machinelearning.d.ts 121 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707
import {Request} from '../lib/request';
import {Response} from '../lib/response';
import {AWSError} from '../lib/error';
import {Service} from '../lib/service';
import {WaiterConfiguration} from '../lib/service';
import {ServiceConfigurationOptions} from '../lib/service';
import {ConfigBase as Config} from '../lib/config';
interface Blob {}
declare class MachineLearning extends Service {
  /**
   * Constructs a service object. This object has one method for each API operation.
   */
  constructor(options?: MachineLearning.Types.ClientConfiguration)
  config: Config & MachineLearning.Types.ClientConfiguration;
  /**
   * Adds one or more tags to an object, up to a limit of 10. Each tag consists of a key and an optional value. If you add a tag using a key that is already associated with the ML object, AddTags updates the tag's value.
   */
  addTags(params: MachineLearning.Types.AddTagsInput, callback?: (err: AWSError, data: MachineLearning.Types.AddTagsOutput) => void): Request<MachineLearning.Types.AddTagsOutput, AWSError>;
  /**
   * Adds one or more tags to an object, up to a limit of 10. Each tag consists of a key and an optional value. If you add a tag using a key that is already associated with the ML object, AddTags updates the tag's value.
   */
  addTags(callback?: (err: AWSError, data: MachineLearning.Types.AddTagsOutput) => void): Request<MachineLearning.Types.AddTagsOutput, AWSError>;
  /**
   * Generates predictions for a group of observations. The observations to process exist in one or more data files referenced by a DataSource. This operation creates a new BatchPrediction, and uses an MLModel and the data files referenced by the DataSource as information sources.  CreateBatchPrediction is an asynchronous operation. In response to CreateBatchPrediction, Amazon Machine Learning (Amazon ML) immediately returns and sets the BatchPrediction status to PENDING. After the BatchPrediction completes, Amazon ML sets the status to COMPLETED.  You can poll for status updates by using the GetBatchPrediction operation and checking the Status parameter of the result. After the COMPLETED status appears, the results are available in the location specified by the OutputUri parameter.
   */
  createBatchPrediction(params: MachineLearning.Types.CreateBatchPredictionInput, callback?: (err: AWSError, data: MachineLearning.Types.CreateBatchPredictionOutput) => void): Request<MachineLearning.Types.CreateBatchPredictionOutput, AWSError>;
  /**
   * Generates predictions for a group of observations. The observations to process exist in one or more data files referenced by a DataSource. This operation creates a new BatchPrediction, and uses an MLModel and the data files referenced by the DataSource as information sources.  CreateBatchPrediction is an asynchronous operation. In response to CreateBatchPrediction, Amazon Machine Learning (Amazon ML) immediately returns and sets the BatchPrediction status to PENDING. After the BatchPrediction completes, Amazon ML sets the status to COMPLETED.  You can poll for status updates by using the GetBatchPrediction operation and checking the Status parameter of the result. After the COMPLETED status appears, the results are available in the location specified by the OutputUri parameter.
   */
  createBatchPrediction(callback?: (err: AWSError, data: MachineLearning.Types.CreateBatchPredictionOutput) => void): Request<MachineLearning.Types.CreateBatchPredictionOutput, AWSError>;
  /**
   * Creates a DataSource object from an  Amazon Relational Database Service (Amazon RDS). A DataSource references data that can be used to perform CreateMLModel, CreateEvaluation, or CreateBatchPrediction operations. CreateDataSourceFromRDS is an asynchronous operation. In response to CreateDataSourceFromRDS, Amazon Machine Learning (Amazon ML) immediately returns and sets the DataSource status to PENDING. After the DataSource is created and ready for use, Amazon ML sets the Status parameter to COMPLETED. DataSource in the COMPLETED or PENDING state can be used only to perform &gt;CreateMLModel&gt;, CreateEvaluation, or CreateBatchPrediction operations.   If Amazon ML cannot accept the input source, it sets the Status parameter to FAILED and includes an error message in the Message attribute of the GetDataSource operation response. 
   */
  createDataSourceFromRDS(params: MachineLearning.Types.CreateDataSourceFromRDSInput, callback?: (err: AWSError, data: MachineLearning.Types.CreateDataSourceFromRDSOutput) => void): Request<MachineLearning.Types.CreateDataSourceFromRDSOutput, AWSError>;
  /**
   * Creates a DataSource object from an  Amazon Relational Database Service (Amazon RDS). A DataSource references data that can be used to perform CreateMLModel, CreateEvaluation, or CreateBatchPrediction operations. CreateDataSourceFromRDS is an asynchronous operation. In response to CreateDataSourceFromRDS, Amazon Machine Learning (Amazon ML) immediately returns and sets the DataSource status to PENDING. After the DataSource is created and ready for use, Amazon ML sets the Status parameter to COMPLETED. DataSource in the COMPLETED or PENDING state can be used only to perform &gt;CreateMLModel&gt;, CreateEvaluation, or CreateBatchPrediction operations.   If Amazon ML cannot accept the input source, it sets the Status parameter to FAILED and includes an error message in the Message attribute of the GetDataSource operation response. 
   */
  createDataSourceFromRDS(callback?: (err: AWSError, data: MachineLearning.Types.CreateDataSourceFromRDSOutput) => void): Request<MachineLearning.Types.CreateDataSourceFromRDSOutput, AWSError>;
  /**
   * Creates a DataSource from a database hosted on an Amazon Redshift cluster. A DataSource references data that can be used to perform either CreateMLModel, CreateEvaluation, or CreateBatchPrediction operations. CreateDataSourceFromRedshift is an asynchronous operation. In response to CreateDataSourceFromRedshift, Amazon Machine Learning (Amazon ML) immediately returns and sets the DataSource status to PENDING. After the DataSource is created and ready for use, Amazon ML sets the Status parameter to COMPLETED. DataSource in COMPLETED or PENDING states can be used to perform only CreateMLModel, CreateEvaluation, or CreateBatchPrediction operations.   If Amazon ML can't accept the input source, it sets the Status parameter to FAILED and includes an error message in the Message attribute of the GetDataSource operation response.  The observations should be contained in the database hosted on an Amazon Redshift cluster and should be specified by a SelectSqlQuery query. Amazon ML executes an Unload command in Amazon Redshift to transfer the result set of the SelectSqlQuery query to S3StagingLocation. After the DataSource has been created, it's ready for use in evaluations and batch predictions. If you plan to use the DataSource to train an MLModel, the DataSource also requires a recipe. A recipe describes how each input variable will be used in training an MLModel. Will the variable be included or excluded from training? Will the variable be manipulated; for example, will it be combined with another variable or will it be split apart into word combinations? The recipe provides answers to these questions. You can't change an existing datasource, but you can copy and modify the settings from an existing Amazon Redshift datasource to create a new datasource. To do so, call GetDataSource for an existing datasource and copy the values to a CreateDataSource call. Change the settings that you want to change and make sure that all required fields have the appropriate values. 
   */
  createDataSourceFromRedshift(params: MachineLearning.Types.CreateDataSourceFromRedshiftInput, callback?: (err: AWSError, data: MachineLearning.Types.CreateDataSourceFromRedshiftOutput) => void): Request<MachineLearning.Types.CreateDataSourceFromRedshiftOutput, AWSError>;
  /**
   * Creates a DataSource from a database hosted on an Amazon Redshift cluster. A DataSource references data that can be used to perform either CreateMLModel, CreateEvaluation, or CreateBatchPrediction operations. CreateDataSourceFromRedshift is an asynchronous operation. In response to CreateDataSourceFromRedshift, Amazon Machine Learning (Amazon ML) immediately returns and sets the DataSource status to PENDING. After the DataSource is created and ready for use, Amazon ML sets the Status parameter to COMPLETED. DataSource in COMPLETED or PENDING states can be used to perform only CreateMLModel, CreateEvaluation, or CreateBatchPrediction operations.   If Amazon ML can't accept the input source, it sets the Status parameter to FAILED and includes an error message in the Message attribute of the GetDataSource operation response.  The observations should be contained in the database hosted on an Amazon Redshift cluster and should be specified by a SelectSqlQuery query. Amazon ML executes an Unload command in Amazon Redshift to transfer the result set of the SelectSqlQuery query to S3StagingLocation. After the DataSource has been created, it's ready for use in evaluations and batch predictions. If you plan to use the DataSource to train an MLModel, the DataSource also requires a recipe. A recipe describes how each input variable will be used in training an MLModel. Will the variable be included or excluded from training? Will the variable be manipulated; for example, will it be combined with another variable or will it be split apart into word combinations? The recipe provides answers to these questions. You can't change an existing datasource, but you can copy and modify the settings from an existing Amazon Redshift datasource to create a new datasource. To do so, call GetDataSource for an existing datasource and copy the values to a CreateDataSource call. Change the settings that you want to change and make sure that all required fields have the appropriate values. 
   */
  createDataSourceFromRedshift(callback?: (err: AWSError, data: MachineLearning.Types.CreateDataSourceFromRedshiftOutput) => void): Request<MachineLearning.Types.CreateDataSourceFromRedshiftOutput, AWSError>;
  /**
   * Creates a DataSource object. A DataSource references data that can be used to perform CreateMLModel, CreateEvaluation, or CreateBatchPrediction operations. CreateDataSourceFromS3 is an asynchronous operation. In response to CreateDataSourceFromS3, Amazon Machine Learning (Amazon ML) immediately returns and sets the DataSource status to PENDING. After the DataSource has been created and is ready for use, Amazon ML sets the Status parameter to COMPLETED. DataSource in the COMPLETED or PENDING state can be used to perform only CreateMLModel, CreateEvaluation or CreateBatchPrediction operations.   If Amazon ML can't accept the input source, it sets the Status parameter to FAILED and includes an error message in the Message attribute of the GetDataSource operation response.  The observation data used in a DataSource should be ready to use; that is, it should have a consistent structure, and missing data values should be kept to a minimum. The observation data must reside in one or more .csv files in an Amazon Simple Storage Service (Amazon S3) location, along with a schema that describes the data items by name and type. The same schema must be used for all of the data files referenced by the DataSource.  After the DataSource has been created, it's ready to use in evaluations and batch predictions. If you plan to use the DataSource to train an MLModel, the DataSource also needs a recipe. A recipe describes how each input variable will be used in training an MLModel. Will the variable be included or excluded from training? Will the variable be manipulated; for example, will it be combined with another variable or will it be split apart into word combinations? The recipe provides answers to these questions.
   */
  createDataSourceFromS3(params: MachineLearning.Types.CreateDataSourceFromS3Input, callback?: (err: AWSError, data: MachineLearning.Types.CreateDataSourceFromS3Output) => void): Request<MachineLearning.Types.CreateDataSourceFromS3Output, AWSError>;
  /**
   * Creates a DataSource object. A DataSource references data that can be used to perform CreateMLModel, CreateEvaluation, or CreateBatchPrediction operations. CreateDataSourceFromS3 is an asynchronous operation. In response to CreateDataSourceFromS3, Amazon Machine Learning (Amazon ML) immediately returns and sets the DataSource status to PENDING. After the DataSource has been created and is ready for use, Amazon ML sets the Status parameter to COMPLETED. DataSource in the COMPLETED or PENDING state can be used to perform only CreateMLModel, CreateEvaluation or CreateBatchPrediction operations.   If Amazon ML can't accept the input source, it sets the Status parameter to FAILED and includes an error message in the Message attribute of the GetDataSource operation response.  The observation data used in a DataSource should be ready to use; that is, it should have a consistent structure, and missing data values should be kept to a minimum. The observation data must reside in one or more .csv files in an Amazon Simple Storage Service (Amazon S3) location, along with a schema that describes the data items by name and type. The same schema must be used for all of the data files referenced by the DataSource.  After the DataSource has been created, it's ready to use in evaluations and batch predictions. If you plan to use the DataSource to train an MLModel, the DataSource also needs a recipe. A recipe describes how each input variable will be used in training an MLModel. Will the variable be included or excluded from training? Will the variable be manipulated; for example, will it be combined with another variable or will it be split apart into word combinations? The recipe provides answers to these questions.
   */
  createDataSourceFromS3(callback?: (err: AWSError, data: MachineLearning.Types.CreateDataSourceFromS3Output) => void): Request<MachineLearning.Types.CreateDataSourceFromS3Output, AWSError>;
  /**
   * Creates a new Evaluation of an MLModel. An MLModel is evaluated on a set of observations associated to a DataSource. Like a DataSource for an MLModel, the DataSource for an Evaluation contains values for the Target Variable. The Evaluation compares the predicted result for each observation to the actual outcome and provides a summary so that you know how effective the MLModel functions on the test data. Evaluation generates a relevant performance metric, such as BinaryAUC, RegressionRMSE or MulticlassAvgFScore based on the corresponding MLModelType: BINARY, REGRESSION or MULTICLASS.  CreateEvaluation is an asynchronous operation. In response to CreateEvaluation, Amazon Machine Learning (Amazon ML) immediately returns and sets the evaluation status to PENDING. After the Evaluation is created and ready for use, Amazon ML sets the status to COMPLETED.  You can use the GetEvaluation operation to check progress of the evaluation during the creation operation.
   */
  createEvaluation(params: MachineLearning.Types.CreateEvaluationInput, callback?: (err: AWSError, data: MachineLearning.Types.CreateEvaluationOutput) => void): Request<MachineLearning.Types.CreateEvaluationOutput, AWSError>;
  /**
   * Creates a new Evaluation of an MLModel. An MLModel is evaluated on a set of observations associated to a DataSource. Like a DataSource for an MLModel, the DataSource for an Evaluation contains values for the Target Variable. The Evaluation compares the predicted result for each observation to the actual outcome and provides a summary so that you know how effective the MLModel functions on the test data. Evaluation generates a relevant performance metric, such as BinaryAUC, RegressionRMSE or MulticlassAvgFScore based on the corresponding MLModelType: BINARY, REGRESSION or MULTICLASS.  CreateEvaluation is an asynchronous operation. In response to CreateEvaluation, Amazon Machine Learning (Amazon ML) immediately returns and sets the evaluation status to PENDING. After the Evaluation is created and ready for use, Amazon ML sets the status to COMPLETED.  You can use the GetEvaluation operation to check progress of the evaluation during the creation operation.
