ConvertVectorToLLVM.cpp
42 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
//===- VectorToLLVM.cpp - Conversion from Vector to the LLVM dialect ------===//
//
// Part of the MLIR Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Conversion/VectorToLLVM/ConvertVectorToLLVM.h"
#include "mlir/Conversion/StandardToLLVM/ConvertStandardToLLVM.h"
#include "mlir/Conversion/StandardToLLVM/ConvertStandardToLLVMPass.h"
#include "mlir/Dialect/LLVMIR/LLVMDialect.h"
#include "mlir/Dialect/StandardOps/Ops.h"
#include "mlir/Dialect/VectorOps/VectorOps.h"
#include "mlir/IR/Attributes.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/MLIRContext.h"
#include "mlir/IR/Module.h"
#include "mlir/IR/Operation.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/IR/StandardTypes.h"
#include "mlir/IR/Types.h"
#include "mlir/Pass/Pass.h"
#include "mlir/Pass/PassManager.h"
#include "mlir/Transforms/DialectConversion.h"
#include "mlir/Transforms/Passes.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Type.h"
#include "llvm/Support/Allocator.h"
#include "llvm/Support/ErrorHandling.h"
using namespace mlir;
using namespace mlir::vector;
namespace {
template <typename T>
static LLVM::LLVMType getPtrToElementType(T containerType,
LLVMTypeConverter &lowering) {
return lowering.convertType(containerType.getElementType())
.template cast<LLVM::LLVMType>()
.getPointerTo();
}
// Helper to reduce vector type by one rank at front.
static VectorType reducedVectorTypeFront(VectorType tp) {
assert((tp.getRank() > 1) && "unlowerable vector type");
return VectorType::get(tp.getShape().drop_front(), tp.getElementType());
}
// Helper to reduce vector type by *all* but one rank at back.
static VectorType reducedVectorTypeBack(VectorType tp) {
assert((tp.getRank() > 1) && "unlowerable vector type");
return VectorType::get(tp.getShape().take_back(), tp.getElementType());
}
// Helper that picks the proper sequence for inserting.
static Value insertOne(ConversionPatternRewriter &rewriter,
LLVMTypeConverter &lowering, Location loc, Value val1,
Value val2, Type llvmType, int64_t rank, int64_t pos) {
if (rank == 1) {
auto idxType = rewriter.getIndexType();
auto constant = rewriter.create<LLVM::ConstantOp>(
loc, lowering.convertType(idxType),
rewriter.getIntegerAttr(idxType, pos));
return rewriter.create<LLVM::InsertElementOp>(loc, llvmType, val1, val2,
constant);
}
return rewriter.create<LLVM::InsertValueOp>(loc, llvmType, val1, val2,
rewriter.getI64ArrayAttr(pos));
}
// Helper that picks the proper sequence for inserting.
static Value insertOne(PatternRewriter &rewriter, Location loc, Value from,
Value into, int64_t offset) {
auto vectorType = into.getType().cast<VectorType>();
if (vectorType.getRank() > 1)
return rewriter.create<InsertOp>(loc, from, into, offset);
return rewriter.create<vector::InsertElementOp>(
loc, vectorType, from, into,
rewriter.create<ConstantIndexOp>(loc, offset));
}
// Helper that picks the proper sequence for extracting.
static Value extractOne(ConversionPatternRewriter &rewriter,
LLVMTypeConverter &lowering, Location loc, Value val,
Type llvmType, int64_t rank, int64_t pos) {
if (rank == 1) {
auto idxType = rewriter.getIndexType();
auto constant = rewriter.create<LLVM::ConstantOp>(
loc, lowering.convertType(idxType),
rewriter.getIntegerAttr(idxType, pos));
return rewriter.create<LLVM::ExtractElementOp>(loc, llvmType, val,
constant);
}
return rewriter.create<LLVM::ExtractValueOp>(loc, llvmType, val,
rewriter.getI64ArrayAttr(pos));
}
// Helper that picks the proper sequence for extracting.
static Value extractOne(PatternRewriter &rewriter, Location loc, Value vector,
int64_t offset) {
auto vectorType = vector.getType().cast<VectorType>();
if (vectorType.getRank() > 1)
return rewriter.create<ExtractOp>(loc, vector, offset);
return rewriter.create<vector::ExtractElementOp>(
loc, vectorType.getElementType(), vector,
rewriter.create<ConstantIndexOp>(loc, offset));
}
// Helper that returns a subset of `arrayAttr` as a vector of int64_t.
