Showing
3 changed files
with
0 additions
and
109 deletions
code/deep_sort_yolov4/README.md
deleted
100644 → 0
| 1 | -# YOLOv4 + Deep_SORT | ||
| 2 | - | ||
| 3 | -<img src="https://github.com/yehengchen/Object-Detection-and-Tracking/blob/master/OneStage/yolo/deep_sort_yolov4/output/comparison.png" width="81%" height="81%"> <img src="https://github.com/yehengchen/video_demo/blob/master/video_demo/output.gif" width="40%" height="40%"> <img src="https://github.com/yehengchen/video_demo/blob/master/video_demo/TownCentreXVID_output.gif" width="40%" height="40%"> | ||
| 4 | - | ||
| 5 | -__Object Tracking & Counting Demo - [[BiliBili]](https://www.bilibili.com/video/BV1Ug4y1i71w#reply3014975828) [[Chinese Version]](https://blog.csdn.net/weixin_38107271/article/details/96741706)__ | ||
| 6 | -## Requirement | ||
| 7 | -__Development Environment: [Deep-Learning-Environment-Setup](https://github.com/yehengchen/Ubuntu-16.04-Deep-Learning-Environment-Setup)__ | ||
| 8 | - | ||
| 9 | -* OpenCV | ||
| 10 | -* sklean | ||
| 11 | -* pillow | ||
| 12 | -* numpy 1.15.0 | ||
| 13 | -* torch 1.3.0 | ||
| 14 | -* tensorflow-gpu 1.13.1 | ||
| 15 | -* CUDA 10.0 | ||
| 16 | -*** | ||
| 17 | - | ||
| 18 | -It uses: | ||
| 19 | - | ||
| 20 | -* __Detection__: [YOLOv4](https://github.com/yehengchen/Object-Detection-and-Tracking/tree/master/OneStage/yolo/Train-a-YOLOv4-model) to detect objects on each of the video frames. - 用自己的数据训练YOLOv4模型 | ||
| 21 | - | ||
| 22 | -* __Tracking__: [Deep_SORT](https://github.com/nwojke/deep_sort) to track those objects over different frames. | ||
| 23 | - | ||
| 24 | -*This repository contains code for Simple Online and Realtime Tracking with a Deep Association Metric (Deep SORT). We extend the original SORT algorithm to integrate appearance information based on a deep appearance descriptor. See the [arXiv preprint](https://arxiv.org/abs/1703.07402) for more information.* | ||
| 25 | - | ||
| 26 | -## Quick Start | ||
| 27 | - | ||
| 28 | -__0.Requirements__ | ||
| 29 | - | ||
| 30 | - pip install -r requirements.txt | ||
| 31 | - | ||
| 32 | -__1. Download the code to your computer.__ | ||
| 33 | - | ||
| 34 | - git clone https://github.com/yehengchen/Object-Detection-and-Tracking.git | ||
| 35 | - | ||
| 36 | -__2. Download [[yolov4.weights]](https://drive.google.com/file/d/1cewMfusmPjYWbrnuJRuKhPMwRe_b9PaT/view) [[Baidu]](https://pan.baidu.com/s/1jRudrrXAS3DRGqT6mL4L3A ) - `mnv6`__ and place it in `deep_sort_yolov4/model_data/` | ||
| 37 | - | ||
| 38 | -*Here you can download my trained [[yolo4_weight.h5]](https://pan.baidu.com/s/1JuT4KCUFaE2Gvme0_S37DQ ) - `w17w` weights for detecting person/car/bicycle,etc.* | ||
| 39 | - | ||
| 40 | -__3. Convert the Darknet YOLO model to a Keras model:__ | ||
| 41 | -``` | ||
| 42 | -$ python convert.py model_data/yolov4.cfg model_data/yolov4.weights model_data/yolo.h5 | ||
