bignumber.d.ts 63.7 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829
// Type definitions for bignumber.js >=8.1.0
// Project: https://github.com/MikeMcl/bignumber.js
// Definitions by: Michael Mclaughlin <https://github.com/MikeMcl>
// Definitions: https://github.com/MikeMcl/bignumber.js

// Documentation: http://mikemcl.github.io/bignumber.js/
//
// Exports:
//
//   class     BigNumber (default export)
//   type      BigNumber.Constructor
//   type      BigNumber.ModuloMode
//   type      BigNumber.RoundingMOde
//   type      BigNumber.Value
//   interface BigNumber.Config
//   interface BigNumber.Format
//   interface BigNumber.Instance
//
// Example:
//
//   import {BigNumber} from "bignumber.js"
//   //import BigNumber from "bignumber.js"
//
//   let rm: BigNumber.RoundingMode = BigNumber.ROUND_UP;
//   let f: BigNumber.Format = { decimalSeparator: ',' };
//   let c: BigNumber.Config = { DECIMAL_PLACES: 4, ROUNDING_MODE: rm, FORMAT: f };
//   BigNumber.config(c);
//
//   let v: BigNumber.Value = '12345.6789';
//   let b: BigNumber = new BigNumber(v);
//
// The use of compiler option `--strictNullChecks` is recommended.

export default BigNumber;

export namespace BigNumber {

  /** See `BigNumber.config` (alias `BigNumber.set`) and `BigNumber.clone`. */
  interface Config {

    /**
     * An integer, 0 to 1e+9. Default value: 20.
     *
     * The maximum number of decimal places of the result of operations involving division, i.e.
     * division, square root and base conversion operations, and exponentiation when the exponent is
     * negative.
     *
     * ```ts
     * BigNumber.config({ DECIMAL_PLACES: 5 })
     * BigNumber.set({ DECIMAL_PLACES: 5 })
     * ```
     */
    DECIMAL_PLACES?: number;

    /**
     * An integer, 0 to 8. Default value: `BigNumber.ROUND_HALF_UP` (4).
     *
     * The rounding mode used in operations that involve division (see `DECIMAL_PLACES`) and the
     * default rounding mode of the `decimalPlaces`, `precision`, `toExponential`, `toFixed`,
     * `toFormat` and `toPrecision` methods.
     *
     * The modes are available as enumerated properties of the BigNumber constructor.
     *
     * ```ts
     * BigNumber.config({ ROUNDING_MODE: 0 })
     * BigNumber.set({ ROUNDING_MODE: BigNumber.ROUND_UP })
     * ```
     */
    ROUNDING_MODE?: BigNumber.RoundingMode;

    /**
     * An integer, 0 to 1e+9, or an array, [-1e+9 to 0, 0 to 1e+9].
     * Default value: `[-7, 20]`.
     *
     * The exponent value(s) at which `toString` returns exponential notation.
     *
     * If a single number is assigned, the value is the exponent magnitude.
     *
     * If an array of two numbers is assigned then the first number is the negative exponent value at
     * and beneath which exponential notation is used, and the second number is the positive exponent
     * value at and above which exponential notation is used.
     *
     * For example, to emulate JavaScript numbers in terms of the exponent values at which they begin
     * to use exponential notation, use `[-7, 20]`.
     *
     * ```ts
     * BigNumber.config({ EXPONENTIAL_AT: 2 })
     * new BigNumber(12.3)         // '12.3'        e is only 1
     * new BigNumber(123)          // '1.23e+2'
     * new BigNumber(0.123)        // '0.123'       e is only -1
     * new BigNumber(0.0123)       // '1.23e-2'
     *
     * BigNumber.config({ EXPONENTIAL_AT: [-7, 20] })
     * new BigNumber(123456789)    // '123456789'   e is only 8
     * new BigNumber(0.000000123)  // '1.23e-7'
     *
     * // Almost never return exponential notation:
     * BigNumber.config({ EXPONENTIAL_AT: 1e+9 })
     *
     * // Always return exponential notation:
     * BigNumber.config({ EXPONENTIAL_AT: 0 })
     * ```
     *
     * Regardless of the value of `EXPONENTIAL_AT`, the `toFixed` method will always return a value in
     * normal notation and the `toExponential` method will always return a value in exponential form.
     * Calling `toString` with a base argument, e.g. `toString(10)`, will also always return normal
     * notation.
     */
    EXPONENTIAL_AT?: number | [number, number];

    /**
     * An integer, magnitude 1 to 1e+9, or an array, [-1e+9 to -1, 1 to 1e+9].
     * Default value: `[-1e+9, 1e+9]`.
     *
     * The exponent value(s) beyond which overflow to Infinity and underflow to zero occurs.
     *
     * If a single number is assigned, it is the maximum exponent magnitude: values wth a positive
     * exponent of greater magnitude become Infinity and those with a negative exponent of greater
     * magnitude become zero.
     *
     * If an array of two numbers is assigned then the first number is the negative exponent limit and
     * the second number is the positive exponent limit.
     *
     * For example, to emulate JavaScript numbers in terms of the exponent values at which they
     * become zero and Infinity, use [-324, 308].
     *
     * ```ts
     * BigNumber.config({ RANGE: 500 })
     * BigNumber.config().RANGE     // [ -500, 500 ]
     * new BigNumber('9.999e499')   // '9.999e+499'
     * new BigNumber('1e500')       // 'Infinity'
     * new BigNumber('1e-499')      // '1e-499'
     * new BigNumber('1e-500')      // '0'
     *
     * BigNumber.config({ RANGE: [-3, 4] })
     * new BigNumber(99999)         // '99999'      e is only 4
     * new BigNumber(100000)        // 'Infinity'   e is 5
     * new BigNumber(0.001)         // '0.01'       e is only -3
     * new BigNumber(0.0001)        // '0'          e is -4
     * ```
     * The largest possible magnitude of a finite BigNumber is 9.999...e+1000000000.
     * The smallest possible magnitude of a non-zero BigNumber is 1e-1000000000.
     */
    RANGE?: number | [number, number];

    /**
     * A boolean: `true` or `false`. Default value: `false`.
     *
     * The value that determines whether cryptographically-secure pseudo-random number generation is
     * used. If `CRYPTO` is set to true then the random method will generate random digits using
     * `crypto.getRandomValues` in browsers that support it, or `crypto.randomBytes` if using a
     * version of Node.js that supports it.
     *
     * If neither function is supported by the host environment then attempting to set `CRYPTO` to
     * `true` will fail and an exception will be thrown.
     *
     * If `CRYPTO` is `false` then the source of randomness used will be `Math.random` (which is
     * assumed to generate at least 30 bits of randomness).
     *
     * See `BigNumber.random`.
     *
     * ```ts
     * // Node.js
     * global.crypto = require('crypto')
     *
     * BigNumber.config({ CRYPTO: true })
     * BigNumber.config().CRYPTO       // true
     * BigNumber.random()              // 0.54340758610486147524
     * ```
     */
    CRYPTO?: boolean;

    /**
     * An integer, 0, 1, 3, 6 or 9. Default value: `BigNumber.ROUND_DOWN` (1).
     *
     * The modulo mode used when calculating the modulus: `a mod n`.
     * The quotient, `q = a / n`, is calculated according to the `ROUNDING_MODE` that corresponds to
     * the chosen `MODULO_MODE`.
     * The remainder, `r`, is calculated as: `r = a - n * q`.
     *
     * The modes that are most commonly used for the modulus/remainder operation are shown in the
     * following table. Although the other rounding modes can be used, they may not give useful
     * results.
     *
     * Property           | Value | Description
     * :------------------|:------|:------------------------------------------------------------------
     *  `ROUND_UP`        |   0   | The remainder is positive if the dividend is negative.
     *  `ROUND_DOWN`      |   1   | The remainder has the same sign as the dividend.
     *                    |       | Uses 'truncating division' and matches JavaScript's `%` operator .
     *  `ROUND_FLOOR`     |   3   | The remainder has the same sign as the divisor.
     *                    |       | This matches Python's `%` operator.
     *  `ROUND_HALF_EVEN` |   6   | The IEEE 754 remainder function.
     *  `EUCLID`          |   9   | The remainder is always positive.
     *                    |       | Euclidian division: `q = sign(n) * floor(a / abs(n))`
     *
     * The rounding/modulo modes are available as enumerated properties of the BigNumber constructor.
     *
     * See `modulo`.
     *
     * ```ts
     * BigNumber.config({ MODULO_MODE: BigNumber.EUCLID })
     * BigNumber.set({ MODULO_MODE: 9 })          // equivalent
     * ```
     */
    MODULO_MODE?: BigNumber.ModuloMode;

