
* Returns the tags for the specified Amazon SageMaker resource.
*/
listTags(params: SageMaker.Types.ListTagsInput, callback?: (err: AWSError, data: SageMaker.Types.ListTagsOutput) => void): Request<SageMaker.Types.ListTagsOutput, AWSError>;
/**
* Returns the tags for the specified Amazon SageMaker resource.
*/
listTags(callback?: (err: AWSError, data: SageMaker.Types.ListTagsOutput) => void): Request<SageMaker.Types.ListTagsOutput, AWSError>;
/**
* Lists training jobs.
*/
listTrainingJobs(params: SageMaker.Types.ListTrainingJobsRequest, callback?: (err: AWSError, data: SageMaker.Types.ListTrainingJobsResponse) => void): Request<SageMaker.Types.ListTrainingJobsResponse, AWSError>;
/**
* Lists training jobs.
*/
listTrainingJobs(callback?: (err: AWSError, data: SageMaker.Types.ListTrainingJobsResponse) => void): Request<SageMaker.Types.ListTrainingJobsResponse, AWSError>;
/**
* Gets a list of TrainingJobSummary objects that describe the training jobs that a hyperparameter tuning job launched.
*/
listTrainingJobsForHyperParameterTuningJob(params: SageMaker.Types.ListTrainingJobsForHyperParameterTuningJobRequest, callback?: (err: AWSError, data: SageMaker.Types.ListTrainingJobsForHyperParameterTuningJobResponse) => void): Request<SageMaker.Types.ListTrainingJobsForHyperParameterTuningJobResponse, AWSError>;
/**
* Gets a list of TrainingJobSummary objects that describe the training jobs that a hyperparameter tuning job launched.
*/
listTrainingJobsForHyperParameterTuningJob(callback?: (err: AWSError, data: SageMaker.Types.ListTrainingJobsForHyperParameterTuningJobResponse) => void): Request<SageMaker.Types.ListTrainingJobsForHyperParameterTuningJobResponse, AWSError>;
/**
* Lists transform jobs.
*/
listTransformJobs(params: SageMaker.Types.ListTransformJobsRequest, callback?: (err: AWSError, data: SageMaker.Types.ListTransformJobsResponse) => void): Request<SageMaker.Types.ListTransformJobsResponse, AWSError>;
/**
* Lists transform jobs.
*/
listTransformJobs(callback?: (err: AWSError, data: SageMaker.Types.ListTransformJobsResponse) => void): Request<SageMaker.Types.ListTransformJobsResponse, AWSError>;
/**
* Gets a list of work teams that you have defined in a region. The list may be empty if no work team satisfies the filter specified in the NameContains parameter.
*/
listWorkteams(params: SageMaker.Types.ListWorkteamsRequest, callback?: (err: AWSError, data: SageMaker.Types.ListWorkteamsResponse) => void): Request<SageMaker.Types.ListWorkteamsResponse, AWSError>;
/**
* Gets a list of work teams that you have defined in a region. The list may be empty if no work team satisfies the filter specified in the NameContains parameter.
*/
listWorkteams(callback?: (err: AWSError, data: SageMaker.Types.ListWorkteamsResponse) => void): Request<SageMaker.Types.ListWorkteamsResponse, AWSError>;
/**
* Renders the UI template so that you can preview the worker's experience.
*/
renderUiTemplate(params: SageMaker.Types.RenderUiTemplateRequest, callback?: (err: AWSError, data: SageMaker.Types.RenderUiTemplateResponse) => void): Request<SageMaker.Types.RenderUiTemplateResponse, AWSError>;
/**
* Renders the UI template so that you can preview the worker's experience.
*/
renderUiTemplate(callback?: (err: AWSError, data: SageMaker.Types.RenderUiTemplateResponse) => void): Request<SageMaker.Types.RenderUiTemplateResponse, AWSError>;
/**
* Finds Amazon SageMaker resources that match a search query. Matching resource objects are returned as a list of SearchResult objects in the response. You can sort the search results by any resource property in a ascending or descending order. You can query against the following value types: numerical, text, Booleans, and timestamps.
*/
search(params: SageMaker.Types.SearchRequest, callback?: (err: AWSError, data: SageMaker.Types.SearchResponse) => void): Request<SageMaker.Types.SearchResponse, AWSError>;
/**
* Finds Amazon SageMaker resources that match a search query. Matching resource objects are returned as a list of SearchResult objects in the response. You can sort the search results by any resource property in a ascending or descending order. You can query against the following value types: numerical, text, Booleans, and timestamps.
*/
search(callback?: (err: AWSError, data: SageMaker.Types.SearchResponse) => void): Request<SageMaker.Types.SearchResponse, AWSError>;
/**
* Launches an ML compute instance with the latest version of the libraries and attaches your ML storage volume. After configuring the notebook instance, Amazon SageMaker sets the notebook instance status to InService. A notebook instance's status must be InService before you can connect to your Jupyter notebook.
*/
startNotebookInstance(params: SageMaker.Types.StartNotebookInstanceInput, callback?: (err: AWSError, data: {}) => void): Request<{}, AWSError>;
/**
* Launches an ML compute instance with the latest version of the libraries and attaches your ML storage volume. After configuring the notebook instance, Amazon SageMaker sets the notebook instance status to InService. A notebook instance's status must be InService before you can connect to your Jupyter notebook.
*/
startNotebookInstance(callback?: (err: AWSError, data: {}) => void): Request<{}, AWSError>;
/**
* Stops a model compilation job. To stop a job, Amazon SageMaker sends the algorithm the SIGTERM signal. This gracefully shuts the job down. If the job hasn't stopped, it sends the SIGKILL signal. When it receives a StopCompilationJob request, Amazon SageMaker changes the CompilationJobSummary$CompilationJobStatus of the job to Stopping. After Amazon SageMaker stops the job, it sets the CompilationJobSummary$CompilationJobStatus to Stopped.
*/
stopCompilationJob(params: SageMaker.Types.StopCompilationJobRequest, callback?: (err: AWSError, data: {}) => void): Request<{}, AWSError>;
/**
* Stops a model compilation job. To stop a job, Amazon SageMaker sends the algorithm the SIGTERM signal. This gracefully shuts the job down. If the job hasn't stopped, it sends the SIGKILL signal. When it receives a StopCompilationJob request, Amazon SageMaker changes the CompilationJobSummary$CompilationJobStatus of the job to Stopping. After Amazon SageMaker stops the job, it sets the CompilationJobSummary$CompilationJobStatus to Stopped.
*/
stopCompilationJob(callback?: (err: AWSError, data: {}) => void): Request<{}, AWSError>;
/**
* Stops a running hyperparameter tuning job and all running training jobs that the tuning job launched. All model artifacts output from the training jobs are stored in Amazon Simple Storage Service (Amazon S3). All data that the training jobs write to Amazon CloudWatch Logs are still available in CloudWatch. After the tuning job moves to the Stopped state, it releases all reserved resources for the tuning job.
*/
stopHyperParameterTuningJob(params: SageMaker.Types.StopHyperParameterTuningJobRequest, callback?: (err: AWSError, data: {}) => void): Request<{}, AWSError>;
/**
* Stops a running hyperparameter tuning job and all running training jobs that the tuning job launched. All model artifacts output from the training jobs are stored in Amazon Simple Storage Service (Amazon S3). All data that the training jobs write to Amazon CloudWatch Logs are still available in CloudWatch. After the tuning job moves to the Stopped state, it releases all reserved resources for the tuning job.
*/
stopHyperParameterTuningJob(callback?: (err: AWSError, data: {}) => void): Request<{}, AWSError>;
/**
* Stops a running labeling job. A job that is stopped cannot be restarted. Any results obtained before the job is stopped are placed in the Amazon S3 output bucket.
*/
stopLabelingJob(params: SageMaker.Types.StopLabelingJobRequest, callback?: (err: AWSError, data: {}) => void): Request<{}, AWSError>;
/**
* Stops a running labeling job. A job that is stopped cannot be restarted. Any results obtained before the job is stopped are placed in the Amazon S3 output bucket.
*/
stopLabelingJob(callback?: (err: AWSError, data: {}) => void): Request<{}, AWSError>;
/**
* Terminates the ML compute instance. Before terminating the instance, Amazon SageMaker disconnects the ML storage volume from it. Amazon SageMaker preserves the ML storage volume. Amazon SageMaker stops charging you for the ML compute instance when you call StopNotebookInstance. To access data on the ML storage volume for a notebook instance that has been terminated, call the StartNotebookInstance API. StartNotebookInstance launches another ML compute instance, configures it, and attaches the preserved ML storage volume so you can continue your work.
*/
stopNotebookInstance(params: SageMaker.Types.StopNotebookInstanceInput, callback?: (err: AWSError, data: {}) => void): Request<{}, AWSError>;
/**
* Terminates the ML compute instance. Before terminating the instance, Amazon SageMaker disconnects the ML storage volume from it. Amazon SageMaker preserves the ML storage volume. Amazon SageMaker stops charging you for the ML compute instance when you call StopNotebookInstance. To access data on the ML storage volume for a notebook instance that has been terminated, call the StartNotebookInstance API. StartNotebookInstance launches another ML compute instance, configures it, and attaches the preserved ML storage volume so you can continue your work.
*/
stopNotebookInstance(callback?: (err: AWSError, data: {}) => void): Request<{}, AWSError>;
/**
* Stops a training job. To stop a job, Amazon SageMaker sends the algorithm the SIGTERM signal, which delays job termination for 120 seconds. Algorithms might use this 120-second window to save the model artifacts, so the results of the training is not lost. When it receives a StopTrainingJob request, Amazon SageMaker changes the status of the job to Stopping. After Amazon SageMaker stops the job, it sets the status to Stopped.
*/
stopTrainingJob(params: SageMaker.Types.StopTrainingJobRequest, callback?: (err: AWSError, data: {}) => void): Request<{}, AWSError>;
/**
* Stops a training job. To stop a job, Amazon SageMaker sends the algorithm the SIGTERM signal, which delays job termination for 120 seconds. Algorithms might use this 120-second window to save the model artifacts, so the results of the training is not lost. When it receives a StopTrainingJob request, Amazon SageMaker changes the status of the job to Stopping. After Amazon SageMaker stops the job, it sets the status to Stopped.
*/
stopTrainingJob(callback?: (err: AWSError, data: {}) => void): Request<{}, AWSError>;
/**
* Stops a transform job. When Amazon SageMaker receives a StopTransformJob request, the status of the job changes to Stopping. After Amazon SageMaker stops the job, the status is set to Stopped. When you stop a transform job before it is completed, Amazon SageMaker doesn't store the job's output in Amazon S3.
*/
stopTransformJob(params: SageMaker.Types.StopTransformJobRequest, callback?: (err: AWSError, data: {}) => void): Request<{}, AWSError>;
/**
* Stops a transform job. When Amazon SageMaker receives a StopTransformJob request, the status of the job changes to Stopping. After Amazon SageMaker stops the job, the status is set to Stopped. When you stop a transform job before it is completed, Amazon SageMaker doesn't store the job's output in Amazon S3.
*/
stopTransformJob(callback?: (err: AWSError, data: {}) => void): Request<{}, AWSError>;
/**
* Updates the specified Git repository with the specified values.
*/
updateCodeRepository(params: SageMaker.Types.UpdateCodeRepositoryInput, callback?: (err: AWSError, data: SageMaker.Types.UpdateCodeRepositoryOutput) => void): Request<SageMaker.Types.UpdateCodeRepositoryOutput, AWSError>;
/**
* Updates the specified Git repository with the specified values.
*/
updateCodeRepository(callback?: (err: AWSError, data: SageMaker.Types.UpdateCodeRepositoryOutput) => void): Request<SageMaker.Types.UpdateCodeRepositoryOutput, AWSError>;
/**
* Deploys the new EndpointConfig specified in the request, switches to using newly created endpoint, and then deletes resources provisioned for the endpoint using the previous EndpointConfig (there is no availability loss). When Amazon SageMaker receives the request, it sets the endpoint status to Updating. After updating the endpoint, it sets the status to InService. To check the status of an endpoint, use the DescribeEndpoint API. You must not delete an EndpointConfig in use by an endpoint that is live or while the UpdateEndpoint or CreateEndpoint operations are being performed on the endpoint. To update an endpoint, you must create a new EndpointConfig.
*/
updateEndpoint(params: SageMaker.Types.UpdateEndpointInput, callback?: (err: AWSError, data: SageMaker.Types.UpdateEndpointOutput) => void): Request<SageMaker.Types.UpdateEndpointOutput, AWSError>;
/**
* Deploys the new EndpointConfig specified in the request, switches to using newly created endpoint, and then deletes resources provisioned for the endpoint using the previous EndpointConfig (there is no availability loss). When Amazon SageMaker receives the request, it sets the endpoint status to Updating. After updating the endpoint, it sets the status to InService. To check the status of an endpoint, use the DescribeEndpoint API. You must not delete an EndpointConfig in use by an endpoint that is live or while the UpdateEndpoint or CreateEndpoint operations are being performed on the endpoint. To update an endpoint, you must create a new EndpointConfig.
*/
updateEndpoint(callback?: (err: AWSError, data: SageMaker.Types.UpdateEndpointOutput) => void): Request<SageMaker.Types.UpdateEndpointOutput, AWSError>;
/**
* Updates variant weight of one or more variants associated with an existing endpoint, or capacity of one variant associated with an existing endpoint. When it receives the request, Amazon SageMaker sets the endpoint status to Updating. After updating the endpoint, it sets the status to InService. To check the status of an endpoint, use the DescribeEndpoint API.
*/
updateEndpointWeightsAndCapacities(params: SageMaker.Types.UpdateEndpointWeightsAndCapacitiesInput, callback?: (err: AWSError, data: SageMaker.Types.UpdateEndpointWeightsAndCapacitiesOutput) => void): Request<SageMaker.Types.UpdateEndpointWeightsAndCapacitiesOutput, AWSError>;
/**
* Updates variant weight of one or more variants associated with an existing endpoint, or capacity of one variant associated with an existing endpoint. When it receives the request, Amazon SageMaker sets the endpoint status to Updating. After updating the endpoint, it sets the status to InService. To check the status of an endpoint, use the DescribeEndpoint API.
*/
updateEndpointWeightsAndCapacities(callback?: (err: AWSError, data: SageMaker.Types.UpdateEndpointWeightsAndCapacitiesOutput) => void): Request<SageMaker.Types.UpdateEndpointWeightsAndCapacitiesOutput, AWSError>;
/**
* Updates a notebook instance. NotebookInstance updates include upgrading or downgrading the ML compute instance used for your notebook instance to accommodate changes in your workload requirements.
*/
updateNotebookInstance(params: SageMaker.Types.UpdateNotebookInstanceInput, callback?: (err: AWSError, data: SageMaker.Types.UpdateNotebookInstanceOutput) => void): Request<SageMaker.Types.UpdateNotebookInstanceOutput, AWSError>;
/**
* Updates a notebook instance. NotebookInstance updates include upgrading or downgrading the ML compute instance used for your notebook instance to accommodate changes in your workload requirements.
*/
updateNotebookInstance(callback?: (err: AWSError, data: SageMaker.Types.UpdateNotebookInstanceOutput) => void): Request<SageMaker.Types.UpdateNotebookInstanceOutput, AWSError>;
/**
* Updates a notebook instance lifecycle configuration created with the CreateNotebookInstanceLifecycleConfig API.
*/
updateNotebookInstanceLifecycleConfig(params: SageMaker.Types.UpdateNotebookInstanceLifecycleConfigInput, callback?: (err: AWSError, data: SageMaker.Types.UpdateNotebookInstanceLifecycleConfigOutput) => void): Request<SageMaker.Types.UpdateNotebookInstanceLifecycleConfigOutput, AWSError>;
/**
* Updates a notebook instance lifecycle configuration created with the CreateNotebookInstanceLifecycleConfig API.
*/
updateNotebookInstanceLifecycleConfig(callback?: (err: AWSError, data: SageMaker.Types.UpdateNotebookInstanceLifecycleConfigOutput) => void): Request<SageMaker.Types.UpdateNotebookInstanceLifecycleConfigOutput, AWSError>;
/**
* Updates an existing work team with new member definitions or description.
*/
updateWorkteam(params: SageMaker.Types.UpdateWorkteamRequest, callback?: (err: AWSError, data: SageMaker.Types.UpdateWorkteamResponse) => void): Request<SageMaker.Types.UpdateWorkteamResponse, AWSError>;
/**
* Updates an existing work team with new member definitions or description.
*/
updateWorkteam(callback?: (err: AWSError, data: SageMaker.Types.UpdateWorkteamResponse) => void): Request<SageMaker.Types.UpdateWorkteamResponse, AWSError>;
/**
* Waits for the notebookInstanceInService state by periodically calling the underlying SageMaker.describeNotebookInstanceoperation every 30 seconds (at most 60 times).
*/
waitFor(state: "notebookInstanceInService", params: SageMaker.Types.DescribeNotebookInstanceInput & {$waiter?: WaiterConfiguration}, callback?: (err: AWSError, data: SageMaker.Types.DescribeNotebookInstanceOutput) => void): Request<SageMaker.Types.DescribeNotebookInstanceOutput, AWSError>;
/**
* Waits for the notebookInstanceInService state by periodically calling the underlying SageMaker.describeNotebookInstanceoperation every 30 seconds (at most 60 times).
*/
waitFor(state: "notebookInstanceInService", callback?: (err: AWSError, data: SageMaker.Types.DescribeNotebookInstanceOutput) => void): Request<SageMaker.Types.DescribeNotebookInstanceOutput, AWSError>;
/**
* Waits for the notebookInstanceStopped state by periodically calling the underlying SageMaker.describeNotebookInstanceoperation every 30 seconds (at most 60 times).
*/
waitFor(state: "notebookInstanceStopped", params: SageMaker.Types.DescribeNotebookInstanceInput & {$waiter?: WaiterConfiguration}, callback?: (err: AWSError, data: SageMaker.Types.DescribeNotebookInstanceOutput) => void): Request<SageMaker.Types.DescribeNotebookInstanceOutput, AWSError>;
/**
* Waits for the notebookInstanceStopped state by periodically calling the underlying SageMaker.describeNotebookInstanceoperation every 30 seconds (at most 60 times).
*/
waitFor(state: "notebookInstanceStopped", callback?: (err: AWSError, data: SageMaker.Types.DescribeNotebookInstanceOutput) => void): Request<SageMaker.Types.DescribeNotebookInstanceOutput, AWSError>;
/**
* Waits for the notebookInstanceDeleted state by periodically calling the underlying SageMaker.describeNotebookInstanceoperation every 30 seconds (at most 60 times).
*/
waitFor(state: "notebookInstanceDeleted", params: SageMaker.Types.DescribeNotebookInstanceInput & {$waiter?: WaiterConfiguration}, callback?: (err: AWSError, data: SageMaker.Types.DescribeNotebookInstanceOutput) => void): Request<SageMaker.Types.DescribeNotebookInstanceOutput, AWSError>;
/**
* Waits for the notebookInstanceDeleted state by periodically calling the underlying SageMaker.describeNotebookInstanceoperation every 30 seconds (at most 60 times).
*/
waitFor(state: "notebookInstanceDeleted", callback?: (err: AWSError, data: SageMaker.Types.DescribeNotebookInstanceOutput) => void): Request<SageMaker.Types.DescribeNotebookInstanceOutput, AWSError>;
/**
* Waits for the trainingJobCompletedOrStopped state by periodically calling the underlying SageMaker.describeTrainingJoboperation every 120 seconds (at most 180 times).
*/
waitFor(state: "trainingJobCompletedOrStopped", params: SageMaker.Types.DescribeTrainingJobRequest & {$waiter?: WaiterConfiguration}, callback?: (err: AWSError, data: SageMaker.Types.DescribeTrainingJobResponse) => void): Request<SageMaker.Types.DescribeTrainingJobResponse, AWSError>;
/**
* Waits for the trainingJobCompletedOrStopped state by periodically calling the underlying SageMaker.describeTrainingJoboperation every 120 seconds (at most 180 times).
*/
waitFor(state: "trainingJobCompletedOrStopped", callback?: (err: AWSError, data: SageMaker.Types.DescribeTrainingJobResponse) => void): Request<SageMaker.Types.DescribeTrainingJobResponse, AWSError>;
/**
* Waits for the endpointInService state by periodically calling the underlying SageMaker.describeEndpointoperation every 30 seconds (at most 120 times).
*/
waitFor(state: "endpointInService", params: SageMaker.Types.DescribeEndpointInput & {$waiter?: WaiterConfiguration}, callback?: (err: AWSError, data: SageMaker.Types.DescribeEndpointOutput) => void): Request<SageMaker.Types.DescribeEndpointOutput, AWSError>;
/**
* Waits for the endpointInService state by periodically calling the underlying SageMaker.describeEndpointoperation every 30 seconds (at most 120 times).
*/
waitFor(state: "endpointInService", callback?: (err: AWSError, data: SageMaker.Types.DescribeEndpointOutput) => void): Request<SageMaker.Types.DescribeEndpointOutput, AWSError>;
/**
* Waits for the endpointDeleted state by periodically calling the underlying SageMaker.describeEndpointoperation every 30 seconds (at most 60 times).
*/
waitFor(state: "endpointDeleted", params: SageMaker.Types.DescribeEndpointInput & {$waiter?: WaiterConfiguration}, callback?: (err: AWSError, data: SageMaker.Types.DescribeEndpointOutput) => void): Request<SageMaker.Types.DescribeEndpointOutput, AWSError>;
/**
* Waits for the endpointDeleted state by periodically calling the underlying SageMaker.describeEndpointoperation every 30 seconds (at most 60 times).
*/
waitFor(state: "endpointDeleted", callback?: (err: AWSError, data: SageMaker.Types.DescribeEndpointOutput) => void): Request<SageMaker.Types.DescribeEndpointOutput, AWSError>;
/**
* Waits for the transformJobCompletedOrStopped state by periodically calling the underlying SageMaker.describeTransformJoboperation every 60 seconds (at most 60 times).
*/
waitFor(state: "transformJobCompletedOrStopped", params: SageMaker.Types.DescribeTransformJobRequest & {$waiter?: WaiterConfiguration}, callback?: (err: AWSError, data: SageMaker.Types.DescribeTransformJobResponse) => void): Request<SageMaker.Types.DescribeTransformJobResponse, AWSError>;
/**
* Waits for the transformJobCompletedOrStopped state by periodically calling the underlying SageMaker.describeTransformJoboperation every 60 seconds (at most 60 times).
*/
waitFor(state: "transformJobCompletedOrStopped", callback?: (err: AWSError, data: SageMaker.Types.DescribeTransformJobResponse) => void): Request<SageMaker.Types.DescribeTransformJobResponse, AWSError>;
}
declare namespace SageMaker {
export type Accept = string;
export type AccountId = string;
export interface AddTagsInput {
/**
* The Amazon Resource Name (ARN) of the resource that you want to tag.
*/
ResourceArn: ResourceArn;
/**
* An array of Tag objects. Each tag is a key-value pair. Only the key parameter is required. If you don't specify a value, Amazon SageMaker sets the value to an empty string.
*/
Tags: TagList;
}
export interface AddTagsOutput {
/**
* A list of tags associated with the Amazon SageMaker resource.
*/
Tags?: TagList;
}
export type AdditionalCodeRepositoryNamesOrUrls = CodeRepositoryNameOrUrl[];
export type AlgorithmArn = string;
export type AlgorithmImage = string;
export type AlgorithmSortBy = "Name"|"CreationTime"|string;
export interface AlgorithmSpecification {
/**
* The registry path of the Docker image that contains the training algorithm. For information about docker registry paths for built-in algorithms, see Algorithms Provided by Amazon SageMaker: Common Parameters. Amazon SageMaker supports both registry/repository[:tag] and registry/repository[@digest] image path formats. For more information, see Using Your Own Algorithms with Amazon SageMaker.
*/
TrainingImage?: AlgorithmImage;
/**
* The name of the algorithm resource to use for the training job. This must be an algorithm resource that you created or subscribe to on AWS Marketplace. If you specify a value for this parameter, you can't specify a value for TrainingImage.
*/
AlgorithmName?: ArnOrName;
/**
* The input mode that the algorithm supports. For the input modes that Amazon SageMaker algorithms support, see Algorithms. If an algorithm supports the File input mode, Amazon SageMaker downloads the training data from S3 to the provisioned ML storage Volume, and mounts the directory to docker volume for training container. If an algorithm supports the Pipe input mode, Amazon SageMaker streams data directly from S3 to the container. In File mode, make sure you provision ML storage volume with sufficient capacity to accommodate the data download from S3. In addition to the training data, the ML storage volume also stores the output model. The algorithm container use ML storage volume to also store intermediate information, if any. For distributed algorithms using File mode, training data is distributed uniformly, and your training duration is predictable if the input data objects size is approximately same. Amazon SageMaker does not split the files any further for model training. If the object sizes are skewed, training won't be optimal as the data distribution is also skewed where one host in a training cluster is overloaded, thus becoming bottleneck in training.
*/
TrainingInputMode: TrainingInputMode;
/**
* A list of metric definition objects. Each object specifies the metric name and regular expressions used to parse algorithm logs. Amazon SageMaker publishes each metric to Amazon CloudWatch.
*/
MetricDefinitions?: MetricDefinitionList;
}
export type AlgorithmStatus = "Pending"|"InProgress"|"Completed"|"Failed"|"Deleting"|string;
export interface AlgorithmStatusDetails {
/**
* The status of algorithm validation.
*/
ValidationStatuses?: AlgorithmStatusItemList;
/**
* The status of the scan of the algorithm's Docker image container.
*/
ImageScanStatuses?: AlgorithmStatusItemList;
}
export interface AlgorithmStatusItem {
/**
* The name of the algorithm for which the overall status is being reported.
*/
Name: EntityName;
/**
* The current status.
*/
Status: DetailedAlgorithmStatus;
/**
* if the overall status is Failed, the reason for the failure.
*/
FailureReason?: String;
}
export type AlgorithmStatusItemList = AlgorithmStatusItem[];
export interface AlgorithmSummary {
/**
* The name of the algorithm that is described by the summary.
*/
AlgorithmName: EntityName;
/**
* The Amazon Resource Name (ARN) of the algorithm.
*/
AlgorithmArn: AlgorithmArn;
/**
* A brief description of the algorithm.
*/
AlgorithmDescription?: EntityDescription;
/**
* A timestamp that shows when the algorithm was created.
*/
CreationTime: CreationTime;
/**
* The overall status of the algorithm.
*/
AlgorithmStatus: AlgorithmStatus;
}
export type AlgorithmSummaryList = AlgorithmSummary[];
export interface AlgorithmValidationProfile {
/**
* The name of the profile for the algorithm. The name must have 1 to 63 characters. Valid characters are a-z, A-Z, 0-9, and - (hyphen).
*/
ProfileName: EntityName;
/**
* The TrainingJobDefinition object that describes the training job that Amazon SageMaker runs to validate your algorithm.
*/
TrainingJobDefinition: TrainingJobDefinition;
/**
* The TransformJobDefinition object that describes the transform job that Amazon SageMaker runs to validate your algorithm.
*/
TransformJobDefinition?: TransformJobDefinition;
}
export type AlgorithmValidationProfiles = AlgorithmValidationProfile[];
export interface AlgorithmValidationSpecification {
/**
* The IAM roles that Amazon SageMaker uses to run the training jobs.
*/
ValidationRole: RoleArn;
/**
* An array of AlgorithmValidationProfile objects, each of which specifies a training job and batch transform job that Amazon SageMaker runs to validate your algorithm.
