Attributes.cpp
42.3 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
//===- Attributes.cpp - MLIR Affine Expr Classes --------------------------===//
//
// Part of the MLIR Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/IR/Attributes.h"
#include "AttributeDetail.h"
#include "mlir/IR/AffineMap.h"
#include "mlir/IR/Diagnostics.h"
#include "mlir/IR/Dialect.h"
#include "mlir/IR/Function.h"
#include "mlir/IR/IntegerSet.h"
#include "mlir/IR/Types.h"
#include "llvm/ADT/Sequence.h"
#include "llvm/ADT/Twine.h"
using namespace mlir;
using namespace mlir::detail;
//===----------------------------------------------------------------------===//
// AttributeStorage
//===----------------------------------------------------------------------===//
AttributeStorage::AttributeStorage(Type type)
: type(type.getAsOpaquePointer()) {}
AttributeStorage::AttributeStorage() : type(nullptr) {}
Type AttributeStorage::getType() const {
return Type::getFromOpaquePointer(type);
}
void AttributeStorage::setType(Type newType) {
type = newType.getAsOpaquePointer();
}
//===----------------------------------------------------------------------===//
// Attribute
//===----------------------------------------------------------------------===//
/// Return the type of this attribute.
Type Attribute::getType() const { return impl->getType(); }
/// Return the context this attribute belongs to.
MLIRContext *Attribute::getContext() const { return getType().getContext(); }
/// Get the dialect this attribute is registered to.
Dialect &Attribute::getDialect() const { return impl->getDialect(); }
//===----------------------------------------------------------------------===//
// AffineMapAttr
//===----------------------------------------------------------------------===//
AffineMapAttr AffineMapAttr::get(AffineMap value) {
return Base::get(value.getContext(), StandardAttributes::AffineMap, value);
}
AffineMap AffineMapAttr::getValue() const { return getImpl()->value; }
//===----------------------------------------------------------------------===//
// ArrayAttr
//===----------------------------------------------------------------------===//
ArrayAttr ArrayAttr::get(ArrayRef<Attribute> value, MLIRContext *context) {
return Base::get(context, StandardAttributes::Array, value);
}
ArrayRef<Attribute> ArrayAttr::getValue() const { return getImpl()->value; }
//===----------------------------------------------------------------------===//
// BoolAttr
//===----------------------------------------------------------------------===//
bool BoolAttr::getValue() const { return getImpl()->value; }
//===----------------------------------------------------------------------===//
// DictionaryAttr
//===----------------------------------------------------------------------===//
/// Perform a three-way comparison between the names of the specified
/// NamedAttributes.
static int compareNamedAttributes(const NamedAttribute *lhs,
const NamedAttribute *rhs) {
return lhs->first.strref().compare(rhs->first.strref());
}
DictionaryAttr DictionaryAttr::get(ArrayRef<NamedAttribute> value,
MLIRContext *context) {
assert(llvm::all_of(value,
[](const NamedAttribute &attr) { return attr.second; }) &&
"value cannot have null entries");
// We need to sort the element list to canonicalize it, but we also don't want
// to do a ton of work in the super common case where the element list is
// already sorted.
SmallVector<NamedAttribute, 8> storage;
switch (value.size()) {
case 0:
break;
case 1:
// A single element is already sorted.
break;
case 2:
assert(value[0].first != value[1].first &&
"DictionaryAttr element names must be unique");
// Don't invoke a general sort for two element case.
if (value[0].first.strref() > value[1].first.strref()) {
storage.push_back(value[1]);
storage.push_back(value[0]);
value = storage;
}
break;
default:
// Check to see they are sorted already.
bool isSorted = true;
for (unsigned i = 0, e = value.size() - 1; i != e; ++i) {
if (value[i].first.strref() > value[i + 1].first.strref()) {
isSorted = false;
break;
}
}
// If not, do a general sort.
if (!isSorted) {
storage.append(value.begin(), value.end());
llvm::array_pod_sort(storage.begin(), storage.end(),
compareNamedAttributes);
value = storage;
}
// Ensure that the attribute elements are unique.
assert(std::adjacent_find(value.begin(), value.end(),
[](NamedAttribute l, NamedAttribute r) {
return l.first == r.first;
}) == value.end() &&
"DictionaryAttr element names must be unique");
}
return Base::get(context, StandardAttributes::Dictionary, value);
}
ArrayRef<NamedAttribute> DictionaryAttr::getValue() const {
return getImpl()->getElements();
}
/// Return the specified attribute if present, null otherwise.