    /**
     * An integer, 0 to 1e+9. Default value: 0.
     *
     * The maximum precision, i.e. number of significant digits, of the result of the power operation
     * - unless a modulus is specified.
     *
     * If set to 0, the number of significant digits will not be limited.
     *
     * See `exponentiatedBy`.
     *
     * ```ts
     * BigNumber.config({ POW_PRECISION: 100 })
     * ```
     */
    POW_PRECISION?: number;

    /**
     * An object including any number of the properties shown below.
     *
     * The object configures the format of the string returned by the `toFormat` method.
     * The example below shows the properties of the object that are recognised, and
     * their default values.
     *
     * Unlike the other configuration properties, the values of the properties of the `FORMAT` object
     * will not be checked for validity - the existing object will simply be replaced by the object
     * that is passed in.
     *
     * See `toFormat`.
     *
     * ```ts
     * BigNumber.config({
     *   FORMAT: {
     *     // string to prepend
     *     prefix: '',
     *     // the decimal separator
     *     decimalSeparator: '.',
     *     // the grouping separator of the integer part
     *     groupSeparator: ',',
     *     // the primary grouping size of the integer part
     *     groupSize: 3,
     *     // the secondary grouping size of the integer part
     *     secondaryGroupSize: 0,
     *     // the grouping separator of the fraction part
     *     fractionGroupSeparator: ' ',
     *     // the grouping size of the fraction part
     *     fractionGroupSize: 0,
     *     // string to append
     *     suffix: ''
     *   }
     * })
     * ```
     */
    FORMAT?: BigNumber.Format;

    /**
     * The alphabet used for base conversion. The length of the alphabet corresponds to the maximum
     * value of the base argument that can be passed to the BigNumber constructor or `toString`.
     *
     * Default value: `'0123456789abcdefghijklmnopqrstuvwxyz'`.
     *
     * There is no maximum length for the alphabet, but it must be at least 2 characters long,
     * and it must not contain whitespace or a repeated character, or the sign indicators '+' and
     * '-', or the decimal separator '.'.
     *
     * ```ts
     * // duodecimal (base 12)
     * BigNumber.config({ ALPHABET: '0123456789TE' })
     * x = new BigNumber('T', 12)
     * x.toString()                // '10'
     * x.toString(12)              // 'T'
     * ```
     */
    ALPHABET?: string;
  }

  /** See `FORMAT` and `toFormat`. */
  interface Format {

    /** The string to prepend. */
    prefix?: string;

    /** The decimal separator. */
    decimalSeparator?: string;

    /** The grouping separator of the integer part. */
    groupSeparator?: string;

    /** The primary grouping size of the integer part. */
    groupSize?: number;

    /** The secondary grouping size of the integer part. */
    secondaryGroupSize?: number;

    /** The grouping separator of the fraction part. */
    fractionGroupSeparator?: string;

    /** The grouping size of the fraction part. */
    fractionGroupSize?: number;

    /** The string to append. */
    suffix?: string;
  }

  interface Instance {

    /** The coefficient of the value of this BigNumber, an array of base 1e14 integer numbers, or null. */
    readonly c: number[] | null;

    /** The exponent of the value of this BigNumber, an integer number, -1000000000 to 1000000000, or null. */
    readonly e: number | null;

    /** The sign of the value of this BigNumber, -1, 1, or null. */
    readonly s: number | null;

    [key: string]: any;
  }

  type Constructor = typeof BigNumber;
  type ModuloMode = 0 | 1 | 3 | 6 | 9;
  type RoundingMode = 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8;
  type Value = string | number | Instance;
}

export declare class BigNumber implements BigNumber.Instance {

  /** Used internally to identify a BigNumber instance. */
  private readonly _isBigNumber: true;

  /** The coefficient of the value of this BigNumber, an array of base 1e14 integer numbers, or null. */
  readonly c: number[] | null;

  /** The exponent of the value of this BigNumber, an integer number, -1000000000 to 1000000000, or null. */
  readonly e: number | null;

  /** The sign of the value of this BigNumber, -1, 1, or null. */
  readonly s: number | null;

  /**
   * Returns a new instance of a BigNumber object with value `n`, where `n` is a numeric value in
   * the specified `base`, or base 10 if `base` is omitted or is `null` or `undefined`.
   *
   * ```ts
   * x = new BigNumber(123.4567)              // '123.4567'
   * // 'new' is optional
   * y = BigNumber(x)                         // '123.4567'
   * ```
   *
   * If `n` is a base 10 value it can be in normal (fixed-point) or exponential notation.
   * Values in other bases must be in normal notation. Values in any base can have fraction digits,
   * i.e. digits after the decimal point.
   *
   * ```ts
   * new BigNumber(43210)                     // '43210'
   * new BigNumber('4.321e+4')                // '43210'
   * new BigNumber('-735.0918e-430')          // '-7.350918e-428'
   * new BigNumber('123412421.234324', 5)     // '607236.557696'
   * ```
   *
   * Signed `0`, signed `Infinity` and `NaN` are supported.
   *
   * ```ts
   * new BigNumber('-Infinity')               // '-Infinity'
   * new BigNumber(NaN)                       // 'NaN'
   * new BigNumber(-0)                        // '0'
   * new BigNumber('.5')                      // '0.5'
   * new BigNumber('+2')                      // '2'
   * ```
   *
   * String values in hexadecimal literal form, e.g. `'0xff'`, are valid, as are string values with
   * the octal and binary prefixs `'0o'` and `'0b'`. String values in octal literal form without the
   * prefix will be interpreted as decimals, e.g. `'011'` is interpreted as 11, not 9.
   *
   * ```ts
   * new BigNumber(-10110100.1, 2)            // '-180.5'
   * new BigNumber('-0b10110100.1')           // '-180.5'
   * new BigNumber('ff.8', 16)                // '255.5'
   * new BigNumber('0xff.8')                  // '255.5'
   * ```
   *
   * If a base is specified, `n` is rounded according to the current `DECIMAL_PLACES` and
   * `ROUNDING_MODE` settings. This includes base 10, so don't include a `base` parameter for decimal
   * values unless this behaviour is desired.
   *
   * ```ts
   * BigNumber.config({ DECIMAL_PLACES: 5 })
   * new BigNumber(1.23456789)                // '1.23456789'
   * new BigNumber(1.23456789, 10)            // '1.23457'
   * ```
   *
   * An error is thrown if `base` is invalid.
   *
   * There is no limit to the number of digits of a value of type string (other than that of
   * JavaScript's maximum array size). See `RANGE` to set the maximum and minimum possible exponent
   * value of a BigNumber.
   *
   * ```ts
   * new BigNumber('5032485723458348569331745.33434346346912144534543')
   * new BigNumber('4.321e10000000')
   * ```
   *
   * BigNumber `NaN` is returned if `n` is invalid (unless `BigNumber.DEBUG` is `true`, see below).
   *
   * ```ts
   * new BigNumber('.1*')                    // 'NaN'
   * new BigNumber('blurgh')                 // 'NaN'
   * new BigNumber(9, 2)                     // 'NaN'
   * ```
   *
   * To aid in debugging, if `BigNumber.DEBUG` is `true` then an error will be thrown on an
   * invalid `n`. An error will also be thrown if `n` is of type number with more than 15
   * significant digits, as calling `toString` or `valueOf` on these numbers may not result in the
   * intended value.
   *
   * ```ts
   * console.log(823456789123456.3)          //  823456789123456.2
   * new BigNumber(823456789123456.3)        // '823456789123456.2'
   * BigNumber.DEBUG = true
   * // 'Error: Number has more than 15 significant digits'
   * new BigNumber(823456789123456.3)
   * // 'Error: Not a base 2 number'
   * new BigNumber(9, 2)
   * ```
   *
   * A BigNumber can also be created from an object literal.
   * Use `isBigNumber` to check that it is well-formed.
   *
   * ```ts
   * new BigNumber({ s: 1, e: 2, c: [ 777, 12300000000000 ], _isBigNumber: true })    // '777.123'
   * ```
   *
   * @param n A numeric value.
   * @param base The base of `n`, integer, 2 to 36 (or `ALPHABET.length`, see `ALPHABET`).
   */
  constructor(n: BigNumber.Value, base?: number);

  /**
   * Returns a BigNumber whose value is the absolute value, i.e. the magnitude, of the value of this
   * BigNumber.
   *
   * The return value is always exact and unrounded.
   *
   * ```ts
   * x = new BigNumber(-0.8)
   * x.absoluteValue()           // '0.8'
   * ```
   */
  absoluteValue(): BigNumber;