*/
ValidationProfiles: AlgorithmValidationProfiles;
}
export interface AnnotationConsolidationConfig {
/**
* The Amazon Resource Name (ARN) of a Lambda function implements the logic for annotation consolidation. For the built-in bounding box, image classification, semantic segmentation, and text classification task types, Amazon SageMaker Ground Truth provides the following Lambda functions: Bounding box - Finds the most similar boxes from different workers based on the Jaccard index of the boxes. arn:aws:lambda:us-east-1:432418664414:function:ACS-BoundingBox arn:aws:lambda:us-east-2:266458841044:function:ACS-BoundingBox arn:aws:lambda:us-west-2:081040173940:function:ACS-BoundingBox arn:aws:lambda:eu-west-1:568282634449:function:ACS-BoundingBox arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-BoundingBox arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-BoundingBox arn:aws:lambda:ap-south-1:565803892007:function:ACS-BoundingBox arn:aws:lambda:eu-central-1:203001061592:function:ACS-BoundingBox arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-BoundingBox arn:aws:lambda:eu-west-2:487402164563:function:ACS-BoundingBox arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-BoundingBox arn:aws:lambda:ca-central-1:918755190332:function:ACS-BoundingBox Image classification - Uses a variant of the Expectation Maximization approach to estimate the true class of an image based on annotations from individual workers. arn:aws:lambda:us-east-1:432418664414:function:ACS-ImageMultiClass arn:aws:lambda:us-east-2:266458841044:function:ACS-ImageMultiClass arn:aws:lambda:us-west-2:081040173940:function:ACS-ImageMultiClass arn:aws:lambda:eu-west-1:568282634449:function:ACS-ImageMultiClass arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-ImageMultiClass arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-ImageMultiClass arn:aws:lambda:ap-south-1:565803892007:function:ACS-ImageMultiClass arn:aws:lambda:eu-central-1:203001061592:function:ACS-ImageMultiClass arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-ImageMultiClass arn:aws:lambda:eu-west-2:487402164563:function:ACS-ImageMultiClass arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-ImageMultiClass arn:aws:lambda:ca-central-1:918755190332:function:ACS-ImageMultiClass Semantic segmentation - Treats each pixel in an image as a multi-class classification and treats pixel annotations from workers as "votes" for the correct label. arn:aws:lambda:us-east-1:432418664414:function:ACS-SemanticSegmentation arn:aws:lambda:us-east-2:266458841044:function:ACS-SemanticSegmentation arn:aws:lambda:us-west-2:081040173940:function:ACS-SemanticSegmentation arn:aws:lambda:eu-west-1:568282634449:function:ACS-SemanticSegmentation arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-SemanticSegmentation arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-SemanticSegmentation arn:aws:lambda:ap-south-1:565803892007:function:ACS-SemanticSegmentation arn:aws:lambda:eu-central-1:203001061592:function:ACS-SemanticSegmentation arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-SemanticSegmentation arn:aws:lambda:eu-west-2:487402164563:function:ACS-SemanticSegmentation arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-SemanticSegmentation arn:aws:lambda:ca-central-1:918755190332:function:ACS-SemanticSegmentation Text classification - Uses a variant of the Expectation Maximization approach to estimate the true class of text based on annotations from individual workers. arn:aws:lambda:us-east-1:432418664414:function:ACS-TextMultiClass arn:aws:lambda:us-east-2:266458841044:function:ACS-TextMultiClass arn:aws:lambda:us-west-2:081040173940:function:ACS-TextMultiClass arn:aws:lambda:eu-west-1:568282634449:function:ACS-TextMultiClass arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-TextMultiClass arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-TextMultiClass arn:aws:lambda:ap-south-1:565803892007:function:ACS-TextMultiClass arn:aws:lambda:eu-central-1:203001061592:function:ACS-TextMultiClass arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-TextMultiClass arn:aws:lambda:eu-west-2:487402164563:function:ACS-TextMultiClass arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-TextMultiClass arn:aws:lambda:ca-central-1:918755190332:function:ACS-TextMultiClass Named entity eecognition - Groups similar selections and calculates aggregate boundaries, resolving to most-assigned label. arn:aws:lambda:us-east-1:432418664414:function:ACS-NamedEntityRecognition arn:aws:lambda:us-east-2:266458841044:function:ACS-NamedEntityRecognition arn:aws:lambda:us-west-2:081040173940:function:ACS-NamedEntityRecognition arn:aws:lambda:eu-west-1:568282634449:function:ACS-NamedEntityRecognition arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-NamedEntityRecognition arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-NamedEntityRecognition arn:aws:lambda:ap-south-1:565803892007:function:ACS-NamedEntityRecognition arn:aws:lambda:eu-central-1:203001061592:function:ACS-NamedEntityRecognition arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-NamedEntityRecognition arn:aws:lambda:eu-west-2:487402164563:function:ACS-NamedEntityRecognition arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-NamedEntityRecognition arn:aws:lambda:ca-central-1:918755190332:function:ACS-NamedEntityRecognition For more information, see Annotation Consolidation.
*/
AnnotationConsolidationLambdaArn: LambdaFunctionArn;
}
export type ArnOrName = string;
export type AssemblyType = "None"|"Line"|string;
export type AttributeName = string;
export type AttributeNames = AttributeName[];
export type BatchStrategy = "MultiRecord"|"SingleRecord"|string;
export type BillableTimeInSeconds = number;
export type Boolean = boolean;
export type BooleanOperator = "And"|"Or"|string;
export type Branch = string;
export interface CategoricalParameterRange {
/**
* The name of the categorical hyperparameter to tune.
*/
Name: ParameterKey;
/**
* A list of the categories for the hyperparameter.
*/
Values: ParameterValues;
}
export interface CategoricalParameterRangeSpecification {
/**
* The allowed categories for the hyperparameter.
*/
Values: ParameterValues;
}
export type CategoricalParameterRanges = CategoricalParameterRange[];
export type Cents = number;
export type CertifyForMarketplace = boolean;
export interface Channel {
/**
* The name of the channel.
*/
ChannelName: ChannelName;
/**
* The location of the channel data.
*/
DataSource: DataSource;
/**
* The MIME type of the data.
*/
ContentType?: ContentType;
/**
* If training data is compressed, the compression type. The default value is None. CompressionType is used only in Pipe input mode. In File mode, leave this field unset or set it to None.
*/
CompressionType?: CompressionType;
/**
* Specify RecordIO as the value when input data is in raw format but the training algorithm requires the RecordIO format. In this case, Amazon SageMaker wraps each individual S3 object in a RecordIO record. If the input data is already in RecordIO format, you don't need to set this attribute. For more information, see Create a Dataset Using RecordIO. In File mode, leave this field unset or set it to None.
*/
RecordWrapperType?: RecordWrapper;
/**
* (Optional) The input mode to use for the data channel in a training job. If you don't set a value for InputMode, Amazon SageMaker uses the value set for TrainingInputMode. Use this parameter to override the TrainingInputMode setting in a AlgorithmSpecification request when you have a channel that needs a different input mode from the training job's general setting. To download the data from Amazon Simple Storage Service (Amazon S3) to the provisioned ML storage volume, and mount the directory to a Docker volume, use File input mode. To stream data directly from Amazon S3 to the container, choose Pipe input mode. To use a model for incremental training, choose File input model.
*/
InputMode?: TrainingInputMode;
/**
* A configuration for a shuffle option for input data in a channel. If you use S3Prefix for S3DataType, this shuffles the results of the S3 key prefix matches. If you use ManifestFile, the order of the S3 object references in the ManifestFile is shuffled. If you use AugmentedManifestFile, the order of the JSON lines in the AugmentedManifestFile is shuffled. The shuffling order is determined using the Seed value. For Pipe input mode, shuffling is done at the start of every epoch. With large datasets this ensures that the order of the training data is different for each epoch, it helps reduce bias and possible overfitting. In a multi-node training job when ShuffleConfig is combined with S3DataDistributionType of ShardedByS3Key, the data is shuffled across nodes so that the content sent to a particular node on the first epoch might be sent to a different node on the second epoch.
*/
ShuffleConfig?: ShuffleConfig;
}
export type ChannelName = string;
export interface ChannelSpecification {
/**
* The name of the channel.
*/
Name: ChannelName;
/**
* A brief description of the channel.
*/
Description?: EntityDescription;
/**
* Indicates whether the channel is required by the algorithm.
*/
IsRequired?: Boolean;
/**
* The supported MIME types for the data.
*/
SupportedContentTypes: ContentTypes;
/**
* The allowed compression types, if data compression is used.
*/
SupportedCompressionTypes?: CompressionTypes;
/**
* The allowed input mode, either FILE or PIPE. In FILE mode, Amazon SageMaker copies the data from the input source onto the local Amazon Elastic Block Store (Amazon EBS) volumes before starting your training algorithm. This is the most commonly used input mode. In PIPE mode, Amazon SageMaker streams input data from the source directly to your algorithm without using the EBS volume.
*/
SupportedInputModes: InputModes;
}
export type ChannelSpecifications = ChannelSpecification[];
export interface CheckpointConfig {
/**
* Identifies the S3 path where you want Amazon SageMaker to store checkpoints. For example, s3://bucket-name/key-name-prefix.
*/
S3Uri: S3Uri;
/**
* (Optional) The local directory where checkpoints are written. The default directory is /opt/ml/checkpoints/.
*/
LocalPath?: DirectoryPath;
}
export type CodeRepositoryArn = string;
export type CodeRepositoryContains = string;
export type CodeRepositoryNameContains = string;
export type CodeRepositoryNameOrUrl = string;
export type CodeRepositorySortBy = "Name"|"CreationTime"|"LastModifiedTime"|string;
export type CodeRepositorySortOrder = "Ascending"|"Descending"|string;
export interface CodeRepositorySummary {
/**
* The name of the Git repository.
*/
CodeRepositoryName: EntityName;
/**
* The Amazon Resource Name (ARN) of the Git repository.
*/
CodeRepositoryArn: CodeRepositoryArn;
/**
* The date and time that the Git repository was created.
*/
CreationTime: CreationTime;
/**
* The date and time that the Git repository was last modified.
*/
LastModifiedTime: LastModifiedTime;
/**
* Configuration details for the Git repository, including the URL where it is located and the ARN of the AWS Secrets Manager secret that contains the credentials used to access the repository.
*/
GitConfig?: GitConfig;
}
export type CodeRepositorySummaryList = CodeRepositorySummary[];
export type CognitoClientId = string;
export interface CognitoMemberDefinition {
/**
* An identifier for a user pool. The user pool must be in the same region as the service that you are calling.
*/
UserPool: CognitoUserPool;
/**
* An identifier for a user group.
*/
UserGroup: CognitoUserGroup;
/**
* An identifier for an application client. You must create the app client ID using Amazon Cognito.
*/
ClientId: CognitoClientId;
}
export type CognitoUserGroup = string;
export type CognitoUserPool = string;
export type CompilationJobArn = string;
export type CompilationJobStatus = "INPROGRESS"|"COMPLETED"|"FAILED"|"STARTING"|"STOPPING"|"STOPPED"|string;
export type CompilationJobSummaries = CompilationJobSummary[];
export interface CompilationJobSummary {
/**
* The name of the model compilation job that you want a summary for.
*/
CompilationJobName: EntityName;
/**
* The Amazon Resource Name (ARN) of the model compilation job.
*/
CompilationJobArn: CompilationJobArn;
/**
* The time when the model compilation job was created.
*/
CreationTime: CreationTime;
/**
* The time when the model compilation job started.
*/
CompilationStartTime?: Timestamp;
/**
* The time when the model compilation job completed.
*/
CompilationEndTime?: Timestamp;
/**
* The type of device that the model will run on after compilation has completed.
*/
CompilationTargetDevice: TargetDevice;
/**
* The time when the model compilation job was last modified.
*/
LastModifiedTime?: LastModifiedTime;
/**
* The status of the model compilation job.
*/
CompilationJobStatus: CompilationJobStatus;
}
export type CompressionType = "None"|"Gzip"|string;
export type CompressionTypes = CompressionType[];
export interface ContainerDefinition {
/**
* This parameter is ignored for models that contain only a PrimaryContainer. When a ContainerDefinition is part of an inference pipeline, the value of ths parameter uniquely identifies the container for the purposes of logging and metrics. For information, see Use Logs and Metrics to Monitor an Inference Pipeline. If you don't specify a value for this parameter for a ContainerDefinition that is part of an inference pipeline, a unique name is automatically assigned based on the position of the ContainerDefinition in the pipeline. If you specify a value for the ContainerHostName for any ContainerDefinition that is part of an inference pipeline, you must specify a value for the ContainerHostName parameter of every ContainerDefinition in that pipeline.
*/
ContainerHostname?: ContainerHostname;
/**
* The Amazon EC2 Container Registry (Amazon ECR) path where inference code is stored. If you are using your own custom algorithm instead of an algorithm provided by Amazon SageMaker, the inference code must meet Amazon SageMaker requirements. Amazon SageMaker supports both registry/repository[:tag] and registry/repository[@digest] image path formats. For more information, see Using Your Own Algorithms with Amazon SageMaker
*/
Image?: Image;
/**
* The S3 path where the model artifacts, which result from model training, are stored. This path must point to a single gzip compressed tar archive (.tar.gz suffix). The S3 path is required for Amazon SageMaker built-in algorithms, but not if you use your own algorithms. For more information on built-in algorithms, see Common Parameters. If you provide a value for this parameter, Amazon SageMaker uses AWS Security Token Service to download model artifacts from the S3 path you provide. AWS STS is activated in your IAM user account by default. If you previously deactivated AWS STS for a region, you need to reactivate AWS STS for that region. For more information, see Activating and Deactivating AWS STS in an AWS Region in the AWS Identity and Access Management User Guide. If you use a built-in algorithm to create a model, Amazon SageMaker requires that you provide a S3 path to the model artifacts in ModelDataUrl.
*/
ModelDataUrl?: Url;
/**
* The environment variables to set in the Docker container. Each key and value in the Environment string to string map can have length of up to 1024. We support up to 16 entries in the map.
*/
Environment?: EnvironmentMap;
/**
* The name or Amazon Resource Name (ARN) of the model package to use to create the model.
*/
ModelPackageName?: ArnOrName;
}
export type ContainerDefinitionList = ContainerDefinition[];
export type ContainerHostname = string;
export type ContentClassifier = "FreeOfPersonallyIdentifiableInformation"|"FreeOfAdultContent"|string;
export type ContentClassifiers = ContentClassifier[];
export type ContentType = string;
export type ContentTypes = ContentType[];
export interface ContinuousParameterRange {
/**
* The name of the continuous hyperparameter to tune.
*/
Name: ParameterKey;
/**
* The minimum value for the hyperparameter. The tuning job uses floating-point values between this value and MaxValuefor tuning.
*/
MinValue: ParameterValue;
/**
* The maximum value for the hyperparameter. The tuning job uses floating-point values between MinValue value and this value for tuning.
*/
MaxValue: ParameterValue;
/**
* The scale that hyperparameter tuning uses to search the hyperparameter range. For information about choosing a hyperparameter scale, see Hyperparameter Scaling. One of the following values: Auto Amazon SageMaker hyperparameter tuning chooses the best scale for the hyperparameter. Linear Hyperparameter tuning searches the values in the hyperparameter range by using a linear scale. Logarithmic Hyperparameter tuning searches the values in the hyperparameter range by using a logarithmic scale. Logarithmic scaling works only for ranges that have only values greater than 0. ReverseLogarithmic Hyperparemeter tuning searches the values in the hyperparameter range by using a reverse logarithmic scale. Reverse logarithmic scaling works only for ranges that are entirely within the range 0<=x<1.0.
*/
ScalingType?: HyperParameterScalingType;
}
export interface ContinuousParameterRangeSpecification {
/**
* The minimum floating-point value allowed.
*/
MinValue: ParameterValue;
/**
* The maximum floating-point value allowed.
*/
MaxValue: ParameterValue;
}
export type ContinuousParameterRanges = ContinuousParameterRange[];
export interface CreateAlgorithmInput {
/**
* The name of the algorithm.
*/
AlgorithmName: EntityName;
/**
* A description of the algorithm.
*/
AlgorithmDescription?: EntityDescription;
/**
* Specifies details about training jobs run by this algorithm, including the following: The Amazon ECR path of the container and the version digest of the algorithm. The hyperparameters that the algorithm supports. The instance types that the algorithm supports for training. Whether the algorithm supports distributed training. The metrics that the algorithm emits to Amazon CloudWatch. Which metrics that the algorithm emits can be used as the objective metric for hyperparameter tuning jobs. The input channels that the algorithm supports for training data. For example, an algorithm might support train, validation, and test channels.
*/
TrainingSpecification: TrainingSpecification;
/**
* Specifies details about inference jobs that the algorithm runs, including the following: The Amazon ECR paths of containers that contain the inference code and model artifacts. The instance types that the algorithm supports for transform jobs and real-time endpoints used for inference. The input and output content formats that the algorithm supports for inference.
*/
InferenceSpecification?: InferenceSpecification;
/**
* Specifies configurations for one or more training jobs and that Amazon SageMaker runs to test the algorithm's training code and, optionally, one or more batch transform jobs that Amazon SageMaker runs to test the algorithm's inference code.
*/
ValidationSpecification?: AlgorithmValidationSpecification;
/**
* Whether to certify the algorithm so that it can be listed in AWS Marketplace.
*/
CertifyForMarketplace?: CertifyForMarketplace;
}
export interface CreateAlgorithmOutput {
/**
* The Amazon Resource Name (ARN) of the new algorithm.
*/
AlgorithmArn: AlgorithmArn;
}
export interface CreateCodeRepositoryInput {
/**
* The name of the Git repository. The name must have 1 to 63 characters. Valid characters are a-z, A-Z, 0-9, and - (hyphen).
*/
CodeRepositoryName: EntityName;
/**
* Specifies details about the repository, including the URL where the repository is located, the default branch, and credentials to use to access the repository.
*/
GitConfig: GitConfig;
}
export interface CreateCodeRepositoryOutput {
/**
* The Amazon Resource Name (ARN) of the new repository.
*/
CodeRepositoryArn: CodeRepositoryArn;
}
export interface CreateCompilationJobRequest {
/**
* A name for the model compilation job. The name must be unique within the AWS Region and within your AWS account.
*/
CompilationJobName: EntityName;
/**
* The Amazon Resource Name (ARN) of an IAM role that enables Amazon SageMaker to perform tasks on your behalf. During model compilation, Amazon SageMaker needs your permission to: Read input data from an S3 bucket Write model artifacts to an S3 bucket Write logs to Amazon CloudWatch Logs Publish metrics to Amazon CloudWatch You grant permissions for all of these tasks to an IAM role. To pass this role to Amazon SageMaker, the caller of this API must have the iam:PassRole permission. For more information, see Amazon SageMaker Roles.
*/
RoleArn: RoleArn;
/**
* Provides information about the location of input model artifacts, the name and shape of the expected data inputs, and the framework in which the model was trained.
*/
InputConfig: InputConfig;
/**
* Provides information about the output location for the compiled model and the target device the model runs on.
*/
OutputConfig: OutputConfig;
/**
* Specifies a limit to how long a model compilation job can run. When the job reaches the time limit, Amazon SageMaker ends the compilation job. Use this API to cap model training costs.
*/
StoppingCondition: StoppingCondition;
}
export interface CreateCompilationJobResponse {
/**
* If the action is successful, the service sends back an HTTP 200 response. Amazon SageMaker returns the following data in JSON format: CompilationJobArn: The Amazon Resource Name (ARN) of the compiled job.
*/
CompilationJobArn: CompilationJobArn;
}
export interface CreateEndpointConfigInput {
/**
* The name of the endpoint configuration. You specify this name in a CreateEndpoint request.
*/
EndpointConfigName: EndpointConfigName;
/**
* An list of ProductionVariant objects, one for each model that you want to host at this endpoint.
*/
ProductionVariants: ProductionVariantList;
/**
* A list of key-value pairs. For more information, see Using Cost Allocation Tags in the AWS Billing and Cost Management User Guide.
*/
Tags?: TagList;
/**
* The Amazon Resource Name (ARN) of a AWS Key Management Service key that Amazon SageMaker uses to encrypt data on the storage volume attached to the ML compute instance that hosts the endpoint. Nitro-based instances do not support encryption with AWS KMS. If any of the models that you specify in the ProductionVariants parameter use nitro-based instances, do not specify a value for the KmsKeyId parameter. If you specify a value for KmsKeyId when using any nitro-based instances, the call to CreateEndpointConfig fails. For a list of nitro-based instances, see Nitro-based Instances in the Amazon Elastic Compute Cloud User Guide for Linux Instances. For more information about storage volumes on nitro-based instances, see Amazon EBS and NVMe on Linux Instances.
*/
KmsKeyId?: KmsKeyId;
}
export interface CreateEndpointConfigOutput {
/**
* The Amazon Resource Name (ARN) of the endpoint configuration.
*/
EndpointConfigArn: EndpointConfigArn;
}
export interface CreateEndpointInput {
/**
* The name of the endpoint. The name must be unique within an AWS Region in your AWS account.
*/
EndpointName: EndpointName;
/**
* The name of an endpoint configuration. For more information, see CreateEndpointConfig.
*/
EndpointConfigName: EndpointConfigName;
/**
* An array of key-value pairs. For more information, see Using Cost Allocation Tagsin the AWS Billing and Cost Management User Guide.
*/
Tags?: TagList;
}
export interface CreateEndpointOutput {
/**
* The Amazon Resource Name (ARN) of the endpoint.
*/
EndpointArn: EndpointArn;
}
export interface CreateHyperParameterTuningJobRequest {
/**
* The name of the tuning job. This name is the prefix for the names of all training jobs that this tuning job launches. The name must be unique within the same AWS account and AWS Region. The name must have { } to { } characters. Valid characters are a-z, A-Z, 0-9, and : + = @ _ % - (hyphen). The name is not case sensitive.
*/
HyperParameterTuningJobName: HyperParameterTuningJobName;
/**
* The HyperParameterTuningJobConfig object that describes the tuning job, including the search strategy, the objective metric used to evaluate training jobs, ranges of parameters to search, and resource limits for the tuning job. For more information, see automatic-model-tuning
*/
HyperParameterTuningJobConfig: HyperParameterTuningJobConfig;
/**
* The HyperParameterTrainingJobDefinition object that describes the training jobs that this tuning job launches, including static hyperparameters, input data configuration, output data configuration, resource configuration, and stopping condition.
*/
TrainingJobDefinition?: HyperParameterTrainingJobDefinition;
/**
* Specifies the configuration for starting the hyperparameter tuning job using one or more previous tuning jobs as a starting point. The results of previous tuning jobs are used to inform which combinations of hyperparameters to search over in the new tuning job. All training jobs launched by the new hyperparameter tuning job are evaluated by using the objective metric. If you specify IDENTICAL_DATA_AND_ALGORITHM as the WarmStartType value for the warm start configuration, the training job that performs the best in the new tuning job is compared to the best training jobs from the parent tuning jobs. From these, the training job that performs the best as measured by the objective metric is returned as the overall best training job. All training jobs launched by parent hyperparameter tuning jobs and the new hyperparameter tuning jobs count against the limit of training jobs for the tuning job.
*/
WarmStartConfig?: HyperParameterTuningJobWarmStartConfig;
/**
* An array of key-value pairs. You can use tags to categorize your AWS resources in different ways, for example, by purpose, owner, or environment. For more information, see AWS Tagging Strategies. Tags that you specify for the tuning job are also added to all training jobs that the tuning job launches.
*/
Tags?: TagList;
}
export interface CreateHyperParameterTuningJobResponse {
/**
* The Amazon Resource Name (ARN) of the tuning job. Amazon SageMaker assigns an ARN to a hyperparameter tuning job when you create it.
*/
HyperParameterTuningJobArn: HyperParameterTuningJobArn;
}
export interface CreateLabelingJobRequest {
/**
* The name of the labeling job. This name is used to identify the job in a list of labeling jobs.
*/
LabelingJobName: LabelingJobName;
/**
* The attribute name to use for the label in the output manifest file. This is the key for the key/value pair formed with the label that a worker assigns to the object. The name can't end with "-metadata". If you are running a semantic segmentation labeling job, the attribute name must end with "-ref". If you are running any other kind of labeling job, the attribute name must not end with "-ref".
*/
LabelAttributeName: LabelAttributeName;
/**
* Input data for the labeling job, such as the Amazon S3 location of the data objects and the location of the manifest file that describes the data objects.
*/
InputConfig: LabelingJobInputConfig;
/**
* The location of the output data and the AWS Key Management Service key ID for the key used to encrypt the output data, if any.
*/
OutputConfig: LabelingJobOutputConfig;
/**
* The Amazon Resource Number (ARN) that Amazon SageMaker assumes to perform tasks on your behalf during data labeling. You must grant this role the necessary permissions so that Amazon SageMaker can successfully complete data labeling.
*/
RoleArn: RoleArn;
/**
* The S3 URL of the file that defines the categories used to label the data objects. The file is a JSON structure in the following format: { "document-version": "2018-11-28" "labels": [ { "label": "label 1" }, { "label": "label 2" }, ... { "label": "label n" } ] }
*/
LabelCategoryConfigS3Uri?: S3Uri;
/**
* A set of conditions for stopping the labeling job. If any of the conditions are met, the job is automatically stopped. You can use these conditions to control the cost of data labeling.
*/
StoppingConditions?: LabelingJobStoppingConditions;
/**
* Configures the information required to perform automated data labeling.
*/
LabelingJobAlgorithmsConfig?: LabelingJobAlgorithmsConfig;
/**
* Configures the information required for human workers to complete a labeling task.
*/
HumanTaskConfig: HumanTaskConfig;
/**
* An array of key/value pairs. For more information, see Using Cost Allocation Tags in the AWS Billing and Cost Management User Guide.
*/
Tags?: TagList;
}
export interface CreateLabelingJobResponse {
/**
* The Amazon Resource Name (ARN) of the labeling job. You use this ARN to identify the labeling job.
*/
LabelingJobArn: LabelingJobArn;
}
export interface CreateModelInput {
/**
* The name of the new model.
*/
ModelName: ModelName;
/**
* The location of the primary docker image containing inference code, associated artifacts, and custom environment map that the inference code uses when the model is deployed for predictions.
*/
PrimaryContainer?: ContainerDefinition;
/**
* Specifies the containers in the inference pipeline.
*/
Containers?: ContainerDefinitionList;
/**
* The Amazon Resource Name (ARN) of the IAM role that Amazon SageMaker can assume to access model artifacts and docker image for deployment on ML compute instances or for batch transform jobs. Deploying on ML compute instances is part of model hosting. For more information, see Amazon SageMaker Roles. To be able to pass this role to Amazon SageMaker, the caller of this API must have the iam:PassRole permission.
*/
ExecutionRoleArn: RoleArn;
/**
* An array of key-value pairs. For more information, see Using Cost Allocation Tags in the AWS Billing and Cost Management User Guide.
*/
Tags?: TagList;
/**
* A VpcConfig object that specifies the VPC that you want your model to connect to. Control access to and from your model container by configuring the VPC. VpcConfig is used in hosting services and in batch transform. For more information, see Protect Endpoints by Using an Amazon Virtual Private Cloud and Protect Data in Batch Transform Jobs by Using an Amazon Virtual Private Cloud.
*/
VpcConfig?: VpcConfig;
/**
* Isolates the model container. No inbound or outbound network calls can be made to or from the model container. The Semantic Segmentation built-in algorithm does not support network isolation.
*/
EnableNetworkIsolation?: Boolean;
}
export interface CreateModelOutput {
/**
* The ARN of the model created in Amazon SageMaker.
*/
ModelArn: ModelArn;
}
export interface CreateModelPackageInput {
/**
* The name of the model package. The name must have 1 to 63 characters. Valid characters are a-z, A-Z, 0-9, and - (hyphen).
*/
ModelPackageName: EntityName;
/**
* A description of the model package.
*/
ModelPackageDescription?: EntityDescription;
/**
* Specifies details about inference jobs that can be run with models based on this model package, including the following: The Amazon ECR paths of containers that contain the inference code and model artifacts. The instance types that the model package supports for transform jobs and real-time endpoints used for inference. The input and output content formats that the model package supports for inference.
*/
InferenceSpecification?: InferenceSpecification;
/**
* Specifies configurations for one or more transform jobs that Amazon SageMaker runs to test the model package.
*/
ValidationSpecification?: ModelPackageValidationSpecification;
/**
* Details about the algorithm that was used to create the model package.
*/
SourceAlgorithmSpecification?: SourceAlgorithmSpecification;
/**
* Whether to certify the model package for listing on AWS Marketplace.
*/
CertifyForMarketplace?: CertifyForMarketplace;
}
export interface CreateModelPackageOutput {
/**
* The Amazon Resource Name (ARN) of the new model package.
*/
ModelPackageArn: ModelPackageArn;
}
export interface CreateNotebookInstanceInput {
/**
* The name of the new notebook instance.
*/
NotebookInstanceName: NotebookInstanceName;
/**
* The type of ML compute instance to launch for the notebook instance.
*/
InstanceType: InstanceType;
/**
* The ID of the subnet in a VPC to which you would like to have a connectivity from your ML compute instance.
*/
SubnetId?: SubnetId;
/**
* The VPC security group IDs, in the form sg-xxxxxxxx. The security groups must be for the same VPC as specified in the subnet.
*/
SecurityGroupIds?: SecurityGroupIds;
/**
* When you send any requests to AWS resources from the notebook instance, Amazon SageMaker assumes this role to perform tasks on your behalf. You must grant this role necessary permissions so Amazon SageMaker can perform these tasks. The policy must allow the Amazon SageMaker service principal (sagemaker.amazonaws.com) permissionsto to assume this role. For more information, see Amazon SageMaker Roles. To be able to pass this role to Amazon SageMaker, the caller of this API must have the iam:PassRole permission.
*/
RoleArn: RoleArn;
/**
* The Amazon Resource Name (ARN) of a AWS Key Management Service key that Amazon SageMaker uses to encrypt data on the storage volume attached to your notebook instance. The KMS key you provide must be enabled. For information, see Enabling and Disabling Keys in the AWS Key Management Service Developer Guide.
*/
KmsKeyId?: KmsKeyId;
/**
* A list of tags to associate with the notebook instance. You can add tags later by using the CreateTags API.
*/
Tags?: TagList;
/**
* The name of a lifecycle configuration to associate with the notebook instance. For information about lifestyle configurations, see Step 2.1: (Optional) Customize a Notebook Instance.
*/
LifecycleConfigName?: NotebookInstanceLifecycleConfigName;
/**
* Sets whether Amazon SageMaker provides internet access to the notebook instance. If you set this to Disabled this notebook instance will be able to access resources only in your VPC, and will not be able to connect to Amazon SageMaker training and endpoint services unless your configure a NAT Gateway in your VPC. For more information, see Notebook Instances Are Internet-Enabled by Default. You can set the value of this parameter to Disabled only if you set a value for the SubnetId parameter.