Attribute DictionaryAttr::get(StringRef name) const {
ArrayRef<NamedAttribute> values = getValue();
auto compare = [](NamedAttribute attr, StringRef name) {
return attr.first.strref() < name;
};
auto it = llvm::lower_bound(values, name, compare);
return it != values.end() && it->first.is(name) ? it->second : Attribute();
}
Attribute DictionaryAttr::get(Identifier name) const {
for (auto elt : getValue())
if (elt.first == name)
return elt.second;
return nullptr;
}
DictionaryAttr::iterator DictionaryAttr::begin() const {
return getValue().begin();
}
DictionaryAttr::iterator DictionaryAttr::end() const {
return getValue().end();
}
size_t DictionaryAttr::size() const { return getValue().size(); }
//===----------------------------------------------------------------------===//
// FloatAttr
//===----------------------------------------------------------------------===//
FloatAttr FloatAttr::get(Type type, double value) {
return Base::get(type.getContext(), StandardAttributes::Float, type, value);
}
FloatAttr FloatAttr::getChecked(Type type, double value, Location loc) {
return Base::getChecked(loc, type.getContext(), StandardAttributes::Float,
type, value);
}
FloatAttr FloatAttr::get(Type type, const APFloat &value) {
return Base::get(type.getContext(), StandardAttributes::Float, type, value);
}
FloatAttr FloatAttr::getChecked(Type type, const APFloat &value, Location loc) {
return Base::getChecked(loc, type.getContext(), StandardAttributes::Float,
type, value);
}
APFloat FloatAttr::getValue() const { return getImpl()->getValue(); }
double FloatAttr::getValueAsDouble() const {
return getValueAsDouble(getValue());
}
double FloatAttr::getValueAsDouble(APFloat value) {
if (&value.getSemantics() != &APFloat::IEEEdouble()) {
bool losesInfo = false;
value.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven,
&losesInfo);
}
return value.convertToDouble();
}
/// Verify construction invariants.
static LogicalResult verifyFloatTypeInvariants(Optional<Location> loc,
Type type) {
if (!type.isa<FloatType>())
return emitOptionalError(loc, "expected floating point type");
return success();
}
LogicalResult FloatAttr::verifyConstructionInvariants(Optional<Location> loc,
MLIRContext *ctx,
Type type, double value) {
return verifyFloatTypeInvariants(loc, type);
}
LogicalResult FloatAttr::verifyConstructionInvariants(Optional<Location> loc,
MLIRContext *ctx,
Type type,
const APFloat &value) {
// Verify that the type is correct.
if (failed(verifyFloatTypeInvariants(loc, type)))
return failure();
// Verify that the type semantics match that of the value.