| 43 | -``` | ||
| 44 | -__4. Run the YOLO_DEEP_SORT:__ | ||
| 45 | - | ||
| 46 | -``` | ||
| 47 | -$ python main.py -c [CLASS NAME] -i [INPUT VIDEO PATH] | ||
| 48 | - | ||
| 49 | -$ python main.py -c person -i ./test_video/testvideo.avi | ||
| 50 | -``` | ||
| 51 | - | ||
| 52 | -__5. Can change [deep_sort_yolov3/yolo.py] `__Line 100__` to your tracking object__ | ||
| 53 | - | ||
| 54 | -*DeepSORT pre-trained weights using people-ReID datasets only for person* | ||
| 55 | -``` | ||
| 56 | - if predicted_class != args["class"]: | ||
| 57 | - continue | ||
| 58 | - | ||
| 59 | - if predicted_class != 'person' and predicted_class != 'car': | ||
| 60 | - continue | ||
| 61 | -``` | ||
| 62 | - | ||
| 63 | -## Train on Market1501 & MARS | ||
| 64 | -*People Re-identification model* | ||
| 65 | - | ||
| 66 | -[cosine_metric_learning](https://github.com/nwojke/cosine_metric_learning) for training a metric feature representation to be used with the deep_sort tracker. | ||
| 67 | - | ||
| 68 | -## Citation | ||
| 69 | - | ||
| 70 | -### YOLOv4 : | ||
| 71 | - | ||
| 72 | - @misc{bochkovskiy2020yolov4, | ||
| 73 | - title={YOLOv4: Optimal Speed and Accuracy of Object Detection}, | ||
| 74 | - author={Alexey Bochkovskiy and Chien-Yao Wang and Hong-Yuan Mark Liao}, | ||
| 75 | - year={2020}, | ||
| 76 | - eprint={2004.10934}, | ||
| 77 | - archivePrefix={arXiv}, | ||
| 78 | - primaryClass={cs.CV} | ||
| 79 | - } | ||
| 80 | - | ||
| 81 | -### Deep_SORT : | ||
| 82 | - | ||
| 83 | - @inproceedings{Wojke2017simple, | ||
| 84 | - title={Simple Online and Realtime Tracking with a Deep Association Metric}, | ||
| 85 | - author={Wojke, Nicolai and Bewley, Alex and Paulus, Dietrich}, | ||
| 86 | - booktitle={2017 IEEE International Conference on Image Processing (ICIP)}, | ||
| 87 | - year={2017}, | ||
| 88 | - pages={3645--3649}, | ||
| 89 | - organization={IEEE}, | ||
| 90 | - doi={10.1109/ICIP.2017.8296962} | ||
| 91 | - } | ||
| 92 | - | ||
| 93 | - @inproceedings{Wojke2018deep, | ||
| 94 | - title={Deep Cosine Metric Learning for Person Re-identification}, | ||
| 95 | - author={Wojke, Nicolai and Bewley, Alex}, | ||
| 96 | - booktitle={2018 IEEE Winter Conference on Applications of Computer Vision (WACV)}, | ||
| 97 | - year={2018}, | ||
| 98 | - pages={748--756}, | ||
| 99 | - organization={IEEE}, | ||
| 100 | - doi={10.1109/WACV.2018.00087} | ||
| 101 | - } | ||
| 102 | - | ||
| 103 | -## Reference | ||
| 104 | -#### Github:deep_sort@[Nicolai Wojke nwojke](https://github.com/nwojke/deep_sort) | ||
| 105 | -#### Github:deep_sort_yolov3@[Qidian213 ](https://github.com/Qidian213/deep_sort_yolov3) | ||
| 106 | -#### Github:Deep-SORT-YOLOv4@[LeonLok](https://github.com/LeonLok/Deep-SORT-YOLOv4) | ||
| 107 | - |
code/openh264-1.8.0-win64.dll.bz2
0 → 100644
No preview for this file type
-
Please register or login to post a comment