   */
  createEvaluation(callback?: (err: AWSError, data: MachineLearning.Types.CreateEvaluationOutput) => void): Request<MachineLearning.Types.CreateEvaluationOutput, AWSError>;
  /**
   * Creates a new MLModel using the DataSource and the recipe as information sources.  An MLModel is nearly immutable. Users can update only the MLModelName and the ScoreThreshold in an MLModel without creating a new MLModel.  CreateMLModel is an asynchronous operation. In response to CreateMLModel, Amazon Machine Learning (Amazon ML) immediately returns and sets the MLModel status to PENDING. After the MLModel has been created and ready is for use, Amazon ML sets the status to COMPLETED.  You can use the GetMLModel operation to check the progress of the MLModel during the creation operation.  CreateMLModel requires a DataSource with computed statistics, which can be created by setting ComputeStatistics to true in CreateDataSourceFromRDS, CreateDataSourceFromS3, or CreateDataSourceFromRedshift operations. 
   */
  createMLModel(params: MachineLearning.Types.CreateMLModelInput, callback?: (err: AWSError, data: MachineLearning.Types.CreateMLModelOutput) => void): Request<MachineLearning.Types.CreateMLModelOutput, AWSError>;
  /**
   * Creates a new MLModel using the DataSource and the recipe as information sources.  An MLModel is nearly immutable. Users can update only the MLModelName and the ScoreThreshold in an MLModel without creating a new MLModel.  CreateMLModel is an asynchronous operation. In response to CreateMLModel, Amazon Machine Learning (Amazon ML) immediately returns and sets the MLModel status to PENDING. After the MLModel has been created and ready is for use, Amazon ML sets the status to COMPLETED.  You can use the GetMLModel operation to check the progress of the MLModel during the creation operation.  CreateMLModel requires a DataSource with computed statistics, which can be created by setting ComputeStatistics to true in CreateDataSourceFromRDS, CreateDataSourceFromS3, or CreateDataSourceFromRedshift operations. 
   */
  createMLModel(callback?: (err: AWSError, data: MachineLearning.Types.CreateMLModelOutput) => void): Request<MachineLearning.Types.CreateMLModelOutput, AWSError>;
  /**
   * Creates a real-time endpoint for the MLModel. The endpoint contains the URI of the MLModel; that is, the location to send real-time prediction requests for the specified MLModel.
   */
  createRealtimeEndpoint(params: MachineLearning.Types.CreateRealtimeEndpointInput, callback?: (err: AWSError, data: MachineLearning.Types.CreateRealtimeEndpointOutput) => void): Request<MachineLearning.Types.CreateRealtimeEndpointOutput, AWSError>;
  /**
   * Creates a real-time endpoint for the MLModel. The endpoint contains the URI of the MLModel; that is, the location to send real-time prediction requests for the specified MLModel.
   */
  createRealtimeEndpoint(callback?: (err: AWSError, data: MachineLearning.Types.CreateRealtimeEndpointOutput) => void): Request<MachineLearning.Types.CreateRealtimeEndpointOutput, AWSError>;
  /**
   * Assigns the DELETED status to a BatchPrediction, rendering it unusable. After using the DeleteBatchPrediction operation, you can use the GetBatchPrediction operation to verify that the status of the BatchPrediction changed to DELETED. Caution: The result of the DeleteBatchPrediction operation is irreversible.
   */
  deleteBatchPrediction(params: MachineLearning.Types.DeleteBatchPredictionInput, callback?: (err: AWSError, data: MachineLearning.Types.DeleteBatchPredictionOutput) => void): Request<MachineLearning.Types.DeleteBatchPredictionOutput, AWSError>;
  /**
   * Assigns the DELETED status to a BatchPrediction, rendering it unusable. After using the DeleteBatchPrediction operation, you can use the GetBatchPrediction operation to verify that the status of the BatchPrediction changed to DELETED. Caution: The result of the DeleteBatchPrediction operation is irreversible.
   */
  deleteBatchPrediction(callback?: (err: AWSError, data: MachineLearning.Types.DeleteBatchPredictionOutput) => void): Request<MachineLearning.Types.DeleteBatchPredictionOutput, AWSError>;
  /**
   * Assigns the DELETED status to a DataSource, rendering it unusable. After using the DeleteDataSource operation, you can use the GetDataSource operation to verify that the status of the DataSource changed to DELETED. Caution: The results of the DeleteDataSource operation are irreversible.
   */
  deleteDataSource(params: MachineLearning.Types.DeleteDataSourceInput, callback?: (err: AWSError, data: MachineLearning.Types.DeleteDataSourceOutput) => void): Request<MachineLearning.Types.DeleteDataSourceOutput, AWSError>;
  /**
   * Assigns the DELETED status to a DataSource, rendering it unusable. After using the DeleteDataSource operation, you can use the GetDataSource operation to verify that the status of the DataSource changed to DELETED. Caution: The results of the DeleteDataSource operation are irreversible.
   */
  deleteDataSource(callback?: (err: AWSError, data: MachineLearning.Types.DeleteDataSourceOutput) => void): Request<MachineLearning.Types.DeleteDataSourceOutput, AWSError>;
  /**
   * Assigns the DELETED status to an Evaluation, rendering it unusable. After invoking the DeleteEvaluation operation, you can use the GetEvaluation operation to verify that the status of the Evaluation changed to DELETED. Caution The results of the DeleteEvaluation operation are irreversible.
   */
  deleteEvaluation(params: MachineLearning.Types.DeleteEvaluationInput, callback?: (err: AWSError, data: MachineLearning.Types.DeleteEvaluationOutput) => void): Request<MachineLearning.Types.DeleteEvaluationOutput, AWSError>;
  /**
   * Assigns the DELETED status to an Evaluation, rendering it unusable. After invoking the DeleteEvaluation operation, you can use the GetEvaluation operation to verify that the status of the Evaluation changed to DELETED. Caution The results of the DeleteEvaluation operation are irreversible.
   */
  deleteEvaluation(callback?: (err: AWSError, data: MachineLearning.Types.DeleteEvaluationOutput) => void): Request<MachineLearning.Types.DeleteEvaluationOutput, AWSError>;
  /**
   * Assigns the DELETED status to an MLModel, rendering it unusable. After using the DeleteMLModel operation, you can use the GetMLModel operation to verify that the status of the MLModel changed to DELETED. Caution: The result of the DeleteMLModel operation is irreversible.
   */
  deleteMLModel(params: MachineLearning.Types.DeleteMLModelInput, callback?: (err: AWSError, data: MachineLearning.Types.DeleteMLModelOutput) => void): Request<MachineLearning.Types.DeleteMLModelOutput, AWSError>;
  /**
   * Assigns the DELETED status to an MLModel, rendering it unusable. After using the DeleteMLModel operation, you can use the GetMLModel operation to verify that the status of the MLModel changed to DELETED. Caution: The result of the DeleteMLModel operation is irreversible.
   */
  deleteMLModel(callback?: (err: AWSError, data: MachineLearning.Types.DeleteMLModelOutput) => void): Request<MachineLearning.Types.DeleteMLModelOutput, AWSError>;
  /**
   * Deletes a real time endpoint of an MLModel.
   */
  deleteRealtimeEndpoint(params: MachineLearning.Types.DeleteRealtimeEndpointInput, callback?: (err: AWSError, data: MachineLearning.Types.DeleteRealtimeEndpointOutput) => void): Request<MachineLearning.Types.DeleteRealtimeEndpointOutput, AWSError>;
  /**
   * Deletes a real time endpoint of an MLModel.
   */
  deleteRealtimeEndpoint(callback?: (err: AWSError, data: MachineLearning.Types.DeleteRealtimeEndpointOutput) => void): Request<MachineLearning.Types.DeleteRealtimeEndpointOutput, AWSError>;
  /**
   * Deletes the specified tags associated with an ML object. After this operation is complete, you can't recover deleted tags. If you specify a tag that doesn't exist, Amazon ML ignores it.
   */
  deleteTags(params: MachineLearning.Types.DeleteTagsInput, callback?: (err: AWSError, data: MachineLearning.Types.DeleteTagsOutput) => void): Request<MachineLearning.Types.DeleteTagsOutput, AWSError>;
  /**
   * Deletes the specified tags associated with an ML object. After this operation is complete, you can't recover deleted tags. If you specify a tag that doesn't exist, Amazon ML ignores it.
   */
  deleteTags(callback?: (err: AWSError, data: MachineLearning.Types.DeleteTagsOutput) => void): Request<MachineLearning.Types.DeleteTagsOutput, AWSError>;
  /**
   * Returns a list of BatchPrediction operations that match the search criteria in the request.
   */
  describeBatchPredictions(params: MachineLearning.Types.DescribeBatchPredictionsInput, callback?: (err: AWSError, data: MachineLearning.Types.DescribeBatchPredictionsOutput) => void): Request<MachineLearning.Types.DescribeBatchPredictionsOutput, AWSError>;
  /**
   * Returns a list of BatchPrediction operations that match the search criteria in the request.
   */
  describeBatchPredictions(callback?: (err: AWSError, data: MachineLearning.Types.DescribeBatchPredictionsOutput) => void): Request<MachineLearning.Types.DescribeBatchPredictionsOutput, AWSError>;
  /**
   * Returns a list of DataSource that match the search criteria in the request.
   */
  describeDataSources(params: MachineLearning.Types.DescribeDataSourcesInput, callback?: (err: AWSError, data: MachineLearning.Types.DescribeDataSourcesOutput) => void): Request<MachineLearning.Types.DescribeDataSourcesOutput, AWSError>;
  /**
   * Returns a list of DataSource that match the search criteria in the request.
   */
  describeDataSources(callback?: (err: AWSError, data: MachineLearning.Types.DescribeDataSourcesOutput) => void): Request<MachineLearning.Types.DescribeDataSourcesOutput, AWSError>;
  /**
   * Returns a list of DescribeEvaluations that match the search criteria in the request.
   */
  describeEvaluations(params: MachineLearning.Types.DescribeEvaluationsInput, callback?: (err: AWSError, data: MachineLearning.Types.DescribeEvaluationsOutput) => void): Request<MachineLearning.Types.DescribeEvaluationsOutput, AWSError>;
  /**
   * Returns a list of DescribeEvaluations that match the search criteria in the request.
   */
  describeEvaluations(callback?: (err: AWSError, data: MachineLearning.Types.DescribeEvaluationsOutput) => void): Request<MachineLearning.Types.DescribeEvaluationsOutput, AWSError>;
  /**
   * Returns a list of MLModel that match the search criteria in the request.
   */
  describeMLModels(params: MachineLearning.Types.DescribeMLModelsInput, callback?: (err: AWSError, data: MachineLearning.Types.DescribeMLModelsOutput) => void): Request<MachineLearning.Types.DescribeMLModelsOutput, AWSError>;
  /**
   * Returns a list of MLModel that match the search criteria in the request.
   */
  describeMLModels(callback?: (err: AWSError, data: MachineLearning.Types.DescribeMLModelsOutput) => void): Request<MachineLearning.Types.DescribeMLModelsOutput, AWSError>;
  /**
   * Describes one or more of the tags for your Amazon ML object.
   */
  describeTags(params: MachineLearning.Types.DescribeTagsInput, callback?: (err: AWSError, data: MachineLearning.Types.DescribeTagsOutput) => void): Request<MachineLearning.Types.DescribeTagsOutput, AWSError>;
  /**
   * Describes one or more of the tags for your Amazon ML object.
   */
  describeTags(callback?: (err: AWSError, data: MachineLearning.Types.DescribeTagsOutput) => void): Request<MachineLearning.Types.DescribeTagsOutput, AWSError>;
  /**
   * Returns a BatchPrediction that includes detailed metadata, status, and data file information for a Batch Prediction request.
   */
  getBatchPrediction(params: MachineLearning.Types.GetBatchPredictionInput, callback?: (err: AWSError, data: MachineLearning.Types.GetBatchPredictionOutput) => void): Request<MachineLearning.Types.GetBatchPredictionOutput, AWSError>;
  /**
   * Returns a BatchPrediction that includes detailed metadata, status, and data file information for a Batch Prediction request.
   */
  getBatchPrediction(callback?: (err: AWSError, data: MachineLearning.Types.GetBatchPredictionOutput) => void): Request<MachineLearning.Types.GetBatchPredictionOutput, AWSError>;
  /**
   * Returns a DataSource that includes metadata and data file information, as well as the current status of the DataSource. GetDataSource provides results in normal or verbose format. The verbose format adds the schema description and the list of files pointed to by the DataSource to the normal format.
   */
  getDataSource(params: MachineLearning.Types.GetDataSourceInput, callback?: (err: AWSError, data: MachineLearning.Types.GetDataSourceOutput) => void): Request<MachineLearning.Types.GetDataSourceOutput, AWSError>;
  /**
   * Returns a DataSource that includes metadata and data file information, as well as the current status of the DataSource. GetDataSource provides results in normal or verbose format. The verbose format adds the schema description and the list of files pointed to by the DataSource to the normal format.
   */
  getDataSource(callback?: (err: AWSError, data: MachineLearning.Types.GetDataSourceOutput) => void): Request<MachineLearning.Types.GetDataSourceOutput, AWSError>;
  /**
   * Returns an Evaluation that includes metadata as well as the current status of the Evaluation.
   */
  getEvaluation(params: MachineLearning.Types.GetEvaluationInput, callback?: (err: AWSError, data: MachineLearning.Types.GetEvaluationOutput) => void): Request<MachineLearning.Types.GetEvaluationOutput, AWSError>;
  /**
   * Returns an Evaluation that includes metadata as well as the current status of the Evaluation.
   */
  getEvaluation(callback?: (err: AWSError, data: MachineLearning.Types.GetEvaluationOutput) => void): Request<MachineLearning.Types.GetEvaluationOutput, AWSError>;
  /**
   * Returns an MLModel that includes detailed metadata, data source information, and the current status of the MLModel. GetMLModel provides results in normal or verbose format. 
   */
  getMLModel(params: MachineLearning.Types.GetMLModelInput, callback?: (err: AWSError, data: MachineLearning.Types.GetMLModelOutput) => void): Request<MachineLearning.Types.GetMLModelOutput, AWSError>;
  /**
   * Returns an MLModel that includes detailed metadata, data source information, and the current status of the MLModel. GetMLModel provides results in normal or verbose format. 
   */
  getMLModel(callback?: (err: AWSError, data: MachineLearning.Types.GetMLModelOutput) => void): Request<MachineLearning.Types.GetMLModelOutput, AWSError>;
  /**
   * Generates a prediction for the observation using the specified ML Model. Note Not all response parameters will be populated. Whether a response parameter is populated depends on the type of model requested.