// TODO(rriddle): Better support for attribute subtype forwarding + slicing.
static SmallVector<int64_t, 4> getI64SubArray(ArrayAttr arrayAttr,
unsigned dropFront = 0,
unsigned dropBack = 0) {
assert(arrayAttr.size() > dropFront + dropBack && "Out of bounds");
auto range = arrayAttr.getAsRange<IntegerAttr>();
SmallVector<int64_t, 4> res;
res.reserve(arrayAttr.size() - dropFront - dropBack);
for (auto it = range.begin() + dropFront, eit = range.end() - dropBack;
it != eit; ++it)
res.push_back((*it).getValue().getSExtValue());
return res;
}
class VectorBroadcastOpConversion : public LLVMOpLowering {
public:
explicit VectorBroadcastOpConversion(MLIRContext *context,
LLVMTypeConverter &typeConverter)
: LLVMOpLowering(vector::BroadcastOp::getOperationName(), context,
typeConverter) {}
PatternMatchResult
matchAndRewrite(Operation *op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override {
auto broadcastOp = cast<vector::BroadcastOp>(op);
VectorType dstVectorType = broadcastOp.getVectorType();
if (lowering.convertType(dstVectorType) == nullptr)
return matchFailure();
// Rewrite when the full vector type can be lowered (which
// implies all 'reduced' types can be lowered too).
auto adaptor = vector::BroadcastOpOperandAdaptor(operands);
VectorType srcVectorType =
broadcastOp.getSourceType().dyn_cast<VectorType>();
rewriter.replaceOp(
op, expandRanks(adaptor.source(), // source value to be expanded
op->getLoc(), // location of original broadcast
srcVectorType, dstVectorType, rewriter));
return matchSuccess();
}
private:
// Expands the given source value over all the ranks, as defined
// by the source and destination type (a null source type denotes
// expansion from a scalar value into a vector).
//
// TODO(ajcbik): consider replacing this one-pattern lowering
// with a two-pattern lowering using other vector
// ops once all insert/extract/shuffle operations
// are available with lowering implemention.
//
Value expandRanks(Value value, Location loc, VectorType srcVectorType,
VectorType dstVectorType,
ConversionPatternRewriter &rewriter) const {
assert((dstVectorType != nullptr) && "invalid result type in broadcast");
// Determine rank of source and destination.
int64_t srcRank = srcVectorType ? srcVectorType.getRank() : 0;
int64_t dstRank = dstVectorType.getRank();
int64_t curDim = dstVectorType.getDimSize(0);
if (srcRank < dstRank)
// Duplicate this rank.
return duplicateOneRank(value, loc, srcVectorType, dstVectorType, dstRank,
curDim, rewriter);
// If all trailing dimensions are the same, the broadcast consists of
// simply passing through the source value and we are done. Otherwise,
// any non-matching dimension forces a stretch along this rank.
assert((srcVectorType != nullptr) && (srcRank > 0) &&
(srcRank == dstRank) && "invalid rank in broadcast");
for (int64_t r = 0; r < dstRank; r++) {
if (srcVectorType.getDimSize(r) != dstVectorType.getDimSize(r)) {
return stretchOneRank(value, loc, srcVectorType, dstVectorType, dstRank,
curDim, rewriter);
}
}
return value;
}
// Picks the best way to duplicate a single rank. For the 1-D case, a
// single insert-elt/shuffle is the most efficient expansion. For higher
// dimensions, however, we need dim x insert-values on a new broadcast
// with one less leading dimension, which will be lowered "recursively"
// to matching LLVM IR.
// For example:
// v = broadcast s : f32 to vector<4x2xf32>
// becomes:
// x = broadcast s : f32 to vector<2xf32>
// v = [x,x,x,x]
// becomes:
// x = [s,s]
// v = [x,x,x,x]
Value duplicateOneRank(Value value, Location loc, VectorType srcVectorType,
VectorType dstVectorType, int64_t rank, int64_t dim,
ConversionPatternRewriter &rewriter) const {
Type llvmType = lowering.convertType(dstVectorType);
assert((llvmType != nullptr) && "unlowerable vector type");
if (rank == 1) {
Value undef = rewriter.create<LLVM::UndefOp>(loc, llvmType);
Value expand =
insertOne(rewriter, lowering, loc, undef, value, llvmType, rank, 0);
SmallVector<int32_t, 4> zeroValues(dim, 0);
return rewriter.create<LLVM::ShuffleVectorOp>(
loc, expand, undef, rewriter.getI32ArrayAttr(zeroValues));
}
Value expand = expandRanks(value, loc, srcVectorType,
reducedVectorTypeFront(dstVectorType), rewriter);
Value result = rewriter.create<LLVM::UndefOp>(loc, llvmType);
for (int64_t d = 0; d < dim; ++d) {
result =
insertOne(rewriter, lowering, loc, result, expand, llvmType, rank, d);
}
return result;
}
// Picks the best way to stretch a single rank. For the 1-D case, a
// single insert-elt/shuffle is the most efficient expansion when at
// a stretch. Otherwise, every dimension needs to be expanded
// individually and individually inserted in the resulting vector.
// For example:
// v = broadcast w : vector<4x1x2xf32> to vector<4x2x2xf32>
// becomes:
// a = broadcast w[0] : vector<1x2xf32> to vector<2x2xf32>
// b = broadcast w[1] : vector<1x2xf32> to vector<2x2xf32>
// c = broadcast w[2] : vector<1x2xf32> to vector<2x2xf32>
// d = broadcast w[3] : vector<1x2xf32> to vector<2x2xf32>
// v = [a,b,c,d]
// becomes:
// x = broadcast w[0][0] : vector<2xf32> to vector <2x2xf32>
// y = broadcast w[1][0] : vector<2xf32> to vector <2x2xf32>
// a = [x, y]
// etc.