  /**
   * Returns a BigNumber whose value is the absolute value, i.e. the magnitude, of the value of this
   * BigNumber.
   *
   * The return value is always exact and unrounded.
   *
   * ```ts
   * x = new BigNumber(-0.8)
   * x.abs()                     // '0.8'
   * ```
   */
  abs(): BigNumber;

  /**
   *  Returns |                                                               |
   * :-------:|:--------------------------------------------------------------|
   *     1    | If the value of this BigNumber is greater than the value of `n`
   *    -1    | If the value of this BigNumber is less than the value of `n`
   *     0    | If this BigNumber and `n` have the same value
   *  `null`  | If the value of either this BigNumber or `n` is `NaN`
   *
   * ```ts
   *
   * x = new BigNumber(Infinity)
   * y = new BigNumber(5)
   * x.comparedTo(y)                 // 1
   * x.comparedTo(x.minus(1))        // 0
   * y.comparedTo(NaN)               // null
   * y.comparedTo('110', 2)          // -1
   * ```
   * @param n A numeric value.
   * @param [base] The base of n.
   */
  comparedTo(n: BigNumber.Value, base?: number): number;

  /**
   * Returns a BigNumber whose value is the value of this BigNumber rounded by rounding mode
   * `roundingMode` to a maximum of `decimalPlaces` decimal places.
   *
   * If `decimalPlaces` is omitted, or is `null` or `undefined`, the return value is the number of
   * decimal places of the value of this BigNumber, or `null` if the value of this BigNumber is
   * ±`Infinity` or `NaN`.
   *
   * If `roundingMode` is omitted, or is `null` or `undefined`, `ROUNDING_MODE` is used.
   *
   * Throws if `decimalPlaces` or `roundingMode` is invalid.
   *
   * ```ts
   * x = new BigNumber(1234.56)
   * x.decimalPlaces()                      // 2
   * x.decimalPlaces(1)                     // '1234.6'
   * x.decimalPlaces(2)                     // '1234.56'
   * x.decimalPlaces(10)                    // '1234.56'
   * x.decimalPlaces(0, 1)                  // '1234'
   * x.decimalPlaces(0, 6)                  // '1235'
   * x.decimalPlaces(1, 1)                  // '1234.5'
   * x.decimalPlaces(1, BigNumber.ROUND_HALF_EVEN)     // '1234.6'
   * x                                      // '1234.56'
   * y = new BigNumber('9.9e-101')
   * y.decimalPlaces()                      // 102
   * ```
   *
   * @param [decimalPlaces] Decimal places, integer, 0 to 1e+9.
   * @param [roundingMode] Rounding mode, integer, 0 to 8.
   */
  decimalPlaces(): number;
  decimalPlaces(decimalPlaces: number, roundingMode?: BigNumber.RoundingMode): BigNumber;

  /**
   * Returns a BigNumber whose value is the value of this BigNumber rounded by rounding mode
   * `roundingMode` to a maximum of `decimalPlaces` decimal places.
   *
   * If `decimalPlaces` is omitted, or is `null` or `undefined`, the return value is the number of
   * decimal places of the value of this BigNumber, or `null` if the value of this BigNumber is
   * ±`Infinity` or `NaN`.
   *
   * If `roundingMode` is omitted, or is `null` or `undefined`, `ROUNDING_MODE` is used.
   *
   * Throws if `decimalPlaces` or `roundingMode` is invalid.
   *
   * ```ts
   * x = new BigNumber(1234.56)
   * x.dp()                                 // 2
   * x.dp(1)                                // '1234.6'
   * x.dp(2)                                // '1234.56'
   * x.dp(10)                               // '1234.56'
   * x.dp(0, 1)                             // '1234'
   * x.dp(0, 6)                             // '1235'
   * x.dp(1, 1)                             // '1234.5'
   * x.dp(1, BigNumber.ROUND_HALF_EVEN)     // '1234.6'
   * x                                      // '1234.56'
   * y = new BigNumber('9.9e-101')
   * y.dp()                                 // 102
   * ```
   *
   * @param [decimalPlaces] Decimal places, integer, 0 to 1e+9.
   * @param [roundingMode] Rounding mode, integer, 0 to 8.
   */
  dp(): number;
  dp(decimalPlaces: number, roundingMode?: BigNumber.RoundingMode): BigNumber;

  /**
   * Returns a BigNumber whose value is the value of this BigNumber divided by `n`, rounded
   * according to the current `DECIMAL_PLACES` and `ROUNDING_MODE` settings.
   *
   * ```ts
   * x = new BigNumber(355)
   * y = new BigNumber(113)
   * x.dividedBy(y)                  // '3.14159292035398230088'
   * x.dividedBy(5)                  // '71'
   * x.dividedBy(47, 16)             // '5'
   * ```
   *
   * @param n A numeric value.
   * @param [base] The base of n.
   */
  dividedBy(n: BigNumber.Value, base?: number): BigNumber;

  /**
   * Returns a BigNumber whose value is the value of this BigNumber divided by `n`, rounded
   * according to the current `DECIMAL_PLACES` and `ROUNDING_MODE` settings.
   *
   * ```ts
   * x = new BigNumber(355)
   * y = new BigNumber(113)
   * x.div(y)                    // '3.14159292035398230088'
   * x.div(5)                    // '71'
   * x.div(47, 16)               // '5'
   * ```
   *
   * @param n A numeric value.
   * @param [base] The base of n.
   */
  div(n: BigNumber.Value, base?: number): BigNumber;

  /**
   * Returns a BigNumber whose value is the integer part of dividing the value of this BigNumber by
   * `n`.
   *
   * ```ts
   * x = new BigNumber(5)
   * y = new BigNumber(3)
   * x.dividedToIntegerBy(y)              // '1'
   * x.dividedToIntegerBy(0.7)            // '7'
   * x.dividedToIntegerBy('0.f', 16)      // '5'
   * ```
   *
   * @param n A numeric value.
   * @param [base] The base of n.
   */
  dividedToIntegerBy(n: BigNumber.Value, base?: number): BigNumber;

  /**
   * Returns a BigNumber whose value is the integer part of dividing the value of this BigNumber by
   * `n`.
   *
   * ```ts
   * x = new BigNumber(5)
   * y = new BigNumber(3)
   * x.idiv(y)                       // '1'
   * x.idiv(0.7)                     // '7'
   * x.idiv('0.f', 16)               // '5'
   * ```
   *
   * @param n A numeric value.
   * @param [base] The base of n.
   */
  idiv(n: BigNumber.Value, base?: number): BigNumber;

  /**
   * Returns a BigNumber whose value is the value of this BigNumber exponentiated by `n`, i.e.
   * raised to the power `n`, and optionally modulo a modulus `m`.
   *
   * If `n` is negative the result is rounded according to the current `DECIMAL_PLACES` and
   * `ROUNDING_MODE` settings.
   *
   * As the number of digits of the result of the power operation can grow so large so quickly,
   * e.g. 123.456**10000 has over 50000 digits, the number of significant digits calculated is
   * limited to the value of the `POW_PRECISION` setting (unless a modulus `m` is specified).
   *
   * By default `POW_PRECISION` is set to 0. This means that an unlimited number of significant
   * digits will be calculated, and that the method's performance will decrease dramatically for
   * larger exponents.
   *
   * If `m` is specified and the value of `m`, `n` and this BigNumber are integers and `n` is
   * positive, then a fast modular exponentiation algorithm is used, otherwise the operation will
   * be performed as `x.exponentiatedBy(n).modulo(m)` with a `POW_PRECISION` of 0.
   *
   * Throws if `n` is not an integer.
   *
   * ```ts
   * Math.pow(0.7, 2)                    // 0.48999999999999994
   * x = new BigNumber(0.7)
   * x.exponentiatedBy(2)                // '0.49'
   * BigNumber(3).exponentiatedBy(-2)    // '0.11111111111111111111'
   * ```
   *
   * @param n The exponent, an integer.
   * @param [m] The modulus.
   */
  exponentiatedBy(n: BigNumber.Value, m?: BigNumber.Value): BigNumber;
  exponentiatedBy(n: number, m?: BigNumber.Value): BigNumber;