   */
  predict(params: MachineLearning.Types.PredictInput, callback?: (err: AWSError, data: MachineLearning.Types.PredictOutput) => void): Request<MachineLearning.Types.PredictOutput, AWSError>;
  /**
   * Generates a prediction for the observation using the specified ML Model. Note Not all response parameters will be populated. Whether a response parameter is populated depends on the type of model requested.
   */
  predict(callback?: (err: AWSError, data: MachineLearning.Types.PredictOutput) => void): Request<MachineLearning.Types.PredictOutput, AWSError>;
  /**
   * Updates the BatchPredictionName of a BatchPrediction. You can use the GetBatchPrediction operation to view the contents of the updated data element.
   */
  updateBatchPrediction(params: MachineLearning.Types.UpdateBatchPredictionInput, callback?: (err: AWSError, data: MachineLearning.Types.UpdateBatchPredictionOutput) => void): Request<MachineLearning.Types.UpdateBatchPredictionOutput, AWSError>;
  /**
   * Updates the BatchPredictionName of a BatchPrediction. You can use the GetBatchPrediction operation to view the contents of the updated data element.
   */
  updateBatchPrediction(callback?: (err: AWSError, data: MachineLearning.Types.UpdateBatchPredictionOutput) => void): Request<MachineLearning.Types.UpdateBatchPredictionOutput, AWSError>;
  /**
   * Updates the DataSourceName of a DataSource. You can use the GetDataSource operation to view the contents of the updated data element.
   */
  updateDataSource(params: MachineLearning.Types.UpdateDataSourceInput, callback?: (err: AWSError, data: MachineLearning.Types.UpdateDataSourceOutput) => void): Request<MachineLearning.Types.UpdateDataSourceOutput, AWSError>;
  /**
   * Updates the DataSourceName of a DataSource. You can use the GetDataSource operation to view the contents of the updated data element.
   */
  updateDataSource(callback?: (err: AWSError, data: MachineLearning.Types.UpdateDataSourceOutput) => void): Request<MachineLearning.Types.UpdateDataSourceOutput, AWSError>;
  /**
   * Updates the EvaluationName of an Evaluation. You can use the GetEvaluation operation to view the contents of the updated data element.
   */
  updateEvaluation(params: MachineLearning.Types.UpdateEvaluationInput, callback?: (err: AWSError, data: MachineLearning.Types.UpdateEvaluationOutput) => void): Request<MachineLearning.Types.UpdateEvaluationOutput, AWSError>;
  /**
   * Updates the EvaluationName of an Evaluation. You can use the GetEvaluation operation to view the contents of the updated data element.
   */
  updateEvaluation(callback?: (err: AWSError, data: MachineLearning.Types.UpdateEvaluationOutput) => void): Request<MachineLearning.Types.UpdateEvaluationOutput, AWSError>;
  /**
   * Updates the MLModelName and the ScoreThreshold of an MLModel. You can use the GetMLModel operation to view the contents of the updated data element.
   */
  updateMLModel(params: MachineLearning.Types.UpdateMLModelInput, callback?: (err: AWSError, data: MachineLearning.Types.UpdateMLModelOutput) => void): Request<MachineLearning.Types.UpdateMLModelOutput, AWSError>;
  /**
   * Updates the MLModelName and the ScoreThreshold of an MLModel. You can use the GetMLModel operation to view the contents of the updated data element.
   */
  updateMLModel(callback?: (err: AWSError, data: MachineLearning.Types.UpdateMLModelOutput) => void): Request<MachineLearning.Types.UpdateMLModelOutput, AWSError>;
  /**
   * Waits for the dataSourceAvailable state by periodically calling the underlying MachineLearning.describeDataSourcesoperation every 30 seconds (at most 60 times).
   */
  waitFor(state: "dataSourceAvailable", params: MachineLearning.Types.DescribeDataSourcesInput & {$waiter?: WaiterConfiguration}, callback?: (err: AWSError, data: MachineLearning.Types.DescribeDataSourcesOutput) => void): Request<MachineLearning.Types.DescribeDataSourcesOutput, AWSError>;
  /**
   * Waits for the dataSourceAvailable state by periodically calling the underlying MachineLearning.describeDataSourcesoperation every 30 seconds (at most 60 times).
   */
  waitFor(state: "dataSourceAvailable", callback?: (err: AWSError, data: MachineLearning.Types.DescribeDataSourcesOutput) => void): Request<MachineLearning.Types.DescribeDataSourcesOutput, AWSError>;
  /**
   * Waits for the mLModelAvailable state by periodically calling the underlying MachineLearning.describeMLModelsoperation every 30 seconds (at most 60 times).
   */
  waitFor(state: "mLModelAvailable", params: MachineLearning.Types.DescribeMLModelsInput & {$waiter?: WaiterConfiguration}, callback?: (err: AWSError, data: MachineLearning.Types.DescribeMLModelsOutput) => void): Request<MachineLearning.Types.DescribeMLModelsOutput, AWSError>;
  /**
   * Waits for the mLModelAvailable state by periodically calling the underlying MachineLearning.describeMLModelsoperation every 30 seconds (at most 60 times).
   */
  waitFor(state: "mLModelAvailable", callback?: (err: AWSError, data: MachineLearning.Types.DescribeMLModelsOutput) => void): Request<MachineLearning.Types.DescribeMLModelsOutput, AWSError>;
  /**
   * Waits for the evaluationAvailable state by periodically calling the underlying MachineLearning.describeEvaluationsoperation every 30 seconds (at most 60 times).
   */
  waitFor(state: "evaluationAvailable", params: MachineLearning.Types.DescribeEvaluationsInput & {$waiter?: WaiterConfiguration}, callback?: (err: AWSError, data: MachineLearning.Types.DescribeEvaluationsOutput) => void): Request<MachineLearning.Types.DescribeEvaluationsOutput, AWSError>;
  /**
   * Waits for the evaluationAvailable state by periodically calling the underlying MachineLearning.describeEvaluationsoperation every 30 seconds (at most 60 times).
   */
  waitFor(state: "evaluationAvailable", callback?: (err: AWSError, data: MachineLearning.Types.DescribeEvaluationsOutput) => void): Request<MachineLearning.Types.DescribeEvaluationsOutput, AWSError>;
  /**
   * Waits for the batchPredictionAvailable state by periodically calling the underlying MachineLearning.describeBatchPredictionsoperation every 30 seconds (at most 60 times).
   */
  waitFor(state: "batchPredictionAvailable", params: MachineLearning.Types.DescribeBatchPredictionsInput & {$waiter?: WaiterConfiguration}, callback?: (err: AWSError, data: MachineLearning.Types.DescribeBatchPredictionsOutput) => void): Request<MachineLearning.Types.DescribeBatchPredictionsOutput, AWSError>;
  /**
   * Waits for the batchPredictionAvailable state by periodically calling the underlying MachineLearning.describeBatchPredictionsoperation every 30 seconds (at most 60 times).
   */
  waitFor(state: "batchPredictionAvailable", callback?: (err: AWSError, data: MachineLearning.Types.DescribeBatchPredictionsOutput) => void): Request<MachineLearning.Types.DescribeBatchPredictionsOutput, AWSError>;
}
declare namespace MachineLearning {
  export interface AddTagsInput {
    /**
     * The key-value pairs to use to create tags. If you specify a key without specifying a value, Amazon ML creates a tag with the specified key and a value of null.
     */
    Tags: TagList;
    /**
     * The ID of the ML object to tag. For example, exampleModelId.
     */
    ResourceId: EntityId;
    /**
     * The type of the ML object to tag. 
     */
    ResourceType: TaggableResourceType;
  }
  export interface AddTagsOutput {
    /**
     * The ID of the ML object that was tagged.
     */
    ResourceId?: EntityId;
    /**
     * The type of the ML object that was tagged.
     */
    ResourceType?: TaggableResourceType;
  }
  export type Algorithm = "sgd"|string;
  export type AwsUserArn = string;
  export interface BatchPrediction {
    /**
     * The ID assigned to the BatchPrediction at creation. This value should be identical to the value of the BatchPredictionID in the request. 
     */
    BatchPredictionId?: EntityId;
    /**
     * The ID of the MLModel that generated predictions for the BatchPrediction request.
     */
    MLModelId?: EntityId;
    /**
     * The ID of the DataSource that points to the group of observations to predict.
     */
    BatchPredictionDataSourceId?: EntityId;
    /**
     * The location of the data file or directory in Amazon Simple Storage Service (Amazon S3).
     */
    InputDataLocationS3?: S3Url;
    /**
     * The AWS user account that invoked the BatchPrediction. The account type can be either an AWS root account or an AWS Identity and Access Management (IAM) user account.
     */
    CreatedByIamUser?: AwsUserArn;
    /**
     * The time that the BatchPrediction was created. The time is expressed in epoch time.
     */
    CreatedAt?: EpochTime;
    /**
     * The time of the most recent edit to the BatchPrediction. The time is expressed in epoch time.
     */
    LastUpdatedAt?: EpochTime;
    /**
     * A user-supplied name or description of the BatchPrediction.
     */
    Name?: EntityName;
    /**
     * The status of the BatchPrediction. This element can have one of the following values:   PENDING - Amazon Machine Learning (Amazon ML) submitted a request to generate predictions for a batch of observations.  INPROGRESS - The process is underway.  FAILED - The request to perform a batch prediction did not run to completion. It is not usable.  COMPLETED - The batch prediction process completed successfully.  DELETED - The BatchPrediction is marked as deleted. It is not usable. 
     */
    Status?: EntityStatus;
    /**
     * The location of an Amazon S3 bucket or directory to receive the operation results. The following substrings are not allowed in the s3 key portion of the outputURI field: ':', '//', '/./', '/../'.
     */
    OutputUri?: S3Url;
    /**
     * A description of the most recent details about processing the batch prediction request.
     */
    Message?: Message;
    ComputeTime?: LongType;
    FinishedAt?: EpochTime;
    StartedAt?: EpochTime;
    TotalRecordCount?: LongType;
    InvalidRecordCount?: LongType;
  }
  export type BatchPredictionFilterVariable = "CreatedAt"|"LastUpdatedAt"|"Status"|"Name"|"IAMUser"|"MLModelId"|"DataSourceId"|"DataURI"|string;
  export type BatchPredictions = BatchPrediction[];
  export type ComparatorValue = string;
  export type ComputeStatistics = boolean;
  export interface CreateBatchPredictionInput {
    /**
     * A user-supplied ID that uniquely identifies the BatchPrediction.
     */
    BatchPredictionId: EntityId;
    /**
     * A user-supplied name or description of the BatchPrediction. BatchPredictionName can only use the UTF-8 character set.
     */
    BatchPredictionName?: EntityName;
    /**
     * The ID of the MLModel that will generate predictions for the group of observations. 
     */
    MLModelId: EntityId;
    /**
     * The ID of the DataSource that points to the group of observations to predict.
     */
    BatchPredictionDataSourceId: EntityId;
    /**
     * The location of an Amazon Simple Storage Service (Amazon S3) bucket or directory to store the batch prediction results. The following substrings are not allowed in the s3 key portion of the outputURI field: ':', '//', '/./', '/../'. Amazon ML needs permissions to store and retrieve the logs on your behalf. For information about how to set permissions, see the Amazon Machine Learning Developer Guide.
     */
    OutputUri: S3Url;
  }
  export interface CreateBatchPredictionOutput {
    /**
     * A user-supplied ID that uniquely identifies the BatchPrediction. This value is identical to the value of the BatchPredictionId in the request.
     */
    BatchPredictionId?: EntityId;
  }
  export interface CreateDataSourceFromRDSInput {
    /**
     * A user-supplied ID that uniquely identifies the DataSource. Typically, an Amazon Resource Number (ARN) becomes the ID for a DataSource.
     */
    DataSourceId: EntityId;
    /**
     * A user-supplied name or description of the DataSource.
     */
    DataSourceName?: EntityName;
    /**
     * The data specification of an Amazon RDS DataSource:  DatabaseInformation -   DatabaseName - The name of the Amazon RDS database.  InstanceIdentifier  - A unique identifier for the Amazon RDS database instance.   DatabaseCredentials - AWS Identity and Access Management (IAM) credentials that are used to connect to the Amazon RDS database. ResourceRole - A role (DataPipelineDefaultResourceRole) assumed by an EC2 instance to carry out the copy task from Amazon RDS to Amazon Simple Storage Service (Amazon S3). For more information, see Role templates for data pipelines. ServiceRole - A role (DataPipelineDefaultRole) assumed by the AWS Data Pipeline service to monitor the progress of the copy task from Amazon RDS to Amazon S3. For more information, see Role templates for data pipelines. SecurityInfo - The security information to use to access an RDS DB instance. You need to set up appropriate ingress rules for the security entity IDs provided to allow access to the Amazon RDS instance. Specify a [SubnetId, SecurityGroupIds] pair for a VPC-based RDS DB instance. SelectSqlQuery - A query that is used to retrieve the observation data for the Datasource. S3StagingLocation - The Amazon S3 location for staging Amazon RDS data. The data retrieved from Amazon RDS using SelectSqlQuery is stored in this location. DataSchemaUri - The Amazon S3 location of the DataSchema. DataSchema - A JSON string representing the schema. This is not required if DataSchemaUri is specified.   DataRearrangement - A JSON string that represents the splitting and rearrangement requirements for the Datasource.    Sample -  "{\"splitting\":{\"percentBegin\":10,\"percentEnd\":60}}"   
     */
    RDSData: RDSDataSpec;
    /**
     * The role that Amazon ML assumes on behalf of the user to create and activate a data pipeline in the user's account and copy data using the SelectSqlQuery query from Amazon RDS to Amazon S3.  
     */
    RoleARN: RoleARN;
    /**
     * The compute statistics for a DataSource. The statistics are generated from the observation data referenced by a DataSource. Amazon ML uses the statistics internally during MLModel training. This parameter must be set to true if the DataSource needs to be used for MLModel training. 
     */
    ComputeStatistics?: ComputeStatistics;
  }
  export interface CreateDataSourceFromRDSOutput {
    /**
     * A user-supplied ID that uniquely identifies the datasource. This value should be identical to the value of the DataSourceID in the request. 