Value stretchOneRank(Value value, Location loc, VectorType srcVectorType,
VectorType dstVectorType, int64_t rank, int64_t dim,
ConversionPatternRewriter &rewriter) const {
Type llvmType = lowering.convertType(dstVectorType);
assert((llvmType != nullptr) && "unlowerable vector type");
Value result = rewriter.create<LLVM::UndefOp>(loc, llvmType);
bool atStretch = dim != srcVectorType.getDimSize(0);
if (rank == 1) {
assert(atStretch);
Type redLlvmType = lowering.convertType(dstVectorType.getElementType());
Value one =
extractOne(rewriter, lowering, loc, value, redLlvmType, rank, 0);
Value expand =
insertOne(rewriter, lowering, loc, result, one, llvmType, rank, 0);
SmallVector<int32_t, 4> zeroValues(dim, 0);
return rewriter.create<LLVM::ShuffleVectorOp>(
loc, expand, result, rewriter.getI32ArrayAttr(zeroValues));
}
VectorType redSrcType = reducedVectorTypeFront(srcVectorType);
VectorType redDstType = reducedVectorTypeFront(dstVectorType);
Type redLlvmType = lowering.convertType(redSrcType);
for (int64_t d = 0; d < dim; ++d) {
int64_t pos = atStretch ? 0 : d;
Value one =
extractOne(rewriter, lowering, loc, value, redLlvmType, rank, pos);
Value expand = expandRanks(one, loc, redSrcType, redDstType, rewriter);
result =
insertOne(rewriter, lowering, loc, result, expand, llvmType, rank, d);
}
return result;
}
};
class VectorShuffleOpConversion : public LLVMOpLowering {
public:
explicit VectorShuffleOpConversion(MLIRContext *context,
LLVMTypeConverter &typeConverter)
: LLVMOpLowering(vector::ShuffleOp::getOperationName(), context,
typeConverter) {}
PatternMatchResult
matchAndRewrite(Operation *op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override {
auto loc = op->getLoc();
auto adaptor = vector::ShuffleOpOperandAdaptor(operands);
auto shuffleOp = cast<vector::ShuffleOp>(op);
auto v1Type = shuffleOp.getV1VectorType();
auto v2Type = shuffleOp.getV2VectorType();
auto vectorType = shuffleOp.getVectorType();
Type llvmType = lowering.convertType(vectorType);
auto maskArrayAttr = shuffleOp.mask();
// Bail if result type cannot be lowered.
if (!llvmType)
return matchFailure();
// Get rank and dimension sizes.
int64_t rank = vectorType.getRank();
assert(v1Type.getRank() == rank);
assert(v2Type.getRank() == rank);
int64_t v1Dim = v1Type.getDimSize(0);
// For rank 1, where both operands have *exactly* the same vector type,
// there is direct shuffle support in LLVM. Use it!
if (rank == 1 && v1Type == v2Type) {
Value shuffle = rewriter.create<LLVM::ShuffleVectorOp>(
loc, adaptor.v1(), adaptor.v2(), maskArrayAttr);
rewriter.replaceOp(op, shuffle);
return matchSuccess();
}
// For all other cases, insert the individual values individually.
Value insert = rewriter.create<LLVM::UndefOp>(loc, llvmType);
int64_t insPos = 0;
for (auto en : llvm::enumerate(maskArrayAttr)) {
int64_t extPos = en.value().cast<IntegerAttr>().getInt();
Value value = adaptor.v1();
if (extPos >= v1Dim) {
extPos -= v1Dim;
value = adaptor.v2();
}
Value extract =
extractOne(rewriter, lowering, loc, value, llvmType, rank, extPos);
insert = insertOne(rewriter, lowering, loc, insert, extract, llvmType,
rank, insPos++);
}
rewriter.replaceOp(op, insert);
return matchSuccess();
}
};
class VectorExtractElementOpConversion : public LLVMOpLowering {
public:
explicit VectorExtractElementOpConversion(MLIRContext *context,
LLVMTypeConverter &typeConverter)
: LLVMOpLowering(vector::ExtractElementOp::getOperationName(), context,
typeConverter) {}
PatternMatchResult
matchAndRewrite(Operation *op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override {
auto adaptor = vector::ExtractElementOpOperandAdaptor(operands);
auto extractEltOp = cast<vector::ExtractElementOp>(op);
auto vectorType = extractEltOp.getVectorType();
auto llvmType = lowering.convertType(vectorType.getElementType());
// Bail if result type cannot be lowered.
if (!llvmType)
return matchFailure();
rewriter.replaceOpWithNewOp<LLVM::ExtractElementOp>(
op, llvmType, adaptor.vector(), adaptor.position());
return matchSuccess();
}
};
class VectorExtractOpConversion : public LLVMOpLowering {
public:
explicit VectorExtractOpConversion(MLIRContext *context,
LLVMTypeConverter &typeConverter)
: LLVMOpLowering(vector::ExtractOp::getOperationName(), context,
typeConverter) {}
PatternMatchResult
matchAndRewrite(Operation *op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override {
auto loc = op->getLoc();
auto adaptor = vector::ExtractOpOperandAdaptor(operands);
auto extractOp = cast<vector::ExtractOp>(op);
auto vectorType = extractOp.getVectorType();
auto resultType = extractOp.getResult().getType();
auto llvmResultType = lowering.convertType(resultType);
auto positionArrayAttr = extractOp.position();
// Bail if result type cannot be lowered.