if (&type.cast<FloatType>().getFloatSemantics() != &value.getSemantics()) {
return emitOptionalError(
loc, "FloatAttr type doesn't match the type implied by its value");
}
return success();
}
//===----------------------------------------------------------------------===//
// SymbolRefAttr
//===----------------------------------------------------------------------===//
FlatSymbolRefAttr SymbolRefAttr::get(StringRef value, MLIRContext *ctx) {
return Base::get(ctx, StandardAttributes::SymbolRef, value, llvm::None)
.cast<FlatSymbolRefAttr>();
}
SymbolRefAttr SymbolRefAttr::get(StringRef value,
ArrayRef<FlatSymbolRefAttr> nestedReferences,
MLIRContext *ctx) {
return Base::get(ctx, StandardAttributes::SymbolRef, value, nestedReferences);
}
StringRef SymbolRefAttr::getRootReference() const { return getImpl()->value; }
StringRef SymbolRefAttr::getLeafReference() const {
ArrayRef<FlatSymbolRefAttr> nestedRefs = getNestedReferences();
return nestedRefs.empty() ? getRootReference() : nestedRefs.back().getValue();
}
ArrayRef<FlatSymbolRefAttr> SymbolRefAttr::getNestedReferences() const {
return getImpl()->getNestedRefs();
}
//===----------------------------------------------------------------------===//
// IntegerAttr
//===----------------------------------------------------------------------===//
IntegerAttr IntegerAttr::get(Type type, const APInt &value) {
return Base::get(type.getContext(), StandardAttributes::Integer, type, value);
}
IntegerAttr IntegerAttr::get(Type type, int64_t value) {
// This uses 64 bit APInts by default for index type.
if (type.isIndex())
return get(type, APInt(64, value));
auto intType = type.cast<IntegerType>();
return get(type, APInt(intType.getWidth(), value));
}
APInt IntegerAttr::getValue() const { return getImpl()->getValue(); }
int64_t IntegerAttr::getInt() const { return getValue().getSExtValue(); }
//===----------------------------------------------------------------------===//
// IntegerSetAttr
//===----------------------------------------------------------------------===//
IntegerSetAttr IntegerSetAttr::get(IntegerSet value) {
return Base::get(value.getConstraint(0).getContext(),
StandardAttributes::IntegerSet, value);
}
IntegerSet IntegerSetAttr::getValue() const { return getImpl()->value; }
//===----------------------------------------------------------------------===//
// OpaqueAttr
//===----------------------------------------------------------------------===//
OpaqueAttr OpaqueAttr::get(Identifier dialect, StringRef attrData, Type type,
MLIRContext *context) {
return Base::get(context, StandardAttributes::Opaque, dialect, attrData,
type);
}
OpaqueAttr OpaqueAttr::getChecked(Identifier dialect, StringRef attrData,
Type type, Location location) {
return Base::getChecked(location, type.getContext(),
StandardAttributes::Opaque, dialect, attrData, type);
}
/// Returns the dialect namespace of the opaque attribute.
Identifier OpaqueAttr::getDialectNamespace() const {
return getImpl()->dialectNamespace;
}
/// Returns the raw attribute data of the opaque attribute.
StringRef OpaqueAttr::getAttrData() const { return getImpl()->attrData; }
/// Verify the construction of an opaque attribute.
LogicalResult OpaqueAttr::verifyConstructionInvariants(Optional<Location> loc,
MLIRContext *context,
Identifier dialect,
StringRef attrData,
Type type) {
if (!Dialect::isValidNamespace(dialect.strref()))
return emitOptionalError(loc, "invalid dialect namespace '", dialect, "'");
return success();
}
//===----------------------------------------------------------------------===//
// StringAttr
//===----------------------------------------------------------------------===//
StringAttr StringAttr::get(StringRef bytes, MLIRContext *context) {
return get(bytes, NoneType::get(context));
}
/// Get an instance of a StringAttr with the given string and Type.
StringAttr StringAttr::get(StringRef bytes, Type type) {
return Base::get(type.getContext(), StandardAttributes::String, bytes, type);
}
StringRef StringAttr::getValue() const { return getImpl()->value; }
//===----------------------------------------------------------------------===//
// TypeAttr
//===----------------------------------------------------------------------===//
TypeAttr TypeAttr::get(Type value) {
return Base::get(value.getContext(), StandardAttributes::Type, value);
}
Type TypeAttr::getValue() const { return getImpl()->value; }
//===----------------------------------------------------------------------===//
// ElementsAttr
//===----------------------------------------------------------------------===//
ShapedType ElementsAttr::getType() const {
return Attribute::getType().cast<ShapedType>();
}
/// Returns the number of elements held by this attribute.
int64_t ElementsAttr::getNumElements() const {
return getType().getNumElements();
}
/// Return the value at the given index. If index does not refer to a valid
/// element, then a null attribute is returned.