*/
DirectInternetAccess?: DirectInternetAccess;
/**
* The size, in GB, of the ML storage volume to attach to the notebook instance. The default value is 5 GB.
*/
VolumeSizeInGB?: NotebookInstanceVolumeSizeInGB;
/**
* A list of Elastic Inference (EI) instance types to associate with this notebook instance. Currently, only one instance type can be associated with a notebook instance. For more information, see Using Elastic Inference in Amazon SageMaker.
*/
AcceleratorTypes?: NotebookInstanceAcceleratorTypes;
/**
* A Git repository to associate with the notebook instance as its default code repository. This can be either the name of a Git repository stored as a resource in your account, or the URL of a Git repository in AWS CodeCommit or in any other Git repository. When you open a notebook instance, it opens in the directory that contains this repository. For more information, see Associating Git Repositories with Amazon SageMaker Notebook Instances.
*/
DefaultCodeRepository?: CodeRepositoryNameOrUrl;
/**
* An array of up to three Git repositories to associate with the notebook instance. These can be either the names of Git repositories stored as resources in your account, or the URL of Git repositories in AWS CodeCommit or in any other Git repository. These repositories are cloned at the same level as the default repository of your notebook instance. For more information, see Associating Git Repositories with Amazon SageMaker Notebook Instances.
*/
AdditionalCodeRepositories?: AdditionalCodeRepositoryNamesOrUrls;
/**
* Whether root access is enabled or disabled for users of the notebook instance. The default value is Enabled. Lifecycle configurations need root access to be able to set up a notebook instance. Because of this, lifecycle configurations associated with a notebook instance always run with root access even if you disable root access for users.
*/
RootAccess?: RootAccess;
}
export interface CreateNotebookInstanceLifecycleConfigInput {
/**
* The name of the lifecycle configuration.
*/
NotebookInstanceLifecycleConfigName: NotebookInstanceLifecycleConfigName;
/**
* A shell script that runs only once, when you create a notebook instance. The shell script must be a base64-encoded string.
*/
OnCreate?: NotebookInstanceLifecycleConfigList;
/**
* A shell script that runs every time you start a notebook instance, including when you create the notebook instance. The shell script must be a base64-encoded string.
*/
OnStart?: NotebookInstanceLifecycleConfigList;
}
export interface CreateNotebookInstanceLifecycleConfigOutput {
/**
* The Amazon Resource Name (ARN) of the lifecycle configuration.
*/
NotebookInstanceLifecycleConfigArn?: NotebookInstanceLifecycleConfigArn;
}
export interface CreateNotebookInstanceOutput {
/**
* The Amazon Resource Name (ARN) of the notebook instance.
*/
NotebookInstanceArn?: NotebookInstanceArn;
}
export interface CreatePresignedNotebookInstanceUrlInput {
/**
* The name of the notebook instance.
*/
NotebookInstanceName: NotebookInstanceName;
/**
* The duration of the session, in seconds. The default is 12 hours.
*/
SessionExpirationDurationInSeconds?: SessionExpirationDurationInSeconds;
}
export interface CreatePresignedNotebookInstanceUrlOutput {
/**
* A JSON object that contains the URL string.
*/
AuthorizedUrl?: NotebookInstanceUrl;
}
export interface CreateTrainingJobRequest {
/**
* The name of the training job. The name must be unique within an AWS Region in an AWS account.
*/
TrainingJobName: TrainingJobName;
/**
* Algorithm-specific parameters that influence the quality of the model. You set hyperparameters before you start the learning process. For a list of hyperparameters for each training algorithm provided by Amazon SageMaker, see Algorithms. You can specify a maximum of 100 hyperparameters. Each hyperparameter is a key-value pair. Each key and value is limited to 256 characters, as specified by the Length Constraint.
*/
HyperParameters?: HyperParameters;
/**
* The registry path of the Docker image that contains the training algorithm and algorithm-specific metadata, including the input mode. For more information about algorithms provided by Amazon SageMaker, see Algorithms. For information about providing your own algorithms, see Using Your Own Algorithms with Amazon SageMaker.
*/
AlgorithmSpecification: AlgorithmSpecification;
/**
* The Amazon Resource Name (ARN) of an IAM role that Amazon SageMaker can assume to perform tasks on your behalf. During model training, Amazon SageMaker needs your permission to read input data from an S3 bucket, download a Docker image that contains training code, write model artifacts to an S3 bucket, write logs to Amazon CloudWatch Logs, and publish metrics to Amazon CloudWatch. You grant permissions for all of these tasks to an IAM role. For more information, see Amazon SageMaker Roles. To be able to pass this role to Amazon SageMaker, the caller of this API must have the iam:PassRole permission.
*/
RoleArn: RoleArn;
/**
* An array of Channel objects. Each channel is a named input source. InputDataConfig describes the input data and its location. Algorithms can accept input data from one or more channels. For example, an algorithm might have two channels of input data, training_data and validation_data. The configuration for each channel provides the S3, EFS, or FSx location where the input data is stored. It also provides information about the stored data: the MIME type, compression method, and whether the data is wrapped in RecordIO format. Depending on the input mode that the algorithm supports, Amazon SageMaker either copies input data files from an S3 bucket to a local directory in the Docker container, or makes it available as input streams. For example, if you specify an EFS location, input data files will be made available as input streams. They do not need to be downloaded.
*/
InputDataConfig?: InputDataConfig;
/**
* Specifies the path to the S3 location where you want to store model artifacts. Amazon SageMaker creates subfolders for the artifacts.
*/
OutputDataConfig: OutputDataConfig;
/**
* The resources, including the ML compute instances and ML storage volumes, to use for model training. ML storage volumes store model artifacts and incremental states. Training algorithms might also use ML storage volumes for scratch space. If you want Amazon SageMaker to use the ML storage volume to store the training data, choose File as the TrainingInputMode in the algorithm specification. For distributed training algorithms, specify an instance count greater than 1.
*/
ResourceConfig: ResourceConfig;
/**
* A VpcConfig object that specifies the VPC that you want your training job to connect to. Control access to and from your training container by configuring the VPC. For more information, see Protect Training Jobs by Using an Amazon Virtual Private Cloud.
*/
VpcConfig?: VpcConfig;
/**
* Specifies a limit to how long a model training job can run. When the job reaches the time limit, Amazon SageMaker ends the training job. Use this API to cap model training costs. To stop a job, Amazon SageMaker sends the algorithm the SIGTERM signal, which delays job termination for 120 seconds. Algorithms can use this 120-second window to save the model artifacts, so the results of training are not lost.
*/
StoppingCondition: StoppingCondition;
/**
* An array of key-value pairs. For more information, see Using Cost Allocation Tags in the AWS Billing and Cost Management User Guide.
*/
Tags?: TagList;
/**
* Isolates the training container. No inbound or outbound network calls can be made, except for calls between peers within a training cluster for distributed training. If you enable network isolation for training jobs that are configured to use a VPC, Amazon SageMaker downloads and uploads customer data and model artifacts through the specified VPC, but the training container does not have network access. The Semantic Segmentation built-in algorithm does not support network isolation.
*/
EnableNetworkIsolation?: Boolean;
/**
* To encrypt all communications between ML compute instances in distributed training, choose True. Encryption provides greater security for distributed training, but training might take longer. How long it takes depends on the amount of communication between compute instances, especially if you use a deep learning algorithm in distributed training. For more information, see Protect Communications Between ML Compute Instances in a Distributed Training Job.
*/
EnableInterContainerTrafficEncryption?: Boolean;
/**
* To train models using managed spot training, choose True. Managed spot training provides a fully managed and scalable infrastructure for training machine learning models. this option is useful when training jobs can be interrupted and when there is flexibility when the training job is run. The complete and intermediate results of jobs are stored in an Amazon S3 bucket, and can be used as a starting point to train models incrementally. Amazon SageMaker provides metrics and logs in CloudWatch. They can be used to see when managed spot training jobs are running, interrupted, resumed, or completed.
*/
EnableManagedSpotTraining?: Boolean;
/**
* Contains information about the output location for managed spot training checkpoint data.
*/
CheckpointConfig?: CheckpointConfig;
}
export interface CreateTrainingJobResponse {
/**
* The Amazon Resource Name (ARN) of the training job.
*/
TrainingJobArn: TrainingJobArn;
}
export interface CreateTransformJobRequest {
/**
* The name of the transform job. The name must be unique within an AWS Region in an AWS account.
*/
TransformJobName: TransformJobName;
/**
* The name of the model that you want to use for the transform job. ModelName must be the name of an existing Amazon SageMaker model within an AWS Region in an AWS account.
*/
ModelName: ModelName;
/**
* The maximum number of parallel requests that can be sent to each instance in a transform job. If MaxConcurrentTransforms is set to 0 or left unset, Amazon SageMaker checks the optional execution-parameters to determine the optimal settings for your chosen algorithm. If the execution-parameters endpoint is not enabled, the default value is 1. For more information on execution-parameters, see How Containers Serve Requests. For built-in algorithms, you don't need to set a value for MaxConcurrentTransforms.
*/
MaxConcurrentTransforms?: MaxConcurrentTransforms;
/**
* The maximum allowed size of the payload, in MB. A payload is the data portion of a record (without metadata). The value in MaxPayloadInMB must be greater than, or equal to, the size of a single record. To estimate the size of a record in MB, divide the size of your dataset by the number of records. To ensure that the records fit within the maximum payload size, we recommend using a slightly larger value. The default value is 6 MB. For cases where the payload might be arbitrarily large and is transmitted using HTTP chunked encoding, set the value to 0. This feature works only in supported algorithms. Currently, Amazon SageMaker built-in algorithms do not support HTTP chunked encoding.
*/
MaxPayloadInMB?: MaxPayloadInMB;
/**
* Specifies the number of records to include in a mini-batch for an HTTP inference request. A record is a single unit of input data that inference can be made on. For example, a single line in a CSV file is a record. To enable the batch strategy, you must set SplitType to Line, RecordIO, or TFRecord. To use only one record when making an HTTP invocation request to a container, set BatchStrategy to SingleRecord and SplitType to Line. To fit as many records in a mini-batch as can fit within the MaxPayloadInMB limit, set BatchStrategy to MultiRecord and SplitType to Line.
*/
BatchStrategy?: BatchStrategy;
/**
* The environment variables to set in the Docker container. We support up to 16 key and values entries in the map.
*/
Environment?: TransformEnvironmentMap;
/**
* Describes the input source and the way the transform job consumes it.
*/
TransformInput: TransformInput;
/**
* Describes the results of the transform job.
*/
TransformOutput: TransformOutput;
/**
* Describes the resources, including ML instance types and ML instance count, to use for the transform job.
*/
TransformResources: TransformResources;
/**
* The data structure used to specify the data to be used for inference in a batch transform job and to associate the data that is relevant to the prediction results in the output. The input filter provided allows you to exclude input data that is not needed for inference in a batch transform job. The output filter provided allows you to include input data relevant to interpreting the predictions in the output from the job. For more information, see Associate Prediction Results with their Corresponding Input Records.
*/
DataProcessing?: DataProcessing;
/**
* (Optional) An array of key-value pairs. For more information, see Using Cost Allocation Tags in the AWS Billing and Cost Management User Guide.
*/
Tags?: TagList;
}
export interface CreateTransformJobResponse {
/**
* The Amazon Resource Name (ARN) of the transform job.
*/
TransformJobArn: TransformJobArn;
}
export interface CreateWorkteamRequest {
/**
* The name of the work team. Use this name to identify the work team.
*/
WorkteamName: WorkteamName;
/**
* A list of MemberDefinition objects that contains objects that identify the Amazon Cognito user pool that makes up the work team. For more information, see Amazon Cognito User Pools. All of the CognitoMemberDefinition objects that make up the member definition must have the same ClientId and UserPool values.
*/
MemberDefinitions: MemberDefinitions;
/**
* A description of the work team.
*/
Description: String200;
/**
* Configures notification of workers regarding available or expiring work items.
*/
NotificationConfiguration?: NotificationConfiguration;
/**
* An array of key-value pairs. For more information, see Resource Tag and Using Cost Allocation Tags in the AWS Billing and Cost Management User Guide.
*/
Tags?: TagList;
}
export interface CreateWorkteamResponse {
/**
* The Amazon Resource Name (ARN) of the work team. You can use this ARN to identify the work team.
*/
WorkteamArn?: WorkteamArn;
}
export type CreationTime = Date;
export type DataInputConfig = string;
export interface DataProcessing {
/**
* A JSONPath expression used to select a portion of the input data to pass to the algorithm. Use the InputFilter parameter to exclude fields, such as an ID column, from the input. If you want Amazon SageMaker to pass the entire input dataset to the algorithm, accept the default value $. Examples: "$", "$[1:]", "$.features"
*/
InputFilter?: JsonPath;
/**
* A JSONPath expression used to select a portion of the joined dataset to save in the output file for a batch transform job. If you want Amazon SageMaker to store the entire input dataset in the output file, leave the default value, $. If you specify indexes that aren't within the dimension size of the joined dataset, you get an error. Examples: "$", "$[0,5:]", "$['id','SageMakerOutput']"
*/
OutputFilter?: JsonPath;
/**
* Specifies the source of the data to join with the transformed data. The valid values are None and Input The default value is None which specifies not to join the input with the transformed data. If you want the batch transform job to join the original input data with the transformed data, set JoinSource to Input. For JSON or JSONLines objects, such as a JSON array, Amazon SageMaker adds the transformed data to the input JSON object in an attribute called SageMakerOutput. The joined result for JSON must be a key-value pair object. If the input is not a key-value pair object, Amazon SageMaker creates a new JSON file. In the new JSON file, and the input data is stored under the SageMakerInput key and the results are stored in SageMakerOutput. For CSV files, Amazon SageMaker combines the transformed data with the input data at the end of the input data and stores it in the output file. The joined data has the joined input data followed by the transformed data and the output is a CSV file.
*/
JoinSource?: JoinSource;
}
export interface DataSource {
/**
* The S3 location of the data source that is associated with a channel.
*/
S3DataSource?: S3DataSource;
/**
* The file system that is associated with a channel.
*/
FileSystemDataSource?: FileSystemDataSource;
}
export interface DeleteAlgorithmInput {
/**
* The name of the algorithm to delete.
*/
AlgorithmName: EntityName;
}
export interface DeleteCodeRepositoryInput {
/**
* The name of the Git repository to delete.
*/
CodeRepositoryName: EntityName;
}
export interface DeleteEndpointConfigInput {
/**
* The name of the endpoint configuration that you want to delete.
*/
EndpointConfigName: EndpointConfigName;
}
export interface DeleteEndpointInput {
/**
* The name of the endpoint that you want to delete.
*/
EndpointName: EndpointName;
}
export interface DeleteModelInput {
/**
* The name of the model to delete.
*/
ModelName: ModelName;
}
export interface DeleteModelPackageInput {
/**
* The name of the model package. The name must have 1 to 63 characters. Valid characters are a-z, A-Z, 0-9, and - (hyphen).
*/
ModelPackageName: EntityName;
}
export interface DeleteNotebookInstanceInput {
/**
* The name of the Amazon SageMaker notebook instance to delete.
*/
NotebookInstanceName: NotebookInstanceName;
}
export interface DeleteNotebookInstanceLifecycleConfigInput {
/**
* The name of the lifecycle configuration to delete.
*/
NotebookInstanceLifecycleConfigName: NotebookInstanceLifecycleConfigName;
}
export interface DeleteTagsInput {
/**
* The Amazon Resource Name (ARN) of the resource whose tags you want to delete.
*/
ResourceArn: ResourceArn;
/**
* An array or one or more tag keys to delete.
*/
TagKeys: TagKeyList;
}
export interface DeleteTagsOutput {
}
export interface DeleteWorkteamRequest {
/**
* The name of the work team to delete.
*/
WorkteamName: WorkteamName;
}
export interface DeleteWorkteamResponse {
/**
* Returns true if the work team was successfully deleted; otherwise, returns false.
*/
Success: Success;
}
export interface DeployedImage {
/**
* The image path you specified when you created the model.
*/
SpecifiedImage?: Image;
/**
* The specific digest path of the image hosted in this ProductionVariant.
*/
ResolvedImage?: Image;
/**
* The date and time when the image path for the model resolved to the ResolvedImage
*/
ResolutionTime?: Timestamp;
}
export type DeployedImages = DeployedImage[];
export interface DescribeAlgorithmInput {
/**
* The name of the algorithm to describe.
*/
AlgorithmName: ArnOrName;
}
export interface DescribeAlgorithmOutput {
/**
* The name of the algorithm being described.
*/
AlgorithmName: EntityName;
/**
* The Amazon Resource Name (ARN) of the algorithm.
*/
AlgorithmArn: AlgorithmArn;
/**
* A brief summary about the algorithm.
*/
AlgorithmDescription?: EntityDescription;
/**
* A timestamp specifying when the algorithm was created.
*/
CreationTime: CreationTime;
/**
* Details about training jobs run by this algorithm.
*/
TrainingSpecification: TrainingSpecification;
/**
* Details about inference jobs that the algorithm runs.
*/
InferenceSpecification?: InferenceSpecification;
/**
* Details about configurations for one or more training jobs that Amazon SageMaker runs to test the algorithm.
*/
ValidationSpecification?: AlgorithmValidationSpecification;
/**
* The current status of the algorithm.
*/
AlgorithmStatus: AlgorithmStatus;
/**
* Details about the current status of the algorithm.
*/
AlgorithmStatusDetails: AlgorithmStatusDetails;
/**
* The product identifier of the algorithm.
*/
ProductId?: ProductId;
/**
* Whether the algorithm is certified to be listed in AWS Marketplace.
*/
CertifyForMarketplace?: CertifyForMarketplace;
}
export interface DescribeCodeRepositoryInput {
/**
* The name of the Git repository to describe.
*/
CodeRepositoryName: EntityName;
}
export interface DescribeCodeRepositoryOutput {
/**
* The name of the Git repository.
*/
CodeRepositoryName: EntityName;
/**
* The Amazon Resource Name (ARN) of the Git repository.
*/
CodeRepositoryArn: CodeRepositoryArn;
/**
* The date and time that the repository was created.
*/
CreationTime: CreationTime;
/**
* The date and time that the repository was last changed.
*/
LastModifiedTime: LastModifiedTime;
/**
* Configuration details about the repository, including the URL where the repository is located, the default branch, and the Amazon Resource Name (ARN) of the AWS Secrets Manager secret that contains the credentials used to access the repository.
*/
GitConfig?: GitConfig;
}
export interface DescribeCompilationJobRequest {
/**
* The name of the model compilation job that you want information about.
*/
CompilationJobName: EntityName;
}
export interface DescribeCompilationJobResponse {
/**
* The name of the model compilation job.
*/
CompilationJobName: EntityName;
/**
* The Amazon Resource Name (ARN) of an IAM role that Amazon SageMaker assumes to perform the model compilation job.
*/
CompilationJobArn: CompilationJobArn;
/**
* The status of the model compilation job.
*/
CompilationJobStatus: CompilationJobStatus;
/**
* The time when the model compilation job started the CompilationJob instances. You are billed for the time between this timestamp and the timestamp in the DescribeCompilationJobResponse$CompilationEndTime field. In Amazon CloudWatch Logs, the start time might be later than this time. That's because it takes time to download the compilation job, which depends on the size of the compilation job container.
*/
CompilationStartTime?: Timestamp;
/**
* The time when the model compilation job on a compilation job instance ended. For a successful or stopped job, this is when the job's model artifacts have finished uploading. For a failed job, this is when Amazon SageMaker detected that the job failed.
*/
CompilationEndTime?: Timestamp;
/**
* Specifies a limit to how long a model compilation job can run. When the job reaches the time limit, Amazon SageMaker ends the compilation job. Use this API to cap model training costs.
*/
StoppingCondition: StoppingCondition;
/**
* The time that the model compilation job was created.
*/
CreationTime: CreationTime;
/**
* The time that the status of the model compilation job was last modified.
*/
LastModifiedTime: LastModifiedTime;
/**
* If a model compilation job failed, the reason it failed.
*/
FailureReason: FailureReason;
/**
* Information about the location in Amazon S3 that has been configured for storing the model artifacts used in the compilation job.
*/
ModelArtifacts: ModelArtifacts;
/**
* The Amazon Resource Name (ARN) of the model compilation job.
*/
RoleArn: RoleArn;
/**
* Information about the location in Amazon S3 of the input model artifacts, the name and shape of the expected data inputs, and the framework in which the model was trained.
*/
InputConfig: InputConfig;
/**
* Information about the output location for the compiled model and the target device that the model runs on.
*/
OutputConfig: OutputConfig;
}
export interface DescribeEndpointConfigInput {
/**
* The name of the endpoint configuration.
*/
EndpointConfigName: EndpointConfigName;
}
export interface DescribeEndpointConfigOutput {
/**
* Name of the Amazon SageMaker endpoint configuration.
*/
EndpointConfigName: EndpointConfigName;
/**
* The Amazon Resource Name (ARN) of the endpoint configuration.
*/
EndpointConfigArn: EndpointConfigArn;
/**
* An array of ProductionVariant objects, one for each model that you want to host at this endpoint.
*/
ProductionVariants: ProductionVariantList;
/**
* AWS KMS key ID Amazon SageMaker uses to encrypt data when storing it on the ML storage volume attached to the instance.
*/
KmsKeyId?: KmsKeyId;
/**
* A timestamp that shows when the endpoint configuration was created.
*/
CreationTime: Timestamp;
}
export interface DescribeEndpointInput {
/**
* The name of the endpoint.
*/
EndpointName: EndpointName;
}
export interface DescribeEndpointOutput {
/**
* Name of the endpoint.
*/
EndpointName: EndpointName;
/**
* The Amazon Resource Name (ARN) of the endpoint.
*/
EndpointArn: EndpointArn;
/**
* The name of the endpoint configuration associated with this endpoint.
*/
EndpointConfigName: EndpointConfigName;
/**
* An array of ProductionVariantSummary objects, one for each model hosted behind this endpoint.
*/
ProductionVariants?: ProductionVariantSummaryList;
/**
* The status of the endpoint. OutOfService: Endpoint is not available to take incoming requests. Creating: CreateEndpoint is executing. Updating: UpdateEndpoint or UpdateEndpointWeightsAndCapacities is executing. SystemUpdating: Endpoint is undergoing maintenance and cannot be updated or deleted or re-scaled until it has completed. This maintenance operation does not change any customer-specified values such as VPC config, KMS encryption, model, instance type, or instance count. RollingBack: Endpoint fails to scale up or down or change its variant weight and is in the process of rolling back to its previous configuration. Once the rollback completes, endpoint returns to an InService status. This transitional status only applies to an endpoint that has autoscaling enabled and is undergoing variant weight or capacity changes as part of an UpdateEndpointWeightsAndCapacities call or when the UpdateEndpointWeightsAndCapacities operation is called explicitly. InService: Endpoint is available to process incoming requests. Deleting: DeleteEndpoint is executing. Failed: Endpoint could not be created, updated, or re-scaled. Use DescribeEndpointOutput$FailureReason for information about the failure. DeleteEndpoint is the only operation that can be performed on a failed endpoint.
*/
EndpointStatus: EndpointStatus;
/**
* If the status of the endpoint is Failed, the reason why it failed.
*/
FailureReason?: FailureReason;
/**
* A timestamp that shows when the endpoint was created.
*/
CreationTime: Timestamp;
/**
* A timestamp that shows when the endpoint was last modified.
*/
LastModifiedTime: Timestamp;
}
export interface DescribeHyperParameterTuningJobRequest {
/**
* The name of the tuning job to describe.
*/
HyperParameterTuningJobName: HyperParameterTuningJobName;
}
export interface DescribeHyperParameterTuningJobResponse {
/**
* The name of the tuning job.
*/
HyperParameterTuningJobName: HyperParameterTuningJobName;
/**
* The Amazon Resource Name (ARN) of the tuning job.
*/
HyperParameterTuningJobArn: HyperParameterTuningJobArn;
/**
* The HyperParameterTuningJobConfig object that specifies the configuration of the tuning job.
*/
HyperParameterTuningJobConfig: HyperParameterTuningJobConfig;
/**
* The HyperParameterTrainingJobDefinition object that specifies the definition of the training jobs that this tuning job launches.
*/
TrainingJobDefinition?: HyperParameterTrainingJobDefinition;
/**
* The status of the tuning job: InProgress, Completed, Failed, Stopping, or Stopped.
*/
HyperParameterTuningJobStatus: HyperParameterTuningJobStatus;
/**
* The date and time that the tuning job started.
*/
CreationTime: Timestamp;
/**
* The date and time that the tuning job ended.
*/
HyperParameterTuningEndTime?: Timestamp;
/**
* The date and time that the status of the tuning job was modified.
*/
LastModifiedTime?: Timestamp;
/**
* The TrainingJobStatusCounters object that specifies the number of training jobs, categorized by status, that this tuning job launched.
*/
TrainingJobStatusCounters: TrainingJobStatusCounters;
/**
* The ObjectiveStatusCounters object that specifies the number of training jobs, categorized by the status of their final objective metric, that this tuning job launched.
*/
ObjectiveStatusCounters: ObjectiveStatusCounters;
/**
* A TrainingJobSummary object that describes the training job that completed with the best current HyperParameterTuningJobObjective.
*/
BestTrainingJob?: HyperParameterTrainingJobSummary;
/**
* If the hyperparameter tuning job is an warm start tuning job with a WarmStartType of IDENTICAL_DATA_AND_ALGORITHM, this is the TrainingJobSummary for the training job with the best objective metric value of all training jobs launched by this tuning job and all parent jobs specified for the warm start tuning job.
*/
OverallBestTrainingJob?: HyperParameterTrainingJobSummary;
/**
* The configuration for starting the hyperparameter parameter tuning job using one or more previous tuning jobs as a starting point. The results of previous tuning jobs are used to inform which combinations of hyperparameters to search over in the new tuning job.
*/
WarmStartConfig?: HyperParameterTuningJobWarmStartConfig;
/**
* If the tuning job failed, the reason it failed.
*/
FailureReason?: FailureReason;
}
export interface DescribeLabelingJobRequest {
/**
* The name of the labeling job to return information for.
*/
LabelingJobName: LabelingJobName;
}
export interface DescribeLabelingJobResponse {
/**
* The processing status of the labeling job.
*/
LabelingJobStatus: LabelingJobStatus;
/**
* Provides a breakdown of the number of data objects labeled by humans, the number of objects labeled by machine, the number of objects than couldn't be labeled, and the total number of objects labeled.
*/
LabelCounters: LabelCounters;
/**
* If the job failed, the reason that it failed.
*/
FailureReason?: FailureReason;
/**
* The date and time that the labeling job was created.
*/
CreationTime: Timestamp;
/**
* The date and time that the labeling job was last updated.
*/
LastModifiedTime: Timestamp;
/**
* A unique identifier for work done as part of a labeling job.
*/
JobReferenceCode: JobReferenceCode;
/**
* The name assigned to the labeling job when it was created.
*/
LabelingJobName: LabelingJobName;
/**
* The Amazon Resource Name (ARN) of the labeling job.
*/
LabelingJobArn: LabelingJobArn;
/**
* The attribute used as the label in the output manifest file.
*/
LabelAttributeName?: LabelAttributeName;
/**
* Input configuration information for the labeling job, such as the Amazon S3 location of the data objects and the location of the manifest file that describes the data objects.
*/
InputConfig: LabelingJobInputConfig;
/**
* The location of the job's output data and the AWS Key Management Service key ID for the key used to encrypt the output data, if any.
*/
OutputConfig: LabelingJobOutputConfig;
/**
* The Amazon Resource Name (ARN) that Amazon SageMaker assumes to perform tasks on your behalf during data labeling.
*/
RoleArn: RoleArn;
/**
* The S3 location of the JSON file that defines the categories used to label data objects. The file is a JSON structure in the following format: { "document-version": "2018-11-28" "labels": [ { "label": "label 1" }, { "label": "label 2" }, ... { "label": "label n" } ] }
*/
LabelCategoryConfigS3Uri?: S3Uri;
/**
* A set of conditions for stopping a labeling job. If any of the conditions are met, the job is automatically stopped.
*/
StoppingConditions?: LabelingJobStoppingConditions;
/**
* Configuration information for automated data labeling.
*/
LabelingJobAlgorithmsConfig?: LabelingJobAlgorithmsConfig;
/**
* Configuration information required for human workers to complete a labeling task.
*/
HumanTaskConfig: HumanTaskConfig;
/**
* An array of key/value pairs. For more information, see Using Cost Allocation Tags in the AWS Billing and Cost Management User Guide.
*/
Tags?: TagList;
/**
* The location of the output produced by the labeling job.
*/
LabelingJobOutput?: LabelingJobOutput;
}
export interface DescribeModelInput {
/**
* The name of the model.
*/
ModelName: ModelName;
}
export interface DescribeModelOutput {
/**
* Name of the Amazon SageMaker model.
*/
ModelName: ModelName;
/**
* The location of the primary inference code, associated artifacts, and custom environment map that the inference code uses when it is deployed in production.
*/
PrimaryContainer?: ContainerDefinition;
/**
* The containers in the inference pipeline.
*/
Containers?: ContainerDefinitionList;
/**
* The Amazon Resource Name (ARN) of the IAM role that you specified for the model.