if (!llvmResultType)
return matchFailure();
// One-shot extraction of vector from array (only requires extractvalue).
if (resultType.isa<VectorType>()) {
Value extracted = rewriter.create<LLVM::ExtractValueOp>(
loc, llvmResultType, adaptor.vector(), positionArrayAttr);
rewriter.replaceOp(op, extracted);
return matchSuccess();
}
// Potential extraction of 1-D vector from array.
auto *context = op->getContext();
Value extracted = adaptor.vector();
auto positionAttrs = positionArrayAttr.getValue();
if (positionAttrs.size() > 1) {
auto oneDVectorType = reducedVectorTypeBack(vectorType);
auto nMinusOnePositionAttrs =
ArrayAttr::get(positionAttrs.drop_back(), context);
extracted = rewriter.create<LLVM::ExtractValueOp>(
loc, lowering.convertType(oneDVectorType), extracted,
nMinusOnePositionAttrs);
}
// Remaining extraction of element from 1-D LLVM vector
auto position = positionAttrs.back().cast<IntegerAttr>();
auto i64Type = LLVM::LLVMType::getInt64Ty(lowering.getDialect());
auto constant = rewriter.create<LLVM::ConstantOp>(loc, i64Type, position);
extracted =
rewriter.create<LLVM::ExtractElementOp>(loc, extracted, constant);
rewriter.replaceOp(op, extracted);
return matchSuccess();
}
};
class VectorInsertElementOpConversion : public LLVMOpLowering {
public:
explicit VectorInsertElementOpConversion(MLIRContext *context,
LLVMTypeConverter &typeConverter)
: LLVMOpLowering(vector::InsertElementOp::getOperationName(), context,
typeConverter) {}
PatternMatchResult
matchAndRewrite(Operation *op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override {
auto adaptor = vector::InsertElementOpOperandAdaptor(operands);
auto insertEltOp = cast<vector::InsertElementOp>(op);
auto vectorType = insertEltOp.getDestVectorType();
auto llvmType = lowering.convertType(vectorType);
// Bail if result type cannot be lowered.
if (!llvmType)
return matchFailure();
rewriter.replaceOpWithNewOp<LLVM::InsertElementOp>(
op, llvmType, adaptor.dest(), adaptor.source(), adaptor.position());
return matchSuccess();
}
};
class VectorInsertOpConversion : public LLVMOpLowering {
public:
explicit VectorInsertOpConversion(MLIRContext *context,
LLVMTypeConverter &typeConverter)
: LLVMOpLowering(vector::InsertOp::getOperationName(), context,
typeConverter) {}
PatternMatchResult
matchAndRewrite(Operation *op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override {
auto loc = op->getLoc();
auto adaptor = vector::InsertOpOperandAdaptor(operands);
auto insertOp = cast<vector::InsertOp>(op);
auto sourceType = insertOp.getSourceType();
auto destVectorType = insertOp.getDestVectorType();
auto llvmResultType = lowering.convertType(destVectorType);
auto positionArrayAttr = insertOp.position();
// Bail if result type cannot be lowered.
if (!llvmResultType)
return matchFailure();
// One-shot insertion of a vector into an array (only requires insertvalue).
if (sourceType.isa<VectorType>()) {
Value inserted = rewriter.create<LLVM::InsertValueOp>(
loc, llvmResultType, adaptor.dest(), adaptor.source(),
positionArrayAttr);
rewriter.replaceOp(op, inserted);
return matchSuccess();
}
// Potential extraction of 1-D vector from array.
auto *context = op->getContext();
Value extracted = adaptor.dest();
auto positionAttrs = positionArrayAttr.getValue();
auto position = positionAttrs.back().cast<IntegerAttr>();
auto oneDVectorType = destVectorType;
if (positionAttrs.size() > 1) {
oneDVectorType = reducedVectorTypeBack(destVectorType);
auto nMinusOnePositionAttrs =
ArrayAttr::get(positionAttrs.drop_back(), context);
extracted = rewriter.create<LLVM::ExtractValueOp>(
loc, lowering.convertType(oneDVectorType), extracted,
nMinusOnePositionAttrs);
}
// Insertion of an element into a 1-D LLVM vector.
auto i64Type = LLVM::LLVMType::getInt64Ty(lowering.getDialect());
auto constant = rewriter.create<LLVM::ConstantOp>(loc, i64Type, position);
Value inserted = rewriter.create<LLVM::InsertElementOp>(
loc, lowering.convertType(oneDVectorType), extracted, adaptor.source(),
constant);
// Potential insertion of resulting 1-D vector into array.
if (positionAttrs.size() > 1) {
auto nMinusOnePositionAttrs =
ArrayAttr::get(positionAttrs.drop_back(), context);
inserted = rewriter.create<LLVM::InsertValueOp>(loc, llvmResultType,
adaptor.dest(), inserted,
nMinusOnePositionAttrs);
}
rewriter.replaceOp(op, inserted);
return matchSuccess();
}
};
// When ranks are different, InsertStridedSlice needs to extract a properly
// ranked vector from the destination vector into which to insert. This pattern
// only takes care of this part and forwards the rest of the conversion to
// another pattern that converts InsertStridedSlice for operands of the same
// rank.