     */
    DataSourceId?: EntityId;
  }
  export interface CreateDataSourceFromRedshiftInput {
    /**
     * A user-supplied ID that uniquely identifies the DataSource.
     */
    DataSourceId: EntityId;
    /**
     * A user-supplied name or description of the DataSource. 
     */
    DataSourceName?: EntityName;
    /**
     * The data specification of an Amazon Redshift DataSource:  DatabaseInformation -   DatabaseName - The name of the Amazon Redshift database.    ClusterIdentifier - The unique ID for the Amazon Redshift cluster.  DatabaseCredentials - The AWS Identity and Access Management (IAM) credentials that are used to connect to the Amazon Redshift database. SelectSqlQuery - The query that is used to retrieve the observation data for the Datasource. S3StagingLocation - The Amazon Simple Storage Service (Amazon S3) location for staging Amazon Redshift data. The data retrieved from Amazon Redshift using the SelectSqlQuery query is stored in this location. DataSchemaUri - The Amazon S3 location of the DataSchema. DataSchema - A JSON string representing the schema. This is not required if DataSchemaUri is specified.   DataRearrangement - A JSON string that represents the splitting and rearrangement requirements for the DataSource.  Sample -  "{\"splitting\":{\"percentBegin\":10,\"percentEnd\":60}}"   
     */
    DataSpec: RedshiftDataSpec;
    /**
     * A fully specified role Amazon Resource Name (ARN). Amazon ML assumes the role on behalf of the user to create the following:    A security group to allow Amazon ML to execute the SelectSqlQuery query on an Amazon Redshift cluster An Amazon S3 bucket policy to grant Amazon ML read/write permissions on the S3StagingLocation  
     */
    RoleARN: RoleARN;
    /**
     * The compute statistics for a DataSource. The statistics are generated from the observation data referenced by a DataSource. Amazon ML uses the statistics internally during MLModel training. This parameter must be set to true if the DataSource needs to be used for MLModel training.
     */
    ComputeStatistics?: ComputeStatistics;
  }
  export interface CreateDataSourceFromRedshiftOutput {
    /**
     * A user-supplied ID that uniquely identifies the datasource. This value should be identical to the value of the DataSourceID in the request. 
     */
    DataSourceId?: EntityId;
  }
  export interface CreateDataSourceFromS3Input {
    /**
     * A user-supplied identifier that uniquely identifies the DataSource. 
     */
    DataSourceId: EntityId;
    /**
     * A user-supplied name or description of the DataSource. 
     */
    DataSourceName?: EntityName;
    /**
     * The data specification of a DataSource:  DataLocationS3 - The Amazon S3 location of the observation data. DataSchemaLocationS3 - The Amazon S3 location of the DataSchema. DataSchema - A JSON string representing the schema. This is not required if DataSchemaUri is specified.   DataRearrangement - A JSON string that represents the splitting and rearrangement requirements for the Datasource.   Sample -  "{\"splitting\":{\"percentBegin\":10,\"percentEnd\":60}}"   
     */
    DataSpec: S3DataSpec;
    /**
     * The compute statistics for a DataSource. The statistics are generated from the observation data referenced by a DataSource. Amazon ML uses the statistics internally during MLModel training. This parameter must be set to true if the DataSource needs to be used for MLModel training.
     */
    ComputeStatistics?: ComputeStatistics;
  }
  export interface CreateDataSourceFromS3Output {
    /**
     * A user-supplied ID that uniquely identifies the DataSource. This value should be identical to the value of the DataSourceID in the request. 
     */
    DataSourceId?: EntityId;
  }
  export interface CreateEvaluationInput {
    /**
     * A user-supplied ID that uniquely identifies the Evaluation.
     */
    EvaluationId: EntityId;
    /**
     * A user-supplied name or description of the Evaluation.
     */
    EvaluationName?: EntityName;
    /**
     * The ID of the MLModel to evaluate. The schema used in creating the MLModel must match the schema of the DataSource used in the Evaluation.
     */
    MLModelId: EntityId;
    /**
     * The ID of the DataSource for the evaluation. The schema of the DataSource must match the schema used to create the MLModel.
     */
    EvaluationDataSourceId: EntityId;
  }
  export interface CreateEvaluationOutput {
    /**
     * The user-supplied ID that uniquely identifies the Evaluation. This value should be identical to the value of the EvaluationId in the request.
     */
    EvaluationId?: EntityId;
  }
  export interface CreateMLModelInput {
    /**
     * A user-supplied ID that uniquely identifies the MLModel.
     */
    MLModelId: EntityId;
    /**
     * A user-supplied name or description of the MLModel.
     */
    MLModelName?: EntityName;
    /**
     * The category of supervised learning that this MLModel will address. Choose from the following types:  Choose REGRESSION if the MLModel will be used to predict a numeric value. Choose BINARY if the MLModel result has two possible values. Choose MULTICLASS if the MLModel result has a limited number of values.    For more information, see the Amazon Machine Learning Developer Guide.
     */
    MLModelType: MLModelType;
    /**
     * A list of the training parameters in the MLModel. The list is implemented as a map of key-value pairs. The following is the current set of training parameters:    sgd.maxMLModelSizeInBytes - The maximum allowed size of the model. Depending on the input data, the size of the model might affect its performance.  The value is an integer that ranges from 100000 to 2147483648. The default value is 33554432.  sgd.maxPasses - The number of times that the training process traverses the observations to build the MLModel. The value is an integer that ranges from 1 to 10000. The default value is 10.  sgd.shuffleType - Whether Amazon ML shuffles the training data. Shuffling the data improves a model's ability to find the optimal solution for a variety of data types. The valid values are auto and none. The default value is none. We strongly recommend that you shuffle your data.   sgd.l1RegularizationAmount - The coefficient regularization L1 norm. It controls overfitting the data by penalizing large coefficients. This tends to drive coefficients to zero, resulting in a sparse feature set. If you use this parameter, start by specifying a small value, such as 1.0E-08. The value is a double that ranges from 0 to MAX_DOUBLE. The default is to not use L1 normalization. This parameter can't be used when L2 is specified. Use this parameter sparingly.   sgd.l2RegularizationAmount - The coefficient regularization L2 norm. It controls overfitting the data by penalizing large coefficients. This tends to drive coefficients to small, nonzero values. If you use this parameter, start by specifying a small value, such as 1.0E-08. The value is a double that ranges from 0 to MAX_DOUBLE. The default is to not use L2 normalization. This parameter can't be used when L1 is specified. Use this parameter sparingly.  
     */
    Parameters?: TrainingParameters;
    /**
     * The DataSource that points to the training data.
     */
    TrainingDataSourceId: EntityId;
    /**
     * The data recipe for creating the MLModel. You must specify either the recipe or its URI. If you don't specify a recipe or its URI, Amazon ML creates a default.
     */
    Recipe?: Recipe;
    /**
     * The Amazon Simple Storage Service (Amazon S3) location and file name that contains the MLModel recipe. You must specify either the recipe or its URI. If you don't specify a recipe or its URI, Amazon ML creates a default.
     */
    RecipeUri?: S3Url;
  }
  export interface CreateMLModelOutput {
    /**
     * A user-supplied ID that uniquely identifies the MLModel. This value should be identical to the value of the MLModelId in the request. 
     */
    MLModelId?: EntityId;
  }
  export interface CreateRealtimeEndpointInput {
    /**
     * The ID assigned to the MLModel during creation.
     */
    MLModelId: EntityId;
  }
  export interface CreateRealtimeEndpointOutput {
    /**
     * A user-supplied ID that uniquely identifies the MLModel. This value should be identical to the value of the MLModelId in the request.
     */
    MLModelId?: EntityId;
    /**
     * The endpoint information of the MLModel 
     */
    RealtimeEndpointInfo?: RealtimeEndpointInfo;
  }
  export type DataRearrangement = string;
  export type DataSchema = string;
  export interface DataSource {
    /**
     * The ID that is assigned to the DataSource during creation.
     */
    DataSourceId?: EntityId;
    /**
     * The location and name of the data in Amazon Simple Storage Service (Amazon S3) that is used by a DataSource.
     */
    DataLocationS3?: S3Url;
    /**
     * A JSON string that represents the splitting and rearrangement requirement used when this DataSource was created.
     */
    DataRearrangement?: DataRearrangement;
    /**
     * The AWS user account from which the DataSource was created. The account type can be either an AWS root account or an AWS Identity and Access Management (IAM) user account.
     */
    CreatedByIamUser?: AwsUserArn;
    /**
     * The time that the DataSource was created. The time is expressed in epoch time.
     */
    CreatedAt?: EpochTime;
    /**
     * The time of the most recent edit to the BatchPrediction. The time is expressed in epoch time.
     */
    LastUpdatedAt?: EpochTime;
    /**
     * The total number of observations contained in the data files that the DataSource references.
     */
    DataSizeInBytes?: LongType;
    /**
     * The number of data files referenced by the DataSource.
     */
    NumberOfFiles?: LongType;
    /**
     * A user-supplied name or description of the DataSource.
     */
    Name?: EntityName;
    /**
     * The current status of the DataSource. This element can have one of the following values:   PENDING - Amazon Machine Learning (Amazon ML) submitted a request to create a DataSource. INPROGRESS - The creation process is underway. FAILED - The request to create a DataSource did not run to completion. It is not usable. COMPLETED - The creation process completed successfully. DELETED - The DataSource is marked as deleted. It is not usable. 
     */
    Status?: EntityStatus;
    /**
     * A description of the most recent details about creating the DataSource.
     */
    Message?: Message;
    RedshiftMetadata?: RedshiftMetadata;
    RDSMetadata?: RDSMetadata;
    RoleARN?: RoleARN;
    /**
     *  The parameter is true if statistics need to be generated from the observation data. 
     */
    ComputeStatistics?: ComputeStatistics;
    ComputeTime?: LongType;
    FinishedAt?: EpochTime;
    StartedAt?: EpochTime;
  }
  export type DataSourceFilterVariable = "CreatedAt"|"LastUpdatedAt"|"Status"|"Name"|"DataLocationS3"|"IAMUser"|string;
  export type DataSources = DataSource[];
  export interface DeleteBatchPredictionInput {
    /**
     * A user-supplied ID that uniquely identifies the BatchPrediction.
     */
    BatchPredictionId: EntityId;
  }
  export interface DeleteBatchPredictionOutput {
    /**
     * A user-supplied ID that uniquely identifies the BatchPrediction. This value should be identical to the value of the BatchPredictionID in the request.
     */
    BatchPredictionId?: EntityId;
  }
  export interface DeleteDataSourceInput {
    /**
     * A user-supplied ID that uniquely identifies the DataSource.
     */
    DataSourceId: EntityId;
  }
  export interface DeleteDataSourceOutput {
    /**
     * A user-supplied ID that uniquely identifies the DataSource. This value should be identical to the value of the DataSourceID in the request.
     */
    DataSourceId?: EntityId;
  }
  export interface DeleteEvaluationInput {
    /**
     * A user-supplied ID that uniquely identifies the Evaluation to delete.
     */
    EvaluationId: EntityId;
  }
  export interface DeleteEvaluationOutput {
    /**
     * A user-supplied ID that uniquely identifies the Evaluation. This value should be identical to the value of the EvaluationId in the request.
     */
    EvaluationId?: EntityId;
  }
  export interface DeleteMLModelInput {
    /**
     * A user-supplied ID that uniquely identifies the MLModel.
     */
    MLModelId: EntityId;
  }
  export interface DeleteMLModelOutput {
    /**
     * A user-supplied ID that uniquely identifies the MLModel. This value should be identical to the value of the MLModelID in the request.
     */
    MLModelId?: EntityId;
  }
  export interface DeleteRealtimeEndpointInput {
    /**
     * The ID assigned to the MLModel during creation.
     */
    MLModelId: EntityId;
  }
  export interface DeleteRealtimeEndpointOutput {
    /**
     * A user-supplied ID that uniquely identifies the MLModel. This value should be identical to the value of the MLModelId in the request.
     */
    MLModelId?: EntityId;
    /**
     * The endpoint information of the MLModel 
     */
    RealtimeEndpointInfo?: RealtimeEndpointInfo;
  }
  export interface DeleteTagsInput {
    /**
     * One or more tags to delete.
     */
    TagKeys: TagKeyList;
    /**
     * The ID of the tagged ML object. For example, exampleModelId.
     */
    ResourceId: EntityId;
    /**
     * The type of the tagged ML object.
     */
    ResourceType: TaggableResourceType;
  }
  export interface DeleteTagsOutput {
    /**
     * The ID of the ML object from which tags were deleted.
     */
    ResourceId?: EntityId;
    /**
     * The type of the ML object from which tags were deleted.
     */
    ResourceType?: TaggableResourceType;
  }
  export interface DescribeBatchPredictionsInput {
    /**
     * Use one of the following variables to filter a list of BatchPrediction:   CreatedAt - Sets the search criteria to the BatchPrediction creation date.  Status - Sets the search criteria to the BatchPrediction status.  Name - Sets the search criteria to the contents of the BatchPrediction  Name.  IAMUser - Sets the search criteria to the user account that invoked the BatchPrediction creation.  MLModelId - Sets the search criteria to the MLModel used in the BatchPrediction.  DataSourceId - Sets the search criteria to the DataSource used in the BatchPrediction.  DataURI - Sets the search criteria to the data file(s) used in the BatchPrediction. The URL can identify either a file or an Amazon Simple Storage Solution (Amazon S3) bucket or directory. 
     */
    FilterVariable?: BatchPredictionFilterVariable;
    /**
     * The equal to operator. The BatchPrediction results will have FilterVariable values that exactly match the value specified with EQ.
     */
    EQ?: ComparatorValue;
    /**
     * The greater than operator. The BatchPrediction results will have FilterVariable values that are greater than the value specified with GT.
     */
    GT?: ComparatorValue;
    /**
     * The less than operator. The BatchPrediction results will have FilterVariable values that are less than the value specified with LT.
     */
    LT?: ComparatorValue;
    /**
     * The greater than or equal to operator. The BatchPrediction results will have FilterVariable values that are greater than or equal to the value specified with GE. 
     */
    GE?: ComparatorValue;
    /**
     * The less than or equal to operator. The BatchPrediction results will have FilterVariable values that are less than or equal to the value specified with LE.
     */
    LE?: ComparatorValue;
    /**
     * The not equal to operator. The BatchPrediction results will have FilterVariable values not equal to the value specified with NE.