  /**
   * Returns a BigNumber whose value is the value of this BigNumber exponentiated by `n`, i.e.
   * raised to the power `n`, and optionally modulo a modulus `m`.
   *
   * If `n` is negative the result is rounded according to the current `DECIMAL_PLACES` and
   * `ROUNDING_MODE` settings.
   *
   * As the number of digits of the result of the power operation can grow so large so quickly,
   * e.g. 123.456**10000 has over 50000 digits, the number of significant digits calculated is
   * limited to the value of the `POW_PRECISION` setting (unless a modulus `m` is specified).
   *
   * By default `POW_PRECISION` is set to 0. This means that an unlimited number of significant
   * digits will be calculated, and that the method's performance will decrease dramatically for
   * larger exponents.
   *
   * If `m` is specified and the value of `m`, `n` and this BigNumber are integers and `n` is
   * positive, then a fast modular exponentiation algorithm is used, otherwise the operation will
   * be performed as `x.pow(n).modulo(m)` with a `POW_PRECISION` of 0.
   *
   * Throws if `n` is not an integer.
   *
   * ```ts
   * Math.pow(0.7, 2)                   // 0.48999999999999994
   * x = new BigNumber(0.7)
   * x.pow(2)                           // '0.49'
   * BigNumber(3).pow(-2)               // '0.11111111111111111111'
   * ```
   *
   * @param n The exponent, an integer.
   * @param [m] The modulus.
   */
  pow(n: BigNumber.Value, m?: BigNumber.Value): BigNumber;
  pow(n: number, m?: BigNumber.Value): BigNumber;

  /**
   * Returns a BigNumber whose value is the value of this BigNumber rounded to an integer using
   * rounding mode `rm`.
   *
   * If `rm` is omitted, or is `null` or `undefined`, `ROUNDING_MODE` is used.
   *
   * Throws if `rm` is invalid.
   *
   * ```ts
   * x = new BigNumber(123.456)
   * x.integerValue()                        // '123'
   * x.integerValue(BigNumber.ROUND_CEIL)    // '124'
   * y = new BigNumber(-12.7)
   * y.integerValue()                        // '-13'
   * x.integerValue(BigNumber.ROUND_DOWN)    // '-12'
   * ```
   *
   * @param {BigNumber.RoundingMode} [rm] The roundng mode, an integer, 0 to 8.
   */
  integerValue(rm?: BigNumber.RoundingMode): BigNumber;

  /**
   * Returns `true` if the value of this BigNumber is equal to the value of `n`, otherwise returns
   * `false`.
   *
   * As with JavaScript, `NaN` does not equal `NaN`.
   *
   * ```ts
   * 0 === 1e-324                           // true
   * x = new BigNumber(0)
   * x.isEqualTo('1e-324')                  // false
   * BigNumber(-0).isEqualTo(x)             // true  ( -0 === 0 )
   * BigNumber(255).isEqualTo('ff', 16)     // true
   *
   * y = new BigNumber(NaN)
   * y.isEqualTo(NaN)                // false
   * ```
   *
   * @param n A numeric value.
   * @param [base] The base of n.
   */
  isEqualTo(n: BigNumber.Value, base?: number): boolean;

  /**
   * Returns `true` if the value of this BigNumber is equal to the value of `n`, otherwise returns
   * `false`.
   *
   * As with JavaScript, `NaN` does not equal `NaN`.
   *
   * ```ts
   * 0 === 1e-324                    // true
   * x = new BigNumber(0)
   * x.eq('1e-324')                  // false
   * BigNumber(-0).eq(x)             // true  ( -0 === 0 )
   * BigNumber(255).eq('ff', 16)     // true
   *
   * y = new BigNumber(NaN)
   * y.eq(NaN)                       // false
   * ```
   *
   * @param n A numeric value.
   * @param [base] The base of n.
   */
  eq(n: BigNumber.Value, base?: number): boolean;

  /**
   * Returns `true` if the value of this BigNumber is a finite number, otherwise returns `false`.
   *
   * The only possible non-finite values of a BigNumber are `NaN`, `Infinity` and `-Infinity`.
   *
   * ```ts
   * x = new BigNumber(1)
   * x.isFinite()                    // true
   * y = new BigNumber(Infinity)
   * y.isFinite()                    // false
   * ```
   */
  isFinite(): boolean;

  /**
   * Returns `true` if the value of this BigNumber is greater than the value of `n`, otherwise
   * returns `false`.
   *
   * ```ts
   * 0.1 > (0.3 - 0.2)                             // true
   * x = new BigNumber(0.1)
   * x.isGreaterThan(BigNumber(0.3).minus(0.2))    // false
   * BigNumber(0).isGreaterThan(x)                 // false
   * BigNumber(11, 3).isGreaterThan(11.1, 2)       // true
   * ```
   *
   * @param n A numeric value.
   * @param [base] The base of n.
   */
  isGreaterThan(n: BigNumber.Value, base?: number): boolean;

  /**
   * Returns `true` if the value of this BigNumber is greater than the value of `n`, otherwise
   * returns `false`.
   *
   * ```ts
   * 0.1 > (0.3 - 0                     // true
   * x = new BigNumber(0.1)
   * x.gt(BigNumber(0.3).minus(0.2))    // false
   * BigNumber(0).gt(x)                 // false
   * BigNumber(11, 3).gt(11.1, 2)       // true
   * ```
   *
   * @param n A numeric value.
   * @param [base] The base of n.
   */
  gt(n: BigNumber.Value, base?: number): boolean;

  /**
   * Returns `true` if the value of this BigNumber is greater than or equal to the value of `n`,
   * otherwise returns `false`.
   *
   * ```ts
   * (0.3 - 0.2) >= 0.1                                  // false
   * x = new BigNumber(0.3).minus(0.2)
   * x.isGreaterThanOrEqualTo(0.1)                       // true
   * BigNumber(1).isGreaterThanOrEqualTo(x)              // true
   * BigNumber(10, 18).isGreaterThanOrEqualTo('i', 36)   // true
   * ```
   *
   * @param n A numeric value.
   * @param [base] The base of n.
   */
  isGreaterThanOrEqualTo(n: BigNumber.Value, base?: number): boolean;

  /**
   * Returns `true` if the value of this BigNumber is greater than or equal to the value of `n`,
   * otherwise returns `false`.
   *
   * ```ts
   * (0.3 - 0.2) >= 0.1                    // false
   * x = new BigNumber(0.3).minus(0.2)
   * x.gte(0.1)                            // true
   * BigNumber(1).gte(x)                   // true
   * BigNumber(10, 18).gte('i', 36)        // true
   * ```
   *
   * @param n A numeric value.
   * @param [base] The base of n.
   */
  gte(n: BigNumber.Value, base?: number): boolean;

  /**
   * Returns `true` if the value of this BigNumber is an integer, otherwise returns `false`.
   *
   * ```ts
   * x = new BigNumber(1)
   * x.isInteger()                   // true
   * y = new BigNumber(123.456)
   * y.isInteger()                   // false
   * ```
   */
  isInteger(): boolean;

  /**
   * Returns `true` if the value of this BigNumber is less than the value of `n`, otherwise returns
   * `false`.
   *
   * ```ts
   * (0.3 - 0.2) < 0.1                       // true
   * x = new BigNumber(0.3).minus(0.2)
   * x.isLessThan(0.1)                       // false
   * BigNumber(0).isLessThan(x)              // true
   * BigNumber(11.1, 2).isLessThan(11, 3)    // true
   * ```
   *
   * @param n A numeric value.
   * @param [base] The base of n.
   */
  isLessThan(n: BigNumber.Value, base?: number): boolean;

  /**
   * Returns `true` if the value of this BigNumber is less than the value of `n`, otherwise returns
   * `false`.
   *
   * ```ts
   * (0.3 - 0.2) < 0.1                       // true
   * x = new BigNumber(0.3).minus(0.2)
   * x.lt(0.1)                               // false
   * BigNumber(0).lt(x)                      // true
   * BigNumber(11.1, 2).lt(11, 3)            // true
   * ```
   *
   * @param n A numeric value.
   * @param [base] The base of n.
   */
  lt(n: BigNumber.Value, base?: number): boolean;

  /**
   * Returns `true` if the value of this BigNumber is less than or equal to the value of `n`,
   * otherwise returns `false`.
   *
   * ```ts
   * 0.1 <= (0.3 - 0.2)                                 // false
   * x = new BigNumber(0.1)
   * x.isLessThanOrEqualTo(BigNumber(0.3).minus(0.2))   // true
   * BigNumber(-1).isLessThanOrEqualTo(x)               // true
   * BigNumber(10, 18).isLessThanOrEqualTo('i', 36)     // true
   * ```
   *
   * @param n A numeric value.
   * @param [base] The base of n.
   */
  isLessThanOrEqualTo(n: BigNumber.Value, base?: number): boolean;