//
// RewritePattern for InsertStridedSliceOp where source and destination vectors
// have different ranks. In this case:
// 1. the proper subvector is extracted from the destination vector
// 2. a new InsertStridedSlice op is created to insert the source in the
// destination subvector
// 3. the destination subvector is inserted back in the proper place
// 4. the op is replaced by the result of step 3.
// The new InsertStridedSlice from step 2. will be picked up by a
// `VectorInsertStridedSliceOpSameRankRewritePattern`.
class VectorInsertStridedSliceOpDifferentRankRewritePattern
: public OpRewritePattern<InsertStridedSliceOp> {
public:
using OpRewritePattern<InsertStridedSliceOp>::OpRewritePattern;
PatternMatchResult matchAndRewrite(InsertStridedSliceOp op,
PatternRewriter &rewriter) const override {
auto srcType = op.getSourceVectorType();
auto dstType = op.getDestVectorType();
if (op.offsets().getValue().empty())
return matchFailure();
auto loc = op.getLoc();
int64_t rankDiff = dstType.getRank() - srcType.getRank();
assert(rankDiff >= 0);
if (rankDiff == 0)
return matchFailure();
int64_t rankRest = dstType.getRank() - rankDiff;
// Extract / insert the subvector of matching rank and InsertStridedSlice
// on it.
Value extracted =
rewriter.create<ExtractOp>(loc, op.dest(),
getI64SubArray(op.offsets(), /*dropFront=*/0,
/*dropFront=*/rankRest));
// A different pattern will kick in for InsertStridedSlice with matching
// ranks.
auto stridedSliceInnerOp = rewriter.create<InsertStridedSliceOp>(
loc, op.source(), extracted,
getI64SubArray(op.offsets(), /*dropFront=*/rankDiff),
getI64SubArray(op.strides(), /*dropFront=*/rankDiff));
rewriter.replaceOpWithNewOp<InsertOp>(
op, stridedSliceInnerOp.getResult(), op.dest(),
getI64SubArray(op.offsets(), /*dropFront=*/0,
/*dropFront=*/rankRest));
return matchSuccess();
}
};
// RewritePattern for InsertStridedSliceOp where source and destination vectors
// have the same rank. In this case, we reduce
// 1. the proper subvector is extracted from the destination vector
// 2. a new InsertStridedSlice op is created to insert the source in the
// destination subvector
// 3. the destination subvector is inserted back in the proper place
// 4. the op is replaced by the result of step 3.
// The new InsertStridedSlice from step 2. will be picked up by a
// `VectorInsertStridedSliceOpSameRankRewritePattern`.
class VectorInsertStridedSliceOpSameRankRewritePattern
: public OpRewritePattern<InsertStridedSliceOp> {
public:
using OpRewritePattern<InsertStridedSliceOp>::OpRewritePattern;
PatternMatchResult matchAndRewrite(InsertStridedSliceOp op,
PatternRewriter &rewriter) const override {
auto srcType = op.getSourceVectorType();
auto dstType = op.getDestVectorType();
if (op.offsets().getValue().empty())
return matchFailure();
int64_t rankDiff = dstType.getRank() - srcType.getRank();
assert(rankDiff >= 0);
if (rankDiff != 0)
return matchFailure();
if (srcType == dstType) {
rewriter.replaceOp(op, op.source());
return matchSuccess();
}
int64_t offset =
op.offsets().getValue().front().cast<IntegerAttr>().getInt();
int64_t size = srcType.getShape().front();
int64_t stride =
op.strides().getValue().front().cast<IntegerAttr>().getInt();
auto loc = op.getLoc();
Value res = op.dest();
// For each slice of the source vector along the most major dimension.
for (int64_t off = offset, e = offset + size * stride, idx = 0; off < e;
off += stride, ++idx) {
// 1. extract the proper subvector (or element) from source
Value extractedSource = extractOne(rewriter, loc, op.source(), idx);
if (extractedSource.getType().isa<VectorType>()) {
// 2. If we have a vector, extract the proper subvector from destination
// Otherwise we are at the element level and no need to recurse.
Value extractedDest = extractOne(rewriter, loc, op.dest(), off);
// 3. Reduce the problem to lowering a new InsertStridedSlice op with
// smaller rank.
InsertStridedSliceOp insertStridedSliceOp =
rewriter.create<InsertStridedSliceOp>(
loc, extractedSource, extractedDest,
getI64SubArray(op.offsets(), /* dropFront=*/1),
getI64SubArray(op.strides(), /* dropFront=*/1));
// Call matchAndRewrite recursively from within the pattern. This
// circumvents the current limitation that a given pattern cannot
// be called multiple times by the PatternRewrite infrastructure (to
// avoid infinite recursion, but in this case, infinite recursion
// cannot happen because the rank is strictly decreasing).