     */
    NE?: ComparatorValue;
    /**
     * A string that is found at the beginning of a variable, such as Name or Id. For example, a Batch Prediction operation could have the Name 2014-09-09-HolidayGiftMailer. To search for this BatchPrediction, select Name for the FilterVariable and any of the following strings for the Prefix:   2014-09 2014-09-09 2014-09-09-Holiday 
     */
    Prefix?: ComparatorValue;
    /**
     * A two-value parameter that determines the sequence of the resulting list of MLModels.   asc - Arranges the list in ascending order (A-Z, 0-9).  dsc - Arranges the list in descending order (Z-A, 9-0).  Results are sorted by FilterVariable.
     */
    SortOrder?: SortOrder;
    /**
     * An ID of the page in the paginated results.
     */
    NextToken?: StringType;
    /**
     * The number of pages of information to include in the result. The range of acceptable values is 1 through 100. The default value is 100.
     */
    Limit?: PageLimit;
  }
  export interface DescribeBatchPredictionsOutput {
    /**
     * A list of BatchPrediction objects that meet the search criteria. 
     */
    Results?: BatchPredictions;
    /**
     * The ID of the next page in the paginated results that indicates at least one more page follows.
     */
    NextToken?: StringType;
  }
  export interface DescribeDataSourcesInput {
    /**
     * Use one of the following variables to filter a list of DataSource:   CreatedAt - Sets the search criteria to DataSource creation dates.  Status - Sets the search criteria to DataSource statuses.  Name - Sets the search criteria to the contents of DataSource   Name.  DataUri - Sets the search criteria to the URI of data files used to create the DataSource. The URI can identify either a file or an Amazon Simple Storage Service (Amazon S3) bucket or directory.  IAMUser - Sets the search criteria to the user account that invoked the DataSource creation. 
     */
    FilterVariable?: DataSourceFilterVariable;
    /**
     * The equal to operator. The DataSource results will have FilterVariable values that exactly match the value specified with EQ.
     */
    EQ?: ComparatorValue;
    /**
     * The greater than operator. The DataSource results will have FilterVariable values that are greater than the value specified with GT.
     */
    GT?: ComparatorValue;
    /**
     * The less than operator. The DataSource results will have FilterVariable values that are less than the value specified with LT.
     */
    LT?: ComparatorValue;
    /**
     * The greater than or equal to operator. The DataSource results will have FilterVariable values that are greater than or equal to the value specified with GE. 
     */
    GE?: ComparatorValue;
    /**
     * The less than or equal to operator. The DataSource results will have FilterVariable values that are less than or equal to the value specified with LE.
     */
    LE?: ComparatorValue;
    /**
     * The not equal to operator. The DataSource results will have FilterVariable values not equal to the value specified with NE.
     */
    NE?: ComparatorValue;
    /**
     * A string that is found at the beginning of a variable, such as Name or Id. For example, a DataSource could have the Name 2014-09-09-HolidayGiftMailer. To search for this DataSource, select Name for the FilterVariable and any of the following strings for the Prefix:   2014-09 2014-09-09 2014-09-09-Holiday 
     */
    Prefix?: ComparatorValue;
    /**
     * A two-value parameter that determines the sequence of the resulting list of DataSource.   asc - Arranges the list in ascending order (A-Z, 0-9).  dsc - Arranges the list in descending order (Z-A, 9-0).  Results are sorted by FilterVariable.
     */
    SortOrder?: SortOrder;
    /**
     * The ID of the page in the paginated results.
     */
    NextToken?: StringType;
    /**
     *  The maximum number of DataSource to include in the result.
     */
    Limit?: PageLimit;
  }
  export interface DescribeDataSourcesOutput {
    /**
     * A list of DataSource that meet the search criteria. 
     */
    Results?: DataSources;
    /**
     * An ID of the next page in the paginated results that indicates at least one more page follows.
     */
    NextToken?: StringType;
  }
  export interface DescribeEvaluationsInput {
    /**
     * Use one of the following variable to filter a list of Evaluation objects:   CreatedAt - Sets the search criteria to the Evaluation creation date.  Status - Sets the search criteria to the Evaluation status.  Name - Sets the search criteria to the contents of Evaluation   Name.  IAMUser - Sets the search criteria to the user account that invoked an Evaluation.  MLModelId - Sets the search criteria to the MLModel that was evaluated.  DataSourceId - Sets the search criteria to the DataSource used in Evaluation.  DataUri - Sets the search criteria to the data file(s) used in Evaluation. The URL can identify either a file or an Amazon Simple Storage Solution (Amazon S3) bucket or directory. 
     */
    FilterVariable?: EvaluationFilterVariable;
    /**
     * The equal to operator. The Evaluation results will have FilterVariable values that exactly match the value specified with EQ.
     */
    EQ?: ComparatorValue;
    /**
     * The greater than operator. The Evaluation results will have FilterVariable values that are greater than the value specified with GT.
     */
    GT?: ComparatorValue;
    /**
     * The less than operator. The Evaluation results will have FilterVariable values that are less than the value specified with LT.
     */
    LT?: ComparatorValue;
    /**
     * The greater than or equal to operator. The Evaluation results will have FilterVariable values that are greater than or equal to the value specified with GE. 
     */
    GE?: ComparatorValue;
    /**
     * The less than or equal to operator. The Evaluation results will have FilterVariable values that are less than or equal to the value specified with LE.
     */
    LE?: ComparatorValue;
    /**
     * The not equal to operator. The Evaluation results will have FilterVariable values not equal to the value specified with NE.
     */
    NE?: ComparatorValue;
    /**
     * A string that is found at the beginning of a variable, such as Name or Id. For example, an Evaluation could have the Name 2014-09-09-HolidayGiftMailer. To search for this Evaluation, select Name for the FilterVariable and any of the following strings for the Prefix:   2014-09 2014-09-09 2014-09-09-Holiday 
     */
    Prefix?: ComparatorValue;
    /**
     * A two-value parameter that determines the sequence of the resulting list of Evaluation.   asc - Arranges the list in ascending order (A-Z, 0-9).  dsc - Arranges the list in descending order (Z-A, 9-0).  Results are sorted by FilterVariable.
     */
    SortOrder?: SortOrder;
    /**
     * The ID of the page in the paginated results.
     */
    NextToken?: StringType;
    /**
     *  The maximum number of Evaluation to include in the result.
     */
    Limit?: PageLimit;
  }
  export interface DescribeEvaluationsOutput {
    /**
     * A list of Evaluation that meet the search criteria. 
     */
    Results?: Evaluations;
    /**
     * The ID of the next page in the paginated results that indicates at least one more page follows.
     */
    NextToken?: StringType;
  }
  export interface DescribeMLModelsInput {
    /**
     * Use one of the following variables to filter a list of MLModel:   CreatedAt - Sets the search criteria to MLModel creation date.  Status - Sets the search criteria to MLModel status.  Name - Sets the search criteria to the contents of MLModel  Name.  IAMUser - Sets the search criteria to the user account that invoked the MLModel creation.  TrainingDataSourceId - Sets the search criteria to the DataSource used to train one or more MLModel.  RealtimeEndpointStatus - Sets the search criteria to the MLModel real-time endpoint status.  MLModelType - Sets the search criteria to MLModel type: binary, regression, or multi-class.  Algorithm - Sets the search criteria to the algorithm that the MLModel uses.  TrainingDataURI - Sets the search criteria to the data file(s) used in training a MLModel. The URL can identify either a file or an Amazon Simple Storage Service (Amazon S3) bucket or directory. 
     */
    FilterVariable?: MLModelFilterVariable;
    /**
     * The equal to operator. The MLModel results will have FilterVariable values that exactly match the value specified with EQ.
     */
    EQ?: ComparatorValue;
    /**
     * The greater than operator. The MLModel results will have FilterVariable values that are greater than the value specified with GT.
     */
    GT?: ComparatorValue;
    /**
     * The less than operator. The MLModel results will have FilterVariable values that are less than the value specified with LT.
     */
    LT?: ComparatorValue;
    /**
     * The greater than or equal to operator. The MLModel results will have FilterVariable values that are greater than or equal to the value specified with GE. 
     */
    GE?: ComparatorValue;
    /**
     * The less than or equal to operator. The MLModel results will have FilterVariable values that are less than or equal to the value specified with LE.
     */
    LE?: ComparatorValue;
    /**
     * The not equal to operator. The MLModel results will have FilterVariable values not equal to the value specified with NE.
     */
    NE?: ComparatorValue;
    /**
     * A string that is found at the beginning of a variable, such as Name or Id. For example, an MLModel could have the Name 2014-09-09-HolidayGiftMailer. To search for this MLModel, select Name for the FilterVariable and any of the following strings for the Prefix:   2014-09 2014-09-09 2014-09-09-Holiday 
     */
    Prefix?: ComparatorValue;
    /**
     * A two-value parameter that determines the sequence of the resulting list of MLModel.   asc - Arranges the list in ascending order (A-Z, 0-9).  dsc - Arranges the list in descending order (Z-A, 9-0).  Results are sorted by FilterVariable.
     */
    SortOrder?: SortOrder;
    /**
     * The ID of the page in the paginated results.
     */
    NextToken?: StringType;
    /**
     * The number of pages of information to include in the result. The range of acceptable values is 1 through 100. The default value is 100.
     */
    Limit?: PageLimit;
  }
  export interface DescribeMLModelsOutput {
    /**
     * A list of MLModel that meet the search criteria.
     */
    Results?: MLModels;
    /**
     * The ID of the next page in the paginated results that indicates at least one more page follows.
     */
    NextToken?: StringType;
  }
  export interface DescribeTagsInput {
    /**
     * The ID of the ML object. For example, exampleModelId. 
     */
    ResourceId: EntityId;
    /**
     * The type of the ML object.
     */
    ResourceType: TaggableResourceType;
  }
  export interface DescribeTagsOutput {
    /**
     * The ID of the tagged ML object.
     */
    ResourceId?: EntityId;
    /**
     * The type of the tagged ML object.
     */
    ResourceType?: TaggableResourceType;
    /**
     * A list of tags associated with the ML object.
     */
    Tags?: TagList;
  }
  export type DetailsAttributes = "PredictiveModelType"|"Algorithm"|string;
  export type DetailsMap = {[key: string]: DetailsValue};
  export type DetailsValue = string;
  export type EDPPipelineId = string;
  export type EDPResourceRole = string;
  export type EDPSecurityGroupId = string;
  export type EDPSecurityGroupIds = EDPSecurityGroupId[];
  export type EDPServiceRole = string;
  export type EDPSubnetId = string;
  export type EntityId = string;
  export type EntityName = string;
  export type EntityStatus = "PENDING"|"INPROGRESS"|"FAILED"|"COMPLETED"|"DELETED"|string;
  export type EpochTime = Date;
  export interface Evaluation {
    /**
     * The ID that is assigned to the Evaluation at creation.
     */
    EvaluationId?: EntityId;
    /**
     * The ID of the MLModel that is the focus of the evaluation.
     */
    MLModelId?: EntityId;
    /**
     * The ID of the DataSource that is used to evaluate the MLModel.
     */
    EvaluationDataSourceId?: EntityId;
    /**
     * The location and name of the data in Amazon Simple Storage Server (Amazon S3) that is used in the evaluation.
     */
    InputDataLocationS3?: S3Url;
    /**
     * The AWS user account that invoked the evaluation. The account type can be either an AWS root account or an AWS Identity and Access Management (IAM) user account.
     */
    CreatedByIamUser?: AwsUserArn;
    /**
     * The time that the Evaluation was created. The time is expressed in epoch time.
     */
    CreatedAt?: EpochTime;
    /**
     * The time of the most recent edit to the Evaluation. The time is expressed in epoch time.
     */
    LastUpdatedAt?: EpochTime;
    /**
     * A user-supplied name or description of the Evaluation. 
     */
    Name?: EntityName;
    /**
     * The status of the evaluation. This element can have one of the following values:   PENDING - Amazon Machine Learning (Amazon ML) submitted a request to evaluate an MLModel.  INPROGRESS - The evaluation is underway.  FAILED - The request to evaluate an MLModel did not run to completion. It is not usable.  COMPLETED - The evaluation process completed successfully.  DELETED - The Evaluation is marked as deleted. It is not usable. 
     */
    Status?: EntityStatus;
    /**
     * Measurements of how well the MLModel performed, using observations referenced by the DataSource. One of the following metrics is returned, based on the type of the MLModel:    BinaryAUC: A binary MLModel uses the Area Under the Curve (AUC) technique to measure performance.    RegressionRMSE: A regression MLModel uses the Root Mean Square Error (RMSE) technique to measure performance. RMSE measures the difference between predicted and actual values for a single variable.   MulticlassAvgFScore: A multiclass MLModel uses the F1 score technique to measure performance.     For more information about performance metrics, please see the Amazon Machine Learning Developer Guide. 
     */
    PerformanceMetrics?: PerformanceMetrics;
    /**
     * A description of the most recent details about evaluating the MLModel.
     */
    Message?: Message;
    ComputeTime?: LongType;
    FinishedAt?: EpochTime;
    StartedAt?: EpochTime;
  }
  export type EvaluationFilterVariable = "CreatedAt"|"LastUpdatedAt"|"Status"|"Name"|"IAMUser"|"MLModelId"|"DataSourceId"|"DataURI"|string;
  export type Evaluations = Evaluation[];
  export interface GetBatchPredictionInput {
    /**
     * An ID assigned to the BatchPrediction at creation.
     */
    BatchPredictionId: EntityId;
  }
  export interface GetBatchPredictionOutput {
    /**
     * An ID assigned to the BatchPrediction at creation. This value should be identical to the value of the BatchPredictionID in the request.
     */
    BatchPredictionId?: EntityId;
    /**
     * The ID of the MLModel that generated predictions for the BatchPrediction request.
     */
    MLModelId?: EntityId;
    /**
     * The ID of the DataSource that was used to create the BatchPrediction. 
     */
    BatchPredictionDataSourceId?: EntityId;
    /**
     * The location of the data file or directory in Amazon Simple Storage Service (Amazon S3).
     */
    InputDataLocationS3?: S3Url;
    /**
     * The AWS user account that invoked the BatchPrediction. The account type can be either an AWS root account or an AWS Identity and Access Management (IAM) user account.
     */
    CreatedByIamUser?: AwsUserArn;
    /**
     * The time when the BatchPrediction was created. The time is expressed in epoch time.