Attribute ElementsAttr::getValue(ArrayRef<uint64_t> index) const {
switch (getKind()) {
case StandardAttributes::DenseElements:
return cast<DenseElementsAttr>().getValue(index);
case StandardAttributes::OpaqueElements:
return cast<OpaqueElementsAttr>().getValue(index);
case StandardAttributes::SparseElements:
return cast<SparseElementsAttr>().getValue(index);
default:
llvm_unreachable("unknown ElementsAttr kind");
}
}
/// Return if the given 'index' refers to a valid element in this attribute.
bool ElementsAttr::isValidIndex(ArrayRef<uint64_t> index) const {
auto type = getType();
// Verify that the rank of the indices matches the held type.
auto rank = type.getRank();
if (rank != static_cast<int64_t>(index.size()))
return false;
// Verify that all of the indices are within the shape dimensions.
auto shape = type.getShape();
return llvm::all_of(llvm::seq<int>(0, rank), [&](int i) {
return static_cast<int64_t>(index[i]) < shape[i];
});
}
ElementsAttr
ElementsAttr::mapValues(Type newElementType,
function_ref<APInt(const APInt &)> mapping) const {
switch (getKind()) {
case StandardAttributes::DenseElements:
return cast<DenseElementsAttr>().mapValues(newElementType, mapping);
default:
llvm_unreachable("unsupported ElementsAttr subtype");
}
}
ElementsAttr
ElementsAttr::mapValues(Type newElementType,
function_ref<APInt(const APFloat &)> mapping) const {
switch (getKind()) {
case StandardAttributes::DenseElements:
return cast<DenseElementsAttr>().mapValues(newElementType, mapping);
default:
llvm_unreachable("unsupported ElementsAttr subtype");
}
}
/// Returns the 1 dimensional flattened row-major index from the given
/// multi-dimensional index.
uint64_t ElementsAttr::getFlattenedIndex(ArrayRef<uint64_t> index) const {
assert(isValidIndex(index) && "expected valid multi-dimensional index");
auto type = getType();
// Reduce the provided multidimensional index into a flattended 1D row-major
// index.
auto rank = type.getRank();
auto shape = type.getShape();
uint64_t valueIndex = 0;
uint64_t dimMultiplier = 1;
for (int i = rank - 1; i >= 0; --i) {
valueIndex += index[i] * dimMultiplier;
dimMultiplier *= shape[i];
}
return valueIndex;
}
//===----------------------------------------------------------------------===//
// DenseElementAttr Utilities
//===----------------------------------------------------------------------===//
static size_t getDenseElementBitwidth(Type eltType) {
// FIXME(b/121118307): using 64 bits for BF16 because it is currently stored
// with double semantics.
return eltType.isBF16() ? 64 : eltType.getIntOrFloatBitWidth();
}
/// Get the bitwidth of a dense element type within the buffer.
/// DenseElementsAttr requires bitwidths greater than 1 to be aligned by 8.
static size_t getDenseElementStorageWidth(size_t origWidth) {
return origWidth == 1 ? origWidth : llvm::alignTo<8>(origWidth);
}
/// Set a bit to a specific value.
static void setBit(char *rawData, size_t bitPos, bool value) {
if (value)
rawData[bitPos / CHAR_BIT] |= (1 << (bitPos % CHAR_BIT));
else
rawData[bitPos / CHAR_BIT] &= ~(1 << (bitPos % CHAR_BIT));
}
/// Return the value of the specified bit.
static bool getBit(const char *rawData, size_t bitPos) {
return (rawData[bitPos / CHAR_BIT] & (1 << (bitPos % CHAR_BIT))) != 0;
}
/// Writes value to the bit position `bitPos` in array `rawData`.