// TODO(rriddle, nicolasvasilache) Implement something like a hook for
// a potential function that must decrease and allow the same pattern
// multiple times.
auto success = matchAndRewrite(insertStridedSliceOp, rewriter);
(void)success;
assert(success && "Unexpected failure");
extractedSource = insertStridedSliceOp;
}
// 4. Insert the extractedSource into the res vector.
res = insertOne(rewriter, loc, extractedSource, res, off);
}
rewriter.replaceOp(op, res);
return matchSuccess();
}
};
class VectorOuterProductOpConversion : public LLVMOpLowering {
public:
explicit VectorOuterProductOpConversion(MLIRContext *context,
LLVMTypeConverter &typeConverter)
: LLVMOpLowering(vector::OuterProductOp::getOperationName(), context,
typeConverter) {}
PatternMatchResult
matchAndRewrite(Operation *op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override {
auto loc = op->getLoc();
auto adaptor = vector::OuterProductOpOperandAdaptor(operands);
auto *ctx = op->getContext();
auto vLHS = adaptor.lhs().getType().cast<LLVM::LLVMType>();
auto vRHS = adaptor.rhs().getType().cast<LLVM::LLVMType>();
auto rankLHS = vLHS.getUnderlyingType()->getVectorNumElements();
auto rankRHS = vRHS.getUnderlyingType()->getVectorNumElements();
auto llvmArrayOfVectType = lowering.convertType(
cast<vector::OuterProductOp>(op).getResult().getType());
Value desc = rewriter.create<LLVM::UndefOp>(loc, llvmArrayOfVectType);
Value a = adaptor.lhs(), b = adaptor.rhs();
Value acc = adaptor.acc().empty() ? nullptr : adaptor.acc().front();
SmallVector<Value, 8> lhs, accs;
lhs.reserve(rankLHS);
accs.reserve(rankLHS);
for (unsigned d = 0, e = rankLHS; d < e; ++d) {
// shufflevector explicitly requires i32.
auto attr = rewriter.getI32IntegerAttr(d);
SmallVector<Attribute, 4> bcastAttr(rankRHS, attr);
auto bcastArrayAttr = ArrayAttr::get(bcastAttr, ctx);
Value aD = nullptr, accD = nullptr;
// 1. Broadcast the element a[d] into vector aD.
aD = rewriter.create<LLVM::ShuffleVectorOp>(loc, a, a, bcastArrayAttr);
// 2. If acc is present, extract 1-d vector acc[d] into accD.
if (acc)
accD = rewriter.create<LLVM::ExtractValueOp>(
loc, vRHS, acc, rewriter.getI64ArrayAttr(d));
// 3. Compute aD outer b (plus accD, if relevant).
Value aOuterbD =
accD ? rewriter.create<LLVM::FMulAddOp>(loc, vRHS, aD, b, accD)
.getResult()
: rewriter.create<LLVM::FMulOp>(loc, aD, b).getResult();
// 4. Insert as value `d` in the descriptor.
desc = rewriter.create<LLVM::InsertValueOp>(loc, llvmArrayOfVectType,
desc, aOuterbD,
rewriter.getI64ArrayAttr(d));
}
rewriter.replaceOp(op, desc);
return matchSuccess();
}
};
class VectorTypeCastOpConversion : public LLVMOpLowering {
public:
explicit VectorTypeCastOpConversion(MLIRContext *context,
LLVMTypeConverter &typeConverter)
: LLVMOpLowering(vector::TypeCastOp::getOperationName(), context,
typeConverter) {}
PatternMatchResult
matchAndRewrite(Operation *op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override {
auto loc = op->getLoc();
vector::TypeCastOp castOp = cast<vector::TypeCastOp>(op);
MemRefType sourceMemRefType =
castOp.getOperand().getType().cast<MemRefType>();
MemRefType targetMemRefType =
castOp.getResult().getType().cast<MemRefType>();
// Only static shape casts supported atm.
if (!sourceMemRefType.hasStaticShape() ||
!targetMemRefType.hasStaticShape())
return matchFailure();
auto llvmSourceDescriptorTy =
operands[0].getType().dyn_cast<LLVM::LLVMType>();
if (!llvmSourceDescriptorTy || !llvmSourceDescriptorTy.isStructTy())
return matchFailure();
MemRefDescriptor sourceMemRef(operands[0]);
auto llvmTargetDescriptorTy = lowering.convertType(targetMemRefType)
.dyn_cast_or_null<LLVM::LLVMType>();
if (!llvmTargetDescriptorTy || !llvmTargetDescriptorTy.isStructTy())
return matchFailure();
int64_t offset;
SmallVector<int64_t, 4> strides;
auto successStrides =
getStridesAndOffset(sourceMemRefType, strides, offset);
bool isContiguous = (strides.back() == 1);
if (isContiguous) {
auto sizes = sourceMemRefType.getShape();
for (int index = 0, e = strides.size() - 2; index < e; ++index) {
if (strides[index] != strides[index + 1] * sizes[index + 1]) {
isContiguous = false;
break;
}
}
}
// Only contiguous source tensors supported atm.
if (failed(successStrides) || !isContiguous)
return matchFailure();
auto int64Ty = LLVM::LLVMType::getInt64Ty(lowering.getDialect());
// Create descriptor.
auto desc = MemRefDescriptor::undef(rewriter, loc, llvmTargetDescriptorTy);
Type llvmTargetElementTy = desc.getElementType();
// Set allocated ptr.
Value allocated = sourceMemRef.allocatedPtr(rewriter, loc);
allocated =
rewriter.create<LLVM::BitcastOp>(loc, llvmTargetElementTy, allocated);
desc.setAllocatedPtr(rewriter, loc, allocated);
// Set aligned ptr.