     */
    CreatedAt?: EpochTime;
    /**
     * The time of the most recent edit to BatchPrediction. The time is expressed in epoch time.
     */
    LastUpdatedAt?: EpochTime;
    /**
     * A user-supplied name or description of the BatchPrediction.
     */
    Name?: EntityName;
    /**
     * The status of the BatchPrediction, which can be one of the following values:   PENDING - Amazon Machine Learning (Amazon ML) submitted a request to generate batch predictions.  INPROGRESS - The batch predictions are in progress.  FAILED - The request to perform a batch prediction did not run to completion. It is not usable.  COMPLETED - The batch prediction process completed successfully.  DELETED - The BatchPrediction is marked as deleted. It is not usable. 
     */
    Status?: EntityStatus;
    /**
     * The location of an Amazon S3 bucket or directory to receive the operation results.
     */
    OutputUri?: S3Url;
    /**
     * A link to the file that contains logs of the CreateBatchPrediction operation.
     */
    LogUri?: PresignedS3Url;
    /**
     * A description of the most recent details about processing the batch prediction request.
     */
    Message?: Message;
    /**
     * The approximate CPU time in milliseconds that Amazon Machine Learning spent processing the BatchPrediction, normalized and scaled on computation resources. ComputeTime is only available if the BatchPrediction is in the COMPLETED state.
     */
    ComputeTime?: LongType;
    /**
     * The epoch time when Amazon Machine Learning marked the BatchPrediction as COMPLETED or FAILED. FinishedAt is only available when the BatchPrediction is in the COMPLETED or FAILED state.
     */
    FinishedAt?: EpochTime;
    /**
     * The epoch time when Amazon Machine Learning marked the BatchPrediction as INPROGRESS. StartedAt isn't available if the BatchPrediction is in the PENDING state.
     */
    StartedAt?: EpochTime;
    /**
     * The number of total records that Amazon Machine Learning saw while processing the BatchPrediction.
     */
    TotalRecordCount?: LongType;
    /**
     * The number of invalid records that Amazon Machine Learning saw while processing the BatchPrediction.
     */
    InvalidRecordCount?: LongType;
  }
  export interface GetDataSourceInput {
    /**
     * The ID assigned to the DataSource at creation.
     */
    DataSourceId: EntityId;
    /**
     * Specifies whether the GetDataSource operation should return DataSourceSchema. If true, DataSourceSchema is returned. If false, DataSourceSchema is not returned.
     */
    Verbose?: Verbose;
  }
  export interface GetDataSourceOutput {
    /**
     * The ID assigned to the DataSource at creation. This value should be identical to the value of the DataSourceId in the request.
     */
    DataSourceId?: EntityId;
    /**
     * The location of the data file or directory in Amazon Simple Storage Service (Amazon S3).
     */
    DataLocationS3?: S3Url;
    /**
     * A JSON string that represents the splitting and rearrangement requirement used when this DataSource was created.
     */
    DataRearrangement?: DataRearrangement;
    /**
     * The AWS user account from which the DataSource was created. The account type can be either an AWS root account or an AWS Identity and Access Management (IAM) user account.
     */
    CreatedByIamUser?: AwsUserArn;
    /**
     * The time that the DataSource was created. The time is expressed in epoch time.
     */
    CreatedAt?: EpochTime;
    /**
     * The time of the most recent edit to the DataSource. The time is expressed in epoch time.
     */
    LastUpdatedAt?: EpochTime;
    /**
     * The total size of observations in the data files.
     */
    DataSizeInBytes?: LongType;
    /**
     * The number of data files referenced by the DataSource.
     */
    NumberOfFiles?: LongType;
    /**
     * A user-supplied name or description of the DataSource.
     */
    Name?: EntityName;
    /**
     * The current status of the DataSource. This element can have one of the following values:   PENDING - Amazon ML submitted a request to create a DataSource.  INPROGRESS - The creation process is underway.  FAILED - The request to create a DataSource did not run to completion. It is not usable.  COMPLETED - The creation process completed successfully.  DELETED - The DataSource is marked as deleted. It is not usable. 
     */
    Status?: EntityStatus;
    /**
     * A link to the file containing logs of CreateDataSourceFrom* operations.
     */
    LogUri?: PresignedS3Url;
    /**
     * The user-supplied description of the most recent details about creating the DataSource.
     */
    Message?: Message;
    RedshiftMetadata?: RedshiftMetadata;
    RDSMetadata?: RDSMetadata;
    RoleARN?: RoleARN;
    /**
     *  The parameter is true if statistics need to be generated from the observation data. 
     */
    ComputeStatistics?: ComputeStatistics;
    /**
     * The approximate CPU time in milliseconds that Amazon Machine Learning spent processing the DataSource, normalized and scaled on computation resources. ComputeTime is only available if the DataSource is in the COMPLETED state and the ComputeStatistics is set to true.
     */
    ComputeTime?: LongType;
    /**
     * The epoch time when Amazon Machine Learning marked the DataSource as COMPLETED or FAILED. FinishedAt is only available when the DataSource is in the COMPLETED or FAILED state.
     */
    FinishedAt?: EpochTime;
    /**
     * The epoch time when Amazon Machine Learning marked the DataSource as INPROGRESS. StartedAt isn't available if the DataSource is in the PENDING state.
     */
    StartedAt?: EpochTime;
    /**
     * The schema used by all of the data files of this DataSource. Note This parameter is provided as part of the verbose format.
     */
    DataSourceSchema?: DataSchema;
  }
  export interface GetEvaluationInput {
    /**
     * The ID of the Evaluation to retrieve. The evaluation of each MLModel is recorded and cataloged. The ID provides the means to access the information. 
     */
    EvaluationId: EntityId;
  }
  export interface GetEvaluationOutput {
    /**
     * The evaluation ID which is same as the EvaluationId in the request.
     */
    EvaluationId?: EntityId;
    /**
     * The ID of the MLModel that was the focus of the evaluation.
     */
    MLModelId?: EntityId;
    /**
     * The DataSource used for this evaluation.
     */
    EvaluationDataSourceId?: EntityId;
    /**
     * The location of the data file or directory in Amazon Simple Storage Service (Amazon S3).
     */
    InputDataLocationS3?: S3Url;
    /**
     * The AWS user account that invoked the evaluation. The account type can be either an AWS root account or an AWS Identity and Access Management (IAM) user account.
     */
    CreatedByIamUser?: AwsUserArn;
    /**
     * The time that the Evaluation was created. The time is expressed in epoch time.
     */
    CreatedAt?: EpochTime;
    /**
     * The time of the most recent edit to the Evaluation. The time is expressed in epoch time.
     */
    LastUpdatedAt?: EpochTime;
    /**
     * A user-supplied name or description of the Evaluation. 
     */
    Name?: EntityName;
    /**
     * The status of the evaluation. This element can have one of the following values:   PENDING - Amazon Machine Language (Amazon ML) submitted a request to evaluate an MLModel.  INPROGRESS - The evaluation is underway.  FAILED - The request to evaluate an MLModel did not run to completion. It is not usable.  COMPLETED - The evaluation process completed successfully.  DELETED - The Evaluation is marked as deleted. It is not usable. 
     */
    Status?: EntityStatus;
    /**
     * Measurements of how well the MLModel performed using observations referenced by the DataSource. One of the following metric is returned based on the type of the MLModel:    BinaryAUC: A binary MLModel uses the Area Under the Curve (AUC) technique to measure performance.    RegressionRMSE: A regression MLModel uses the Root Mean Square Error (RMSE) technique to measure performance. RMSE measures the difference between predicted and actual values for a single variable.   MulticlassAvgFScore: A multiclass MLModel uses the F1 score technique to measure performance.     For more information about performance metrics, please see the Amazon Machine Learning Developer Guide. 
     */
    PerformanceMetrics?: PerformanceMetrics;
    /**
     * A link to the file that contains logs of the CreateEvaluation operation.
     */
    LogUri?: PresignedS3Url;
    /**
     * A description of the most recent details about evaluating the MLModel.
     */
    Message?: Message;
    /**
     * The approximate CPU time in milliseconds that Amazon Machine Learning spent processing the Evaluation, normalized and scaled on computation resources. ComputeTime is only available if the Evaluation is in the COMPLETED state.
     */
    ComputeTime?: LongType;
    /**
     * The epoch time when Amazon Machine Learning marked the Evaluation as COMPLETED or FAILED. FinishedAt is only available when the Evaluation is in the COMPLETED or FAILED state.
     */
    FinishedAt?: EpochTime;
    /**
     * The epoch time when Amazon Machine Learning marked the Evaluation as INPROGRESS. StartedAt isn't available if the Evaluation is in the PENDING state.
     */
    StartedAt?: EpochTime;
  }
  export interface GetMLModelInput {
    /**
     * The ID assigned to the MLModel at creation.
     */
    MLModelId: EntityId;
    /**
     * Specifies whether the GetMLModel operation should return Recipe. If true, Recipe is returned. If false, Recipe is not returned.
     */
    Verbose?: Verbose;
  }
  export interface GetMLModelOutput {
    /**
     * The MLModel ID, which is same as the MLModelId in the request.
     */
    MLModelId?: EntityId;
    /**
     * The ID of the training DataSource.
     */
    TrainingDataSourceId?: EntityId;
    /**
     * The AWS user account from which the MLModel was created. The account type can be either an AWS root account or an AWS Identity and Access Management (IAM) user account.
     */
    CreatedByIamUser?: AwsUserArn;
    /**
     * The time that the MLModel was created. The time is expressed in epoch time.
     */
    CreatedAt?: EpochTime;
    /**
     * The time of the most recent edit to the MLModel. The time is expressed in epoch time.
     */
    LastUpdatedAt?: EpochTime;
    /**
     * A user-supplied name or description of the MLModel.
     */
    Name?: MLModelName;
    /**
     * The current status of the MLModel. This element can have one of the following values:   PENDING - Amazon Machine Learning (Amazon ML) submitted a request to describe a MLModel.  INPROGRESS - The request is processing.  FAILED - The request did not run to completion. The ML model isn't usable.  COMPLETED - The request completed successfully.  DELETED - The MLModel is marked as deleted. It isn't usable. 
     */
    Status?: EntityStatus;
    SizeInBytes?: LongType;
    /**
     * The current endpoint of the MLModel
     */
    EndpointInfo?: RealtimeEndpointInfo;
    /**
     * A list of the training parameters in the MLModel. The list is implemented as a map of key-value pairs. The following is the current set of training parameters:    sgd.maxMLModelSizeInBytes - The maximum allowed size of the model. Depending on the input data, the size of the model might affect its performance.  The value is an integer that ranges from 100000 to 2147483648. The default value is 33554432.  sgd.maxPasses - The number of times that the training process traverses the observations to build the MLModel. The value is an integer that ranges from 1 to 10000. The default value is 10. sgd.shuffleType - Whether Amazon ML shuffles the training data. Shuffling data improves a model's ability to find the optimal solution for a variety of data types. The valid values are auto and none. The default value is none. We strongly recommend that you shuffle your data.  sgd.l1RegularizationAmount - The coefficient regularization L1 norm. It controls overfitting the data by penalizing large coefficients. This tends to drive coefficients to zero, resulting in a sparse feature set. If you use this parameter, start by specifying a small value, such as 1.0E-08. The value is a double that ranges from 0 to MAX_DOUBLE. The default is to not use L1 normalization. This parameter can't be used when L2 is specified. Use this parameter sparingly.   sgd.l2RegularizationAmount - The coefficient regularization L2 norm. It controls overfitting the data by penalizing large coefficients. This tends to drive coefficients to small, nonzero values. If you use this parameter, start by specifying a small value, such as 1.0E-08. The value is a double that ranges from 0 to MAX_DOUBLE. The default is to not use L2 normalization. This parameter can't be used when L1 is specified. Use this parameter sparingly.  
     */
    TrainingParameters?: TrainingParameters;
    /**
     * The location of the data file or directory in Amazon Simple Storage Service (Amazon S3).
     */
    InputDataLocationS3?: S3Url;
    /**
     * Identifies the MLModel category. The following are the available types:   REGRESSION -- Produces a numeric result. For example, "What price should a house be listed at?" BINARY -- Produces one of two possible results. For example, "Is this an e-commerce website?" MULTICLASS -- Produces one of several possible results. For example, "Is this a HIGH, LOW or MEDIUM risk trade?" 
     */
    MLModelType?: MLModelType;
    /**
     * The scoring threshold is used in binary classification MLModel models. It marks the boundary between a positive prediction and a negative prediction. Output values greater than or equal to the threshold receive a positive result from the MLModel, such as true. Output values less than the threshold receive a negative response from the MLModel, such as false.
     */
    ScoreThreshold?: ScoreThreshold;
    /**
     * The time of the most recent edit to the ScoreThreshold. The time is expressed in epoch time.
     */
    ScoreThresholdLastUpdatedAt?: EpochTime;
    /**
     * A link to the file that contains logs of the CreateMLModel operation.
     */
    LogUri?: PresignedS3Url;
    /**
     * A description of the most recent details about accessing the MLModel.
     */
    Message?: Message;
    /**
     * The approximate CPU time in milliseconds that Amazon Machine Learning spent processing the MLModel, normalized and scaled on computation resources. ComputeTime is only available if the MLModel is in the COMPLETED state.
     */
    ComputeTime?: LongType;
    /**
     * The epoch time when Amazon Machine Learning marked the MLModel as COMPLETED or FAILED. FinishedAt is only available when the MLModel is in the COMPLETED or FAILED state.
     */
    FinishedAt?: EpochTime;
    /**
     * The epoch time when Amazon Machine Learning marked the MLModel as INPROGRESS. StartedAt isn't available if the MLModel is in the PENDING state.
     */
    StartedAt?: EpochTime;
    /**
     * The recipe to use when training the MLModel. The Recipe provides detailed information about the observation data to use during training, and manipulations to perform on the observation data during training. Note This parameter is provided as part of the verbose format.
     */
    Recipe?: Recipe;
    /**
     * The schema used by all of the data files referenced by the DataSource. Note This parameter is provided as part of the verbose format.
     */
    Schema?: DataSchema;
  }
  export type IntegerType = number;
  export type Label = string;
  export type LongType = number;
  export interface MLModel {
    /**
     * The ID assigned to the MLModel at creation.
     */
    MLModelId?: EntityId;
    /**
     * The ID of the training DataSource. The CreateMLModel operation uses the TrainingDataSourceId.