*/
ExecutionRoleArn: RoleArn;
/**
* A VpcConfig object that specifies the VPC that this model has access to. For more information, see Protect Endpoints by Using an Amazon Virtual Private Cloud
*/
VpcConfig?: VpcConfig;
/**
* A timestamp that shows when the model was created.
*/
CreationTime: Timestamp;
/**
* The Amazon Resource Name (ARN) of the model.
*/
ModelArn: ModelArn;
/**
* If True, no inbound or outbound network calls can be made to or from the model container. The Semantic Segmentation built-in algorithm does not support network isolation.
*/
EnableNetworkIsolation?: Boolean;
}
export interface DescribeModelPackageInput {
/**
* The name of the model package to describe.
*/
ModelPackageName: ArnOrName;
}
export interface DescribeModelPackageOutput {
/**
* The name of the model package being described.
*/
ModelPackageName: EntityName;
/**
* The Amazon Resource Name (ARN) of the model package.
*/
ModelPackageArn: ModelPackageArn;
/**
* A brief summary of the model package.
*/
ModelPackageDescription?: EntityDescription;
/**
* A timestamp specifying when the model package was created.
*/
CreationTime: CreationTime;
/**
* Details about inference jobs that can be run with models based on this model package.
*/
InferenceSpecification?: InferenceSpecification;
/**
* Details about the algorithm that was used to create the model package.
*/
SourceAlgorithmSpecification?: SourceAlgorithmSpecification;
/**
* Configurations for one or more transform jobs that Amazon SageMaker runs to test the model package.
*/
ValidationSpecification?: ModelPackageValidationSpecification;
/**
* The current status of the model package.
*/
ModelPackageStatus: ModelPackageStatus;
/**
* Details about the current status of the model package.
*/
ModelPackageStatusDetails: ModelPackageStatusDetails;
/**
* Whether the model package is certified for listing on AWS Marketplace.
*/
CertifyForMarketplace?: CertifyForMarketplace;
}
export interface DescribeNotebookInstanceInput {
/**
* The name of the notebook instance that you want information about.
*/
NotebookInstanceName: NotebookInstanceName;
}
export interface DescribeNotebookInstanceLifecycleConfigInput {
/**
* The name of the lifecycle configuration to describe.
*/
NotebookInstanceLifecycleConfigName: NotebookInstanceLifecycleConfigName;
}
export interface DescribeNotebookInstanceLifecycleConfigOutput {
/**
* The Amazon Resource Name (ARN) of the lifecycle configuration.
*/
NotebookInstanceLifecycleConfigArn?: NotebookInstanceLifecycleConfigArn;
/**
* The name of the lifecycle configuration.
*/
NotebookInstanceLifecycleConfigName?: NotebookInstanceLifecycleConfigName;
/**
* The shell script that runs only once, when you create a notebook instance.
*/
OnCreate?: NotebookInstanceLifecycleConfigList;
/**
* The shell script that runs every time you start a notebook instance, including when you create the notebook instance.
*/
OnStart?: NotebookInstanceLifecycleConfigList;
/**
* A timestamp that tells when the lifecycle configuration was last modified.
*/
LastModifiedTime?: LastModifiedTime;
/**
* A timestamp that tells when the lifecycle configuration was created.
*/
CreationTime?: CreationTime;
}
export interface DescribeNotebookInstanceOutput {
/**
* The Amazon Resource Name (ARN) of the notebook instance.
*/
NotebookInstanceArn?: NotebookInstanceArn;
/**
* The name of the Amazon SageMaker notebook instance.
*/
NotebookInstanceName?: NotebookInstanceName;
/**
* The status of the notebook instance.
*/
NotebookInstanceStatus?: NotebookInstanceStatus;
/**
* If status is Failed, the reason it failed.
*/
FailureReason?: FailureReason;
/**
* The URL that you use to connect to the Jupyter notebook that is running in your notebook instance.
*/
Url?: NotebookInstanceUrl;
/**
* The type of ML compute instance running on the notebook instance.
*/
InstanceType?: InstanceType;
/**
* The ID of the VPC subnet.
*/
SubnetId?: SubnetId;
/**
* The IDs of the VPC security groups.
*/
SecurityGroups?: SecurityGroupIds;
/**
* The Amazon Resource Name (ARN) of the IAM role associated with the instance.
*/
RoleArn?: RoleArn;
/**
* The AWS KMS key ID Amazon SageMaker uses to encrypt data when storing it on the ML storage volume attached to the instance.
*/
KmsKeyId?: KmsKeyId;
/**
* The network interface IDs that Amazon SageMaker created at the time of creating the instance.
*/
NetworkInterfaceId?: NetworkInterfaceId;
/**
* A timestamp. Use this parameter to retrieve the time when the notebook instance was last modified.
*/
LastModifiedTime?: LastModifiedTime;
/**
* A timestamp. Use this parameter to return the time when the notebook instance was created
*/
CreationTime?: CreationTime;
/**
* Returns the name of a notebook instance lifecycle configuration. For information about notebook instance lifestyle configurations, see Step 2.1: (Optional) Customize a Notebook Instance
*/
NotebookInstanceLifecycleConfigName?: NotebookInstanceLifecycleConfigName;
/**
* Describes whether Amazon SageMaker provides internet access to the notebook instance. If this value is set to Disabled, the notebook instance does not have internet access, and cannot connect to Amazon SageMaker training and endpoint services. For more information, see Notebook Instances Are Internet-Enabled by Default.
*/
DirectInternetAccess?: DirectInternetAccess;
/**
* The size, in GB, of the ML storage volume attached to the notebook instance.
*/
VolumeSizeInGB?: NotebookInstanceVolumeSizeInGB;
/**
* A list of the Elastic Inference (EI) instance types associated with this notebook instance. Currently only one EI instance type can be associated with a notebook instance. For more information, see Using Elastic Inference in Amazon SageMaker.
*/
AcceleratorTypes?: NotebookInstanceAcceleratorTypes;
/**
* The Git repository associated with the notebook instance as its default code repository. This can be either the name of a Git repository stored as a resource in your account, or the URL of a Git repository in AWS CodeCommit or in any other Git repository. When you open a notebook instance, it opens in the directory that contains this repository. For more information, see Associating Git Repositories with Amazon SageMaker Notebook Instances.
*/
DefaultCodeRepository?: CodeRepositoryNameOrUrl;
/**
* An array of up to three Git repositories associated with the notebook instance. These can be either the names of Git repositories stored as resources in your account, or the URL of Git repositories in AWS CodeCommit or in any other Git repository. These repositories are cloned at the same level as the default repository of your notebook instance. For more information, see Associating Git Repositories with Amazon SageMaker Notebook Instances.
*/
AdditionalCodeRepositories?: AdditionalCodeRepositoryNamesOrUrls;
/**
* Whether root access is enabled or disabled for users of the notebook instance. Lifecycle configurations need root access to be able to set up a notebook instance. Because of this, lifecycle configurations associated with a notebook instance always run with root access even if you disable root access for users.
*/
RootAccess?: RootAccess;
}
export interface DescribeSubscribedWorkteamRequest {
/**
* The Amazon Resource Name (ARN) of the subscribed work team to describe.
*/
WorkteamArn: WorkteamArn;
}
export interface DescribeSubscribedWorkteamResponse {
/**
* A Workteam instance that contains information about the work team.
*/
SubscribedWorkteam: SubscribedWorkteam;
}
export interface DescribeTrainingJobRequest {
/**
* The name of the training job.
*/
TrainingJobName: TrainingJobName;
}
export interface DescribeTrainingJobResponse {
/**
* Name of the model training job.
*/
TrainingJobName: TrainingJobName;
/**
* The Amazon Resource Name (ARN) of the training job.
*/
TrainingJobArn: TrainingJobArn;
/**
* The Amazon Resource Name (ARN) of the associated hyperparameter tuning job if the training job was launched by a hyperparameter tuning job.
*/
TuningJobArn?: HyperParameterTuningJobArn;
/**
* The Amazon Resource Name (ARN) of the Amazon SageMaker Ground Truth labeling job that created the transform or training job.
*/
LabelingJobArn?: LabelingJobArn;
/**
* Information about the Amazon S3 location that is configured for storing model artifacts.
*/
ModelArtifacts: ModelArtifacts;
/**
* The status of the training job. Amazon SageMaker provides the following training job statuses: InProgress - The training is in progress. Completed - The training job has completed. Failed - The training job has failed. To see the reason for the failure, see the FailureReason field in the response to a DescribeTrainingJobResponse call. Stopping - The training job is stopping. Stopped - The training job has stopped. For more detailed information, see SecondaryStatus.
*/
TrainingJobStatus: TrainingJobStatus;
/**
* Provides detailed information about the state of the training job. For detailed information on the secondary status of the training job, see StatusMessage under SecondaryStatusTransition. Amazon SageMaker provides primary statuses and secondary statuses that apply to each of them: InProgress Starting - Starting the training job. Downloading - An optional stage for algorithms that support File training input mode. It indicates that data is being downloaded to the ML storage volumes. Training - Training is in progress. Interrupted - The job stopped because the managed spot training instances were interrupted. Uploading - Training is complete and the model artifacts are being uploaded to the S3 location. Completed Completed - The training job has completed. Failed Failed - The training job has failed. The reason for the failure is returned in the FailureReason field of DescribeTrainingJobResponse. Stopped MaxRuntimeExceeded - The job stopped because it exceeded the maximum allowed runtime. MaxWaitTmeExceeded - The job stopped because it exceeded the maximum allowed wait time. Stopped - The training job has stopped. Stopping Stopping - Stopping the training job. Valid values for SecondaryStatus are subject to change. We no longer support the following secondary statuses: LaunchingMLInstances PreparingTrainingStack DownloadingTrainingImage
*/
SecondaryStatus: SecondaryStatus;
/**
* If the training job failed, the reason it failed.
*/
FailureReason?: FailureReason;
/**
* Algorithm-specific parameters.
*/
HyperParameters?: HyperParameters;
/**
* Information about the algorithm used for training, and algorithm metadata.
*/
AlgorithmSpecification: AlgorithmSpecification;
/**
* The AWS Identity and Access Management (IAM) role configured for the training job.
*/
RoleArn?: RoleArn;
/**
* An array of Channel objects that describes each data input channel.
*/
InputDataConfig?: InputDataConfig;
/**
* The S3 path where model artifacts that you configured when creating the job are stored. Amazon SageMaker creates subfolders for model artifacts.
*/
OutputDataConfig?: OutputDataConfig;
/**
* Resources, including ML compute instances and ML storage volumes, that are configured for model training.
*/
ResourceConfig: ResourceConfig;
/**
* A VpcConfig object that specifies the VPC that this training job has access to. For more information, see Protect Training Jobs by Using an Amazon Virtual Private Cloud.
*/
VpcConfig?: VpcConfig;
/**
* Specifies a limit to how long a model training job can run. It also specifies the maximum time to wait for a spot instance. When the job reaches the time limit, Amazon SageMaker ends the training job. Use this API to cap model training costs. To stop a job, Amazon SageMaker sends the algorithm the SIGTERM signal, which delays job termination for 120 seconds. Algorithms can use this 120-second window to save the model artifacts, so the results of training are not lost.
*/
StoppingCondition: StoppingCondition;
/**
* A timestamp that indicates when the training job was created.
*/
CreationTime: Timestamp;
/**
* Indicates the time when the training job starts on training instances. You are billed for the time interval between this time and the value of TrainingEndTime. The start time in CloudWatch Logs might be later than this time. The difference is due to the time it takes to download the training data and to the size of the training container.
*/
TrainingStartTime?: Timestamp;
/**
* Indicates the time when the training job ends on training instances. You are billed for the time interval between the value of TrainingStartTime and this time. For successful jobs and stopped jobs, this is the time after model artifacts are uploaded. For failed jobs, this is the time when Amazon SageMaker detects a job failure.
*/
TrainingEndTime?: Timestamp;
/**
* A timestamp that indicates when the status of the training job was last modified.
*/
LastModifiedTime?: Timestamp;
/**
* A history of all of the secondary statuses that the training job has transitioned through.
*/
SecondaryStatusTransitions?: SecondaryStatusTransitions;
/**
* A collection of MetricData objects that specify the names, values, and dates and times that the training algorithm emitted to Amazon CloudWatch.
*/
FinalMetricDataList?: FinalMetricDataList;
/**
* If you want to allow inbound or outbound network calls, except for calls between peers within a training cluster for distributed training, choose True. If you enable network isolation for training jobs that are configured to use a VPC, Amazon SageMaker downloads and uploads customer data and model artifacts through the specified VPC, but the training container does not have network access. The Semantic Segmentation built-in algorithm does not support network isolation.
*/
EnableNetworkIsolation?: Boolean;
/**
* To encrypt all communications between ML compute instances in distributed training, choose True. Encryption provides greater security for distributed training, but training might take longer. How long it takes depends on the amount of communication between compute instances, especially if you use a deep learning algorithms in distributed training.
*/
EnableInterContainerTrafficEncryption?: Boolean;
/**
* A Boolean indicating whether managed spot training is enabled (True) or not (False).
*/
EnableManagedSpotTraining?: Boolean;
CheckpointConfig?: CheckpointConfig;
/**
* The training time in seconds.
*/
TrainingTimeInSeconds?: TrainingTimeInSeconds;
/**
* The billable time in seconds. You can calculate the savings from using managed spot training using the formula (1 - BillableTimeInSeconds / TrainingTimeInSeconds) * 100. For example, if BillableTimeInSeconds is 100 and TrainingTimeInSeconds is 500, the savings is 80%.
*/
BillableTimeInSeconds?: BillableTimeInSeconds;
}
export interface DescribeTransformJobRequest {
/**
* The name of the transform job that you want to view details of.
*/
TransformJobName: TransformJobName;
}
export interface DescribeTransformJobResponse {
/**
* The name of the transform job.
*/
TransformJobName: TransformJobName;
/**
* The Amazon Resource Name (ARN) of the transform job.
*/
TransformJobArn: TransformJobArn;
/**
* The status of the transform job. If the transform job failed, the reason is returned in the FailureReason field.
*/
TransformJobStatus: TransformJobStatus;
/**
* If the transform job failed, FailureReason describes why it failed. A transform job creates a log file, which includes error messages, and stores it as an Amazon S3 object. For more information, see Log Amazon SageMaker Events with Amazon CloudWatch.
*/
FailureReason?: FailureReason;
/**
* The name of the model used in the transform job.
*/
ModelName: ModelName;
/**
* The maximum number of parallel requests on each instance node that can be launched in a transform job. The default value is 1.
*/
MaxConcurrentTransforms?: MaxConcurrentTransforms;
/**
* The maximum payload size, in MB, used in the transform job.
*/
MaxPayloadInMB?: MaxPayloadInMB;
/**
* Specifies the number of records to include in a mini-batch for an HTTP inference request. A record is a single unit of input data that inference can be made on. For example, a single line in a CSV file is a record. To enable the batch strategy, you must set SplitType to Line, RecordIO, or TFRecord.
*/
BatchStrategy?: BatchStrategy;
/**
* The environment variables to set in the Docker container. We support up to 16 key and values entries in the map.
*/
Environment?: TransformEnvironmentMap;
/**
* Describes the dataset to be transformed and the Amazon S3 location where it is stored.
*/
TransformInput: TransformInput;
/**
* Identifies the Amazon S3 location where you want Amazon SageMaker to save the results from the transform job.
*/
TransformOutput?: TransformOutput;
/**
* Describes the resources, including ML instance types and ML instance count, to use for the transform job.
*/
TransformResources: TransformResources;
/**
* A timestamp that shows when the transform Job was created.
*/
CreationTime: Timestamp;
/**
* Indicates when the transform job starts on ML instances. You are billed for the time interval between this time and the value of TransformEndTime.
*/
TransformStartTime?: Timestamp;
/**
* Indicates when the transform job has been completed, or has stopped or failed. You are billed for the time interval between this time and the value of TransformStartTime.
*/
TransformEndTime?: Timestamp;
/**
* The Amazon Resource Name (ARN) of the Amazon SageMaker Ground Truth labeling job that created the transform or training job.
*/
LabelingJobArn?: LabelingJobArn;
DataProcessing?: DataProcessing;
}
export interface DescribeWorkteamRequest {
/**
* The name of the work team to return a description of.
*/
WorkteamName: WorkteamName;
}
export interface DescribeWorkteamResponse {
/**
* A Workteam instance that contains information about the work team.
*/
Workteam: Workteam;
}
export interface DesiredWeightAndCapacity {
/**
* The name of the variant to update.
*/
VariantName: VariantName;
/**
* The variant's weight.
*/
DesiredWeight?: VariantWeight;
/**
* The variant's capacity.
*/
DesiredInstanceCount?: TaskCount;
}
export type DesiredWeightAndCapacityList = DesiredWeightAndCapacity[];
export type DetailedAlgorithmStatus = "NotStarted"|"InProgress"|"Completed"|"Failed"|string;
export type DetailedModelPackageStatus = "NotStarted"|"InProgress"|"Completed"|"Failed"|string;
export type DirectInternetAccess = "Enabled"|"Disabled"|string;
export type DirectoryPath = string;
export type DisassociateAdditionalCodeRepositories = boolean;
export type DisassociateDefaultCodeRepository = boolean;
export type DisassociateNotebookInstanceAcceleratorTypes = boolean;
export type DisassociateNotebookInstanceLifecycleConfig = boolean;
export type Dollars = number;
export type EndpointArn = string;
export type EndpointConfigArn = string;
export type EndpointConfigName = string;
export type EndpointConfigNameContains = string;
export type EndpointConfigSortKey = "Name"|"CreationTime"|string;
export interface EndpointConfigSummary {
/**
* The name of the endpoint configuration.
*/
EndpointConfigName: EndpointConfigName;
/**
* The Amazon Resource Name (ARN) of the endpoint configuration.
*/
EndpointConfigArn: EndpointConfigArn;
/**
* A timestamp that shows when the endpoint configuration was created.
*/
CreationTime: Timestamp;
}
export type EndpointConfigSummaryList = EndpointConfigSummary[];
export type EndpointName = string;
export type EndpointNameContains = string;
export type EndpointSortKey = "Name"|"CreationTime"|"Status"|string;
export type EndpointStatus = "OutOfService"|"Creating"|"Updating"|"SystemUpdating"|"RollingBack"|"InService"|"Deleting"|"Failed"|string;
export interface EndpointSummary {
/**
* The name of the endpoint.
*/
EndpointName: EndpointName;
/**
* The Amazon Resource Name (ARN) of the endpoint.
*/
EndpointArn: EndpointArn;
/**
* A timestamp that shows when the endpoint was created.
*/
CreationTime: Timestamp;
/**
* A timestamp that shows when the endpoint was last modified.
*/
LastModifiedTime: Timestamp;
/**
* The status of the endpoint. OutOfService: Endpoint is not available to take incoming requests. Creating: CreateEndpoint is executing. Updating: UpdateEndpoint or UpdateEndpointWeightsAndCapacities is executing. SystemUpdating: Endpoint is undergoing maintenance and cannot be updated or deleted or re-scaled until it has completed. This maintenance operation does not change any customer-specified values such as VPC config, KMS encryption, model, instance type, or instance count. RollingBack: Endpoint fails to scale up or down or change its variant weight and is in the process of rolling back to its previous configuration. Once the rollback completes, endpoint returns to an InService status. This transitional status only applies to an endpoint that has autoscaling enabled and is undergoing variant weight or capacity changes as part of an UpdateEndpointWeightsAndCapacities call or when the UpdateEndpointWeightsAndCapacities operation is called explicitly. InService: Endpoint is available to process incoming requests. Deleting: DeleteEndpoint is executing. Failed: Endpoint could not be created, updated, or re-scaled. Use DescribeEndpointOutput$FailureReason for information about the failure. DeleteEndpoint is the only operation that can be performed on a failed endpoint. To get a list of endpoints with a specified status, use the ListEndpointsInput$StatusEquals filter.
*/
EndpointStatus: EndpointStatus;
}
export type EndpointSummaryList = EndpointSummary[];
export type EntityDescription = string;
export type EntityName = string;
export type EnvironmentKey = string;
export type EnvironmentMap = {[key: string]: EnvironmentValue};
export type EnvironmentValue = string;
export type FailureReason = string;
export type FileSystemAccessMode = "rw"|"ro"|string;
export interface FileSystemDataSource {
/**
* The file system id.
*/
FileSystemId: FileSystemId;
/**
* The access mode of the mount of the directory associated with the channel. A directory can be mounted either in ro (read-only) or rw (read-write) mode.
*/
FileSystemAccessMode: FileSystemAccessMode;
/**
* The file system type.
*/
FileSystemType: FileSystemType;
/**
* The full path to the directory to associate with the channel.
*/
DirectoryPath: DirectoryPath;
}
export type FileSystemId = string;
export type FileSystemType = "EFS"|"FSxLustre"|string;
export interface Filter {
/**
* A property name. For example, TrainingJobName. For the list of valid property names returned in a search result for each supported resource, see TrainingJob properties. You must specify a valid property name for the resource.
*/
Name: ResourcePropertyName;
/**
* A Boolean binary operator that is used to evaluate the filter. The operator field contains one of the following values: Equals The specified resource in Name equals the specified Value. NotEquals The specified resource in Name does not equal the specified Value. GreaterThan The specified resource in Name is greater than the specified Value. Not supported for text-based properties. GreaterThanOrEqualTo The specified resource in Name is greater than or equal to the specified Value. Not supported for text-based properties. LessThan The specified resource in Name is less than the specified Value. Not supported for text-based properties. LessThanOrEqualTo The specified resource in Name is less than or equal to the specified Value. Not supported for text-based properties. Contains Only supported for text-based properties. The word-list of the property contains the specified Value. If you have specified a filter Value, the default is Equals.
*/
Operator?: Operator;
/**
* A value used with Resource and Operator to determine if objects satisfy the filter's condition. For numerical properties, Value must be an integer or floating-point decimal. For timestamp properties, Value must be an ISO 8601 date-time string of the following format: YYYY-mm-dd'T'HH:MM:SS.
*/
Value?: FilterValue;
}
export type FilterList = Filter[];
export type FilterValue = string;
export interface FinalHyperParameterTuningJobObjectiveMetric {
/**
* Whether to minimize or maximize the objective metric. Valid values are Minimize and Maximize.
*/
Type?: HyperParameterTuningJobObjectiveType;
/**
* The name of the objective metric.
*/
MetricName: MetricName;
/**
* The value of the objective metric.
*/
Value: MetricValue;
}
export type FinalMetricDataList = MetricData[];
export type Float = number;
export type Framework = "TENSORFLOW"|"MXNET"|"ONNX"|"PYTORCH"|"XGBOOST"|string;
export interface GetSearchSuggestionsRequest {
/**
* The name of the Amazon SageMaker resource to Search for. The only valid Resource value is TrainingJob.
*/
Resource: ResourceType;
/**
* Limits the property names that are included in the response.
*/
SuggestionQuery?: SuggestionQuery;
}
export interface GetSearchSuggestionsResponse {
/**
* A list of property names for a Resource that match a SuggestionQuery.
*/
PropertyNameSuggestions?: PropertyNameSuggestionList;
}
export interface GitConfig {
/**
* The URL where the Git repository is located.
*/
RepositoryUrl: GitConfigUrl;
/**
* The default branch for the Git repository.
*/
Branch?: Branch;
/**
* The Amazon Resource Name (ARN) of the AWS Secrets Manager secret that contains the credentials used to access the git repository. The secret must have a staging label of AWSCURRENT and must be in the following format: {"username": UserName, "password": Password}
*/
SecretArn?: SecretArn;
}
export interface GitConfigForUpdate {
/**
* The Amazon Resource Name (ARN) of the AWS Secrets Manager secret that contains the credentials used to access the git repository. The secret must have a staging label of AWSCURRENT and must be in the following format: {"username": UserName, "password": Password}
*/
SecretArn?: SecretArn;
}
export type GitConfigUrl = string;
export interface HumanTaskConfig {
/**
* The Amazon Resource Name (ARN) of the work team assigned to complete the tasks.
*/
WorkteamArn: WorkteamArn;
/**
* Information about the user interface that workers use to complete the labeling task.
*/
UiConfig: UiConfig;
/**
* The Amazon Resource Name (ARN) of a Lambda function that is run before a data object is sent to a human worker. Use this function to provide input to a custom labeling job. For the built-in bounding box, image classification, semantic segmentation, and text classification task types, Amazon SageMaker Ground Truth provides the following Lambda functions: US East (Northern Virginia) (us-east-1): arn:aws:lambda:us-east-1:432418664414:function:PRE-BoundingBox arn:aws:lambda:us-east-1:432418664414:function:PRE-ImageMultiClass arn:aws:lambda:us-east-1:432418664414:function:PRE-SemanticSegmentation arn:aws:lambda:us-east-1:432418664414:function:PRE-TextMultiClass arn:aws:lambda:us-east-1:432418664414:function:PRE-NamedEntityRecognition US East (Ohio) (us-east-2): arn:aws:lambda:us-east-2:266458841044:function:PRE-BoundingBox arn:aws:lambda:us-east-2:266458841044:function:PRE-ImageMultiClass arn:aws:lambda:us-east-2:266458841044:function:PRE-SemanticSegmentation arn:aws:lambda:us-east-2:266458841044:function:PRE-TextMultiClass arn:aws:lambda:us-east-2:266458841044:function:PRE-NamedEntityRecognition US West (Oregon) (us-west-2): arn:aws:lambda:us-west-2:081040173940:function:PRE-BoundingBox arn:aws:lambda:us-west-2:081040173940:function:PRE-ImageMultiClass arn:aws:lambda:us-west-2:081040173940:function:PRE-SemanticSegmentation arn:aws:lambda:us-west-2:081040173940:function:PRE-TextMultiClass arn:aws:lambda:us-west-2:081040173940:function:PRE-NamedEntityRecognition Canada (Central) (ca-central-1): arn:awslambda:ca-central-1:918755190332:function:PRE-BoundingBox arn:awslambda:ca-central-1:918755190332:function:PRE-ImageMultiClass arn:awslambda:ca-central-1:918755190332:function:PRE-SemanticSegmentation arn:awslambda:ca-central-1:918755190332:function:PRE-TextMultiClass arn:awslambda:ca-central-1:918755190332:function:PRE-NamedEntityRecognition EU (Ireland) (eu-west-1): arn:aws:lambda:eu-west-1:568282634449:function:PRE-BoundingBox arn:aws:lambda:eu-west-1:568282634449:function:PRE-ImageMultiClass arn:aws:lambda:eu-west-1:568282634449:function:PRE-SemanticSegmentation arn:aws:lambda:eu-west-1:568282634449:function:PRE-TextMultiClass arn:aws:lambda:eu-west-1:568282634449:function:PRE-NamedEntityRecognition EU (London) (eu-west-2): arn:awslambda:eu-west-2:487402164563:function:PRE-BoundingBox arn:awslambda:eu-west-2:487402164563:function:PRE-ImageMultiClass arn:awslambda:eu-west-2:487402164563:function:PRE-SemanticSegmentation arn:awslambda:eu-west-2:487402164563:function:PRE-TextMultiClass arn:awslambda:eu-west-2:487402164563:function:PRE-NamedEntityRecognition EU Frankfurt (eu-central-1): arn:awslambda:eu-central-1:203001061592:function:PRE-BoundingBox arn:awslambda:eu-central-1:203001061592:function:PRE-ImageMultiClass arn:awslambda:eu-central-1:203001061592:function:PRE-SemanticSegmentation arn:awslambda:eu-central-1:203001061592:function:PRE-TextMultiClass arn:awslambda:eu-central-1:203001061592:function:PRE-NamedEntityRecognition Asia Pacific (Tokyo) (ap-northeast-1): arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-BoundingBox arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-ImageMultiClass arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-SemanticSegmentation arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-TextMultiClass arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-NamedEntityRecognition Asia Pacific (Seoul) (ap-northeast-2): arn:awslambda:ap-northeast-2:845288260483:function:PRE-BoundingBox arn:awslambda:ap-northeast-2:845288260483:function:PRE-ImageMultiClass arn:awslambda:ap-northeast-2:845288260483:function:PRE-SemanticSegmentation arn:awslambda:ap-northeast-2:845288260483:function:PRE-TextMultiClass arn:awslambda:ap-northeast-2:845288260483:function:PRE-NamedEntityRecognition Asia Pacific (Mumbai) (ap-south-1): arn:awslambda:ap-south-1:565803892007:function:PRE-BoundingBox arn:awslambda:ap-south-1:565803892007:function:PRE-ImageMultiClass arn:awslambda:ap-south-1:565803892007:function:PRE-SemanticSegmentation arn:awslambda:ap-south-1:565803892007:function:PRE-TextMultiClass arn:awslambda:ap-south-1:565803892007:function:PRE-NamedEntityRecognition Asia Pacific (Singapore) (ap-southeast-1): arn:awslambda:ap-southeast-1:377565633583:function:PRE-BoundingBox arn:awslambda:ap-southeast-1:377565633583:function:PRE-ImageMultiClass arn:awslambda:ap-southeast-1:377565633583:function:PRE-SemanticSegmentation arn:awslambda:ap-southeast-1:377565633583:function:PRE-TextMultiClass arn:awslambda:ap-southeast-1:377565633583:function:PRE-NamedEntityRecognition Asia Pacific (Sydney) (ap-southeast-2): arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-BoundingBox arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-ImageMultiClass arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-SemanticSegmentation arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-TextMultiClass arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-NamedEntityRecognition
*/
PreHumanTaskLambdaArn: LambdaFunctionArn;
/**
* Keywords used to describe the task so that workers on Amazon Mechanical Turk can discover the task.