Value ptr = sourceMemRef.alignedPtr(rewriter, loc);
ptr = rewriter.create<LLVM::BitcastOp>(loc, llvmTargetElementTy, ptr);
desc.setAlignedPtr(rewriter, loc, ptr);
// Fill offset 0.
auto attr = rewriter.getIntegerAttr(rewriter.getIndexType(), 0);
auto zero = rewriter.create<LLVM::ConstantOp>(loc, int64Ty, attr);
desc.setOffset(rewriter, loc, zero);
// Fill size and stride descriptors in memref.
for (auto indexedSize : llvm::enumerate(targetMemRefType.getShape())) {
int64_t index = indexedSize.index();
auto sizeAttr =
rewriter.getIntegerAttr(rewriter.getIndexType(), indexedSize.value());
auto size = rewriter.create<LLVM::ConstantOp>(loc, int64Ty, sizeAttr);
desc.setSize(rewriter, loc, index, size);
auto strideAttr =
rewriter.getIntegerAttr(rewriter.getIndexType(), strides[index]);
auto stride = rewriter.create<LLVM::ConstantOp>(loc, int64Ty, strideAttr);
desc.setStride(rewriter, loc, index, stride);
}
rewriter.replaceOp(op, {desc});
return matchSuccess();
}
};
class VectorPrintOpConversion : public LLVMOpLowering {
public:
explicit VectorPrintOpConversion(MLIRContext *context,
LLVMTypeConverter &typeConverter)
: LLVMOpLowering(vector::PrintOp::getOperationName(), context,
typeConverter) {}
// Proof-of-concept lowering implementation that relies on a small
// runtime support library, which only needs to provide a few
// printing methods (single value for all data types, opening/closing
// bracket, comma, newline). The lowering fully unrolls a vector
// in terms of these elementary printing operations. The advantage
// of this approach is that the library can remain unaware of all
// low-level implementation details of vectors while still supporting
// output of any shaped and dimensioned vector. Due to full unrolling,
// this approach is less suited for very large vectors though.
//
// TODO(ajcbik): rely solely on libc in future? something else?
//
PatternMatchResult
matchAndRewrite(Operation *op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override {
auto printOp = cast<vector::PrintOp>(op);
auto adaptor = vector::PrintOpOperandAdaptor(operands);
Type printType = printOp.getPrintType();
if (lowering.convertType(printType) == nullptr)
return matchFailure();
// Make sure element type has runtime support (currently just Float/Double).
VectorType vectorType = printType.dyn_cast<VectorType>();
Type eltType = vectorType ? vectorType.getElementType() : printType;
int64_t rank = vectorType ? vectorType.getRank() : 0;
Operation *printer;
if (eltType.isF32())
printer = getPrintFloat(op);
else if (eltType.isF64())
printer = getPrintDouble(op);
else
return matchFailure();
// Unroll vector into elementary print calls.
emitRanks(rewriter, op, adaptor.source(), vectorType, printer, rank);
emitCall(rewriter, op->getLoc(), getPrintNewline(op));
rewriter.eraseOp(op);
return matchSuccess();
}
private:
void emitRanks(ConversionPatternRewriter &rewriter, Operation *op,
Value value, VectorType vectorType, Operation *printer,
int64_t rank) const {
Location loc = op->getLoc();
if (rank == 0) {
emitCall(rewriter, loc, printer, value);
return;
}
emitCall(rewriter, loc, getPrintOpen(op));
Operation *printComma = getPrintComma(op);
int64_t dim = vectorType.getDimSize(0);
for (int64_t d = 0; d < dim; ++d) {
auto reducedType =
rank > 1 ? reducedVectorTypeFront(vectorType) : nullptr;
auto llvmType = lowering.convertType(
rank > 1 ? reducedType : vectorType.getElementType());
Value nestedVal =
extractOne(rewriter, lowering, loc, value, llvmType, rank, d);
emitRanks(rewriter, op, nestedVal, reducedType, printer, rank - 1);
if (d != dim - 1)
emitCall(rewriter, loc, printComma);
}
emitCall(rewriter, loc, getPrintClose(op));
}
// Helper to emit a call.
static void emitCall(ConversionPatternRewriter &rewriter, Location loc,
Operation *ref, ValueRange params = ValueRange()) {
rewriter.create<LLVM::CallOp>(loc, ArrayRef<Type>{},
rewriter.getSymbolRefAttr(ref), params);
}
// Helper for printer method declaration (first hit) and lookup.
static Operation *getPrint(Operation *op, LLVM::LLVMDialect *dialect,
StringRef name, ArrayRef<LLVM::LLVMType> params) {
auto module = op->getParentOfType<ModuleOp>();
auto func = module.lookupSymbol<LLVM::LLVMFuncOp>(name);
if (func)
return func;
OpBuilder moduleBuilder(module.getBodyRegion());
return moduleBuilder.create<LLVM::LLVMFuncOp>(
op->getLoc(), name,
LLVM::LLVMType::getFunctionTy(LLVM::LLVMType::getVoidTy(dialect),
params, /*isVarArg=*/false));
}
// Helpers for method names.