  /**
   * Returns `true` if the value of this BigNumber is less than or equal to the value of `n`,
   * otherwise returns `false`.
   *
   * ```ts
   * 0.1 <= (0.3 - 0.2)                  // false
   * x = new BigNumber(0.1)
   * x.lte(BigNumber(0.3).minus(0.2))    // true
   * BigNumber(-1).lte(x)                // true
   * BigNumber(10, 18).lte('i', 36)      // true
   * ```
   *
   * @param n A numeric value.
   * @param [base] The base of n.
   */
  lte(n: BigNumber.Value, base?: number): boolean;

  /**
   * Returns `true` if the value of this BigNumber is `NaN`, otherwise returns `false`.
   *
   * ```ts
   * x = new BigNumber(NaN)
   * x.isNaN()                       // true
   * y = new BigNumber('Infinity')
   * y.isNaN()                       // false
   * ```
   */
  isNaN(): boolean;

  /**
   * Returns `true` if the value of this BigNumber is negative, otherwise returns `false`.
   *
   * ```ts
   * x = new BigNumber(-0)
   * x.isNegative()                  // true
   * y = new BigNumber(2)
   * y.isNegative()                  // false
   * ```
   */
  isNegative(): boolean;

  /**
   * Returns `true` if the value of this BigNumber is positive, otherwise returns `false`.
   *
   * ```ts
   * x = new BigNumber(-0)
   * x.isPositive()                  // false
   * y = new BigNumber(2)
   * y.isPositive()                  // true
   * ```
   */
  isPositive(): boolean;

  /**
   * Returns `true` if the value of this BigNumber is zero or minus zero, otherwise returns `false`.
   *
   * ```ts
   * x = new BigNumber(-0)
   * x.isZero()                 // true
   * ```
   */
  isZero(): boolean;

  /**
   * Returns a BigNumber whose value is the value of this BigNumber minus `n`.
   *
   * The return value is always exact and unrounded.
   *
   * ```ts
   * 0.3 - 0.1                       // 0.19999999999999998
   * x = new BigNumber(0.3)
   * x.minus(0.1)                    // '0.2'
   * x.minus(0.6, 20)                // '0'
   * ```
   *
   * @param n A numeric value.
   * @param [base] The base of n.
   */
  minus(n: BigNumber.Value, base?: number): BigNumber;

  /**
   * Returns a BigNumber whose value is the value of this BigNumber modulo `n`, i.e. the integer
   * remainder of dividing this BigNumber by `n`.
   *
   * The value returned, and in particular its sign, is dependent on the value of the `MODULO_MODE`
   * setting of this BigNumber constructor. If it is 1 (default value), the result will have the
   * same sign as this BigNumber, and it will match that of Javascript's `%` operator (within the
   * limits of double precision) and BigDecimal's `remainder` method.
   *
   * The return value is always exact and unrounded.
   *
   * See `MODULO_MODE` for a description of the other modulo modes.
   *
   * ```ts
   * 1 % 0.9                         // 0.09999999999999998
   * x = new BigNumber(1)
   * x.modulo(0.9)                   // '0.1'
   * y = new BigNumber(33)
   * y.modulo('a', 33)               // '3'
   * ```
   *
   * @param n A numeric value.
   * @param [base] The base of n.
   */
  modulo(n: BigNumber.Value, base?: number): BigNumber;

  /**
   * Returns a BigNumber whose value is the value of this BigNumber modulo `n`, i.e. the integer
   * remainder of dividing this BigNumber by `n`.
   *
   * The value returned, and in particular its sign, is dependent on the value of the `MODULO_MODE`
   * setting of this BigNumber constructor. If it is 1 (default value), the result will have the
   * same sign as this BigNumber, and it will match that of Javascript's `%` operator (within the
   * limits of double precision) and BigDecimal's `remainder` method.
   *
   * The return value is always exact and unrounded.
   *
   * See `MODULO_MODE` for a description of the other modulo modes.
   *
   * ```ts
   * 1 % 0.9                      // 0.09999999999999998
   * x = new BigNumber(1)
   * x.mod(0.9)                   // '0.1'
   * y = new BigNumber(33)
   * y.mod('a', 33)               // '3'
   * ```
   *
   * @param n A numeric value.
   * @param [base] The base of n.
   */
  mod(n: BigNumber.Value, base?: number): BigNumber;

  /**
   * Returns a BigNumber whose value is the value of this BigNumber multiplied by `n`.
   *
   * The return value is always exact and unrounded.
   *
   * ```ts
   * 0.6 * 3                                // 1.7999999999999998
   * x = new BigNumber(0.6)
   * y = x.multipliedBy(3)                  // '1.8'
   * BigNumber('7e+500').multipliedBy(y)    // '1.26e+501'
   * x.multipliedBy('-a', 16)               // '-6'
   * ```
   *
   * @param n A numeric value.
   * @param [base] The base of n.
   */
  multipliedBy(n: BigNumber.Value, base?: number): BigNumber;

  /**
   * Returns a BigNumber whose value is the value of this BigNumber multiplied by `n`.
   *
   * The return value is always exact and unrounded.
   *
   * ```ts
   * 0.6 * 3                         // 1.7999999999999998
   * x = new BigNumber(0.6)
   * y = x.times(3)                  // '1.8'
   * BigNumber('7e+500').times(y)    // '1.26e+501'
   * x.times('-a', 16)               // '-6'
   * ```
   *
   * @param n A numeric value.
   * @param [base] The base of n.
   */
  times(n: BigNumber.Value, base?: number): BigNumber;

  /**
   * Returns a BigNumber whose value is the value of this BigNumber negated, i.e. multiplied by -1.
   *
   * ```ts
   * x = new BigNumber(1.8)
   * x.negated()                     // '-1.8'
   * y = new BigNumber(-1.3)
   * y.negated()                     // '1.3'
   * ```
   */
  negated(): BigNumber;

  /**
   * Returns a BigNumber whose value is the value of this BigNumber plus `n`.
   *
   * The return value is always exact and unrounded.
   *
   * ```ts
   * 0.1 + 0.2                       // 0.30000000000000004
   * x = new BigNumber(0.1)
   * y = x.plus(0.2)                 // '0.3'
   * BigNumber(0.7).plus(x).plus(y)  // '1.1'
   * x.plus('0.1', 8)                // '0.225'
   * ```
   *
   * @param n A numeric value.
   * @param [base] The base of n.
   */
  plus(n: BigNumber.Value, base?: number): BigNumber;

  /**
   * Returns the number of significant digits of the value of this BigNumber, or `null` if the value
   * of this BigNumber is ±`Infinity` or `NaN`.
   *
   * If `includeZeros` is true then any trailing zeros of the integer part of the value of this
   * BigNumber are counted as significant digits, otherwise they are not.
   *
   * Throws if `includeZeros` is invalid.
   *
   * ```ts
   * x = new BigNumber(9876.54321)
   * x.precision()                         // 9
   * y = new BigNumber(987000)
   * y.precision(false)                    // 3
   * y.precision(true)                     // 6
   * ```
   *
   * @param [includeZeros] Whether to include integer trailing zeros in the significant digit count.
   */
  precision(includeZeros?: boolean): number;

  /**
   * Returns a BigNumber whose value is the value of this BigNumber rounded to a precision of
   * `significantDigits` significant digits using rounding mode `roundingMode`.
   *
   * If `roundingMode` is omitted or is `null` or `undefined`, `ROUNDING_MODE` will be used.
   *
   * Throws if `significantDigits` or `roundingMode` is invalid.
   *
   * ```ts
   * x = new BigNumber(9876.54321)
   * x.precision(6)                         // '9876.54'
   * x.precision(6, BigNumber.ROUND_UP)     // '9876.55'
   * x.precision(2)                         // '9900'
   * x.precision(2, 1)                      // '9800'
   * x                                      // '9876.54321'
   * ```
   *
   * @param significantDigits Significant digits, integer, 1 to 1e+9.
   * @param [roundingMode] Rounding mode, integer, 0 to 8.
   */
  precision(significantDigits: number, roundingMode?: BigNumber.RoundingMode): BigNumber;