*/
TaskKeywords?: TaskKeywords;
/**
* A title for the task for your human workers.
*/
TaskTitle: TaskTitle;
/**
* A description of the task for your human workers.
*/
TaskDescription: TaskDescription;
/**
* The number of human workers that will label an object.
*/
NumberOfHumanWorkersPerDataObject: NumberOfHumanWorkersPerDataObject;
/**
* The amount of time that a worker has to complete a task.
*/
TaskTimeLimitInSeconds: TaskTimeLimitInSeconds;
/**
* The length of time that a task remains available for labeling by human workers. If you choose the Amazon Mechanical Turk workforce, the maximum is 12 hours (43200). For private and vendor workforces, the maximum is as listed.
*/
TaskAvailabilityLifetimeInSeconds?: TaskAvailabilityLifetimeInSeconds;
/**
* Defines the maximum number of data objects that can be labeled by human workers at the same time. Each object may have more than one worker at one time.
*/
MaxConcurrentTaskCount?: MaxConcurrentTaskCount;
/**
* Configures how labels are consolidated across human workers.
*/
AnnotationConsolidationConfig: AnnotationConsolidationConfig;
/**
* The price that you pay for each task performed by an Amazon Mechanical Turk worker.
*/
PublicWorkforceTaskPrice?: PublicWorkforceTaskPrice;
}
export interface HyperParameterAlgorithmSpecification {
/**
* The registry path of the Docker image that contains the training algorithm. For information about Docker registry paths for built-in algorithms, see Algorithms Provided by Amazon SageMaker: Common Parameters. Amazon SageMaker supports both registry/repository[:tag] and registry/repository[@digest] image path formats. For more information, see Using Your Own Algorithms with Amazon SageMaker.
*/
TrainingImage?: AlgorithmImage;
/**
* The input mode that the algorithm supports: File or Pipe. In File input mode, Amazon SageMaker downloads the training data from Amazon S3 to the storage volume that is attached to the training instance and mounts the directory to the Docker volume for the training container. In Pipe input mode, Amazon SageMaker streams data directly from Amazon S3 to the container. If you specify File mode, make sure that you provision the storage volume that is attached to the training instance with enough capacity to accommodate the training data downloaded from Amazon S3, the model artifacts, and intermediate information. For more information about input modes, see Algorithms.
*/
TrainingInputMode: TrainingInputMode;
/**
* The name of the resource algorithm to use for the hyperparameter tuning job. If you specify a value for this parameter, do not specify a value for TrainingImage.
*/
AlgorithmName?: ArnOrName;
/**
* An array of MetricDefinition objects that specify the metrics that the algorithm emits.
*/
MetricDefinitions?: MetricDefinitionList;
}
export type HyperParameterScalingType = "Auto"|"Linear"|"Logarithmic"|"ReverseLogarithmic"|string;
export interface HyperParameterSpecification {
/**
* The name of this hyperparameter. The name must be unique.
*/
Name: ParameterName;
/**
* A brief description of the hyperparameter.
*/
Description?: EntityDescription;
/**
* The type of this hyperparameter. The valid types are Integer, Continuous, Categorical, and FreeText.
*/
Type: ParameterType;
/**
* The allowed range for this hyperparameter.
*/
Range?: ParameterRange;
/**
* Indicates whether this hyperparameter is tunable in a hyperparameter tuning job.
*/
IsTunable?: Boolean;
/**
* Indicates whether this hyperparameter is required.
*/
IsRequired?: Boolean;
/**
* The default value for this hyperparameter. If a default value is specified, a hyperparameter cannot be required.
*/
DefaultValue?: ParameterValue;
}
export type HyperParameterSpecifications = HyperParameterSpecification[];
export interface HyperParameterTrainingJobDefinition {
/**
* Specifies the values of hyperparameters that do not change for the tuning job.
*/
StaticHyperParameters?: HyperParameters;
/**
* The HyperParameterAlgorithmSpecification object that specifies the resource algorithm to use for the training jobs that the tuning job launches.
*/
AlgorithmSpecification: HyperParameterAlgorithmSpecification;
/**
* The Amazon Resource Name (ARN) of the IAM role associated with the training jobs that the tuning job launches.
*/
RoleArn: RoleArn;
/**
* An array of Channel objects that specify the input for the training jobs that the tuning job launches.
*/
InputDataConfig?: InputDataConfig;
/**
* The VpcConfig object that specifies the VPC that you want the training jobs that this hyperparameter tuning job launches to connect to. Control access to and from your training container by configuring the VPC. For more information, see Protect Training Jobs by Using an Amazon Virtual Private Cloud.
*/
VpcConfig?: VpcConfig;
/**
* Specifies the path to the Amazon S3 bucket where you store model artifacts from the training jobs that the tuning job launches.
*/
OutputDataConfig: OutputDataConfig;
/**
* The resources, including the compute instances and storage volumes, to use for the training jobs that the tuning job launches. Storage volumes store model artifacts and incremental states. Training algorithms might also use storage volumes for scratch space. If you want Amazon SageMaker to use the storage volume to store the training data, choose File as the TrainingInputMode in the algorithm specification. For distributed training algorithms, specify an instance count greater than 1.
*/
ResourceConfig: ResourceConfig;
/**
* Specifies a limit to how long a model hyperparameter training job can run. It also specifies how long you are willing to wait for a managed spot training job to complete. When the job reaches the a limit, Amazon SageMaker ends the training job. Use this API to cap model training costs.
*/
StoppingCondition: StoppingCondition;
/**
* Isolates the training container. No inbound or outbound network calls can be made, except for calls between peers within a training cluster for distributed training. If network isolation is used for training jobs that are configured to use a VPC, Amazon SageMaker downloads and uploads customer data and model artifacts through the specified VPC, but the training container does not have network access. The Semantic Segmentation built-in algorithm does not support network isolation.
*/
EnableNetworkIsolation?: Boolean;
/**
* To encrypt all communications between ML compute instances in distributed training, choose True. Encryption provides greater security for distributed training, but training might take longer. How long it takes depends on the amount of communication between compute instances, especially if you use a deep learning algorithm in distributed training.
*/
EnableInterContainerTrafficEncryption?: Boolean;
/**
* A Boolean indicating whether managed spot training is enabled (True) or not (False).
*/
EnableManagedSpotTraining?: Boolean;
CheckpointConfig?: CheckpointConfig;
}
export type HyperParameterTrainingJobSummaries = HyperParameterTrainingJobSummary[];
export interface HyperParameterTrainingJobSummary {
/**
* The name of the training job.
*/
TrainingJobName: TrainingJobName;
/**
* The Amazon Resource Name (ARN) of the training job.
*/
TrainingJobArn: TrainingJobArn;
/**
* The HyperParameter tuning job that launched the training job.
*/
TuningJobName?: HyperParameterTuningJobName;
/**
* The date and time that the training job was created.
*/
CreationTime: Timestamp;
/**
* The date and time that the training job started.
*/
TrainingStartTime?: Timestamp;
/**
* Specifies the time when the training job ends on training instances. You are billed for the time interval between the value of TrainingStartTime and this time. For successful jobs and stopped jobs, this is the time after model artifacts are uploaded. For failed jobs, this is the time when Amazon SageMaker detects a job failure.
*/
TrainingEndTime?: Timestamp;
/**
* The status of the training job.
*/
TrainingJobStatus: TrainingJobStatus;
/**
* A list of the hyperparameters for which you specified ranges to search.
*/
TunedHyperParameters: HyperParameters;
/**
* The reason that the training job failed.
*/
FailureReason?: FailureReason;
/**
* The FinalHyperParameterTuningJobObjectiveMetric object that specifies the value of the objective metric of the tuning job that launched this training job.
*/
FinalHyperParameterTuningJobObjectiveMetric?: FinalHyperParameterTuningJobObjectiveMetric;
/**
* The status of the objective metric for the training job: Succeeded: The final objective metric for the training job was evaluated by the hyperparameter tuning job and used in the hyperparameter tuning process. Pending: The training job is in progress and evaluation of its final objective metric is pending. Failed: The final objective metric for the training job was not evaluated, and was not used in the hyperparameter tuning process. This typically occurs when the training job failed or did not emit an objective metric.
*/
ObjectiveStatus?: ObjectiveStatus;
}
export type HyperParameterTuningJobArn = string;
export interface HyperParameterTuningJobConfig {
/**
* Specifies how hyperparameter tuning chooses the combinations of hyperparameter values to use for the training job it launches. To use the Bayesian search stategy, set this to Bayesian. To randomly search, set it to Random. For information about search strategies, see How Hyperparameter Tuning Works.
*/
Strategy: HyperParameterTuningJobStrategyType;
/**
* The HyperParameterTuningJobObjective object that specifies the objective metric for this tuning job.
*/
HyperParameterTuningJobObjective?: HyperParameterTuningJobObjective;
/**
* The ResourceLimits object that specifies the maximum number of training jobs and parallel training jobs for this tuning job.
*/
ResourceLimits: ResourceLimits;
/**
* The ParameterRanges object that specifies the ranges of hyperparameters that this tuning job searches.
*/
ParameterRanges?: ParameterRanges;
/**
* Specifies whether to use early stopping for training jobs launched by the hyperparameter tuning job. This can be one of the following values (the default value is OFF): OFF Training jobs launched by the hyperparameter tuning job do not use early stopping. AUTO Amazon SageMaker stops training jobs launched by the hyperparameter tuning job when they are unlikely to perform better than previously completed training jobs. For more information, see Stop Training Jobs Early.
*/
TrainingJobEarlyStoppingType?: TrainingJobEarlyStoppingType;
}
export type HyperParameterTuningJobName = string;
export interface HyperParameterTuningJobObjective {
/**
* Whether to minimize or maximize the objective metric.
*/
Type: HyperParameterTuningJobObjectiveType;
/**
* The name of the metric to use for the objective metric.
*/
MetricName: MetricName;
}
export type HyperParameterTuningJobObjectiveType = "Maximize"|"Minimize"|string;
export type HyperParameterTuningJobObjectives = HyperParameterTuningJobObjective[];
export type HyperParameterTuningJobSortByOptions = "Name"|"Status"|"CreationTime"|string;
export type HyperParameterTuningJobStatus = "Completed"|"InProgress"|"Failed"|"Stopped"|"Stopping"|string;
export type HyperParameterTuningJobStrategyType = "Bayesian"|"Random"|string;
export type HyperParameterTuningJobSummaries = HyperParameterTuningJobSummary[];
export interface HyperParameterTuningJobSummary {
/**
* The name of the tuning job.
*/
HyperParameterTuningJobName: HyperParameterTuningJobName;
/**
* The Amazon Resource Name (ARN) of the tuning job.
*/
HyperParameterTuningJobArn: HyperParameterTuningJobArn;
/**
* The status of the tuning job.
*/
HyperParameterTuningJobStatus: HyperParameterTuningJobStatus;
/**
* Specifies the search strategy hyperparameter tuning uses to choose which hyperparameters to use for each iteration. Currently, the only valid value is Bayesian.
*/
Strategy: HyperParameterTuningJobStrategyType;
/**
* The date and time that the tuning job was created.
*/
CreationTime: Timestamp;
/**
* The date and time that the tuning job ended.
*/
HyperParameterTuningEndTime?: Timestamp;
/**
* The date and time that the tuning job was modified.
*/
LastModifiedTime?: Timestamp;
/**
* The TrainingJobStatusCounters object that specifies the numbers of training jobs, categorized by status, that this tuning job launched.
*/
TrainingJobStatusCounters: TrainingJobStatusCounters;
/**
* The ObjectiveStatusCounters object that specifies the numbers of training jobs, categorized by objective metric status, that this tuning job launched.
*/
ObjectiveStatusCounters: ObjectiveStatusCounters;
/**
* The ResourceLimits object that specifies the maximum number of training jobs and parallel training jobs allowed for this tuning job.
*/
ResourceLimits?: ResourceLimits;
}
export interface HyperParameterTuningJobWarmStartConfig {
/**
* An array of hyperparameter tuning jobs that are used as the starting point for the new hyperparameter tuning job. For more information about warm starting a hyperparameter tuning job, see Using a Previous Hyperparameter Tuning Job as a Starting Point. Hyperparameter tuning jobs created before October 1, 2018 cannot be used as parent jobs for warm start tuning jobs.
*/
ParentHyperParameterTuningJobs: ParentHyperParameterTuningJobs;
/**
* Specifies one of the following: IDENTICAL_DATA_AND_ALGORITHM The new hyperparameter tuning job uses the same input data and training image as the parent tuning jobs. You can change the hyperparameter ranges to search and the maximum number of training jobs that the hyperparameter tuning job launches. You cannot use a new version of the training algorithm, unless the changes in the new version do not affect the algorithm itself. For example, changes that improve logging or adding support for a different data format are allowed. You can also change hyperparameters from tunable to static, and from static to tunable, but the total number of static plus tunable hyperparameters must remain the same as it is in all parent jobs. The objective metric for the new tuning job must be the same as for all parent jobs. TRANSFER_LEARNING The new hyperparameter tuning job can include input data, hyperparameter ranges, maximum number of concurrent training jobs, and maximum number of training jobs that are different than those of its parent hyperparameter tuning jobs. The training image can also be a different version from the version used in the parent hyperparameter tuning job. You can also change hyperparameters from tunable to static, and from static to tunable, but the total number of static plus tunable hyperparameters must remain the same as it is in all parent jobs. The objective metric for the new tuning job must be the same as for all parent jobs.
*/
WarmStartType: HyperParameterTuningJobWarmStartType;
}
export type HyperParameterTuningJobWarmStartType = "IdenticalDataAndAlgorithm"|"TransferLearning"|string;
export type HyperParameters = {[key: string]: ParameterValue};
export type Image = string;
export type ImageDigest = string;
export interface InferenceSpecification {
/**
* The Amazon ECR registry path of the Docker image that contains the inference code.
*/
Containers: ModelPackageContainerDefinitionList;
/**
* A list of the instance types on which a transformation job can be run or on which an endpoint can be deployed.
*/
SupportedTransformInstanceTypes: TransformInstanceTypes;
/**
* A list of the instance types that are used to generate inferences in real-time.
*/
SupportedRealtimeInferenceInstanceTypes: RealtimeInferenceInstanceTypes;
/**
* The supported MIME types for the input data.
*/
SupportedContentTypes: ContentTypes;
/**
* The supported MIME types for the output data.
*/
SupportedResponseMIMETypes: ResponseMIMETypes;
}
export interface InputConfig {
/**
* The S3 path where the model artifacts, which result from model training, are stored. This path must point to a single gzip compressed tar archive (.tar.gz suffix).
*/
S3Uri: S3Uri;
/**
* Specifies the name and shape of the expected data inputs for your trained model with a JSON dictionary form. The data inputs are InputConfig$Framework specific. TensorFlow: You must specify the name and shape (NHWC format) of the expected data inputs using a dictionary format for your trained model. The dictionary formats required for the console and CLI are different. Examples for one input: If using the console, {"input":[1,1024,1024,3]} If using the CLI, {\"input\":[1,1024,1024,3]} Examples for two inputs: If using the console, {"data1": [1,28,28,1], "data2":[1,28,28,1]} If using the CLI, {\"data1\": [1,28,28,1], \"data2\":[1,28,28,1]} MXNET/ONNX: You must specify the name and shape (NCHW format) of the expected data inputs in order using a dictionary format for your trained model. The dictionary formats required for the console and CLI are different. Examples for one input: If using the console, {"data":[1,3,1024,1024]} If using the CLI, {\"data\":[1,3,1024,1024]} Examples for two inputs: If using the console, {"var1": [1,1,28,28], "var2":[1,1,28,28]} If using the CLI, {\"var1\": [1,1,28,28], \"var2\":[1,1,28,28]} PyTorch: You can either specify the name and shape (NCHW format) of expected data inputs in order using a dictionary format for your trained model or you can specify the shape only using a list format. The dictionary formats required for the console and CLI are different. The list formats for the console and CLI are the same. Examples for one input in dictionary format: If using the console, {"input0":[1,3,224,224]} If using the CLI, {\"input0\":[1,3,224,224]} Example for one input in list format: [[1,3,224,224]] Examples for two inputs in dictionary format: If using the console, {"input0":[1,3,224,224], "input1":[1,3,224,224]} If using the CLI, {\"input0\":[1,3,224,224], \"input1\":[1,3,224,224]} Example for two inputs in list format: [[1,3,224,224], [1,3,224,224]] XGBOOST: input data name and shape are not needed.
*/
DataInputConfig: DataInputConfig;
/**
* Identifies the framework in which the model was trained. For example: TENSORFLOW.
*/
Framework: Framework;
}
export type InputDataConfig = Channel[];
export type InputModes = TrainingInputMode[];
export type InstanceType = "ml.t2.medium"|"ml.t2.large"|"ml.t2.xlarge"|"ml.t2.2xlarge"|"ml.t3.medium"|"ml.t3.large"|"ml.t3.xlarge"|"ml.t3.2xlarge"|"ml.m4.xlarge"|"ml.m4.2xlarge"|"ml.m4.4xlarge"|"ml.m4.10xlarge"|"ml.m4.16xlarge"|"ml.m5.xlarge"|"ml.m5.2xlarge"|"ml.m5.4xlarge"|"ml.m5.12xlarge"|"ml.m5.24xlarge"|"ml.c4.xlarge"|"ml.c4.2xlarge"|"ml.c4.4xlarge"|"ml.c4.8xlarge"|"ml.c5.xlarge"|"ml.c5.2xlarge"|"ml.c5.4xlarge"|"ml.c5.9xlarge"|"ml.c5.18xlarge"|"ml.c5d.xlarge"|"ml.c5d.2xlarge"|"ml.c5d.4xlarge"|"ml.c5d.9xlarge"|"ml.c5d.18xlarge"|"ml.p2.xlarge"|"ml.p2.8xlarge"|"ml.p2.16xlarge"|"ml.p3.2xlarge"|"ml.p3.8xlarge"|"ml.p3.16xlarge"|string;
export interface IntegerParameterRange {
/**
* The name of the hyperparameter to search.
*/
Name: ParameterKey;
/**
* The minimum value of the hyperparameter to search.
*/
MinValue: ParameterValue;
/**
* The maximum value of the hyperparameter to search.
*/
MaxValue: ParameterValue;
/**
* The scale that hyperparameter tuning uses to search the hyperparameter range. For information about choosing a hyperparameter scale, see Hyperparameter Scaling. One of the following values: Auto Amazon SageMaker hyperparameter tuning chooses the best scale for the hyperparameter. Linear Hyperparameter tuning searches the values in the hyperparameter range by using a linear scale. Logarithmic Hyperparemeter tuning searches the values in the hyperparameter range by using a logarithmic scale. Logarithmic scaling works only for ranges that have only values greater than 0.
*/
ScalingType?: HyperParameterScalingType;
}
export interface IntegerParameterRangeSpecification {
/**
* The minimum integer value allowed.
*/
MinValue: ParameterValue;
/**
* The maximum integer value allowed.
*/
MaxValue: ParameterValue;
}
export type IntegerParameterRanges = IntegerParameterRange[];
export type JobReferenceCode = string;
export type JobReferenceCodeContains = string;
export type JoinSource = "Input"|"None"|string;
export type JsonPath = string;
export type KmsKeyId = string;
export type LabelAttributeName = string;
export type LabelCounter = number;
export interface LabelCounters {
/**
* The total number of objects labeled.
*/
TotalLabeled?: LabelCounter;
/**
* The total number of objects labeled by a human worker.
*/
HumanLabeled?: LabelCounter;
/**
* The total number of objects labeled by automated data labeling.
*/
MachineLabeled?: LabelCounter;
/**
* The total number of objects that could not be labeled due to an error.
*/
FailedNonRetryableError?: LabelCounter;
/**
* The total number of objects not yet labeled.
*/
Unlabeled?: LabelCounter;
}
export interface LabelCountersForWorkteam {
/**
* The total number of data objects labeled by a human worker.
*/
HumanLabeled?: LabelCounter;
/**
* The total number of data objects that need to be labeled by a human worker.
*/
PendingHuman?: LabelCounter;
/**
* The total number of tasks in the labeling job.
*/
Total?: LabelCounter;
}
export type LabelingJobAlgorithmSpecificationArn = string;
export interface LabelingJobAlgorithmsConfig {
/**
* Specifies the Amazon Resource Name (ARN) of the algorithm used for auto-labeling. You must select one of the following ARNs: Image classification arn:aws:sagemaker:region:027400017018:labeling-job-algorithm-specification/image-classification Text classification arn:aws:sagemaker:region:027400017018:labeling-job-algorithm-specification/text-classification Object detection arn:aws:sagemaker:region:027400017018:labeling-job-algorithm-specification/object-detection Semantic Segmentation arn:aws:sagemaker:region:027400017018:labeling-job-algorithm-specification/semantic-segmentation
*/
LabelingJobAlgorithmSpecificationArn: LabelingJobAlgorithmSpecificationArn;
/**
* At the end of an auto-label job Amazon SageMaker Ground Truth sends the Amazon Resource Nam (ARN) of the final model used for auto-labeling. You can use this model as the starting point for subsequent similar jobs by providing the ARN of the model here.
*/
InitialActiveLearningModelArn?: ModelArn;
/**
* Provides configuration information for a labeling job.
*/
LabelingJobResourceConfig?: LabelingJobResourceConfig;
}
export type LabelingJobArn = string;
export interface LabelingJobDataAttributes {
/**
* Declares that your content is free of personally identifiable information or adult content. Amazon SageMaker may restrict the Amazon Mechanical Turk workers that can view your task based on this information.
*/
ContentClassifiers?: ContentClassifiers;
}
export interface LabelingJobDataSource {
/**
* The Amazon S3 location of the input data objects.
*/
S3DataSource: LabelingJobS3DataSource;
}
export interface LabelingJobForWorkteamSummary {
/**
* The name of the labeling job that the work team is assigned to.
*/
LabelingJobName?: LabelingJobName;
/**
* A unique identifier for a labeling job. You can use this to refer to a specific labeling job.
*/
JobReferenceCode: JobReferenceCode;
/**
*
*/
WorkRequesterAccountId: AccountId;
/**
* The date and time that the labeling job was created.
*/
CreationTime: Timestamp;
/**
* Provides information about the progress of a labeling job.
*/
LabelCounters?: LabelCountersForWorkteam;
/**
* The configured number of workers per data object.
*/
NumberOfHumanWorkersPerDataObject?: NumberOfHumanWorkersPerDataObject;
}
export type LabelingJobForWorkteamSummaryList = LabelingJobForWorkteamSummary[];
export interface LabelingJobInputConfig {
/**
* The location of the input data.
*/
DataSource: LabelingJobDataSource;
/**
* Attributes of the data specified by the customer.
*/
DataAttributes?: LabelingJobDataAttributes;
}
export type LabelingJobName = string;
export interface LabelingJobOutput {
/**
* The Amazon S3 bucket location of the manifest file for labeled data.
*/
OutputDatasetS3Uri: S3Uri;
/**
* The Amazon Resource Name (ARN) for the most recent Amazon SageMaker model trained as part of automated data labeling.
*/
FinalActiveLearningModelArn?: ModelArn;
}
export interface LabelingJobOutputConfig {
/**
* The Amazon S3 location to write output data.
*/
S3OutputPath: S3Uri;
/**
* The AWS Key Management Service ID of the key used to encrypt the output data, if any. If you use a KMS key ID or an alias of your master key, the Amazon SageMaker execution role must include permissions to call kms:Encrypt. If you don't provide a KMS key ID, Amazon SageMaker uses the default KMS key for Amazon S3 for your role's account. Amazon SageMaker uses server-side encryption with KMS-managed keys for LabelingJobOutputConfig. If you use a bucket policy with an s3:PutObject permission that only allows objects with server-side encryption, set the condition key of s3:x-amz-server-side-encryption to "aws:kms". For more information, see KMS-Managed Encryption Keys in the Amazon Simple Storage Service Developer Guide. The KMS key policy must grant permission to the IAM role that you specify in your CreateLabelingJob request. For more information, see Using Key Policies in AWS KMS in the AWS Key Management Service Developer Guide.
*/
KmsKeyId?: KmsKeyId;
}
export interface LabelingJobResourceConfig {
/**
* The AWS Key Management Service (AWS KMS) key that Amazon SageMaker uses to encrypt data on the storage volume attached to the ML compute instance(s) that run the training job. The VolumeKmsKeyId can be any of the following formats: // KMS Key ID "1234abcd-12ab-34cd-56ef-1234567890ab" // Amazon Resource Name (ARN) of a KMS Key "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"
*/
VolumeKmsKeyId?: KmsKeyId;
}
export interface LabelingJobS3DataSource {
/**
* The Amazon S3 location of the manifest file that describes the input data objects.
*/
ManifestS3Uri: S3Uri;
}
export type LabelingJobStatus = "InProgress"|"Completed"|"Failed"|"Stopping"|"Stopped"|string;
export interface LabelingJobStoppingConditions {
/**
* The maximum number of objects that can be labeled by human workers.
*/
MaxHumanLabeledObjectCount?: MaxHumanLabeledObjectCount;
/**
* The maximum number of input data objects that should be labeled.
*/
MaxPercentageOfInputDatasetLabeled?: MaxPercentageOfInputDatasetLabeled;
}
export interface LabelingJobSummary {
/**
* The name of the labeling job.
*/
LabelingJobName: LabelingJobName;
/**
* The Amazon Resource Name (ARN) assigned to the labeling job when it was created.
*/
LabelingJobArn: LabelingJobArn;
/**
* The date and time that the job was created (timestamp).
*/
CreationTime: Timestamp;
/**
* The date and time that the job was last modified (timestamp).
*/
LastModifiedTime: Timestamp;
/**
* The current status of the labeling job.
*/
LabelingJobStatus: LabelingJobStatus;
/**
* Counts showing the progress of the labeling job.
*/
LabelCounters: LabelCounters;
/**
* The Amazon Resource Name (ARN) of the work team assigned to the job.
*/
WorkteamArn: WorkteamArn;
/**
* The Amazon Resource Name (ARN) of a Lambda function. The function is run before each data object is sent to a worker.
*/
PreHumanTaskLambdaArn: LambdaFunctionArn;
/**
* The Amazon Resource Name (ARN) of the Lambda function used to consolidate the annotations from individual workers into a label for a data object. For more information, see Annotation Consolidation.
*/
AnnotationConsolidationLambdaArn?: LambdaFunctionArn;
/**
* If the LabelingJobStatus field is Failed, this field contains a description of the error.
*/
FailureReason?: FailureReason;
/**
* The location of the output produced by the labeling job.
*/
LabelingJobOutput?: LabelingJobOutput;
/**
* Input configuration for the labeling job.
*/
InputConfig?: LabelingJobInputConfig;
}
export type LabelingJobSummaryList = LabelingJobSummary[];
export type LambdaFunctionArn = string;
export type LastModifiedTime = Date;
export interface ListAlgorithmsInput {
/**
* A filter that returns only algorithms created after the specified time (timestamp).
*/
CreationTimeAfter?: CreationTime;
/**
* A filter that returns only algorithms created before the specified time (timestamp).
*/
CreationTimeBefore?: CreationTime;
/**
* The maximum number of algorithms to return in the response.
*/
MaxResults?: MaxResults;
/**
* A string in the algorithm name. This filter returns only algorithms whose name contains the specified string.
*/
NameContains?: NameContains;
/**
* If the response to a previous ListAlgorithms request was truncated, the response includes a NextToken. To retrieve the next set of algorithms, use the token in the next request.
*/
NextToken?: NextToken;
/**
* The parameter by which to sort the results. The default is CreationTime.
*/
SortBy?: AlgorithmSortBy;
/**
* The sort order for the results. The default is Ascending.
*/
SortOrder?: SortOrder;
}
export interface ListAlgorithmsOutput {
/**
* >An array of AlgorithmSummary objects, each of which lists an algorithm.
*/
AlgorithmSummaryList: AlgorithmSummaryList;
/**
* If the response is truncated, Amazon SageMaker returns this token. To retrieve the next set of algorithms, use it in the subsequent request.
*/
NextToken?: NextToken;
}
export interface ListCodeRepositoriesInput {
/**
* A filter that returns only Git repositories that were created after the specified time.
*/
CreationTimeAfter?: CreationTime;
/**
* A filter that returns only Git repositories that were created before the specified time.
*/
CreationTimeBefore?: CreationTime;
/**
* A filter that returns only Git repositories that were last modified after the specified time.
*/
LastModifiedTimeAfter?: Timestamp;
/**
* A filter that returns only Git repositories that were last modified before the specified time.
*/
LastModifiedTimeBefore?: Timestamp;
/**
* The maximum number of Git repositories to return in the response.
*/
MaxResults?: MaxResults;
/**
* A string in the Git repositories name. This filter returns only repositories whose name contains the specified string.
*/
NameContains?: CodeRepositoryNameContains;
/**
* If the result of a ListCodeRepositoriesOutput request was truncated, the response includes a NextToken. To get the next set of Git repositories, use the token in the next request.
*/
NextToken?: NextToken;
/**
* The field to sort results by. The default is Name.
*/
SortBy?: CodeRepositorySortBy;
/**
* The sort order for results. The default is Ascending.
