Toggle navigation
Toggle navigation
This project
Loading...
Sign in
2020-1-capstone-design1
/
BSH_Project2
Go to a project
Toggle navigation
Toggle navigation pinning
Projects
Groups
Snippets
Help
Project
Activity
Repository
Pipelines
Graphs
Issues
0
Merge Requests
0
Wiki
Snippets
Network
Create a new issue
Builds
Commits
Issue Boards
Authored by
이혜리
2020-06-04 00:26:11 +0900
Browse Files
Options
Browse Files
Download
Email Patches
Plain Diff
Commit
43ce267e5a1363ebf012896628d251183c19dbdf
43ce267e
1 parent
1361d7bb
데이터 전처리
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
75 additions
and
0 deletions
process_data.py
process_data.py
0 → 100644
View file @
43ce267
import
os
import
numpy
as
np
import
random
from
imageio
import
imread
from
skimage.transform
import
resize
import
hickle
as
hkl
from
setting
import
*
#tr : val = 9:1
desired_im_sz
=
(
128
,
160
)
#높이,너비
#categories = ['walk', 'run', 'hug', 'crossarms', 'jump', 'clap', 'etc', 'beverage', 'phone', 'calling']
num_pic
=
12
#각 sequence마다 받아올 프레임 개수. (개수가 일정하기 않기 때문)
# Create image datasets.
def
process_data
():
base_dir
=
os
.
path
.
join
(
DATA_DIR
,
'action_data/'
)
temp_list
=
[]
source_temp
=
[]
# corresponds to recording that image came from
im_list
=
[]
source_list
=
[]
validation
=
[]
val_source
=
[]
val_idx
=
[]
num_data
=
0
# 비디오 개수
for
top
,
dir
,
f
in
os
.
walk
(
base_dir
):
if
(
len
(
f
)
>
0
and
len
(
f
)
>=
num_pic
+
1
):
f
.
sort
()
#오마이갓 이걸 해줘야해,,,,,
temp_list
+=
[
top
+
'/'
+
f
[
idx
]
for
idx
in
range
(
1
,
13
)]
start
=
top
.
rfind
(
'/'
)
source_temp
+=
[
top
[
start
+
1
:]]
*
num_pic
num_data
+=
1
# 파일 2000개만
for
i
in
range
(
1900
):
t
=
random
.
randrange
(
num_data
)
im_list
+=
temp_list
[
t
:
t
+
num_pic
]
source_list
+=
[
source_temp
[
t
]]
*
num_pic
del
temp_list
[
t
:
t
+
num_pic
]
del
source_temp
[
t
:
t
+
num_pic
]
for
i
in
range
(
100
):
t
=
random
.
randrange
(
num_data
)
validation
+=
temp_list
[
t
:
t
+
num_pic
]
val_source
+=
[
source_temp
[
t
]]
*
num_pic
del
temp_list
[
t
:
t
+
num_pic
]
del
source_temp
[
t
:
t
+
num_pic
]
# print(len(im_list), ", ", len(validation))
X_t
=
np
.
zeros
((
len
(
im_list
),)
+
desired_im_sz
+
(
3
,))
X_v
=
np
.
zeros
((
len
(
validation
),)
+
desired_im_sz
+
(
3
,))
for
i
,
im_file
in
enumerate
(
im_list
):
im
=
imread
(
im_file
)
X_t
[
i
]
=
resize
(
im
,
(
desired_im_sz
[
0
],
desired_im_sz
[
1
]))
for
i
,
im_file
in
enumerate
(
validation
):
im
=
imread
(
im_file
)
X_v
[
i
]
=
resize
(
im
,
(
desired_im_sz
[
0
],
desired_im_sz
[
1
]))
# print(X_t.shape, ", ", X_v.shape)
# print(X_t[0], end ='\n\n')
# print(X_v[0])
hkl
.
dump
(
X_t
,
os
.
path
.
join
(
DATA_DIR
,
'X_train.hkl'
))
hkl
.
dump
(
source_list
,
os
.
path
.
join
(
DATA_DIR
,
'sources_train.hkl'
))
hkl
.
dump
(
X_v
,
os
.
path
.
join
(
DATA_DIR
,
'X_val.hkl'
))
hkl
.
dump
(
val_source
,
os
.
path
.
join
(
DATA_DIR
,
'sources_val.hkl'
))
if
__name__
==
'__main__'
:
process_data
()
\ No newline at end of file
Please
register
or
login
to post a comment