  /**
   * Returns the number of significant digits of the value of this BigNumber,
   * or `null` if the value of this BigNumber is ±`Infinity` or `NaN`.
   *
   * If `includeZeros` is true then any trailing zeros of the integer part of
   * the value of this BigNumber are counted as significant digits, otherwise
   * they are not.
   *
   * Throws if `includeZeros` is invalid.
   *
   * ```ts
   * x = new BigNumber(9876.54321)
   * x.sd()                         // 9
   * y = new BigNumber(987000)
   * y.sd(false)                    // 3
   * y.sd(true)                     // 6
   * ```
   *
   * @param [includeZeros] Whether to include integer trailing zeros in the significant digit count.
   */
  sd(includeZeros?: boolean): number;

  /**
   * Returns a BigNumber whose value is the value of this BigNumber rounded to a precision of
   * `significantDigits` significant digits using rounding mode `roundingMode`.
   *
   * If `roundingMode` is omitted or is `null` or `undefined`, `ROUNDING_MODE` will be used.
   *
   * Throws if `significantDigits` or `roundingMode` is invalid.
   *
   * ```ts
   * x = new BigNumber(9876.54321)
   * x.sd(6)                           // '9876.54'
   * x.sd(6, BigNumber.ROUND_UP)       // '9876.55'
   * x.sd(2)                           // '9900'
   * x.sd(2, 1)                        // '9800'
   * x                                 // '9876.54321'
   * ```
   *
   * @param significantDigits Significant digits, integer, 1 to 1e+9.
   * @param [roundingMode] Rounding mode, integer, 0 to 8.
   */
  sd(significantDigits: number, roundingMode?: BigNumber.RoundingMode): BigNumber;

  /**
   * Returns a BigNumber whose value is the value of this BigNumber shifted by `n` places.
   *
   * The shift is of the decimal point, i.e. of powers of ten, and is to the left if `n` is negative
   * or to the right if `n` is positive.
   *
   * The return value is always exact and unrounded.
   *
   * Throws if `n` is invalid.
   *
   * ```ts
   * x = new BigNumber(1.23)
   * x.shiftedBy(3)                      // '1230'
   * x.shiftedBy(-3)                     // '0.00123'
   * ```
   *
   * @param n The shift value, integer, -9007199254740991 to 9007199254740991.
   */
  shiftedBy(n: number): BigNumber;

  /**
   * Returns a BigNumber whose value is the square root of the value of this BigNumber, rounded
   * according to the current `DECIMAL_PLACES` and `ROUNDING_MODE` settings.
   *
   * The return value will be correctly rounded, i.e. rounded as if the result was first calculated
   * to an infinite number of correct digits before rounding.
   *
   * ```ts
   * x = new BigNumber(16)
   * x.squareRoot()                  // '4'
   * y = new BigNumber(3)
   * y.squareRoot()                  // '1.73205080756887729353'
   * ```
   */
  squareRoot(): BigNumber;

  /**
   * Returns a BigNumber whose value is the square root of the value of this BigNumber, rounded
   * according to the current `DECIMAL_PLACES` and `ROUNDING_MODE` settings.
   *
   * The return value will be correctly rounded, i.e. rounded as if the result was first calculated
   * to an infinite number of correct digits before rounding.
   *
   * ```ts
   * x = new BigNumber(16)
   * x.sqrt()                  // '4'
   * y = new BigNumber(3)
   * y.sqrt()                  // '1.73205080756887729353'
   * ```
   */
  sqrt(): BigNumber;

  /**
   * Returns a string representing the value of this BigNumber in exponential notation rounded using
   * rounding mode `roundingMode` to `decimalPlaces` decimal places, i.e with one digit before the
   * decimal point and `decimalPlaces` digits after it.
   *
   * If the value of this BigNumber in exponential notation has fewer than `decimalPlaces` fraction
   * digits, the return value will be appended with zeros accordingly.
   *
   * If `decimalPlaces` is omitted, or is `null` or `undefined`, the number of digits after the
   * decimal point defaults to the minimum number of digits necessary to represent the value
   * exactly.
   *
   * If `roundingMode` is omitted or is `null` or `undefined`, `ROUNDING_MODE` is used.
   *
   * Throws if `decimalPlaces` or `roundingMode` is invalid.
   *
   * ```ts
   * x = 45.6
   * y = new BigNumber(x)
   * x.toExponential()               // '4.56e+1'
   * y.toExponential()               // '4.56e+1'
   * x.toExponential(0)              // '5e+1'
   * y.toExponential(0)              // '5e+1'
   * x.toExponential(1)              // '4.6e+1'
   * y.toExponential(1)              // '4.6e+1'
   * y.toExponential(1, 1)           // '4.5e+1'  (ROUND_DOWN)
   * x.toExponential(3)              // '4.560e+1'
   * y.toExponential(3)              // '4.560e+1'
   * ```
   *
   * @param [decimalPlaces] Decimal places, integer, 0 to 1e+9.
   * @param [roundingMode] Rounding mode, integer, 0 to 8.
   */
  toExponential(decimalPlaces: number, roundingMode?: BigNumber.RoundingMode): string;
  toExponential(): string;

  /**
   * Returns a string representing the value of this BigNumber in normal (fixed-point) notation
   * rounded to `decimalPlaces` decimal places using rounding mode `roundingMode`.
   *
   * If the value of this BigNumber in normal notation has fewer than `decimalPlaces` fraction
   * digits, the return value will be appended with zeros accordingly.
   *
   * Unlike `Number.prototype.toFixed`, which returns exponential notation if a number is greater or
   * equal to 10**21, this method will always return normal notation.
   *
   * If `decimalPlaces` is omitted or is `null` or `undefined`, the return value will be unrounded
   * and in normal notation. This is also unlike `Number.prototype.toFixed`, which returns the value
   * to zero decimal places. It is useful when normal notation is required and the current
   * `EXPONENTIAL_AT` setting causes `toString` to return exponential notation.
   *
   * If `roundingMode` is omitted or is `null` or `undefined`, `ROUNDING_MODE` is used.
   *
   * Throws if `decimalPlaces` or `roundingMode` is invalid.
   *
   * ```ts
   * x = 3.456
   * y = new BigNumber(x)
   * x.toFixed()                     // '3'
   * y.toFixed()                     // '3.456'
   * y.toFixed(0)                    // '3'
   * x.toFixed(2)                    // '3.46'
   * y.toFixed(2)                    // '3.46'
   * y.toFixed(2, 1)                 // '3.45'  (ROUND_DOWN)
   * x.toFixed(5)                    // '3.45600'
   * y.toFixed(5)                    // '3.45600'
   * ```
   *
   * @param [decimalPlaces] Decimal places, integer, 0 to 1e+9.
   * @param [roundingMode] Rounding mode, integer, 0 to 8.
   */
  toFixed(decimalPlaces: number, roundingMode?: BigNumber.RoundingMode): string;
  toFixed(): string;

  /**
   * Returns a string representing the value of this BigNumber in normal (fixed-point) notation
   * rounded to `decimalPlaces` decimal places using rounding mode `roundingMode`, and formatted
   * according to the properties of the `format` or `FORMAT` object.
   *
   * The formatting object may contain some or all of the properties shown in the examples below.
   *
   * If `decimalPlaces` is omitted or is `null` or `undefined`, then the return value is not
   * rounded to a fixed number of decimal places.
   *
   * If `roundingMode` is omitted or is `null` or `undefined`, `ROUNDING_MODE` is used.
   *
   * If `format` is omitted or is `null` or `undefined`, `FORMAT` is used.
   *
   * Throws if `decimalPlaces`, `roundingMode`, or `format` is invalid.
   *
   * ```ts
   * fmt = {
   *   decimalSeparator: '.',
   *   groupSeparator: ',',
   *   groupSize: 3,
   *   secondaryGroupSize: 0,
   *   fractionGroupSeparator: ' ',
   *   fractionGroupSize: 0
   * }
   *
   * x = new BigNumber('123456789.123456789')
   *
   * // Set the global formatting options
   * BigNumber.config({ FORMAT: fmt })
   *
   * x.toFormat()                              // '123,456,789.123456789'
   * x.toFormat(3)                             // '123,456,789.123'
   *
   * // If a reference to the object assigned to FORMAT has been retained,
   * // the format properties can be changed directly
   * fmt.groupSeparator = ' '
   * fmt.fractionGroupSize = 5
   * x.toFormat()                              // '123 456 789.12345 6789'
   *
   * // Alternatively, pass the formatting options as an argument
   * fmt = {
   *   decimalSeparator: ',',
   *   groupSeparator: '.',
   *   groupSize: 3,
   *   secondaryGroupSize: 2
   * }
   *
   * x.toFormat()                              // '123 456 789.12345 6789'
   * x.toFormat(fmt)                           // '12.34.56.789,123456789'
   * x.toFormat(2, fmt)                        // '12.34.56.789,12'
   * x.toFormat(3, BigNumber.ROUND_UP, fmt)    // '12.34.56.789,124'
   * ```
   *
   * @param [decimalPlaces] Decimal places, integer, 0 to 1e+9.
   * @param [roundingMode] Rounding mode, integer, 0 to 8.
   * @param [format] Formatting options object. See `BigNumber.Format`.
   */
  toFormat(decimalPlaces: number, roundingMode: BigNumber.RoundingMode, format?: BigNumber.Format): string;
  toFormat(decimalPlaces: number, roundingMode?: BigNumber.RoundingMode): string;
  toFormat(decimalPlaces?: number): string;
  toFormat(decimalPlaces: number, format: BigNumber.Format): string;
  toFormat(format: BigNumber.Format): string;