*/
SortOrder?: CodeRepositorySortOrder;
}
export interface ListCodeRepositoriesOutput {
/**
* Gets a list of summaries of the Git repositories. Each summary specifies the following values for the repository: Name Amazon Resource Name (ARN) Creation time Last modified time Configuration information, including the URL location of the repository and the ARN of the AWS Secrets Manager secret that contains the credentials used to access the repository.
*/
CodeRepositorySummaryList: CodeRepositorySummaryList;
/**
* If the result of a ListCodeRepositoriesOutput request was truncated, the response includes a NextToken. To get the next set of Git repositories, use the token in the next request.
*/
NextToken?: NextToken;
}
export interface ListCompilationJobsRequest {
/**
* If the result of the previous ListCompilationJobs request was truncated, the response includes a NextToken. To retrieve the next set of model compilation jobs, use the token in the next request.
*/
NextToken?: NextToken;
/**
* The maximum number of model compilation jobs to return in the response.
*/
MaxResults?: MaxResults;
/**
* A filter that returns the model compilation jobs that were created after a specified time.
*/
CreationTimeAfter?: CreationTime;
/**
* A filter that returns the model compilation jobs that were created before a specified time.
*/
CreationTimeBefore?: CreationTime;
/**
* A filter that returns the model compilation jobs that were modified after a specified time.
*/
LastModifiedTimeAfter?: LastModifiedTime;
/**
* A filter that returns the model compilation jobs that were modified before a specified time.
*/
LastModifiedTimeBefore?: LastModifiedTime;
/**
* A filter that returns the model compilation jobs whose name contains a specified string.
*/
NameContains?: NameContains;
/**
* A filter that retrieves model compilation jobs with a specific DescribeCompilationJobResponse$CompilationJobStatus status.
*/
StatusEquals?: CompilationJobStatus;
/**
* The field by which to sort results. The default is CreationTime.
*/
SortBy?: ListCompilationJobsSortBy;
/**
* The sort order for results. The default is Ascending.
*/
SortOrder?: SortOrder;
}
export interface ListCompilationJobsResponse {
/**
* An array of CompilationJobSummary objects, each describing a model compilation job.
*/
CompilationJobSummaries: CompilationJobSummaries;
/**
* If the response is truncated, Amazon SageMaker returns this NextToken. To retrieve the next set of model compilation jobs, use this token in the next request.
*/
NextToken?: NextToken;
}
export type ListCompilationJobsSortBy = "Name"|"CreationTime"|"Status"|string;
export interface ListEndpointConfigsInput {
/**
* The field to sort results by. The default is CreationTime.
*/
SortBy?: EndpointConfigSortKey;
/**
* The sort order for results. The default is Descending.
*/
SortOrder?: OrderKey;
/**
* If the result of the previous ListEndpointConfig request was truncated, the response includes a NextToken. To retrieve the next set of endpoint configurations, use the token in the next request.
*/
NextToken?: PaginationToken;
/**
* The maximum number of training jobs to return in the response.
*/
MaxResults?: MaxResults;
/**
* A string in the endpoint configuration name. This filter returns only endpoint configurations whose name contains the specified string.
*/
NameContains?: EndpointConfigNameContains;
/**
* A filter that returns only endpoint configurations created before the specified time (timestamp).
*/
CreationTimeBefore?: Timestamp;
/**
* A filter that returns only endpoint configurations with a creation time greater than or equal to the specified time (timestamp).
*/
CreationTimeAfter?: Timestamp;
}
export interface ListEndpointConfigsOutput {
/**
* An array of endpoint configurations.
*/
EndpointConfigs: EndpointConfigSummaryList;
/**
* If the response is truncated, Amazon SageMaker returns this token. To retrieve the next set of endpoint configurations, use it in the subsequent request
*/
NextToken?: PaginationToken;
}
export interface ListEndpointsInput {
/**
* Sorts the list of results. The default is CreationTime.
*/
SortBy?: EndpointSortKey;
/**
* The sort order for results. The default is Descending.
*/
SortOrder?: OrderKey;
/**
* If the result of a ListEndpoints request was truncated, the response includes a NextToken. To retrieve the next set of endpoints, use the token in the next request.
*/
NextToken?: PaginationToken;
/**
* The maximum number of endpoints to return in the response.
*/
MaxResults?: MaxResults;
/**
* A string in endpoint names. This filter returns only endpoints whose name contains the specified string.
*/
NameContains?: EndpointNameContains;
/**
* A filter that returns only endpoints that were created before the specified time (timestamp).
*/
CreationTimeBefore?: Timestamp;
/**
* A filter that returns only endpoints with a creation time greater than or equal to the specified time (timestamp).
*/
CreationTimeAfter?: Timestamp;
/**
* A filter that returns only endpoints that were modified before the specified timestamp.
*/
LastModifiedTimeBefore?: Timestamp;
/**
* A filter that returns only endpoints that were modified after the specified timestamp.
*/
LastModifiedTimeAfter?: Timestamp;
/**
* A filter that returns only endpoints with the specified status.
*/
StatusEquals?: EndpointStatus;
}
export interface ListEndpointsOutput {
/**
* An array or endpoint objects.
*/
Endpoints: EndpointSummaryList;
/**
* If the response is truncated, Amazon SageMaker returns this token. To retrieve the next set of training jobs, use it in the subsequent request.
*/
NextToken?: PaginationToken;
}
export interface ListHyperParameterTuningJobsRequest {
/**
* If the result of the previous ListHyperParameterTuningJobs request was truncated, the response includes a NextToken. To retrieve the next set of tuning jobs, use the token in the next request.
*/
NextToken?: NextToken;
/**
* The maximum number of tuning jobs to return. The default value is 10.
*/
MaxResults?: MaxResults;
/**
* The field to sort results by. The default is Name.
*/
SortBy?: HyperParameterTuningJobSortByOptions;
/**
* The sort order for results. The default is Ascending.
*/
SortOrder?: SortOrder;
/**
* A string in the tuning job name. This filter returns only tuning jobs whose name contains the specified string.
*/
NameContains?: NameContains;
/**
* A filter that returns only tuning jobs that were created after the specified time.
*/
CreationTimeAfter?: Timestamp;
/**
* A filter that returns only tuning jobs that were created before the specified time.
*/
CreationTimeBefore?: Timestamp;
/**
* A filter that returns only tuning jobs that were modified after the specified time.
*/
LastModifiedTimeAfter?: Timestamp;
/**
* A filter that returns only tuning jobs that were modified before the specified time.
*/
LastModifiedTimeBefore?: Timestamp;
/**
* A filter that returns only tuning jobs with the specified status.
*/
StatusEquals?: HyperParameterTuningJobStatus;
}
export interface ListHyperParameterTuningJobsResponse {
/**
* A list of HyperParameterTuningJobSummary objects that describe the tuning jobs that the ListHyperParameterTuningJobs request returned.
*/
HyperParameterTuningJobSummaries: HyperParameterTuningJobSummaries;
/**
* If the result of this ListHyperParameterTuningJobs request was truncated, the response includes a NextToken. To retrieve the next set of tuning jobs, use the token in the next request.
*/
NextToken?: NextToken;
}
export interface ListLabelingJobsForWorkteamRequest {
/**
* The Amazon Resource Name (ARN) of the work team for which you want to see labeling jobs for.
*/
WorkteamArn: WorkteamArn;
/**
* The maximum number of labeling jobs to return in each page of the response.
*/
MaxResults?: MaxResults;
/**
* If the result of the previous ListLabelingJobsForWorkteam request was truncated, the response includes a NextToken. To retrieve the next set of labeling jobs, use the token in the next request.
*/
NextToken?: NextToken;
/**
* A filter that returns only labeling jobs created after the specified time (timestamp).
*/
CreationTimeAfter?: Timestamp;
/**
* A filter that returns only labeling jobs created before the specified time (timestamp).
*/
CreationTimeBefore?: Timestamp;
/**
* A filter the limits jobs to only the ones whose job reference code contains the specified string.
*/
JobReferenceCodeContains?: JobReferenceCodeContains;
/**
* The field to sort results by. The default is CreationTime.
*/
SortBy?: ListLabelingJobsForWorkteamSortByOptions;
/**
* The sort order for results. The default is Ascending.
*/
SortOrder?: SortOrder;
}
export interface ListLabelingJobsForWorkteamResponse {
/**
* An array of LabelingJobSummary objects, each describing a labeling job.
*/
LabelingJobSummaryList: LabelingJobForWorkteamSummaryList;
/**
* If the response is truncated, Amazon SageMaker returns this token. To retrieve the next set of labeling jobs, use it in the subsequent request.
*/
NextToken?: NextToken;
}
export type ListLabelingJobsForWorkteamSortByOptions = "CreationTime"|string;
export interface ListLabelingJobsRequest {
/**
* A filter that returns only labeling jobs created after the specified time (timestamp).
*/
CreationTimeAfter?: Timestamp;
/**
* A filter that returns only labeling jobs created before the specified time (timestamp).
*/
CreationTimeBefore?: Timestamp;
/**
* A filter that returns only labeling jobs modified after the specified time (timestamp).
*/
LastModifiedTimeAfter?: Timestamp;
/**
* A filter that returns only labeling jobs modified before the specified time (timestamp).
*/
LastModifiedTimeBefore?: Timestamp;
/**
* The maximum number of labeling jobs to return in each page of the response.
*/
MaxResults?: MaxResults;
/**
* If the result of the previous ListLabelingJobs request was truncated, the response includes a NextToken. To retrieve the next set of labeling jobs, use the token in the next request.
*/
NextToken?: NextToken;
/**
* A string in the labeling job name. This filter returns only labeling jobs whose name contains the specified string.
*/
NameContains?: NameContains;
/**
* The field to sort results by. The default is CreationTime.
*/
SortBy?: SortBy;
/**
* The sort order for results. The default is Ascending.
*/
SortOrder?: SortOrder;
/**
* A filter that retrieves only labeling jobs with a specific status.
*/
StatusEquals?: LabelingJobStatus;
}
export interface ListLabelingJobsResponse {
/**
* An array of LabelingJobSummary objects, each describing a labeling job.
*/
LabelingJobSummaryList?: LabelingJobSummaryList;
/**
* If the response is truncated, Amazon SageMaker returns this token. To retrieve the next set of labeling jobs, use it in the subsequent request.
*/
NextToken?: NextToken;
}
export interface ListModelPackagesInput {
/**
* A filter that returns only model packages created after the specified time (timestamp).
*/
CreationTimeAfter?: CreationTime;
/**
* A filter that returns only model packages created before the specified time (timestamp).
*/
CreationTimeBefore?: CreationTime;
/**
* The maximum number of model packages to return in the response.
*/
MaxResults?: MaxResults;
/**
* A string in the model package name. This filter returns only model packages whose name contains the specified string.
*/
NameContains?: NameContains;
/**
* If the response to a previous ListModelPackages request was truncated, the response includes a NextToken. To retrieve the next set of model packages, use the token in the next request.
*/
NextToken?: NextToken;
/**
* The parameter by which to sort the results. The default is CreationTime.
*/
SortBy?: ModelPackageSortBy;
/**
* The sort order for the results. The default is Ascending.
*/
SortOrder?: SortOrder;
}
export interface ListModelPackagesOutput {
/**
* An array of ModelPackageSummary objects, each of which lists a model package.
*/
ModelPackageSummaryList: ModelPackageSummaryList;
/**
* If the response is truncated, Amazon SageMaker returns this token. To retrieve the next set of model packages, use it in the subsequent request.
*/
NextToken?: NextToken;
}
export interface ListModelsInput {
/**
* Sorts the list of results. The default is CreationTime.
*/
SortBy?: ModelSortKey;
/**
* The sort order for results. The default is Descending.
*/
SortOrder?: OrderKey;
/**
* If the response to a previous ListModels request was truncated, the response includes a NextToken. To retrieve the next set of models, use the token in the next request.
*/
NextToken?: PaginationToken;
/**
* The maximum number of models to return in the response.
*/
MaxResults?: MaxResults;
/**
* A string in the training job name. This filter returns only models in the training job whose name contains the specified string.
*/
NameContains?: ModelNameContains;
/**
* A filter that returns only models created before the specified time (timestamp).
*/
CreationTimeBefore?: Timestamp;
/**
* A filter that returns only models with a creation time greater than or equal to the specified time (timestamp).
*/
CreationTimeAfter?: Timestamp;
}
export interface ListModelsOutput {
/**
* An array of ModelSummary objects, each of which lists a model.
*/
Models: ModelSummaryList;
/**
* If the response is truncated, Amazon SageMaker returns this token. To retrieve the next set of models, use it in the subsequent request.
*/
NextToken?: PaginationToken;
}
export interface ListNotebookInstanceLifecycleConfigsInput {
/**
* If the result of a ListNotebookInstanceLifecycleConfigs request was truncated, the response includes a NextToken. To get the next set of lifecycle configurations, use the token in the next request.
*/
NextToken?: NextToken;
/**
* The maximum number of lifecycle configurations to return in the response.
*/
MaxResults?: MaxResults;
/**
* Sorts the list of results. The default is CreationTime.
*/
SortBy?: NotebookInstanceLifecycleConfigSortKey;
/**
* The sort order for results.
*/
SortOrder?: NotebookInstanceLifecycleConfigSortOrder;
/**
* A string in the lifecycle configuration name. This filter returns only lifecycle configurations whose name contains the specified string.
*/
NameContains?: NotebookInstanceLifecycleConfigNameContains;
/**
* A filter that returns only lifecycle configurations that were created before the specified time (timestamp).
*/
CreationTimeBefore?: CreationTime;
/**
* A filter that returns only lifecycle configurations that were created after the specified time (timestamp).
*/
CreationTimeAfter?: CreationTime;
/**
* A filter that returns only lifecycle configurations that were modified before the specified time (timestamp).
*/
LastModifiedTimeBefore?: LastModifiedTime;
/**
* A filter that returns only lifecycle configurations that were modified after the specified time (timestamp).
*/
LastModifiedTimeAfter?: LastModifiedTime;
}
export interface ListNotebookInstanceLifecycleConfigsOutput {
/**
* If the response is truncated, Amazon SageMaker returns this token. To get the next set of lifecycle configurations, use it in the next request.
*/
NextToken?: NextToken;
/**
* An array of NotebookInstanceLifecycleConfiguration objects, each listing a lifecycle configuration.
*/
NotebookInstanceLifecycleConfigs?: NotebookInstanceLifecycleConfigSummaryList;
}
export interface ListNotebookInstancesInput {
/**
* If the previous call to the ListNotebookInstances is truncated, the response includes a NextToken. You can use this token in your subsequent ListNotebookInstances request to fetch the next set of notebook instances. You might specify a filter or a sort order in your request. When response is truncated, you must use the same values for the filer and sort order in the next request.
*/
NextToken?: NextToken;
/**
* The maximum number of notebook instances to return.
*/
MaxResults?: MaxResults;
/**
* The field to sort results by. The default is Name.
*/
SortBy?: NotebookInstanceSortKey;
/**
* The sort order for results.
*/
SortOrder?: NotebookInstanceSortOrder;
/**
* A string in the notebook instances' name. This filter returns only notebook instances whose name contains the specified string.
*/
NameContains?: NotebookInstanceNameContains;
/**
* A filter that returns only notebook instances that were created before the specified time (timestamp).
*/
CreationTimeBefore?: CreationTime;
/**
* A filter that returns only notebook instances that were created after the specified time (timestamp).
*/
CreationTimeAfter?: CreationTime;
/**
* A filter that returns only notebook instances that were modified before the specified time (timestamp).
*/
LastModifiedTimeBefore?: LastModifiedTime;
/**
* A filter that returns only notebook instances that were modified after the specified time (timestamp).
*/
LastModifiedTimeAfter?: LastModifiedTime;
/**
* A filter that returns only notebook instances with the specified status.
*/
StatusEquals?: NotebookInstanceStatus;
/**
* A string in the name of a notebook instances lifecycle configuration associated with this notebook instance. This filter returns only notebook instances associated with a lifecycle configuration with a name that contains the specified string.
*/
NotebookInstanceLifecycleConfigNameContains?: NotebookInstanceLifecycleConfigName;
/**
* A string in the name or URL of a Git repository associated with this notebook instance. This filter returns only notebook instances associated with a git repository with a name that contains the specified string.
*/
DefaultCodeRepositoryContains?: CodeRepositoryContains;
/**
* A filter that returns only notebook instances with associated with the specified git repository.
*/
AdditionalCodeRepositoryEquals?: CodeRepositoryNameOrUrl;
}
export interface ListNotebookInstancesOutput {
/**
* If the response to the previous ListNotebookInstances request was truncated, Amazon SageMaker returns this token. To retrieve the next set of notebook instances, use the token in the next request.
*/
NextToken?: NextToken;
/**
* An array of NotebookInstanceSummary objects, one for each notebook instance.
*/
NotebookInstances?: NotebookInstanceSummaryList;
}
export interface ListSubscribedWorkteamsRequest {
/**
* A string in the work team name. This filter returns only work teams whose name contains the specified string.
*/
NameContains?: WorkteamName;
/**
* If the result of the previous ListSubscribedWorkteams request was truncated, the response includes a NextToken. To retrieve the next set of labeling jobs, use the token in the next request.
*/
NextToken?: NextToken;
/**
* The maximum number of work teams to return in each page of the response.
*/
MaxResults?: MaxResults;
}
export interface ListSubscribedWorkteamsResponse {
/**
* An array of Workteam objects, each describing a work team.
*/
SubscribedWorkteams: SubscribedWorkteams;
/**
* If the response is truncated, Amazon SageMaker returns this token. To retrieve the next set of work teams, use it in the subsequent request.
*/
NextToken?: NextToken;
}
export interface ListTagsInput {
/**
* The Amazon Resource Name (ARN) of the resource whose tags you want to retrieve.
*/
ResourceArn: ResourceArn;
/**
* If the response to the previous ListTags request is truncated, Amazon SageMaker returns this token. To retrieve the next set of tags, use it in the subsequent request.
*/
NextToken?: NextToken;
/**
* Maximum number of tags to return.
*/
MaxResults?: ListTagsMaxResults;
}
export type ListTagsMaxResults = number;
export interface ListTagsOutput {
/**
* An array of Tag objects, each with a tag key and a value.
*/
Tags?: TagList;
/**
* If response is truncated, Amazon SageMaker includes a token in the response. You can use this token in your subsequent request to fetch next set of tokens.
*/
NextToken?: NextToken;
}
export interface ListTrainingJobsForHyperParameterTuningJobRequest {
/**
* The name of the tuning job whose training jobs you want to list.
*/
HyperParameterTuningJobName: HyperParameterTuningJobName;
/**
* If the result of the previous ListTrainingJobsForHyperParameterTuningJob request was truncated, the response includes a NextToken. To retrieve the next set of training jobs, use the token in the next request.
*/
NextToken?: NextToken;
/**
* The maximum number of training jobs to return. The default value is 10.
*/
MaxResults?: MaxResults;
/**
* A filter that returns only training jobs with the specified status.
*/
StatusEquals?: TrainingJobStatus;
/**
* The field to sort results by. The default is Name. If the value of this field is FinalObjectiveMetricValue, any training jobs that did not return an objective metric are not listed.
*/
SortBy?: TrainingJobSortByOptions;
/**
* The sort order for results. The default is Ascending.
*/
SortOrder?: SortOrder;
}
export interface ListTrainingJobsForHyperParameterTuningJobResponse {
/**
* A list of TrainingJobSummary objects that describe the training jobs that the ListTrainingJobsForHyperParameterTuningJob request returned.
*/
TrainingJobSummaries: HyperParameterTrainingJobSummaries;
/**
* If the result of this ListTrainingJobsForHyperParameterTuningJob request was truncated, the response includes a NextToken. To retrieve the next set of training jobs, use the token in the next request.
*/
NextToken?: NextToken;
}
export interface ListTrainingJobsRequest {
/**
* If the result of the previous ListTrainingJobs request was truncated, the response includes a NextToken. To retrieve the next set of training jobs, use the token in the next request.
*/
NextToken?: NextToken;
/**
* The maximum number of training jobs to return in the response.
*/
MaxResults?: MaxResults;
/**
* A filter that returns only training jobs created after the specified time (timestamp).
*/
CreationTimeAfter?: Timestamp;
/**
* A filter that returns only training jobs created before the specified time (timestamp).
*/
CreationTimeBefore?: Timestamp;
/**
* A filter that returns only training jobs modified after the specified time (timestamp).
*/
LastModifiedTimeAfter?: Timestamp;
/**
* A filter that returns only training jobs modified before the specified time (timestamp).
*/
LastModifiedTimeBefore?: Timestamp;
/**
* A string in the training job name. This filter returns only training jobs whose name contains the specified string.
*/
NameContains?: NameContains;
/**
* A filter that retrieves only training jobs with a specific status.
*/
StatusEquals?: TrainingJobStatus;
/**
* The field to sort results by. The default is CreationTime.
*/
SortBy?: SortBy;
/**
* The sort order for results. The default is Ascending.
*/
SortOrder?: SortOrder;
}
export interface ListTrainingJobsResponse {
/**
* An array of TrainingJobSummary objects, each listing a training job.
*/
TrainingJobSummaries: TrainingJobSummaries;
/**
* If the response is truncated, Amazon SageMaker returns this token. To retrieve the next set of training jobs, use it in the subsequent request.
*/
NextToken?: NextToken;
}
export interface ListTransformJobsRequest {
/**
* A filter that returns only transform jobs created after the specified time.
*/
CreationTimeAfter?: Timestamp;
/**
* A filter that returns only transform jobs created before the specified time.
*/
CreationTimeBefore?: Timestamp;
/**
* A filter that returns only transform jobs modified after the specified time.
*/
LastModifiedTimeAfter?: Timestamp;
/**
* A filter that returns only transform jobs modified before the specified time.
*/
LastModifiedTimeBefore?: Timestamp;
/**
* A string in the transform job name. This filter returns only transform jobs whose name contains the specified string.
*/
NameContains?: NameContains;
/**
* A filter that retrieves only transform jobs with a specific status.
*/
StatusEquals?: TransformJobStatus;
/**
* The field to sort results by. The default is CreationTime.
*/
SortBy?: SortBy;
/**
* The sort order for results. The default is Descending.
*/
SortOrder?: SortOrder;
/**
* If the result of the previous ListTransformJobs request was truncated, the response includes a NextToken. To retrieve the next set of transform jobs, use the token in the next request.
*/
NextToken?: NextToken;
/**
* The maximum number of transform jobs to return in the response. The default value is 10.
*/
MaxResults?: MaxResults;
}
export interface ListTransformJobsResponse {
/**
* An array of TransformJobSummary objects.
*/
TransformJobSummaries: TransformJobSummaries;
/**
* If the response is truncated, Amazon SageMaker returns this token. To retrieve the next set of transform jobs, use it in the next request.
*/
NextToken?: NextToken;
}
export interface ListWorkteamsRequest {
/**
* The field to sort results by. The default is CreationTime.
*/
SortBy?: ListWorkteamsSortByOptions;
/**
* The sort order for results. The default is Ascending.
*/
SortOrder?: SortOrder;
/**
* A string in the work team's name. This filter returns only work teams whose name contains the specified string.
*/
NameContains?: WorkteamName;
/**
* If the result of the previous ListWorkteams request was truncated, the response includes a NextToken. To retrieve the next set of labeling jobs, use the token in the next request.
*/
NextToken?: NextToken;
/**
* The maximum number of work teams to return in each page of the response.
*/
MaxResults?: MaxResults;
}
export interface ListWorkteamsResponse {
/**
* An array of Workteam objects, each describing a work team.
*/
Workteams: Workteams;
/**
* If the response is truncated, Amazon SageMaker returns this token. To retrieve the next set of work teams, use it in the subsequent request.
*/
NextToken?: NextToken;
}
export type ListWorkteamsSortByOptions = "Name"|"CreateDate"|string;
export type MaxConcurrentTaskCount = number;
export type MaxConcurrentTransforms = number;
export type MaxHumanLabeledObjectCount = number;
export type MaxNumberOfTrainingJobs = number;
export type MaxParallelTrainingJobs = number;
export type MaxPayloadInMB = number;
export type MaxPercentageOfInputDatasetLabeled = number;
export type MaxResults = number;
export type MaxRuntimeInSeconds = number;
export type MaxWaitTimeInSeconds = number;
export interface MemberDefinition {
/**
* The Amazon Cognito user group that is part of the work team.
*/
CognitoMemberDefinition?: CognitoMemberDefinition;
}
export type MemberDefinitions = MemberDefinition[];
export interface MetricData {
/**
* The name of the metric.
*/
MetricName?: MetricName;
/**
* The value of the metric.
*/
Value?: Float;
/**
* The date and time that the algorithm emitted the metric.
*/
Timestamp?: Timestamp;
}
export interface MetricDefinition {
/**
* The name of the metric.
*/
Name: MetricName;
/**
* A regular expression that searches the output of a training job and gets the value of the metric. For more information about using regular expressions to define metrics, see Defining Objective Metrics.
*/
Regex: MetricRegex;
}
export type MetricDefinitionList = MetricDefinition[];
export type MetricName = string;
export type MetricRegex = string;
export type MetricValue = number;
export type ModelArn = string;
export interface ModelArtifacts {
/**
* The path of the S3 object that contains the model artifacts. For example, s3://bucket-name/keynameprefix/model.tar.gz.
*/
S3ModelArtifacts: S3Uri;
}
export type ModelName = string;
export type ModelNameContains = string;
export type ModelPackageArn = string;
export interface ModelPackageContainerDefinition {
/**
* The DNS host name for the Docker container.
*/
ContainerHostname?: ContainerHostname;
/**
* The Amazon EC2 Container Registry (Amazon ECR) path where inference code is stored. If you are using your own custom algorithm instead of an algorithm provided by Amazon SageMaker, the inference code must meet Amazon SageMaker requirements. Amazon SageMaker supports both registry/repository[:tag] and registry/repository[@digest] image path formats. For more information, see Using Your Own Algorithms with Amazon SageMaker.
*/
Image: Image;
/**
* An MD5 hash of the training algorithm that identifies the Docker image used for training.
*/
ImageDigest?: ImageDigest;
/**
* The Amazon S3 path where the model artifacts, which result from model training, are stored. This path must point to a single gzip compressed tar archive (.tar.gz suffix).
*/
ModelDataUrl?: Url;
/**
* The AWS Marketplace product ID of the model package.
*/
ProductId?: ProductId;
}
export type ModelPackageContainerDefinitionList = ModelPackageContainerDefinition[];
export type ModelPackageSortBy = "Name"|"CreationTime"|string;
export type ModelPackageStatus = "Pending"|"InProgress"|"Completed"|"Failed"|"Deleting"|string;
export interface ModelPackageStatusDetails {
/**
* The validation status of the model package.
*/
ValidationStatuses: ModelPackageStatusItemList;
/**
* The status of the scan of the Docker image container for the model package.
*/
ImageScanStatuses?: ModelPackageStatusItemList;
}
export interface ModelPackageStatusItem {
/**
* The name of the model package for which the overall status is being reported.
*/
Name: EntityName;
/**
* The current status.
*/
Status: DetailedModelPackageStatus;
/**
* if the overall status is Failed, the reason for the failure.
*/
FailureReason?: String;
}
export type ModelPackageStatusItemList = ModelPackageStatusItem[];
export interface ModelPackageSummary {
/**
* The name of the model package.
*/
ModelPackageName: EntityName;
/**
* The Amazon Resource Name (ARN) of the model package.
*/
ModelPackageArn: ModelPackageArn;
/**
* A brief description of the model package.
*/
ModelPackageDescription?: EntityDescription;
/**
* A timestamp that shows when the model package was created.
*/
CreationTime: CreationTime;
/**
* The overall status of the model package.
*/
ModelPackageStatus: ModelPackageStatus;
}
export type ModelPackageSummaryList = ModelPackageSummary[];
export interface ModelPackageValidationProfile {
/**
* The name of the profile for the model package.
*/
ProfileName: EntityName;
/**
* The TransformJobDefinition object that describes the transform job used for the validation of the model package.
*/
TransformJobDefinition: TransformJobDefinition;
}
export type ModelPackageValidationProfiles = ModelPackageValidationProfile[];
export interface ModelPackageValidationSpecification {
/**
* The IAM roles to be used for the validation of the model package.
*/
ValidationRole: RoleArn;
/**
* An array of ModelPackageValidationProfile objects, each of which specifies a batch transform job that Amazon SageMaker runs to validate your model package.
*/
ValidationProfiles: ModelPackageValidationProfiles;
}
export type ModelSortKey = "Name"|"CreationTime"|string;
export interface ModelSummary {
/**
* The name of the model that you want a summary for.
*/
ModelName: ModelName;
/**
* The Amazon Resource Name (ARN) of the model.
*/
ModelArn: ModelArn;
/**
* A timestamp that indicates when the model was created.
*/
CreationTime: Timestamp;
}
export type ModelSummaryList = ModelSummary[];
export type NameContains = string;
export interface NestedFilters {
/**
* The name of the property to use in the nested filters. The value must match a listed property name, such as InputDataConfig .
*/
NestedPropertyName: ResourcePropertyName;
/**
* A list of filters. Each filter acts on a property. Filters must contain at least one Filters value. For example, a NestedFilters call might include a filter on the PropertyName parameter of the InputDataConfig property: InputDataConfig.DataSource.S3DataSource.S3Uri.