     */
    TrainingDataSourceId?: EntityId;
    /**
     * The AWS user account from which the MLModel was created. The account type can be either an AWS root account or an AWS Identity and Access Management (IAM) user account.
     */
    CreatedByIamUser?: AwsUserArn;
    /**
     * The time that the MLModel was created. The time is expressed in epoch time.
     */
    CreatedAt?: EpochTime;
    /**
     * The time of the most recent edit to the MLModel. The time is expressed in epoch time.
     */
    LastUpdatedAt?: EpochTime;
    /**
     * A user-supplied name or description of the MLModel.
     */
    Name?: MLModelName;
    /**
     * The current status of an MLModel. This element can have one of the following values:    PENDING - Amazon Machine Learning (Amazon ML) submitted a request to create an MLModel.  INPROGRESS - The creation process is underway.  FAILED - The request to create an MLModel didn't run to completion. The model isn't usable.  COMPLETED - The creation process completed successfully.  DELETED - The MLModel is marked as deleted. It isn't usable. 
     */
    Status?: EntityStatus;
    SizeInBytes?: LongType;
    /**
     * The current endpoint of the MLModel.
     */
    EndpointInfo?: RealtimeEndpointInfo;
    /**
     * A list of the training parameters in the MLModel. The list is implemented as a map of key-value pairs. The following is the current set of training parameters:    sgd.maxMLModelSizeInBytes - The maximum allowed size of the model. Depending on the input data, the size of the model might affect its performance.  The value is an integer that ranges from 100000 to 2147483648. The default value is 33554432.  sgd.maxPasses - The number of times that the training process traverses the observations to build the MLModel. The value is an integer that ranges from 1 to 10000. The default value is 10. sgd.shuffleType - Whether Amazon ML shuffles the training data. Shuffling the data improves a model's ability to find the optimal solution for a variety of data types. The valid values are auto and none. The default value is none.  sgd.l1RegularizationAmount - The coefficient regularization L1 norm, which controls overfitting the data by penalizing large coefficients. This parameter tends to drive coefficients to zero, resulting in sparse feature set. If you use this parameter, start by specifying a small value, such as 1.0E-08. The value is a double that ranges from 0 to MAX_DOUBLE. The default is to not use L1 normalization. This parameter can't be used when L2 is specified. Use this parameter sparingly.   sgd.l2RegularizationAmount - The coefficient regularization L2 norm, which controls overfitting the data by penalizing large coefficients. This tends to drive coefficients to small, nonzero values. If you use this parameter, start by specifying a small value, such as 1.0E-08. The value is a double that ranges from 0 to MAX_DOUBLE. The default is to not use L2 normalization. This parameter can't be used when L1 is specified. Use this parameter sparingly.  
     */
    TrainingParameters?: TrainingParameters;
    /**
     * The location of the data file or directory in Amazon Simple Storage Service (Amazon S3).
     */
    InputDataLocationS3?: S3Url;
    /**
     * The algorithm used to train the MLModel. The following algorithm is supported:   SGD -- Stochastic gradient descent. The goal of SGD is to minimize the gradient of the loss function.  
     */
    Algorithm?: Algorithm;
    /**
     * Identifies the MLModel category. The following are the available types:   REGRESSION - Produces a numeric result. For example, "What price should a house be listed at?"  BINARY - Produces one of two possible results. For example, "Is this a child-friendly web site?".  MULTICLASS - Produces one of several possible results. For example, "Is this a HIGH-, LOW-, or MEDIUM-risk trade?". 
     */
    MLModelType?: MLModelType;
    ScoreThreshold?: ScoreThreshold;
    /**
     * The time of the most recent edit to the ScoreThreshold. The time is expressed in epoch time.
     */
    ScoreThresholdLastUpdatedAt?: EpochTime;
    /**
     * A description of the most recent details about accessing the MLModel.
     */
    Message?: Message;
    ComputeTime?: LongType;
    FinishedAt?: EpochTime;
    StartedAt?: EpochTime;
  }
  export type MLModelFilterVariable = "CreatedAt"|"LastUpdatedAt"|"Status"|"Name"|"IAMUser"|"TrainingDataSourceId"|"RealtimeEndpointStatus"|"MLModelType"|"Algorithm"|"TrainingDataURI"|string;
  export type MLModelName = string;
  export type MLModelType = "REGRESSION"|"BINARY"|"MULTICLASS"|string;
  export type MLModels = MLModel[];
  export type Message = string;
  export type PageLimit = number;
  export interface PerformanceMetrics {
    Properties?: PerformanceMetricsProperties;
  }
  export type PerformanceMetricsProperties = {[key: string]: PerformanceMetricsPropertyValue};
  export type PerformanceMetricsPropertyKey = string;
  export type PerformanceMetricsPropertyValue = string;
  export interface PredictInput {
    /**
     * A unique identifier of the MLModel.
     */
    MLModelId: EntityId;
    Record: Record;
    PredictEndpoint: VipURL;
  }
  export interface PredictOutput {
    Prediction?: Prediction;
  }
  export interface Prediction {
    /**
     * The prediction label for either a BINARY or MULTICLASS MLModel.
     */
    predictedLabel?: Label;
    /**
     * The prediction value for REGRESSION MLModel.
     */
    predictedValue?: floatLabel;
    predictedScores?: ScoreValuePerLabelMap;
    details?: DetailsMap;
  }
  export type PresignedS3Url = string;
  export interface RDSDataSpec {
    /**
     * Describes the DatabaseName and InstanceIdentifier of an Amazon RDS database.
     */
    DatabaseInformation: RDSDatabase;
    /**
     * The query that is used to retrieve the observation data for the DataSource.
     */
    SelectSqlQuery: RDSSelectSqlQuery;
    /**
     * The AWS Identity and Access Management (IAM) credentials that are used connect to the Amazon RDS database.
     */
    DatabaseCredentials: RDSDatabaseCredentials;
    /**
     * The Amazon S3 location for staging Amazon RDS data. The data retrieved from Amazon RDS using SelectSqlQuery is stored in this location.
     */
    S3StagingLocation: S3Url;
    /**
     * A JSON string that represents the splitting and rearrangement processing to be applied to a DataSource. If the DataRearrangement parameter is not provided, all of the input data is used to create the Datasource. There are multiple parameters that control what data is used to create a datasource:  percentBegin Use percentBegin to indicate the beginning of the range of the data used to create the Datasource. If you do not include percentBegin and percentEnd, Amazon ML includes all of the data when creating the datasource. percentEnd Use percentEnd to indicate the end of the range of the data used to create the Datasource. If you do not include percentBegin and percentEnd, Amazon ML includes all of the data when creating the datasource. complement The complement parameter instructs Amazon ML to use the data that is not included in the range of percentBegin to percentEnd to create a datasource. The complement parameter is useful if you need to create complementary datasources for training and evaluation. To create a complementary datasource, use the same values for percentBegin and percentEnd, along with the complement parameter. For example, the following two datasources do not share any data, and can be used to train and evaluate a model. The first datasource has 25 percent of the data, and the second one has 75 percent of the data. Datasource for evaluation: {"splitting":{"percentBegin":0, "percentEnd":25}} Datasource for training: {"splitting":{"percentBegin":0, "percentEnd":25, "complement":"true"}}  strategy To change how Amazon ML splits the data for a datasource, use the strategy parameter. The default value for the strategy parameter is sequential, meaning that Amazon ML takes all of the data records between the percentBegin and percentEnd parameters for the datasource, in the order that the records appear in the input data. The following two DataRearrangement lines are examples of sequentially ordered training and evaluation datasources: Datasource for evaluation: {"splitting":{"percentBegin":70, "percentEnd":100, "strategy":"sequential"}} Datasource for training: {"splitting":{"percentBegin":70, "percentEnd":100, "strategy":"sequential", "complement":"true"}} To randomly split the input data into the proportions indicated by the percentBegin and percentEnd parameters, set the strategy parameter to random and provide a string that is used as the seed value for the random data splitting (for example, you can use the S3 path to your data as the random seed string). If you choose the random split strategy, Amazon ML assigns each row of data a pseudo-random number between 0 and 100, and then selects the rows that have an assigned number between percentBegin and percentEnd. Pseudo-random numbers are assigned using both the input seed string value and the byte offset as a seed, so changing the data results in a different split. Any existing ordering is preserved. The random splitting strategy ensures that variables in the training and evaluation data are distributed similarly. It is useful in the cases where the input data may have an implicit sort order, which would otherwise result in training and evaluation datasources containing non-similar data records. The following two DataRearrangement lines are examples of non-sequentially ordered training and evaluation datasources: Datasource for evaluation: {"splitting":{"percentBegin":70, "percentEnd":100, "strategy":"random", "randomSeed"="s3://my_s3_path/bucket/file.csv"}} Datasource for training: {"splitting":{"percentBegin":70, "percentEnd":100, "strategy":"random", "randomSeed"="s3://my_s3_path/bucket/file.csv", "complement":"true"}}  
     */
    DataRearrangement?: DataRearrangement;
    /**
     * A JSON string that represents the schema for an Amazon RDS DataSource. The DataSchema defines the structure of the observation data in the data file(s) referenced in the DataSource. A DataSchema is not required if you specify a DataSchemaUri Define your DataSchema as a series of key-value pairs. attributes and excludedVariableNames have an array of key-value pairs for their value. Use the following format to define your DataSchema. { "version": "1.0",  "recordAnnotationFieldName": "F1",  "recordWeightFieldName": "F2",  "targetFieldName": "F3",  "dataFormat": "CSV",  "dataFileContainsHeader": true,  "attributes": [  { "fieldName": "F1", "fieldType": "TEXT" }, { "fieldName": "F2", "fieldType": "NUMERIC" }, { "fieldName": "F3", "fieldType": "CATEGORICAL" }, { "fieldName": "F4", "fieldType": "NUMERIC" }, { "fieldName": "F5", "fieldType": "CATEGORICAL" }, { "fieldName": "F6", "fieldType": "TEXT" }, { "fieldName": "F7", "fieldType": "WEIGHTED_INT_SEQUENCE" }, { "fieldName": "F8", "fieldType": "WEIGHTED_STRING_SEQUENCE" } ],  "excludedVariableNames": [ "F6" ] }  
     */
    DataSchema?: DataSchema;
    /**
     * The Amazon S3 location of the DataSchema. 
     */
    DataSchemaUri?: S3Url;
    /**
     * The role (DataPipelineDefaultResourceRole) assumed by an Amazon Elastic Compute Cloud (Amazon EC2) instance to carry out the copy operation from Amazon RDS to an Amazon S3 task. For more information, see Role templates for data pipelines.
     */
    ResourceRole: EDPResourceRole;
    /**
     * The role (DataPipelineDefaultRole) assumed by AWS Data Pipeline service to monitor the progress of the copy task from Amazon RDS to Amazon S3. For more information, see Role templates for data pipelines.
     */
    ServiceRole: EDPServiceRole;
    /**
     * The subnet ID to be used to access a VPC-based RDS DB instance. This attribute is used by Data Pipeline to carry out the copy task from Amazon RDS to Amazon S3.
     */
    SubnetId: EDPSubnetId;
    /**
     * The security group IDs to be used to access a VPC-based RDS DB instance. Ensure that there are appropriate ingress rules set up to allow access to the RDS DB instance. This attribute is used by Data Pipeline to carry out the copy operation from Amazon RDS to an Amazon S3 task.
     */
    SecurityGroupIds: EDPSecurityGroupIds;
  }
  export interface RDSDatabase {
    /**
     * The ID of an RDS DB instance.
     */
    InstanceIdentifier: RDSInstanceIdentifier;
    DatabaseName: RDSDatabaseName;
  }
  export interface RDSDatabaseCredentials {
    Username: RDSDatabaseUsername;
    Password: RDSDatabasePassword;
  }
  export type RDSDatabaseName = string;
  export type RDSDatabasePassword = string;
  export type RDSDatabaseUsername = string;
  export type RDSInstanceIdentifier = string;
  export interface RDSMetadata {
    /**
     * The database details required to connect to an Amazon RDS.
     */
    Database?: RDSDatabase;
    DatabaseUserName?: RDSDatabaseUsername;
    /**
     * The SQL query that is supplied during CreateDataSourceFromRDS. Returns only if Verbose is true in GetDataSourceInput. 
     */
    SelectSqlQuery?: RDSSelectSqlQuery;
    /**
     * The role (DataPipelineDefaultResourceRole) assumed by an Amazon EC2 instance to carry out the copy task from Amazon RDS to Amazon S3. For more information, see Role templates for data pipelines.
     */
    ResourceRole?: EDPResourceRole;
    /**
     * The role (DataPipelineDefaultRole) assumed by the Data Pipeline service to monitor the progress of the copy task from Amazon RDS to Amazon S3. For more information, see Role templates for data pipelines.
     */
    ServiceRole?: EDPServiceRole;
    /**
     * The ID of the Data Pipeline instance that is used to carry to copy data from Amazon RDS to Amazon S3. You can use the ID to find details about the instance in the Data Pipeline console.
     */
    DataPipelineId?: EDPPipelineId;
  }
  export type RDSSelectSqlQuery = string;
  export interface RealtimeEndpointInfo {
    /**
     *  The maximum processing rate for the real-time endpoint for MLModel, measured in incoming requests per second.
     */
    PeakRequestsPerSecond?: IntegerType;
    /**
     * The time that the request to create the real-time endpoint for the MLModel was received. The time is expressed in epoch time.
     */
    CreatedAt?: EpochTime;
    /**
     * The URI that specifies where to send real-time prediction requests for the MLModel. Note The application must wait until the real-time endpoint is ready before using this URI. 
     */
    EndpointUrl?: VipURL;
    /**
     *  The current status of the real-time endpoint for the MLModel. This element can have one of the following values:    NONE - Endpoint does not exist or was previously deleted.  READY - Endpoint is ready to be used for real-time predictions.  UPDATING - Updating/creating the endpoint.  
     */
    EndpointStatus?: RealtimeEndpointStatus;
  }
  export type RealtimeEndpointStatus = "NONE"|"READY"|"UPDATING"|"FAILED"|string;
  export type Recipe = string;
  export type Record = {[key: string]: VariableValue};
  export type RedshiftClusterIdentifier = string;
  export interface RedshiftDataSpec {
    /**
     * Describes the DatabaseName and ClusterIdentifier for an Amazon Redshift DataSource.