  /**
   * Returns an array of two BigNumbers representing the value of this BigNumber as a simple
   * fraction with an integer numerator and an integer denominator.
   * The denominator will be a positive non-zero value less than or equal to `max_denominator`.
   * If a maximum denominator, `max_denominator`, is not specified, or is `null` or `undefined`, the
   * denominator will be the lowest value necessary to represent the number exactly.
   *
   * Throws if `max_denominator` is invalid.
   *
   * ```ts
   * x = new BigNumber(1.75)
   * x.toFraction()                  // '7, 4'
   *
   * pi = new BigNumber('3.14159265358')
   * pi.toFraction()                 // '157079632679,50000000000'
   * pi.toFraction(100000)           // '312689, 99532'
   * pi.toFraction(10000)            // '355, 113'
   * pi.toFraction(100)              // '311, 99'
   * pi.toFraction(10)               // '22, 7'
   * pi.toFraction(1)                // '3, 1'
   * ```
   *
   * @param [max_denominator] The maximum denominator, integer > 0, or Infinity.
   */
  toFraction(max_denominator?: BigNumber.Value): [BigNumber, BigNumber];

  /** As `valueOf`. */
  toJSON(): string;

  /**
   * Returns the value of this BigNumber as a JavaScript primitive number.
   *
   * Using the unary plus operator gives the same result.
   *
   * ```ts
   * x = new BigNumber(456.789)
   * x.toNumber()                    // 456.789
   * +x                              // 456.789
   *
   * y = new BigNumber('45987349857634085409857349856430985')
   * y.toNumber()                    // 4.598734985763409e+34
   *
   * z = new BigNumber(-0)
   * 1 / z.toNumber()                // -Infinity
   * 1 / +z                          // -Infinity
   * ```
   */
  toNumber(): number;

  /**
   * Returns a string representing the value of this BigNumber rounded to `significantDigits`
   * significant digits using rounding mode `roundingMode`.
   *
   * If `significantDigits` is less than the number of digits necessary to represent the integer
   * part of the value in normal (fixed-point) notation, then exponential notation is used.
   *
   * If `significantDigits` is omitted, or is `null` or `undefined`, then the return value is the
   * same as `n.toString()`.
   *
   * If `roundingMode` is omitted or is `null` or `undefined`, `ROUNDING_MODE` is used.
   *
   * Throws if `significantDigits` or `roundingMode` is invalid.
   *
   * ```ts
   * x = 45.6
   * y = new BigNumber(x)
   * x.toPrecision()                 // '45.6'
   * y.toPrecision()                 // '45.6'
   * x.toPrecision(1)                // '5e+1'
   * y.toPrecision(1)                // '5e+1'
   * y.toPrecision(2, 0)             // '4.6e+1'  (ROUND_UP)
   * y.toPrecision(2, 1)             // '4.5e+1'  (ROUND_DOWN)
   * x.toPrecision(5)                // '45.600'
   * y.toPrecision(5)                // '45.600'
   * ```
   *
   * @param [significantDigits] Significant digits, integer, 1 to 1e+9.
   * @param [roundingMode] Rounding mode, integer 0 to 8.
   */
  toPrecision(significantDigits: number, roundingMode?: BigNumber.RoundingMode): string;
  toPrecision(): string;

  /**
   * Returns a string representing the value of this BigNumber in base `base`, or base 10 if `base`
   * is omitted or is `null` or `undefined`.
   *
   * For bases above 10, and using the default base conversion alphabet (see `ALPHABET`), values
   * from 10 to 35 are represented by a-z (the same as `Number.prototype.toString`).
   *
   * If a base is specified the value is rounded according to the current `DECIMAL_PLACES` and
   * `ROUNDING_MODE` settings, otherwise it is not.
   *
   * If a base is not specified, and this BigNumber has a positive exponent that is equal to or
   * greater than the positive component of the current `EXPONENTIAL_AT` setting, or a negative
   * exponent equal to or less than the negative component of the setting, then exponential notation
   * is returned.
   *
   * If `base` is `null` or `undefined` it is ignored.
   *
   * Throws if `base` is invalid.
   *
   * ```ts
   * x = new BigNumber(750000)
   * x.toString()                    // '750000'
   * BigNumber.config({ EXPONENTIAL_AT: 5 })
   * x.toString()                    // '7.5e+5'
   *
   * y = new BigNumber(362.875)
   * y.toString(2)                   // '101101010.111'
   * y.toString(9)                   // '442.77777777777777777778'
   * y.toString(32)                  // 'ba.s'
   *
   * BigNumber.config({ DECIMAL_PLACES: 4 });
   * z = new BigNumber('1.23456789')
   * z.toString()                    // '1.23456789'
   * z.toString(10)                  // '1.2346'
   * ```
   *
   * @param [base] The base, integer, 2 to 36 (or `ALPHABET.length`, see `ALPHABET`).
   */
  toString(base?: number): string;