*/
Filters: FilterList;
}
export type NestedFiltersList = NestedFilters[];
export type NetworkInterfaceId = string;
export type NextToken = string;
export type NotebookInstanceAcceleratorType = "ml.eia1.medium"|"ml.eia1.large"|"ml.eia1.xlarge"|"ml.eia2.medium"|"ml.eia2.large"|"ml.eia2.xlarge"|string;
export type NotebookInstanceAcceleratorTypes = NotebookInstanceAcceleratorType[];
export type NotebookInstanceArn = string;
export type NotebookInstanceLifecycleConfigArn = string;
export type NotebookInstanceLifecycleConfigContent = string;
export type NotebookInstanceLifecycleConfigList = NotebookInstanceLifecycleHook[];
export type NotebookInstanceLifecycleConfigName = string;
export type NotebookInstanceLifecycleConfigNameContains = string;
export type NotebookInstanceLifecycleConfigSortKey = "Name"|"CreationTime"|"LastModifiedTime"|string;
export type NotebookInstanceLifecycleConfigSortOrder = "Ascending"|"Descending"|string;
export interface NotebookInstanceLifecycleConfigSummary {
/**
* The name of the lifecycle configuration.
*/
NotebookInstanceLifecycleConfigName: NotebookInstanceLifecycleConfigName;
/**
* The Amazon Resource Name (ARN) of the lifecycle configuration.
*/
NotebookInstanceLifecycleConfigArn: NotebookInstanceLifecycleConfigArn;
/**
* A timestamp that tells when the lifecycle configuration was created.
*/
CreationTime?: CreationTime;
/**
* A timestamp that tells when the lifecycle configuration was last modified.
*/
LastModifiedTime?: LastModifiedTime;
}
export type NotebookInstanceLifecycleConfigSummaryList = NotebookInstanceLifecycleConfigSummary[];
export interface NotebookInstanceLifecycleHook {
/**
* A base64-encoded string that contains a shell script for a notebook instance lifecycle configuration.
*/
Content?: NotebookInstanceLifecycleConfigContent;
}
export type NotebookInstanceName = string;
export type NotebookInstanceNameContains = string;
export type NotebookInstanceSortKey = "Name"|"CreationTime"|"Status"|string;
export type NotebookInstanceSortOrder = "Ascending"|"Descending"|string;
export type NotebookInstanceStatus = "Pending"|"InService"|"Stopping"|"Stopped"|"Failed"|"Deleting"|"Updating"|string;
export interface NotebookInstanceSummary {
/**
* The name of the notebook instance that you want a summary for.
*/
NotebookInstanceName: NotebookInstanceName;
/**
* The Amazon Resource Name (ARN) of the notebook instance.
*/
NotebookInstanceArn: NotebookInstanceArn;
/**
* The status of the notebook instance.
*/
NotebookInstanceStatus?: NotebookInstanceStatus;
/**
* The URL that you use to connect to the Jupyter instance running in your notebook instance.
*/
Url?: NotebookInstanceUrl;
/**
* The type of ML compute instance that the notebook instance is running on.
*/
InstanceType?: InstanceType;
/**
* A timestamp that shows when the notebook instance was created.
*/
CreationTime?: CreationTime;
/**
* A timestamp that shows when the notebook instance was last modified.
*/
LastModifiedTime?: LastModifiedTime;
/**
* The name of a notebook instance lifecycle configuration associated with this notebook instance. For information about notebook instance lifestyle configurations, see Step 2.1: (Optional) Customize a Notebook Instance.
*/
NotebookInstanceLifecycleConfigName?: NotebookInstanceLifecycleConfigName;
/**
* The Git repository associated with the notebook instance as its default code repository. This can be either the name of a Git repository stored as a resource in your account, or the URL of a Git repository in AWS CodeCommit or in any other Git repository. When you open a notebook instance, it opens in the directory that contains this repository. For more information, see Associating Git Repositories with Amazon SageMaker Notebook Instances.
*/
DefaultCodeRepository?: CodeRepositoryNameOrUrl;
/**
* An array of up to three Git repositories associated with the notebook instance. These can be either the names of Git repositories stored as resources in your account, or the URL of Git repositories in AWS CodeCommit or in any other Git repository. These repositories are cloned at the same level as the default repository of your notebook instance. For more information, see Associating Git Repositories with Amazon SageMaker Notebook Instances.
*/
AdditionalCodeRepositories?: AdditionalCodeRepositoryNamesOrUrls;
}
export type NotebookInstanceSummaryList = NotebookInstanceSummary[];
export type NotebookInstanceUrl = string;
export type NotebookInstanceVolumeSizeInGB = number;
export interface NotificationConfiguration {
/**
* The ARN for the SNS topic to which notifications should be published.
*/
NotificationTopicArn?: NotificationTopicArn;
}
export type NotificationTopicArn = string;
export type NumberOfHumanWorkersPerDataObject = number;
export type ObjectiveStatus = "Succeeded"|"Pending"|"Failed"|string;
export type ObjectiveStatusCounter = number;
export interface ObjectiveStatusCounters {
/**
* The number of training jobs whose final objective metric was evaluated by the hyperparameter tuning job and used in the hyperparameter tuning process.
*/
Succeeded?: ObjectiveStatusCounter;
/**
* The number of training jobs that are in progress and pending evaluation of their final objective metric.
*/
Pending?: ObjectiveStatusCounter;
/**
* The number of training jobs whose final objective metric was not evaluated and used in the hyperparameter tuning process. This typically occurs when the training job failed or did not emit an objective metric.
*/
Failed?: ObjectiveStatusCounter;
}
export type Operator = "Equals"|"NotEquals"|"GreaterThan"|"GreaterThanOrEqualTo"|"LessThan"|"LessThanOrEqualTo"|"Contains"|string;
export type OrderKey = "Ascending"|"Descending"|string;
export interface OutputConfig {
/**
* Identifies the S3 path where you want Amazon SageMaker to store the model artifacts. For example, s3://bucket-name/key-name-prefix.
*/
S3OutputLocation: S3Uri;
/**
* Identifies the device that you want to run your model on after it has been compiled. For example: ml_c5.
*/
TargetDevice: TargetDevice;
}
export interface OutputDataConfig {
/**
* The AWS Key Management Service (AWS KMS) key that Amazon SageMaker uses to encrypt the model artifacts at rest using Amazon S3 server-side encryption. The KmsKeyId can be any of the following formats: // KMS Key ID "1234abcd-12ab-34cd-56ef-1234567890ab" // Amazon Resource Name (ARN) of a KMS Key "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab" // KMS Key Alias "alias/ExampleAlias" // Amazon Resource Name (ARN) of a KMS Key Alias "arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias" If you use a KMS key ID or an alias of your master key, the Amazon SageMaker execution role must include permissions to call kms:Encrypt. If you don't provide a KMS key ID, Amazon SageMaker uses the default KMS key for Amazon S3 for your role's account. Amazon SageMaker uses server-side encryption with KMS-managed keys for OutputDataConfig. If you use a bucket policy with an s3:PutObject permission that only allows objects with server-side encryption, set the condition key of s3:x-amz-server-side-encryption to "aws:kms". For more information, see KMS-Managed Encryption Keys in the Amazon Simple Storage Service Developer Guide. The KMS key policy must grant permission to the IAM role that you specify in your CreateTrainingJob, CreateTransformJob, or CreateHyperParameterTuningJob requests. For more information, see Using Key Policies in AWS KMS in the AWS Key Management Service Developer Guide.
*/
KmsKeyId?: KmsKeyId;
/**
* Identifies the S3 path where you want Amazon SageMaker to store the model artifacts. For example, s3://bucket-name/key-name-prefix.
*/
S3OutputPath: S3Uri;
}
export type PaginationToken = string;
export type ParameterKey = string;
export type ParameterName = string;
export interface ParameterRange {
/**
* A IntegerParameterRangeSpecification object that defines the possible values for an integer hyperparameter.
*/
IntegerParameterRangeSpecification?: IntegerParameterRangeSpecification;
/**
* A ContinuousParameterRangeSpecification object that defines the possible values for a continuous hyperparameter.
*/
ContinuousParameterRangeSpecification?: ContinuousParameterRangeSpecification;
/**
* A CategoricalParameterRangeSpecification object that defines the possible values for a categorical hyperparameter.
*/
CategoricalParameterRangeSpecification?: CategoricalParameterRangeSpecification;
}
export interface ParameterRanges {
/**
* The array of IntegerParameterRange objects that specify ranges of integer hyperparameters that a hyperparameter tuning job searches.
*/
IntegerParameterRanges?: IntegerParameterRanges;
/**
* The array of ContinuousParameterRange objects that specify ranges of continuous hyperparameters that a hyperparameter tuning job searches.
*/
ContinuousParameterRanges?: ContinuousParameterRanges;
/**
* The array of CategoricalParameterRange objects that specify ranges of categorical hyperparameters that a hyperparameter tuning job searches.
*/
CategoricalParameterRanges?: CategoricalParameterRanges;
}
export type ParameterType = "Integer"|"Continuous"|"Categorical"|"FreeText"|string;
export type ParameterValue = string;
export type ParameterValues = ParameterValue[];
export interface ParentHyperParameterTuningJob {
/**
* The name of the hyperparameter tuning job to be used as a starting point for a new hyperparameter tuning job.
*/
HyperParameterTuningJobName?: HyperParameterTuningJobName;
}
export type ParentHyperParameterTuningJobs = ParentHyperParameterTuningJob[];
export type ProductId = string;
export type ProductListings = String[];
export interface ProductionVariant {
/**
* The name of the production variant.
*/
VariantName: VariantName;
/**
* The name of the model that you want to host. This is the name that you specified when creating the model.
*/
ModelName: ModelName;
/**
* Number of instances to launch initially.
*/
InitialInstanceCount: TaskCount;
/**
* The ML compute instance type.
*/
InstanceType: ProductionVariantInstanceType;
/**
* Determines initial traffic distribution among all of the models that you specify in the endpoint configuration. The traffic to a production variant is determined by the ratio of the VariantWeight to the sum of all VariantWeight values across all ProductionVariants. If unspecified, it defaults to 1.0.
*/
InitialVariantWeight?: VariantWeight;
/**
* The size of the Elastic Inference (EI) instance to use for the production variant. EI instances provide on-demand GPU computing for inference. For more information, see Using Elastic Inference in Amazon SageMaker.
*/
AcceleratorType?: ProductionVariantAcceleratorType;
}
export type ProductionVariantAcceleratorType = "ml.eia1.medium"|"ml.eia1.large"|"ml.eia1.xlarge"|"ml.eia2.medium"|"ml.eia2.large"|"ml.eia2.xlarge"|string;
export type ProductionVariantInstanceType = "ml.t2.medium"|"ml.t2.large"|"ml.t2.xlarge"|"ml.t2.2xlarge"|"ml.m4.xlarge"|"ml.m4.2xlarge"|"ml.m4.4xlarge"|"ml.m4.10xlarge"|"ml.m4.16xlarge"|"ml.m5.large"|"ml.m5.xlarge"|"ml.m5.2xlarge"|"ml.m5.4xlarge"|"ml.m5.12xlarge"|"ml.m5.24xlarge"|"ml.m5d.large"|"ml.m5d.xlarge"|"ml.m5d.2xlarge"|"ml.m5d.4xlarge"|"ml.m5d.12xlarge"|"ml.m5d.24xlarge"|"ml.c4.large"|"ml.c4.xlarge"|"ml.c4.2xlarge"|"ml.c4.4xlarge"|"ml.c4.8xlarge"|"ml.p2.xlarge"|"ml.p2.8xlarge"|"ml.p2.16xlarge"|"ml.p3.2xlarge"|"ml.p3.8xlarge"|"ml.p3.16xlarge"|"ml.c5.large"|"ml.c5.xlarge"|"ml.c5.2xlarge"|"ml.c5.4xlarge"|"ml.c5.9xlarge"|"ml.c5.18xlarge"|"ml.c5d.large"|"ml.c5d.xlarge"|"ml.c5d.2xlarge"|"ml.c5d.4xlarge"|"ml.c5d.9xlarge"|"ml.c5d.18xlarge"|"ml.g4dn.xlarge"|"ml.g4dn.2xlarge"|"ml.g4dn.4xlarge"|"ml.g4dn.8xlarge"|"ml.g4dn.12xlarge"|"ml.g4dn.16xlarge"|"ml.r5.large"|"ml.r5.xlarge"|"ml.r5.2xlarge"|"ml.r5.4xlarge"|"ml.r5.12xlarge"|"ml.r5.24xlarge"|"ml.r5d.large"|"ml.r5d.xlarge"|"ml.r5d.2xlarge"|"ml.r5d.4xlarge"|"ml.r5d.12xlarge"|"ml.r5d.24xlarge"|string;
export type ProductionVariantList = ProductionVariant[];
export interface ProductionVariantSummary {
/**
* The name of the variant.
*/
VariantName: VariantName;
/**
* An array of DeployedImage objects that specify the Amazon EC2 Container Registry paths of the inference images deployed on instances of this ProductionVariant.
*/
DeployedImages?: DeployedImages;
/**
* The weight associated with the variant.
*/
CurrentWeight?: VariantWeight;
/**
* The requested weight, as specified in the UpdateEndpointWeightsAndCapacities request.
*/
DesiredWeight?: VariantWeight;
/**
* The number of instances associated with the variant.
*/
CurrentInstanceCount?: TaskCount;
/**
* The number of instances requested in the UpdateEndpointWeightsAndCapacities request.
*/
DesiredInstanceCount?: TaskCount;
}
export type ProductionVariantSummaryList = ProductionVariantSummary[];
export type PropertyNameHint = string;
export interface PropertyNameQuery {
/**
* Text that is part of a property's name. The property names of hyperparameter, metric, and tag key names that begin with the specified text in the PropertyNameHint.
*/
PropertyNameHint: PropertyNameHint;
}
export interface PropertyNameSuggestion {
/**
* A suggested property name based on what you entered in the search textbox in the Amazon SageMaker console.
*/
PropertyName?: ResourcePropertyName;
}
export type PropertyNameSuggestionList = PropertyNameSuggestion[];
export interface PublicWorkforceTaskPrice {
/**
* Defines the amount of money paid to an Amazon Mechanical Turk worker in United States dollars.
*/
AmountInUsd?: USD;
}
export type RealtimeInferenceInstanceTypes = ProductionVariantInstanceType[];
export type RecordWrapper = "None"|"RecordIO"|string;
export interface RenderUiTemplateRequest {
/**
* A Template object containing the worker UI template to render.
*/
UiTemplate: UiTemplate;
/**
* A RenderableTask object containing a representative task to render.
*/
Task: RenderableTask;
/**
* The Amazon Resource Name (ARN) that has access to the S3 objects that are used by the template.
*/
RoleArn: RoleArn;
}
export interface RenderUiTemplateResponse {
/**
* A Liquid template that renders the HTML for the worker UI.
*/
RenderedContent: String;
/**
* A list of one or more RenderingError objects if any were encountered while rendering the template. If there were no errors, the list is empty.
*/
Errors: RenderingErrorList;
}
export interface RenderableTask {
/**
* A JSON object that contains values for the variables defined in the template. It is made available to the template under the substitution variable task.input. For example, if you define a variable task.input.text in your template, you can supply the variable in the JSON object as "text": "sample text".
*/
Input: TaskInput;
}
export interface RenderingError {
/**
* A unique identifier for a specific class of errors.
*/
Code: String;
/**
* A human-readable message describing the error.
*/
Message: String;
}
export type RenderingErrorList = RenderingError[];
export type ResourceArn = string;
export interface ResourceConfig {
/**
* The ML compute instance type.
*/
InstanceType: TrainingInstanceType;
/**
* The number of ML compute instances to use. For distributed training, provide a value greater than 1.
*/
InstanceCount: TrainingInstanceCount;
/**
* The size of the ML storage volume that you want to provision. ML storage volumes store model artifacts and incremental states. Training algorithms might also use the ML storage volume for scratch space. If you want to store the training data in the ML storage volume, choose File as the TrainingInputMode in the algorithm specification. You must specify sufficient ML storage for your scenario. Amazon SageMaker supports only the General Purpose SSD (gp2) ML storage volume type.
*/
VolumeSizeInGB: VolumeSizeInGB;
/**
* The AWS Key Management Service (AWS KMS) key that Amazon SageMaker uses to encrypt data on the storage volume attached to the ML compute instance(s) that run the training job. The VolumeKmsKeyId can be any of the following formats: // KMS Key ID "1234abcd-12ab-34cd-56ef-1234567890ab" // Amazon Resource Name (ARN) of a KMS Key "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"
*/
VolumeKmsKeyId?: KmsKeyId;
}
export interface ResourceLimits {
/**
* The maximum number of training jobs that a hyperparameter tuning job can launch.
*/
MaxNumberOfTrainingJobs: MaxNumberOfTrainingJobs;
/**
* The maximum number of concurrent training jobs that a hyperparameter tuning job can launch.
*/
MaxParallelTrainingJobs: MaxParallelTrainingJobs;
}
export type ResourcePropertyName = string;
export type ResourceType = "TrainingJob"|string;
export type ResponseMIMEType = string;
export type ResponseMIMETypes = ResponseMIMEType[];
export type RoleArn = string;
export type RootAccess = "Enabled"|"Disabled"|string;
export type S3DataDistribution = "FullyReplicated"|"ShardedByS3Key"|string;
export interface S3DataSource {
/**
* If you choose S3Prefix, S3Uri identifies a key name prefix. Amazon SageMaker uses all objects that match the specified key name prefix for model training. If you choose ManifestFile, S3Uri identifies an object that is a manifest file containing a list of object keys that you want Amazon SageMaker to use for model training. If you choose AugmentedManifestFile, S3Uri identifies an object that is an augmented manifest file in JSON lines format. This file contains the data you want to use for model training. AugmentedManifestFile can only be used if the Channel's input mode is Pipe.
*/
S3DataType: S3DataType;
/**
* Depending on the value specified for the S3DataType, identifies either a key name prefix or a manifest. For example: A key name prefix might look like this: s3://bucketname/exampleprefix. A manifest might look like this: s3://bucketname/example.manifest The manifest is an S3 object which is a JSON file with the following format: [ {"prefix": "s3://customer_bucket/some/prefix/"}, "relative/path/to/custdata-1", "relative/path/custdata-2", ... ] The preceding JSON matches the following s3Uris: s3://customer_bucket/some/prefix/relative/path/to/custdata-1 s3://customer_bucket/some/prefix/relative/path/custdata-2 ... The complete set of s3uris in this manifest is the input data for the channel for this datasource. The object that each s3uris points to must be readable by the IAM role that Amazon SageMaker uses to perform tasks on your behalf.
*/
S3Uri: S3Uri;
/**
* If you want Amazon SageMaker to replicate the entire dataset on each ML compute instance that is launched for model training, specify FullyReplicated. If you want Amazon SageMaker to replicate a subset of data on each ML compute instance that is launched for model training, specify ShardedByS3Key. If there are n ML compute instances launched for a training job, each instance gets approximately 1/n of the number of S3 objects. In this case, model training on each machine uses only the subset of training data. Don't choose more ML compute instances for training than available S3 objects. If you do, some nodes won't get any data and you will pay for nodes that aren't getting any training data. This applies in both File and Pipe modes. Keep this in mind when developing algorithms. In distributed training, where you use multiple ML compute EC2 instances, you might choose ShardedByS3Key. If the algorithm requires copying training data to the ML storage volume (when TrainingInputMode is set to File), this copies 1/n of the number of objects.
*/
S3DataDistributionType?: S3DataDistribution;
/**
* A list of one or more attribute names to use that are found in a specified augmented manifest file.
*/
AttributeNames?: AttributeNames;
}
export type S3DataType = "ManifestFile"|"S3Prefix"|"AugmentedManifestFile"|string;
export type S3Uri = string;
export interface SearchExpression {
/**
* A list of filter objects.
*/
Filters?: FilterList;
/**
* A list of nested filter objects.
*/
NestedFilters?: NestedFiltersList;
/**
* A list of search expression objects.
*/
SubExpressions?: SearchExpressionList;
/**
* A Boolean operator used to evaluate the search expression. If you want every conditional statement in all lists to be satisfied for the entire search expression to be true, specify And. If only a single conditional statement needs to be true for the entire search expression to be true, specify Or. The default value is And.
*/
Operator?: BooleanOperator;
}
export type SearchExpressionList = SearchExpression[];
export interface SearchRecord {
/**
* A TrainingJob object that is returned as part of a Search request.
*/
TrainingJob?: TrainingJob;
}
export interface SearchRequest {
/**
* The name of the Amazon SageMaker resource to search for. Currently, the only valid Resource value is TrainingJob.
*/
Resource: ResourceType;
/**
* A Boolean conditional statement. Resource objects must satisfy this condition to be included in search results. You must provide at least one subexpression, filter, or nested filter. The maximum number of recursive SubExpressions, NestedFilters, and Filters that can be included in a SearchExpression object is 50.
*/
SearchExpression?: SearchExpression;
/**
* The name of the resource property used to sort the SearchResults. The default is LastModifiedTime.
*/
SortBy?: ResourcePropertyName;
/**
* How SearchResults are ordered. Valid values are Ascending or Descending. The default is Descending.
*/
SortOrder?: SearchSortOrder;
/**
* If more than MaxResults resource objects match the specified SearchExpression, the SearchResponse includes a NextToken. The NextToken can be passed to the next SearchRequest to continue retrieving results for the specified SearchExpression and Sort parameters.
*/
NextToken?: NextToken;
/**
* The maximum number of results to return in a SearchResponse.
*/
MaxResults?: MaxResults;
}
export interface SearchResponse {
/**
* A list of SearchResult objects.
*/
Results?: SearchResultsList;
/**
* If the result of the previous Search request was truncated, the response includes a NextToken. To retrieve the next set of results, use the token in the next request.
*/
NextToken?: NextToken;
}
export type SearchResultsList = SearchRecord[];
export type SearchSortOrder = "Ascending"|"Descending"|string;
export type SecondaryStatus = "Starting"|"LaunchingMLInstances"|"PreparingTrainingStack"|"Downloading"|"DownloadingTrainingImage"|"Training"|"Uploading"|"Stopping"|"Stopped"|"MaxRuntimeExceeded"|"Completed"|"Failed"|"Interrupted"|"MaxWaitTimeExceeded"|string;
export interface SecondaryStatusTransition {
/**
* Contains a secondary status information from a training job. Status might be one of the following secondary statuses: InProgress Starting - Starting the training job. Downloading - An optional stage for algorithms that support File training input mode. It indicates that data is being downloaded to the ML storage volumes. Training - Training is in progress. Uploading - Training is complete and the model artifacts are being uploaded to the S3 location. Completed Completed - The training job has completed. Failed Failed - The training job has failed. The reason for the failure is returned in the FailureReason field of DescribeTrainingJobResponse. Stopped MaxRuntimeExceeded - The job stopped because it exceeded the maximum allowed runtime. Stopped - The training job has stopped. Stopping Stopping - Stopping the training job. We no longer support the following secondary statuses: LaunchingMLInstances PreparingTrainingStack DownloadingTrainingImage
*/
Status: SecondaryStatus;
/**
* A timestamp that shows when the training job transitioned to the current secondary status state.
*/
StartTime: Timestamp;
/**
* A timestamp that shows when the training job transitioned out of this secondary status state into another secondary status state or when the training job has ended.
*/
EndTime?: Timestamp;
/**
* A detailed description of the progress within a secondary status. Amazon SageMaker provides secondary statuses and status messages that apply to each of them: Starting Starting the training job. Launching requested ML instances. Insufficient capacity error from EC2 while launching instances, retrying! Launched instance was unhealthy, replacing it! Preparing the instances for training. Training Downloading the training image. Training image download completed. Training in progress. Status messages are subject to change. Therefore, we recommend not including them in code that programmatically initiates actions. For examples, don't use status messages in if statements. To have an overview of your training job's progress, view TrainingJobStatus and SecondaryStatus in DescribeTrainingJob, and StatusMessage together. For example, at the start of a training job, you might see the following: TrainingJobStatus - InProgress SecondaryStatus - Training StatusMessage - Downloading the training image
*/
StatusMessage?: StatusMessage;
}
export type SecondaryStatusTransitions = SecondaryStatusTransition[];
export type SecretArn = string;
export type SecurityGroupId = string;
export type SecurityGroupIds = SecurityGroupId[];
export type Seed = number;
export type SessionExpirationDurationInSeconds = number;
export interface ShuffleConfig {
/**
* Determines the shuffling order in ShuffleConfig value.
*/
Seed: Seed;
}
export type SortBy = "Name"|"CreationTime"|"Status"|string;
export type SortOrder = "Ascending"|"Descending"|string;
export interface SourceAlgorithm {
/**
* The Amazon S3 path where the model artifacts, which result from model training, are stored. This path must point to a single gzip compressed tar archive (.tar.gz suffix).
*/
ModelDataUrl?: Url;
/**
* The name of an algorithm that was used to create the model package. The algorithm must be either an algorithm resource in your Amazon SageMaker account or an algorithm in AWS Marketplace that you are subscribed to.
*/
AlgorithmName: ArnOrName;
}
export type SourceAlgorithmList = SourceAlgorithm[];
export interface SourceAlgorithmSpecification {
/**
* A list of the algorithms that were used to create a model package.
*/
SourceAlgorithms: SourceAlgorithmList;
}
export type SplitType = "None"|"Line"|"RecordIO"|"TFRecord"|string;
export interface StartNotebookInstanceInput {
/**
* The name of the notebook instance to start.
*/
NotebookInstanceName: NotebookInstanceName;
}
export type StatusMessage = string;
export interface StopCompilationJobRequest {
/**
* The name of the model compilation job to stop.
*/
CompilationJobName: EntityName;
}
export interface StopHyperParameterTuningJobRequest {
/**
* The name of the tuning job to stop.
*/
HyperParameterTuningJobName: HyperParameterTuningJobName;
}
export interface StopLabelingJobRequest {
/**
* The name of the labeling job to stop.
*/
LabelingJobName: LabelingJobName;
}
export interface StopNotebookInstanceInput {
/**
* The name of the notebook instance to terminate.
*/
NotebookInstanceName: NotebookInstanceName;
}
export interface StopTrainingJobRequest {
/**
* The name of the training job to stop.
*/
TrainingJobName: TrainingJobName;
}
export interface StopTransformJobRequest {
/**
* The name of the transform job to stop.
*/
TransformJobName: TransformJobName;
}
export interface StoppingCondition {
/**
* The maximum length of time, in seconds, that the training or compilation job can run. If job does not complete during this time, Amazon SageMaker ends the job. If value is not specified, default value is 1 day. The maximum value is 28 days.
*/
MaxRuntimeInSeconds?: MaxRuntimeInSeconds;
/**
* The maximum length of time, in seconds, how long you are willing to wait for a managed spot training job to complete. It is the amount of time spent waiting for Spot capacity plus the amount of time the training job runs. It must be equal to or greater than MaxRuntimeInSeconds.
*/
MaxWaitTimeInSeconds?: MaxWaitTimeInSeconds;
}
export type String = string;
export type String200 = string;
export type SubnetId = string;
export type Subnets = SubnetId[];
export interface SubscribedWorkteam {
/**
* The Amazon Resource Name (ARN) of the vendor that you have subscribed.
*/
WorkteamArn: WorkteamArn;
/**
* The title of the service provided by the vendor in the Amazon Marketplace.
*/
MarketplaceTitle?: String200;
/**
* The name of the vendor in the Amazon Marketplace.
*/
SellerName?: String;
/**
* The description of the vendor from the Amazon Marketplace.
*/
MarketplaceDescription?: String200;
/**
*
*/
ListingId?: String;
}
export type SubscribedWorkteams = SubscribedWorkteam[];
export type Success = boolean;
export interface SuggestionQuery {
/**
* A type of SuggestionQuery. Defines a property name hint. Only property names that match the specified hint are included in the response.
*/
PropertyNameQuery?: PropertyNameQuery;
}
export interface Tag {
/**
* The tag key.
*/
Key: TagKey;
/**
* The tag value.
*/
Value: TagValue;
}
export type TagKey = string;
export type TagKeyList = TagKey[];
export type TagList = Tag[];
export type TagValue = string;
export type TargetDevice = "lambda"|"ml_m4"|"ml_m5"|"ml_c4"|"ml_c5"|"ml_p2"|"ml_p3"|"jetson_tx1"|"jetson_tx2"|"jetson_nano"|"rasp3b"|"deeplens"|"rk3399"|"rk3288"|"aisage"|"sbe_c"|"qcs605"|"qcs603"|string;
export type TaskAvailabilityLifetimeInSeconds = number;
export type TaskCount = number;
export type TaskDescription = string;
export type TaskInput = string;
export type TaskKeyword = string;
export type TaskKeywords = TaskKeyword[];
export type TaskTimeLimitInSeconds = number;
export type TaskTitle = string;
export type TemplateContent = string;
export type TenthFractionsOfACent = number;
export type Timestamp = Date;
export type TrainingInputMode = "Pipe"|"File"|string;
export type TrainingInstanceCount = number;
export type TrainingInstanceType = "ml.m4.xlarge"|"ml.m4.2xlarge"|"ml.m4.4xlarge"|"ml.m4.10xlarge"|"ml.m4.16xlarge"|"ml.m5.large"|"ml.m5.xlarge"|"ml.m5.2xlarge"|"ml.m5.4xlarge"|"ml.m5.12xlarge"|"ml.m5.24xlarge"|"ml.c4.xlarge"|"ml.c4.2xlarge"|"ml.c4.4xlarge"|"ml.c4.8xlarge"|"ml.p2.xlarge"|"ml.p2.8xlarge"|"ml.p2.16xlarge"|"ml.p3.2xlarge"|"ml.p3.8xlarge"|"ml.p3.16xlarge"|"ml.p3dn.24xlarge"|"ml.c5.xlarge"|"ml.c5.2xlarge"|"ml.c5.4xlarge"|"ml.c5.9xlarge"|"ml.c5.18xlarge"|string;
export type TrainingInstanceTypes = TrainingInstanceType[];
export interface TrainingJob {
/**
* The name of the training job.