Operation *getPrintFloat(Operation *op) const {
LLVM::LLVMDialect *dialect = lowering.getDialect();
return getPrint(op, dialect, "print_f32",
LLVM::LLVMType::getFloatTy(dialect));
}
Operation *getPrintDouble(Operation *op) const {
LLVM::LLVMDialect *dialect = lowering.getDialect();
return getPrint(op, dialect, "print_f64",
LLVM::LLVMType::getDoubleTy(dialect));
}
Operation *getPrintOpen(Operation *op) const {
return getPrint(op, lowering.getDialect(), "print_open", {});
}
Operation *getPrintClose(Operation *op) const {
return getPrint(op, lowering.getDialect(), "print_close", {});
}
Operation *getPrintComma(Operation *op) const {
return getPrint(op, lowering.getDialect(), "print_comma", {});
}
Operation *getPrintNewline(Operation *op) const {
return getPrint(op, lowering.getDialect(), "print_newline", {});
}
};
/// Progressive lowering of StridedSliceOp to either:
/// 1. extractelement + insertelement for the 1-D case
/// 2. extract + optional strided_slice + insert for the n-D case.
class VectorStridedSliceOpConversion : public OpRewritePattern<StridedSliceOp> {
public:
using OpRewritePattern<StridedSliceOp>::OpRewritePattern;
PatternMatchResult matchAndRewrite(StridedSliceOp op,
PatternRewriter &rewriter) const override {
auto dstType = op.getResult().getType().cast<VectorType>();
assert(!op.offsets().getValue().empty() && "Unexpected empty offsets");
int64_t offset =
op.offsets().getValue().front().cast<IntegerAttr>().getInt();
int64_t size = op.sizes().getValue().front().cast<IntegerAttr>().getInt();
int64_t stride =
op.strides().getValue().front().cast<IntegerAttr>().getInt();
auto loc = op.getLoc();
auto elemType = dstType.getElementType();
assert(elemType.isIntOrIndexOrFloat());
Value zero = rewriter.create<ConstantOp>(loc, elemType,
rewriter.getZeroAttr(elemType));
Value res = rewriter.create<SplatOp>(loc, dstType, zero);
for (int64_t off = offset, e = offset + size * stride, idx = 0; off < e;
off += stride, ++idx) {
Value extracted = extractOne(rewriter, loc, op.vector(), off);
if (op.offsets().getValue().size() > 1) {
StridedSliceOp stridedSliceOp = rewriter.create<StridedSliceOp>(
loc, extracted, getI64SubArray(op.offsets(), /* dropFront=*/1),
getI64SubArray(op.sizes(), /* dropFront=*/1),
getI64SubArray(op.strides(), /* dropFront=*/1));
// Call matchAndRewrite recursively from within the pattern. This
// circumvents the current limitation that a given pattern cannot
// be called multiple times by the PatternRewrite infrastructure (to
// avoid infinite recursion, but in this case, infinite recursion
// cannot happen because the rank is strictly decreasing).
// TODO(rriddle, nicolasvasilache) Implement something like a hook for
// a potential function that must decrease and allow the same pattern
// multiple times.
auto success = matchAndRewrite(stridedSliceOp, rewriter);
(void)success;
assert(success && "Unexpected failure");
extracted = stridedSliceOp;
}
res = insertOne(rewriter, loc, extracted, res, idx);
}
rewriter.replaceOp(op, {res});
return matchSuccess();
}
};
} // namespace
/// Populate the given list with patterns that convert from Vector to LLVM.
void mlir::populateVectorToLLVMConversionPatterns(
LLVMTypeConverter &converter, OwningRewritePatternList &patterns) {
MLIRContext *ctx = converter.getDialect()->getContext();
patterns.insert<VectorInsertStridedSliceOpDifferentRankRewritePattern,
VectorInsertStridedSliceOpSameRankRewritePattern,
VectorStridedSliceOpConversion>(ctx);
patterns.insert<VectorBroadcastOpConversion, VectorShuffleOpConversion,
VectorExtractElementOpConversion, VectorExtractOpConversion,
VectorInsertElementOpConversion, VectorInsertOpConversion,
VectorOuterProductOpConversion, VectorTypeCastOpConversion,
VectorPrintOpConversion>(ctx, converter);
}
namespace {
struct LowerVectorToLLVMPass : public ModulePass<LowerVectorToLLVMPass> {
void runOnModule() override;
};
} // namespace
void LowerVectorToLLVMPass::runOnModule() {
// Convert to the LLVM IR dialect using the converter defined above.
OwningRewritePatternList patterns;
LLVMTypeConverter converter(&getContext());
populateVectorToLLVMConversionPatterns(converter, patterns);
populateStdToLLVMConversionPatterns(converter, patterns);
ConversionTarget target(getContext());
target.addLegalDialect<LLVM::LLVMDialect>();
target.addDynamicallyLegalOp<FuncOp>(
[&](FuncOp op) { return converter.isSignatureLegal(op.getType()); });
if (failed(
applyPartialConversion(getModule(), target, patterns, &converter))) {
signalPassFailure();
}
}
OpPassBase<ModuleOp> *mlir::createLowerVectorToLLVMPass() {
return new LowerVectorToLLVMPass();
}
static PassRegistration<LowerVectorToLLVMPass>
pass("convert-vector-to-llvm",
"Lower the operations from the vector dialect into the LLVM dialect");