     */
    DatabaseInformation: RedshiftDatabase;
    /**
     * Describes the SQL Query to execute on an Amazon Redshift database for an Amazon Redshift DataSource.
     */
    SelectSqlQuery: RedshiftSelectSqlQuery;
    /**
     * Describes AWS Identity and Access Management (IAM) credentials that are used connect to the Amazon Redshift database.
     */
    DatabaseCredentials: RedshiftDatabaseCredentials;
    /**
     * Describes an Amazon S3 location to store the result set of the SelectSqlQuery query.
     */
    S3StagingLocation: S3Url;
    /**
     * A JSON string that represents the splitting and rearrangement processing to be applied to a DataSource. If the DataRearrangement parameter is not provided, all of the input data is used to create the Datasource. There are multiple parameters that control what data is used to create a datasource:  percentBegin Use percentBegin to indicate the beginning of the range of the data used to create the Datasource. If you do not include percentBegin and percentEnd, Amazon ML includes all of the data when creating the datasource. percentEnd Use percentEnd to indicate the end of the range of the data used to create the Datasource. If you do not include percentBegin and percentEnd, Amazon ML includes all of the data when creating the datasource. complement The complement parameter instructs Amazon ML to use the data that is not included in the range of percentBegin to percentEnd to create a datasource. The complement parameter is useful if you need to create complementary datasources for training and evaluation. To create a complementary datasource, use the same values for percentBegin and percentEnd, along with the complement parameter. For example, the following two datasources do not share any data, and can be used to train and evaluate a model. The first datasource has 25 percent of the data, and the second one has 75 percent of the data. Datasource for evaluation: {"splitting":{"percentBegin":0, "percentEnd":25}} Datasource for training: {"splitting":{"percentBegin":0, "percentEnd":25, "complement":"true"}}  strategy To change how Amazon ML splits the data for a datasource, use the strategy parameter. The default value for the strategy parameter is sequential, meaning that Amazon ML takes all of the data records between the percentBegin and percentEnd parameters for the datasource, in the order that the records appear in the input data. The following two DataRearrangement lines are examples of sequentially ordered training and evaluation datasources: Datasource for evaluation: {"splitting":{"percentBegin":70, "percentEnd":100, "strategy":"sequential"}} Datasource for training: {"splitting":{"percentBegin":70, "percentEnd":100, "strategy":"sequential", "complement":"true"}} To randomly split the input data into the proportions indicated by the percentBegin and percentEnd parameters, set the strategy parameter to random and provide a string that is used as the seed value for the random data splitting (for example, you can use the S3 path to your data as the random seed string). If you choose the random split strategy, Amazon ML assigns each row of data a pseudo-random number between 0 and 100, and then selects the rows that have an assigned number between percentBegin and percentEnd. Pseudo-random numbers are assigned using both the input seed string value and the byte offset as a seed, so changing the data results in a different split. Any existing ordering is preserved. The random splitting strategy ensures that variables in the training and evaluation data are distributed similarly. It is useful in the cases where the input data may have an implicit sort order, which would otherwise result in training and evaluation datasources containing non-similar data records. The following two DataRearrangement lines are examples of non-sequentially ordered training and evaluation datasources: Datasource for evaluation: {"splitting":{"percentBegin":70, "percentEnd":100, "strategy":"random", "randomSeed"="s3://my_s3_path/bucket/file.csv"}} Datasource for training: {"splitting":{"percentBegin":70, "percentEnd":100, "strategy":"random", "randomSeed"="s3://my_s3_path/bucket/file.csv", "complement":"true"}}  
     */
    DataRearrangement?: DataRearrangement;
    /**
     * A JSON string that represents the schema for an Amazon Redshift DataSource. The DataSchema defines the structure of the observation data in the data file(s) referenced in the DataSource. A DataSchema is not required if you specify a DataSchemaUri. Define your DataSchema as a series of key-value pairs. attributes and excludedVariableNames have an array of key-value pairs for their value. Use the following format to define your DataSchema. { "version": "1.0",  "recordAnnotationFieldName": "F1",  "recordWeightFieldName": "F2",  "targetFieldName": "F3",  "dataFormat": "CSV",  "dataFileContainsHeader": true,  "attributes": [  { "fieldName": "F1", "fieldType": "TEXT" }, { "fieldName": "F2", "fieldType": "NUMERIC" }, { "fieldName": "F3", "fieldType": "CATEGORICAL" }, { "fieldName": "F4", "fieldType": "NUMERIC" }, { "fieldName": "F5", "fieldType": "CATEGORICAL" }, { "fieldName": "F6", "fieldType": "TEXT" }, { "fieldName": "F7", "fieldType": "WEIGHTED_INT_SEQUENCE" }, { "fieldName": "F8", "fieldType": "WEIGHTED_STRING_SEQUENCE" } ],  "excludedVariableNames": [ "F6" ] } 
     */
    DataSchema?: DataSchema;
    /**
     * Describes the schema location for an Amazon Redshift DataSource.
     */
    DataSchemaUri?: S3Url;
  }
  export interface RedshiftDatabase {
    DatabaseName: RedshiftDatabaseName;
    ClusterIdentifier: RedshiftClusterIdentifier;
  }
  export interface RedshiftDatabaseCredentials {
    Username: RedshiftDatabaseUsername;
    Password: RedshiftDatabasePassword;
  }
  export type RedshiftDatabaseName = string;
  export type RedshiftDatabasePassword = string;
  export type RedshiftDatabaseUsername = string;
  export interface RedshiftMetadata {
    RedshiftDatabase?: RedshiftDatabase;
    DatabaseUserName?: RedshiftDatabaseUsername;
    /**
     *  The SQL query that is specified during CreateDataSourceFromRedshift. Returns only if Verbose is true in GetDataSourceInput. 
     */
    SelectSqlQuery?: RedshiftSelectSqlQuery;
  }
  export type RedshiftSelectSqlQuery = string;
  export type RoleARN = string;
  export interface S3DataSpec {
    /**
     * The location of the data file(s) used by a DataSource. The URI specifies a data file or an Amazon Simple Storage Service (Amazon S3) directory or bucket containing data files.
     */
    DataLocationS3: S3Url;
    /**
     * A JSON string that represents the splitting and rearrangement processing to be applied to a DataSource. If the DataRearrangement parameter is not provided, all of the input data is used to create the Datasource. There are multiple parameters that control what data is used to create a datasource:  percentBegin Use percentBegin to indicate the beginning of the range of the data used to create the Datasource. If you do not include percentBegin and percentEnd, Amazon ML includes all of the data when creating the datasource. percentEnd Use percentEnd to indicate the end of the range of the data used to create the Datasource. If you do not include percentBegin and percentEnd, Amazon ML includes all of the data when creating the datasource. complement The complement parameter instructs Amazon ML to use the data that is not included in the range of percentBegin to percentEnd to create a datasource. The complement parameter is useful if you need to create complementary datasources for training and evaluation. To create a complementary datasource, use the same values for percentBegin and percentEnd, along with the complement parameter. For example, the following two datasources do not share any data, and can be used to train and evaluate a model. The first datasource has 25 percent of the data, and the second one has 75 percent of the data. Datasource for evaluation: {"splitting":{"percentBegin":0, "percentEnd":25}} Datasource for training: {"splitting":{"percentBegin":0, "percentEnd":25, "complement":"true"}}  strategy To change how Amazon ML splits the data for a datasource, use the strategy parameter. The default value for the strategy parameter is sequential, meaning that Amazon ML takes all of the data records between the percentBegin and percentEnd parameters for the datasource, in the order that the records appear in the input data. The following two DataRearrangement lines are examples of sequentially ordered training and evaluation datasources: Datasource for evaluation: {"splitting":{"percentBegin":70, "percentEnd":100, "strategy":"sequential"}} Datasource for training: {"splitting":{"percentBegin":70, "percentEnd":100, "strategy":"sequential", "complement":"true"}} To randomly split the input data into the proportions indicated by the percentBegin and percentEnd parameters, set the strategy parameter to random and provide a string that is used as the seed value for the random data splitting (for example, you can use the S3 path to your data as the random seed string). If you choose the random split strategy, Amazon ML assigns each row of data a pseudo-random number between 0 and 100, and then selects the rows that have an assigned number between percentBegin and percentEnd. Pseudo-random numbers are assigned using both the input seed string value and the byte offset as a seed, so changing the data results in a different split. Any existing ordering is preserved. The random splitting strategy ensures that variables in the training and evaluation data are distributed similarly. It is useful in the cases where the input data may have an implicit sort order, which would otherwise result in training and evaluation datasources containing non-similar data records. The following two DataRearrangement lines are examples of non-sequentially ordered training and evaluation datasources: Datasource for evaluation: {"splitting":{"percentBegin":70, "percentEnd":100, "strategy":"random", "randomSeed"="s3://my_s3_path/bucket/file.csv"}} Datasource for training: {"splitting":{"percentBegin":70, "percentEnd":100, "strategy":"random", "randomSeed"="s3://my_s3_path/bucket/file.csv", "complement":"true"}}  
     */
    DataRearrangement?: DataRearrangement;
    /**
     *  A JSON string that represents the schema for an Amazon S3 DataSource. The DataSchema defines the structure of the observation data in the data file(s) referenced in the DataSource. You must provide either the DataSchema or the DataSchemaLocationS3. Define your DataSchema as a series of key-value pairs. attributes and excludedVariableNames have an array of key-value pairs for their value. Use the following format to define your DataSchema. { "version": "1.0",  "recordAnnotationFieldName": "F1",  "recordWeightFieldName": "F2",  "targetFieldName": "F3",  "dataFormat": "CSV",  "dataFileContainsHeader": true,  "attributes": [  { "fieldName": "F1", "fieldType": "TEXT" }, { "fieldName": "F2", "fieldType": "NUMERIC" }, { "fieldName": "F3", "fieldType": "CATEGORICAL" }, { "fieldName": "F4", "fieldType": "NUMERIC" }, { "fieldName": "F5", "fieldType": "CATEGORICAL" }, { "fieldName": "F6", "fieldType": "TEXT" }, { "fieldName": "F7", "fieldType": "WEIGHTED_INT_SEQUENCE" }, { "fieldName": "F8", "fieldType": "WEIGHTED_STRING_SEQUENCE" } ],  "excludedVariableNames": [ "F6" ] }  
     */
    DataSchema?: DataSchema;
    /**
     * Describes the schema location in Amazon S3. You must provide either the DataSchema or the DataSchemaLocationS3.
     */
    DataSchemaLocationS3?: S3Url;
  }
  export type S3Url = string;
  export type ScoreThreshold = number;
  export type ScoreValue = number;
  export type ScoreValuePerLabelMap = {[key: string]: ScoreValue};
  export type SortOrder = "asc"|"dsc"|string;
  export type StringType = string;
  export interface Tag {
    /**
     * A unique identifier for the tag. Valid characters include Unicode letters, digits, white space, _, ., /, =, +, -, %, and @.
     */
    Key?: TagKey;
    /**
     * An optional string, typically used to describe or define the tag. Valid characters include Unicode letters, digits, white space, _, ., /, =, +, -, %, and @.
     */
    Value?: TagValue;
  }
  export type TagKey = string;
  export type TagKeyList = TagKey[];
  export type TagList = Tag[];
  export type TagValue = string;
  export type TaggableResourceType = "BatchPrediction"|"DataSource"|"Evaluation"|"MLModel"|string;
  export type TrainingParameters = {[key: string]: StringType};
  export interface UpdateBatchPredictionInput {
    /**
     * The ID assigned to the BatchPrediction during creation.
     */
    BatchPredictionId: EntityId;
    /**
     * A new user-supplied name or description of the BatchPrediction.
     */
    BatchPredictionName: EntityName;
  }
  export interface UpdateBatchPredictionOutput {
    /**
     * The ID assigned to the BatchPrediction during creation. This value should be identical to the value of the BatchPredictionId in the request.
     */
    BatchPredictionId?: EntityId;
  }
  export interface UpdateDataSourceInput {
    /**
     * The ID assigned to the DataSource during creation.
     */
    DataSourceId: EntityId;
    /**
     * A new user-supplied name or description of the DataSource that will replace the current description. 
     */
    DataSourceName: EntityName;
  }
  export interface UpdateDataSourceOutput {
    /**
     * The ID assigned to the DataSource during creation. This value should be identical to the value of the DataSourceID in the request.
     */
    DataSourceId?: EntityId;
  }
  export interface UpdateEvaluationInput {
    /**
     * The ID assigned to the Evaluation during creation.
     */
    EvaluationId: EntityId;
    /**
     * A new user-supplied name or description of the Evaluation that will replace the current content. 
     */
    EvaluationName: EntityName;
  }
  export interface UpdateEvaluationOutput {
    /**
     * The ID assigned to the Evaluation during creation. This value should be identical to the value of the Evaluation in the request.
     */
    EvaluationId?: EntityId;
  }
  export interface UpdateMLModelInput {
    /**
     * The ID assigned to the MLModel during creation.
     */
    MLModelId: EntityId;
    /**
     * A user-supplied name or description of the MLModel.
     */
    MLModelName?: EntityName;
    /**
     * The ScoreThreshold used in binary classification MLModel that marks the boundary between a positive prediction and a negative prediction. Output values greater than or equal to the ScoreThreshold receive a positive result from the MLModel, such as true. Output values less than the ScoreThreshold receive a negative response from the MLModel, such as false.
     */
    ScoreThreshold?: ScoreThreshold;
  }
  export interface UpdateMLModelOutput {
    /**
     * The ID assigned to the MLModel during creation. This value should be identical to the value of the MLModelID in the request.
     */
    MLModelId?: EntityId;
  }
  export type VariableName = string;
  export type VariableValue = string;
  export type Verbose = boolean;
  export type VipURL = string;
  export type floatLabel = number;
  /**
   * A string in YYYY-MM-DD format that represents the latest possible API version that can be used in this service. Specify 'latest' to use the latest possible version.
   */
  export type apiVersion = "2014-12-12"|"latest"|string;
  export interface ClientApiVersions {
    /**
     * A string in YYYY-MM-DD format that represents the latest possible API version that can be used in this service. Specify 'latest' to use the latest possible version.
     */
    apiVersion?: apiVersion;
  }
  export type ClientConfiguration = ServiceConfigurationOptions & ClientApiVersions;
  /**
   * Contains interfaces for use with the MachineLearning client.
   */
  export import Types = MachineLearning;
}
export = MachineLearning;