*/
TrainingJobName?: TrainingJobName;
/**
* The Amazon Resource Name (ARN) of the training job.
*/
TrainingJobArn?: TrainingJobArn;
/**
* The Amazon Resource Name (ARN) of the associated hyperparameter tuning job if the training job was launched by a hyperparameter tuning job.
*/
TuningJobArn?: HyperParameterTuningJobArn;
/**
* The Amazon Resource Name (ARN) of the labeling job.
*/
LabelingJobArn?: LabelingJobArn;
/**
* Information about the Amazon S3 location that is configured for storing model artifacts.
*/
ModelArtifacts?: ModelArtifacts;
/**
* The status of the training job. Training job statuses are: InProgress - The training is in progress. Completed - The training job has completed. Failed - The training job has failed. To see the reason for the failure, see the FailureReason field in the response to a DescribeTrainingJobResponse call. Stopping - The training job is stopping. Stopped - The training job has stopped. For more detailed information, see SecondaryStatus.
*/
TrainingJobStatus?: TrainingJobStatus;
/**
* Provides detailed information about the state of the training job. For detailed information about the secondary status of the training job, see StatusMessage under SecondaryStatusTransition. Amazon SageMaker provides primary statuses and secondary statuses that apply to each of them: InProgress Starting - Starting the training job. Downloading - An optional stage for algorithms that support File training input mode. It indicates that data is being downloaded to the ML storage volumes. Training - Training is in progress. Uploading - Training is complete and the model artifacts are being uploaded to the S3 location. Completed Completed - The training job has completed. Failed Failed - The training job has failed. The reason for the failure is returned in the FailureReason field of DescribeTrainingJobResponse. Stopped MaxRuntimeExceeded - The job stopped because it exceeded the maximum allowed runtime. Stopped - The training job has stopped. Stopping Stopping - Stopping the training job. Valid values for SecondaryStatus are subject to change. We no longer support the following secondary statuses: LaunchingMLInstances PreparingTrainingStack DownloadingTrainingImage
*/
SecondaryStatus?: SecondaryStatus;
/**
* If the training job failed, the reason it failed.
*/
FailureReason?: FailureReason;
/**
* Algorithm-specific parameters.
*/
HyperParameters?: HyperParameters;
/**
* Information about the algorithm used for training, and algorithm metadata.
*/
AlgorithmSpecification?: AlgorithmSpecification;
/**
* The AWS Identity and Access Management (IAM) role configured for the training job.
*/
RoleArn?: RoleArn;
/**
* An array of Channel objects that describes each data input channel.
*/
InputDataConfig?: InputDataConfig;
/**
* The S3 path where model artifacts that you configured when creating the job are stored. Amazon SageMaker creates subfolders for model artifacts.
*/
OutputDataConfig?: OutputDataConfig;
/**
* Resources, including ML compute instances and ML storage volumes, that are configured for model training.
*/
ResourceConfig?: ResourceConfig;
/**
* A VpcConfig object that specifies the VPC that this training job has access to. For more information, see Protect Training Jobs by Using an Amazon Virtual Private Cloud.
*/
VpcConfig?: VpcConfig;
/**
* Specifies a limit to how long a model training job can run. When the job reaches the time limit, Amazon SageMaker ends the training job. Use this API to cap model training costs. To stop a job, Amazon SageMaker sends the algorithm the SIGTERM signal, which delays job termination for 120 seconds. Algorithms can use this 120-second window to save the model artifacts, so the results of training are not lost.
*/
StoppingCondition?: StoppingCondition;
/**
* A timestamp that indicates when the training job was created.
*/
CreationTime?: Timestamp;
/**
* Indicates the time when the training job starts on training instances. You are billed for the time interval between this time and the value of TrainingEndTime. The start time in CloudWatch Logs might be later than this time. The difference is due to the time it takes to download the training data and to the size of the training container.
*/
TrainingStartTime?: Timestamp;
/**
* Indicates the time when the training job ends on training instances. You are billed for the time interval between the value of TrainingStartTime and this time. For successful jobs and stopped jobs, this is the time after model artifacts are uploaded. For failed jobs, this is the time when Amazon SageMaker detects a job failure.
*/
TrainingEndTime?: Timestamp;
/**
* A timestamp that indicates when the status of the training job was last modified.
*/
LastModifiedTime?: Timestamp;
/**
* A history of all of the secondary statuses that the training job has transitioned through.
*/
SecondaryStatusTransitions?: SecondaryStatusTransitions;
/**
* A list of final metric values that are set when the training job completes. Used only if the training job was configured to use metrics.
*/
FinalMetricDataList?: FinalMetricDataList;
/**
* If the TrainingJob was created with network isolation, the value is set to true. If network isolation is enabled, nodes can't communicate beyond the VPC they run in.
*/
EnableNetworkIsolation?: Boolean;
/**
* To encrypt all communications between ML compute instances in distributed training, choose True. Encryption provides greater security for distributed training, but training might take longer. How long it takes depends on the amount of communication between compute instances, especially if you use a deep learning algorithm in distributed training.
*/
EnableInterContainerTrafficEncryption?: Boolean;
/**
* An array of key-value pairs. For more information, see Using Cost Allocation Tags in the AWS Billing and Cost Management User Guide.
*/
Tags?: TagList;
}
export type TrainingJobArn = string;
export interface TrainingJobDefinition {
/**
* The input mode used by the algorithm for the training job. For the input modes that Amazon SageMaker algorithms support, see Algorithms. If an algorithm supports the File input mode, Amazon SageMaker downloads the training data from S3 to the provisioned ML storage Volume, and mounts the directory to docker volume for training container. If an algorithm supports the Pipe input mode, Amazon SageMaker streams data directly from S3 to the container.
*/
TrainingInputMode: TrainingInputMode;
/**
* The hyperparameters used for the training job.
*/
HyperParameters?: HyperParameters;
/**
* An array of Channel objects, each of which specifies an input source.
*/
InputDataConfig: InputDataConfig;
/**
* the path to the S3 bucket where you want to store model artifacts. Amazon SageMaker creates subfolders for the artifacts.
*/
OutputDataConfig: OutputDataConfig;
/**
* The resources, including the ML compute instances and ML storage volumes, to use for model training.
*/
ResourceConfig: ResourceConfig;
/**
* Specifies a limit to how long a model training job can run. When the job reaches the time limit, Amazon SageMaker ends the training job. Use this API to cap model training costs. To stop a job, Amazon SageMaker sends the algorithm the SIGTERM signal, which delays job termination for 120 seconds. Algorithms can use this 120-second window to save the model artifacts.
*/
StoppingCondition: StoppingCondition;
}
export type TrainingJobEarlyStoppingType = "Off"|"Auto"|string;
export type TrainingJobName = string;
export type TrainingJobSortByOptions = "Name"|"CreationTime"|"Status"|"FinalObjectiveMetricValue"|string;
export type TrainingJobStatus = "InProgress"|"Completed"|"Failed"|"Stopping"|"Stopped"|string;
export type TrainingJobStatusCounter = number;
export interface TrainingJobStatusCounters {
/**
* The number of completed training jobs launched by the hyperparameter tuning job.
*/
Completed?: TrainingJobStatusCounter;
/**
* The number of in-progress training jobs launched by a hyperparameter tuning job.
*/
InProgress?: TrainingJobStatusCounter;
/**
* The number of training jobs that failed, but can be retried. A failed training job can be retried only if it failed because an internal service error occurred.
*/
RetryableError?: TrainingJobStatusCounter;
/**
* The number of training jobs that failed and can't be retried. A failed training job can't be retried if it failed because a client error occurred.
*/
NonRetryableError?: TrainingJobStatusCounter;
/**
* The number of training jobs launched by a hyperparameter tuning job that were manually stopped.
*/
Stopped?: TrainingJobStatusCounter;
}
export type TrainingJobSummaries = TrainingJobSummary[];
export interface TrainingJobSummary {
/**
* The name of the training job that you want a summary for.
*/
TrainingJobName: TrainingJobName;
/**
* The Amazon Resource Name (ARN) of the training job.
*/
TrainingJobArn: TrainingJobArn;
/**
* A timestamp that shows when the training job was created.
*/
CreationTime: Timestamp;
/**
* A timestamp that shows when the training job ended. This field is set only if the training job has one of the terminal statuses (Completed, Failed, or Stopped).
*/
TrainingEndTime?: Timestamp;
/**
* Timestamp when the training job was last modified.
*/
LastModifiedTime?: Timestamp;
/**
* The status of the training job.
*/
TrainingJobStatus: TrainingJobStatus;
}
export interface TrainingSpecification {
/**
* The Amazon ECR registry path of the Docker image that contains the training algorithm.
*/
TrainingImage: Image;
/**
* An MD5 hash of the training algorithm that identifies the Docker image used for training.
*/
TrainingImageDigest?: ImageDigest;
/**
* A list of the HyperParameterSpecification objects, that define the supported hyperparameters. This is required if the algorithm supports automatic model tuning.>
*/
SupportedHyperParameters?: HyperParameterSpecifications;
/**
* A list of the instance types that this algorithm can use for training.
*/
SupportedTrainingInstanceTypes: TrainingInstanceTypes;
/**
* Indicates whether the algorithm supports distributed training. If set to false, buyers can’t request more than one instance during training.
*/
SupportsDistributedTraining?: Boolean;
/**
* A list of MetricDefinition objects, which are used for parsing metrics generated by the algorithm.
*/
MetricDefinitions?: MetricDefinitionList;
/**
* A list of ChannelSpecification objects, which specify the input sources to be used by the algorithm.
*/
TrainingChannels: ChannelSpecifications;
/**
* A list of the metrics that the algorithm emits that can be used as the objective metric in a hyperparameter tuning job.
*/
SupportedTuningJobObjectiveMetrics?: HyperParameterTuningJobObjectives;
}
export type TrainingTimeInSeconds = number;
export interface TransformDataSource {
/**
* The S3 location of the data source that is associated with a channel.
*/
S3DataSource: TransformS3DataSource;
}
export type TransformEnvironmentKey = string;
export type TransformEnvironmentMap = {[key: string]: TransformEnvironmentValue};
export type TransformEnvironmentValue = string;
export interface TransformInput {
/**
* Describes the location of the channel data, which is, the S3 location of the input data that the model can consume.
*/
DataSource: TransformDataSource;
/**
* The multipurpose internet mail extension (MIME) type of the data. Amazon SageMaker uses the MIME type with each http call to transfer data to the transform job.
*/
ContentType?: ContentType;
/**
* If your transform data is compressed, specify the compression type. Amazon SageMaker automatically decompresses the data for the transform job accordingly. The default value is None.
*/
CompressionType?: CompressionType;
/**
* The method to use to split the transform job's data files into smaller batches. Splitting is necessary when the total size of each object is too large to fit in a single request. You can also use data splitting to improve performance by processing multiple concurrent mini-batches. The default value for SplitType is None, which indicates that input data files are not split, and request payloads contain the entire contents of an input object. Set the value of this parameter to Line to split records on a newline character boundary. SplitType also supports a number of record-oriented binary data formats. When splitting is enabled, the size of a mini-batch depends on the values of the BatchStrategy and MaxPayloadInMB parameters. When the value of BatchStrategy is MultiRecord, Amazon SageMaker sends the maximum number of records in each request, up to the MaxPayloadInMB limit. If the value of BatchStrategy is SingleRecord, Amazon SageMaker sends individual records in each request. Some data formats represent a record as a binary payload wrapped with extra padding bytes. When splitting is applied to a binary data format, padding is removed if the value of BatchStrategy is set to SingleRecord. Padding is not removed if the value of BatchStrategy is set to MultiRecord. For more information about the RecordIO, see Data Format in the MXNet documentation. For more information about the TFRecord, see Consuming TFRecord data in the TensorFlow documentation.
*/
SplitType?: SplitType;
}
export type TransformInstanceCount = number;
export type TransformInstanceType = "ml.m4.xlarge"|"ml.m4.2xlarge"|"ml.m4.4xlarge"|"ml.m4.10xlarge"|"ml.m4.16xlarge"|"ml.c4.xlarge"|"ml.c4.2xlarge"|"ml.c4.4xlarge"|"ml.c4.8xlarge"|"ml.p2.xlarge"|"ml.p2.8xlarge"|"ml.p2.16xlarge"|"ml.p3.2xlarge"|"ml.p3.8xlarge"|"ml.p3.16xlarge"|"ml.c5.xlarge"|"ml.c5.2xlarge"|"ml.c5.4xlarge"|"ml.c5.9xlarge"|"ml.c5.18xlarge"|"ml.m5.large"|"ml.m5.xlarge"|"ml.m5.2xlarge"|"ml.m5.4xlarge"|"ml.m5.12xlarge"|"ml.m5.24xlarge"|string;
export type TransformInstanceTypes = TransformInstanceType[];
export type TransformJobArn = string;
export interface TransformJobDefinition {
/**
* The maximum number of parallel requests that can be sent to each instance in a transform job. The default value is 1.
*/
MaxConcurrentTransforms?: MaxConcurrentTransforms;
/**
* The maximum payload size allowed, in MB. A payload is the data portion of a record (without metadata).
*/
MaxPayloadInMB?: MaxPayloadInMB;
/**
* A string that determines the number of records included in a single mini-batch. SingleRecord means only one record is used per mini-batch. MultiRecord means a mini-batch is set to contain as many records that can fit within the MaxPayloadInMB limit.
*/
BatchStrategy?: BatchStrategy;
/**
* The environment variables to set in the Docker container. We support up to 16 key and values entries in the map.
*/
Environment?: TransformEnvironmentMap;
/**
* A description of the input source and the way the transform job consumes it.
*/
TransformInput: TransformInput;
/**
* Identifies the Amazon S3 location where you want Amazon SageMaker to save the results from the transform job.
*/
TransformOutput: TransformOutput;
/**
* Identifies the ML compute instances for the transform job.
*/
TransformResources: TransformResources;
}
export type TransformJobName = string;
export type TransformJobStatus = "InProgress"|"Completed"|"Failed"|"Stopping"|"Stopped"|string;
export type TransformJobSummaries = TransformJobSummary[];
export interface TransformJobSummary {
/**
* The name of the transform job.
*/
TransformJobName: TransformJobName;
/**
* The Amazon Resource Name (ARN) of the transform job.
*/
TransformJobArn: TransformJobArn;
/**
* A timestamp that shows when the transform Job was created.
*/
CreationTime: Timestamp;
/**
* Indicates when the transform job ends on compute instances. For successful jobs and stopped jobs, this is the exact time recorded after the results are uploaded. For failed jobs, this is when Amazon SageMaker detected that the job failed.
*/
TransformEndTime?: Timestamp;
/**
* Indicates when the transform job was last modified.
*/
LastModifiedTime?: Timestamp;
/**
* The status of the transform job.
*/
TransformJobStatus: TransformJobStatus;
/**
* If the transform job failed, the reason it failed.
*/
FailureReason?: FailureReason;
}
export interface TransformOutput {
/**
* The Amazon S3 path where you want Amazon SageMaker to store the results of the transform job. For example, s3://bucket-name/key-name-prefix. For every S3 object used as input for the transform job, batch transform stores the transformed data with an .out suffix in a corresponding subfolder in the location in the output prefix. For example, for the input data stored at s3://bucket-name/input-name-prefix/dataset01/data.csv, batch transform stores the transformed data at s3://bucket-name/output-name-prefix/input-name-prefix/data.csv.out. Batch transform doesn't upload partially processed objects. For an input S3 object that contains multiple records, it creates an .out file only if the transform job succeeds on the entire file. When the input contains multiple S3 objects, the batch transform job processes the listed S3 objects and uploads only the output for successfully processed objects. If any object fails in the transform job batch transform marks the job as failed to prompt investigation.
*/
S3OutputPath: S3Uri;
/**
* The MIME type used to specify the output data. Amazon SageMaker uses the MIME type with each http call to transfer data from the transform job.
*/
Accept?: Accept;
/**
* Defines how to assemble the results of the transform job as a single S3 object. Choose a format that is most convenient to you. To concatenate the results in binary format, specify None. To add a newline character at the end of every transformed record, specify Line.
*/
AssembleWith?: AssemblyType;
/**
* The AWS Key Management Service (AWS KMS) key that Amazon SageMaker uses to encrypt the model artifacts at rest using Amazon S3 server-side encryption. The KmsKeyId can be any of the following formats: // KMS Key ID "1234abcd-12ab-34cd-56ef-1234567890ab" // Amazon Resource Name (ARN) of a KMS Key "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab" // KMS Key Alias "alias/ExampleAlias" // Amazon Resource Name (ARN) of a KMS Key Alias "arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias" If you don't provide a KMS key ID, Amazon SageMaker uses the default KMS key for Amazon S3 for your role's account. For more information, see KMS-Managed Encryption Keys in the Amazon Simple Storage Service Developer Guide. The KMS key policy must grant permission to the IAM role that you specify in your CreateTramsformJob request. For more information, see Using Key Policies in AWS KMS in the AWS Key Management Service Developer Guide.
*/
KmsKeyId?: KmsKeyId;
}
export interface TransformResources {
/**
* The ML compute instance type for the transform job. If you are using built-in algorithms to transform moderately sized datasets, we recommend using ml.m4.xlarge or ml.m5.large instance types.
*/
InstanceType: TransformInstanceType;
/**
* The number of ML compute instances to use in the transform job. For distributed transform jobs, specify a value greater than 1. The default value is 1.
*/
InstanceCount: TransformInstanceCount;
/**
* The AWS Key Management Service (AWS KMS) key that Amazon SageMaker uses to encrypt data on the storage volume attached to the ML compute instance(s) that run the batch transform job. The VolumeKmsKeyId can be any of the following formats: // KMS Key ID "1234abcd-12ab-34cd-56ef-1234567890ab" // Amazon Resource Name (ARN) of a KMS Key "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"
*/
VolumeKmsKeyId?: KmsKeyId;
}
export interface TransformS3DataSource {
/**
* If you choose S3Prefix, S3Uri identifies a key name prefix. Amazon SageMaker uses all objects with the specified key name prefix for batch transform. If you choose ManifestFile, S3Uri identifies an object that is a manifest file containing a list of object keys that you want Amazon SageMaker to use for batch transform. The following values are compatible: ManifestFile, S3Prefix The following value is not compatible: AugmentedManifestFile
*/
S3DataType: S3DataType;
/**
* Depending on the value specified for the S3DataType, identifies either a key name prefix or a manifest. For example: A key name prefix might look like this: s3://bucketname/exampleprefix. A manifest might look like this: s3://bucketname/example.manifest The manifest is an S3 object which is a JSON file with the following format: [ {"prefix": "s3://customer_bucket/some/prefix/"}, "relative/path/to/custdata-1", "relative/path/custdata-2", ... ] The preceding JSON matches the following S3Uris: s3://customer_bucket/some/prefix/relative/path/to/custdata-1 s3://customer_bucket/some/prefix/relative/path/custdata-1 ... The complete set of S3Uris in this manifest constitutes the input data for the channel for this datasource. The object that each S3Uris points to must be readable by the IAM role that Amazon SageMaker uses to perform tasks on your behalf.
*/
S3Uri: S3Uri;
}
export interface USD {
/**
* The whole number of dollars in the amount.
*/
Dollars?: Dollars;
/**
* The fractional portion, in cents, of the amount.
*/
Cents?: Cents;
/**
* Fractions of a cent, in tenths.
*/
TenthFractionsOfACent?: TenthFractionsOfACent;
}
export interface UiConfig {
/**
* The Amazon S3 bucket location of the UI template. For more information about the contents of a UI template, see Creating Your Custom Labeling Task Template.
*/
UiTemplateS3Uri: S3Uri;
}
export interface UiTemplate {
/**
* The content of the Liquid template for the worker user interface.
*/
Content: TemplateContent;
}
export interface UpdateCodeRepositoryInput {
/**
* The name of the Git repository to update.
*/
CodeRepositoryName: EntityName;
/**
* The configuration of the git repository, including the URL and the Amazon Resource Name (ARN) of the AWS Secrets Manager secret that contains the credentials used to access the repository. The secret must have a staging label of AWSCURRENT and must be in the following format: {"username": UserName, "password": Password}
*/
GitConfig?: GitConfigForUpdate;
}
export interface UpdateCodeRepositoryOutput {
/**
* The ARN of the Git repository.
*/
CodeRepositoryArn: CodeRepositoryArn;
}
export interface UpdateEndpointInput {
/**
* The name of the endpoint whose configuration you want to update.
*/
EndpointName: EndpointName;
/**
* The name of the new endpoint configuration.
*/
EndpointConfigName: EndpointConfigName;
}
export interface UpdateEndpointOutput {
/**
* The Amazon Resource Name (ARN) of the endpoint.
*/
EndpointArn: EndpointArn;
}
export interface UpdateEndpointWeightsAndCapacitiesInput {
/**
* The name of an existing Amazon SageMaker endpoint.
*/
EndpointName: EndpointName;
/**
* An object that provides new capacity and weight values for a variant.
*/
DesiredWeightsAndCapacities: DesiredWeightAndCapacityList;
}
export interface UpdateEndpointWeightsAndCapacitiesOutput {
/**
* The Amazon Resource Name (ARN) of the updated endpoint.
*/
EndpointArn: EndpointArn;
}
export interface UpdateNotebookInstanceInput {
/**
* The name of the notebook instance to update.
*/
NotebookInstanceName: NotebookInstanceName;
/**
* The Amazon ML compute instance type.
*/
InstanceType?: InstanceType;
/**
* The Amazon Resource Name (ARN) of the IAM role that Amazon SageMaker can assume to access the notebook instance. For more information, see Amazon SageMaker Roles. To be able to pass this role to Amazon SageMaker, the caller of this API must have the iam:PassRole permission.
*/
RoleArn?: RoleArn;
/**
* The name of a lifecycle configuration to associate with the notebook instance. For information about lifestyle configurations, see Step 2.1: (Optional) Customize a Notebook Instance.
*/
LifecycleConfigName?: NotebookInstanceLifecycleConfigName;
/**
* Set to true to remove the notebook instance lifecycle configuration currently associated with the notebook instance. This operation is idempotent. If you specify a lifecycle configuration that is not associated with the notebook instance when you call this method, it does not throw an error.
*/
DisassociateLifecycleConfig?: DisassociateNotebookInstanceLifecycleConfig;
/**
* The size, in GB, of the ML storage volume to attach to the notebook instance. The default value is 5 GB. ML storage volumes are encrypted, so Amazon SageMaker can't determine the amount of available free space on the volume. Because of this, you can increase the volume size when you update a notebook instance, but you can't decrease the volume size. If you want to decrease the size of the ML storage volume in use, create a new notebook instance with the desired size.
*/
VolumeSizeInGB?: NotebookInstanceVolumeSizeInGB;
/**
* The Git repository to associate with the notebook instance as its default code repository. This can be either the name of a Git repository stored as a resource in your account, or the URL of a Git repository in AWS CodeCommit or in any other Git repository. When you open a notebook instance, it opens in the directory that contains this repository. For more information, see Associating Git Repositories with Amazon SageMaker Notebook Instances.
*/
DefaultCodeRepository?: CodeRepositoryNameOrUrl;
/**
* An array of up to three Git repositories to associate with the notebook instance. These can be either the names of Git repositories stored as resources in your account, or the URL of Git repositories in AWS CodeCommit or in any other Git repository. These repositories are cloned at the same level as the default repository of your notebook instance. For more information, see Associating Git Repositories with Amazon SageMaker Notebook Instances.
*/
AdditionalCodeRepositories?: AdditionalCodeRepositoryNamesOrUrls;
/**
* A list of the Elastic Inference (EI) instance types to associate with this notebook instance. Currently only one EI instance type can be associated with a notebook instance. For more information, see Using Elastic Inference in Amazon SageMaker.
*/
AcceleratorTypes?: NotebookInstanceAcceleratorTypes;
/**
* A list of the Elastic Inference (EI) instance types to remove from this notebook instance. This operation is idempotent. If you specify an accelerator type that is not associated with the notebook instance when you call this method, it does not throw an error.
*/
DisassociateAcceleratorTypes?: DisassociateNotebookInstanceAcceleratorTypes;
/**
* The name or URL of the default Git repository to remove from this notebook instance. This operation is idempotent. If you specify a Git repository that is not associated with the notebook instance when you call this method, it does not throw an error.
*/
DisassociateDefaultCodeRepository?: DisassociateDefaultCodeRepository;
/**
* A list of names or URLs of the default Git repositories to remove from this notebook instance. This operation is idempotent. If you specify a Git repository that is not associated with the notebook instance when you call this method, it does not throw an error.
*/
DisassociateAdditionalCodeRepositories?: DisassociateAdditionalCodeRepositories;
/**
* Whether root access is enabled or disabled for users of the notebook instance. The default value is Enabled. If you set this to Disabled, users don't have root access on the notebook instance, but lifecycle configuration scripts still run with root permissions.
*/
RootAccess?: RootAccess;
}
export interface UpdateNotebookInstanceLifecycleConfigInput {
/**
* The name of the lifecycle configuration.
*/
NotebookInstanceLifecycleConfigName: NotebookInstanceLifecycleConfigName;
/**
* The shell script that runs only once, when you create a notebook instance. The shell script must be a base64-encoded string.
*/
OnCreate?: NotebookInstanceLifecycleConfigList;
/**
* The shell script that runs every time you start a notebook instance, including when you create the notebook instance. The shell script must be a base64-encoded string.
*/
OnStart?: NotebookInstanceLifecycleConfigList;
}
export interface UpdateNotebookInstanceLifecycleConfigOutput {
}
export interface UpdateNotebookInstanceOutput {
}
export interface UpdateWorkteamRequest {
/**
* The name of the work team to update.
*/
WorkteamName: WorkteamName;
/**
* A list of MemberDefinition objects that contain the updated work team members.
*/
MemberDefinitions?: MemberDefinitions;
/**
* An updated description for the work team.
*/
Description?: String200;
/**
* Configures SNS topic notifications for available or expiring work items
*/
NotificationConfiguration?: NotificationConfiguration;
}
export interface UpdateWorkteamResponse {
/**
* A Workteam object that describes the updated work team.
*/
Workteam: Workteam;
}
export type Url = string;
export type VariantName = string;
export type VariantWeight = number;
export type VolumeSizeInGB = number;
export interface VpcConfig {
/**
* The VPC security group IDs, in the form sg-xxxxxxxx. Specify the security groups for the VPC that is specified in the Subnets field.
*/
SecurityGroupIds: VpcSecurityGroupIds;
/**
* The ID of the subnets in the VPC to which you want to connect your training job or model. Amazon EC2 P3 accelerated computing instances are not available in the c/d/e availability zones of region us-east-1. If you want to create endpoints with P3 instances in VPC mode in region us-east-1, create subnets in a/b/f availability zones instead.
*/
Subnets: Subnets;
}
export type VpcSecurityGroupIds = SecurityGroupId[];
export interface Workteam {
/**
* The name of the work team.
*/
WorkteamName: WorkteamName;
/**
* The Amazon Cognito user groups that make up the work team.
*/
MemberDefinitions: MemberDefinitions;
/**
* The Amazon Resource Name (ARN) that identifies the work team.
*/
WorkteamArn: WorkteamArn;
/**
* The Amazon Marketplace identifier for a vendor's work team.
*/
ProductListingIds?: ProductListings;
/**
* A description of the work team.
*/
Description: String200;
/**
* The URI of the labeling job's user interface. Workers open this URI to start labeling your data objects.
*/
SubDomain?: String;
/**
* The date and time that the work team was created (timestamp).
*/
CreateDate?: Timestamp;
/**
* The date and time that the work team was last updated (timestamp).
*/
LastUpdatedDate?: Timestamp;
/**
* Configures SNS notifications of available or expiring work items for work teams.
*/
NotificationConfiguration?: NotificationConfiguration;
}
export type WorkteamArn = string;
export type WorkteamName = string;
export type Workteams = Workteam[];
/**
* A string in YYYY-MM-DD format that represents the latest possible API version that can be used in this service. Specify 'latest' to use the latest possible version.
*/
export type apiVersion = "2017-07-24"|"latest"|string;
export interface ClientApiVersions {
/**
* A string in YYYY-MM-DD format that represents the latest possible API version that can be used in this service. Specify 'latest' to use the latest possible version.
*/
apiVersion?: apiVersion;
}
export type ClientConfiguration = ServiceConfigurationOptions & ClientApiVersions;
/**
* Contains interfaces for use with the SageMaker client.
*/
export import Types = SageMaker;
}
export = SageMaker;