  /**
   * As `toString`, but does not accept a base argument and includes the minus sign for negative
   * zero.
   *
   * ``ts
   * x = new BigNumber('-0')
   * x.toString()                    // '0'
   * x.valueOf()                     // '-0'
   * y = new BigNumber('1.777e+457')
   * y.valueOf()                     // '1.777e+457'
   * ```
   */
  valueOf(): string;

  /** Helps ES6 import. */
  private static readonly default?: BigNumber.Constructor;

  /** Helps ES6 import. */
  private static readonly BigNumber?: BigNumber.Constructor;

  /** Rounds away from zero. */
  static readonly ROUND_UP: 0;

  /** Rounds towards zero. */
  static readonly ROUND_DOWN: 1;

  /** Rounds towards Infinity. */
  static readonly ROUND_CEIL: 2;

  /** Rounds towards -Infinity. */
  static readonly ROUND_FLOOR: 3;

  /** Rounds towards nearest neighbour. If equidistant, rounds away from zero . */
  static readonly ROUND_HALF_UP: 4;

  /** Rounds towards nearest neighbour. If equidistant, rounds towards zero. */
  static readonly ROUND_HALF_DOWN: 5;

  /** Rounds towards nearest neighbour. If equidistant, rounds towards even neighbour. */
  static readonly ROUND_HALF_EVEN: 6;

  /** Rounds towards nearest neighbour. If equidistant, rounds towards Infinity. */
  static readonly ROUND_HALF_CEIL: 7;

  /** Rounds towards nearest neighbour. If equidistant, rounds towards -Infinity. */
  static readonly ROUND_HALF_FLOOR: 8;

  /** See `MODULO_MODE`. */
  static readonly EUCLID: 9;

  /**
   * To aid in debugging, if a `BigNumber.DEBUG` property is `true` then an error will be thrown
   * if the BigNumber constructor receives an invalid `BigNumber.Value`, or if `BigNumber.isBigNumber`
   * receives a BigNumber instance that is malformed.
   *
   * ```ts
   * // No error, and BigNumber NaN is returned.
   * new BigNumber('blurgh')    // 'NaN'
   * new BigNumber(9, 2)        // 'NaN'
   * BigNumber.DEBUG = true
   * new BigNumber('blurgh')    // '[BigNumber Error] Not a number'
   * new BigNumber(9, 2)        // '[BigNumber Error] Not a base 2 number'
   * ```
   *
   * An error will also be thrown if a `BigNumber.Value` is of type number with more than 15
   * significant digits, as calling `toString` or `valueOf` on such numbers may not result
   * in the intended value.
   *
   * ```ts
   * console.log(823456789123456.3)       //  823456789123456.2
   * // No error, and the returned BigNumber does not have the same value as the number literal.
   * new BigNumber(823456789123456.3)     // '823456789123456.2'
   * BigNumber.DEBUG = true
   * new BigNumber(823456789123456.3)
   * // '[BigNumber Error] Number primitive has more than 15 significant digits'
   * ```
   *
   * Check that a BigNumber instance is well-formed:
   *
   * ```ts
   * x = new BigNumber(10)
   *
   * BigNumber.DEBUG = false
   * // Change x.c to an illegitimate value.
   * x.c = NaN
   * // No error, as BigNumber.DEBUG is false.
   * BigNumber.isBigNumber(x)    // true
   *
   * BigNumber.DEBUG = true
   * BigNumber.isBigNumber(x)    // '[BigNumber Error] Invalid BigNumber'
   * ```
   */
  static DEBUG?: boolean;

  /**
   * Returns a new independent BigNumber constructor with configuration as described by `object`, or
   * with the default configuration if object is `null` or `undefined`.
   *
   * Throws if `object` is not an object.
   *
   * ```ts
   * BigNumber.config({ DECIMAL_PLACES: 5 })
   * BN = BigNumber.clone({ DECIMAL_PLACES: 9 })
   *
   * x = new BigNumber(1)
   * y = new BN(1)
   *
   * x.div(3)                        // 0.33333
   * y.div(3)                        // 0.333333333
   *
   * // BN = BigNumber.clone({ DECIMAL_PLACES: 9 }) is equivalent to:
   * BN = BigNumber.clone()
   * BN.config({ DECIMAL_PLACES: 9 })
   * ```
   *
   * @param [object] The configuration object.
   */
  static clone(object?: BigNumber.Config): BigNumber.Constructor;

  /**
   * Configures the settings that apply to this BigNumber constructor.
   *
   * The configuration object, `object`, contains any number of the properties shown in the example
   * below.
   *
   * Returns an object with the above properties and their current values.
   *
   * Throws if `object` is not an object, or if an invalid value is assigned to one or more of the
   * properties.
   *
   * ```ts
   * BigNumber.config({
   *     DECIMAL_PLACES: 40,
   *     ROUNDING_MODE: BigNumber.ROUND_HALF_CEIL,
   *     EXPONENTIAL_AT: [-10, 20],
   *     RANGE: [-500, 500],
   *     CRYPTO: true,
   *     MODULO_MODE: BigNumber.ROUND_FLOOR,
   *     POW_PRECISION: 80,
   *     FORMAT: {
   *         groupSize: 3,
   *         groupSeparator: ' ',
   *         decimalSeparator: ','
   *     },
   *     ALPHABET: '0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ$_'
   * });
   *
   * BigNumber.config().DECIMAL_PLACES        // 40
   * ```
   *
   * @param object The configuration object.
   */
  static config(object: BigNumber.Config): BigNumber.Config;

  /**
   * Returns `true` if `value` is a BigNumber instance, otherwise returns `false`.
   *
   * If `BigNumber.DEBUG` is `true`, throws if a BigNumber instance is not well-formed.
   *
   * ```ts
   * x = 42
   * y = new BigNumber(x)
   *
   * BigNumber.isBigNumber(x)             // false
   * y instanceof BigNumber               // true
   * BigNumber.isBigNumber(y)             // true
   *
   * BN = BigNumber.clone();
   * z = new BN(x)
   * z instanceof BigNumber               // false
   * BigNumber.isBigNumber(z)             // true
   * ```
   *
   * @param value The value to test.
   */
  static isBigNumber(value: any): value is BigNumber;

  /**
   * Returns a BigNumber whose value is the maximum of the arguments.
   *
   * The return value is always exact and unrounded.
   *
   * ```ts
   * x = new BigNumber('3257869345.0378653')
   * BigNumber.maximum(4e9, x, '123456789.9')      // '4000000000'
   *
   * arr = [12, '13', new BigNumber(14)]
   * BigNumber.maximum.apply(null, arr)            // '14'
   * ```
   *
   * @param n A numeric value.
   */
  static maximum(...n: BigNumber.Value[]): BigNumber;

  /**
   * Returns a BigNumber whose value is the maximum of the arguments.
   *
   * The return value is always exact and unrounded.
   *
   * ```ts
   * x = new BigNumber('3257869345.0378653')
   * BigNumber.max(4e9, x, '123456789.9')      // '4000000000'
   *
   * arr = [12, '13', new BigNumber(14)]
   * BigNumber.max.apply(null, arr)            // '14'
   * ```
   *
   * @param n A numeric value.
   */
  static max(...n: BigNumber.Value[]): BigNumber;

  /**
   * Returns a BigNumber whose value is the minimum of the arguments.
   *
   * The return value is always exact and unrounded.
   *
   * ```ts
   * x = new BigNumber('3257869345.0378653')
   * BigNumber.minimum(4e9, x, '123456789.9')          // '123456789.9'
   *
   * arr = [2, new BigNumber(-14), '-15.9999', -12]
   * BigNumber.minimum.apply(null, arr)                // '-15.9999'
   * ```
   *
   * @param n A numeric value.
   */
  static minimum(...n: BigNumber.Value[]): BigNumber;

  /**
   * Returns a BigNumber whose value is the minimum of the arguments.
   *
   * The return value is always exact and unrounded.
   *
   * ```ts
   * x = new BigNumber('3257869345.0378653')
   * BigNumber.min(4e9, x, '123456789.9')             // '123456789.9'
   *
   * arr = [2, new BigNumber(-14), '-15.9999', -12]
   * BigNumber.min.apply(null, arr)                   // '-15.9999'
   * ```
   *
   * @param n A numeric value.
   */
  static min(...n: BigNumber.Value[]): BigNumber;

  /**
   * Returns a new BigNumber with a pseudo-random value equal to or greater than 0 and less than 1.
   *
   * The return value will have `decimalPlaces` decimal places, or less if trailing zeros are
   * produced. If `decimalPlaces` is omitted, the current `DECIMAL_PLACES` setting will be used.
   *
   * Depending on the value of this BigNumber constructor's `CRYPTO` setting and the support for the
   * `crypto` object in the host environment, the random digits of the return value are generated by
   * either `Math.random` (fastest), `crypto.getRandomValues` (Web Cryptography API in recent
   * browsers) or `crypto.randomBytes` (Node.js).
   *
   * To be able to set `CRYPTO` to true when using Node.js, the `crypto` object must be available
   * globally:
   *
   * ```ts
   * global.crypto = require('crypto')
   * ```
   *
   * If `CRYPTO` is true, i.e. one of the `crypto` methods is to be used, the value of a returned
   * BigNumber should be cryptographically secure and statistically indistinguishable from a random
   * value.
   *
   * Throws if `decimalPlaces` is invalid.
   *
   * ```ts
   * BigNumber.config({ DECIMAL_PLACES: 10 })
   * BigNumber.random()              // '0.4117936847'
   * BigNumber.random(20)            // '0.78193327636914089009'
   * ```
   *
   * @param [decimalPlaces] Decimal places, integer, 0 to 1e+9.
   */
  static random(decimalPlaces?: number): BigNumber;

  /**
   * Returns a BigNumber whose value is the sum of the arguments.
   *
   * The return value is always exact and unrounded.
   *
   * ```ts
   * x = new BigNumber('3257869345.0378653')
   * BigNumber.sum(4e9, x, '123456789.9')      // '7381326134.9378653'
   *
   * arr = [2, new BigNumber(14), '15.9999', 12]
   * BigNumber.sum.apply(null, arr)            // '43.9999'
   * ```
   *
   * @param n A numeric value.
   */
  static sum(...n: BigNumber.Value[]): BigNumber;

  /**
   * Configures the settings that apply to this BigNumber constructor.
   *
   * The configuration object, `object`, contains any number of the properties shown in the example
   * below.
   *
   * Returns an object with the above properties and their current values.
   *
   * Throws if `object` is not an object, or if an invalid value is assigned to one or more of the
   * properties.
   *
   * ```ts
   * BigNumber.set({
   *     DECIMAL_PLACES: 40,
   *     ROUNDING_MODE: BigNumber.ROUND_HALF_CEIL,
   *     EXPONENTIAL_AT: [-10, 20],
   *     RANGE: [-500, 500],
   *     CRYPTO: true,
   *     MODULO_MODE: BigNumber.ROUND_FLOOR,
   *     POW_PRECISION: 80,
   *     FORMAT: {
   *         groupSize: 3,
   *         groupSeparator: ' ',
   *         decimalSeparator: ','
   *     },
   *     ALPHABET: '0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ$_'
   * });
   *
   * BigNumber.set().DECIMAL_PLACES        // 40
   * ```
   *
   * @param object The configuration object.
   */
  static set(object: BigNumber.Config): BigNumber.Config;
}