static void writeBits(char *rawData, size_t bitPos, APInt value) {
size_t bitWidth = value.getBitWidth();
// If the bitwidth is 1 we just toggle the specific bit.
if (bitWidth == 1)
return setBit(rawData, bitPos, value.isOneValue());
// Otherwise, the bit position is guaranteed to be byte aligned.
assert((bitPos % CHAR_BIT) == 0 && "expected bitPos to be 8-bit aligned");
std::copy_n(reinterpret_cast<const char *>(value.getRawData()),
llvm::divideCeil(bitWidth, CHAR_BIT),
rawData + (bitPos / CHAR_BIT));
}
/// Reads the next `bitWidth` bits from the bit position `bitPos` in array
/// `rawData`.
static APInt readBits(const char *rawData, size_t bitPos, size_t bitWidth) {
// Handle a boolean bit position.
if (bitWidth == 1)
return APInt(1, getBit(rawData, bitPos) ? 1 : 0);
// Otherwise, the bit position must be 8-bit aligned.
assert((bitPos % CHAR_BIT) == 0 && "expected bitPos to be 8-bit aligned");
APInt result(bitWidth, 0);
std::copy_n(
rawData + (bitPos / CHAR_BIT), llvm::divideCeil(bitWidth, CHAR_BIT),
const_cast<char *>(reinterpret_cast<const char *>(result.getRawData())));
return result;
}
/// Returns if 'values' corresponds to a splat, i.e. one element, or has the
/// same element count as 'type'.
template <typename Values>
static bool hasSameElementsOrSplat(ShapedType type, const Values &values) {
return (values.size() == 1) ||
(type.getNumElements() == static_cast<int64_t>(values.size()));
}
//===----------------------------------------------------------------------===//
// DenseElementAttr Iterators
//===----------------------------------------------------------------------===//
/// Constructs a new iterator.
DenseElementsAttr::AttributeElementIterator::AttributeElementIterator(
DenseElementsAttr attr, size_t index)
: indexed_accessor_iterator<AttributeElementIterator, const void *,
Attribute, Attribute, Attribute>(
attr.getAsOpaquePointer(), index) {}
/// Accesses the Attribute value at this iterator position.
Attribute DenseElementsAttr::AttributeElementIterator::operator*() const {
auto owner = getFromOpaquePointer(base).cast<DenseElementsAttr>();
Type eltTy = owner.getType().getElementType();
if (auto intEltTy = eltTy.dyn_cast<IntegerType>()) {
if (intEltTy.getWidth() == 1)
return BoolAttr::get((*IntElementIterator(owner, index)).isOneValue(),
owner.getContext());
return IntegerAttr::get(eltTy, *IntElementIterator(owner, index));
}
if (auto floatEltTy = eltTy.dyn_cast<FloatType>()) {
IntElementIterator intIt(owner, index);
FloatElementIterator floatIt(floatEltTy.getFloatSemantics(), intIt);
return FloatAttr::get(eltTy, *floatIt);
}
llvm_unreachable("unexpected element type");
}
/// Constructs a new iterator.
DenseElementsAttr::BoolElementIterator::BoolElementIterator(
DenseElementsAttr attr, size_t dataIndex)
: DenseElementIndexedIteratorImpl<BoolElementIterator, bool, bool, bool>(
attr.getRawData().data(), attr.isSplat(), dataIndex) {}
/// Accesses the bool value at this iterator position.
bool DenseElementsAttr::BoolElementIterator::operator*() const {
return getBit(getData(), getDataIndex());
}
/// Constructs a new iterator.
DenseElementsAttr::IntElementIterator::IntElementIterator(
DenseElementsAttr attr, size_t dataIndex)
: DenseElementIndexedIteratorImpl<IntElementIterator, APInt, APInt, APInt>(
attr.getRawData().data(), attr.isSplat(), dataIndex),
bitWidth(getDenseElementBitwidth(attr.getType().getElementType())) {}
/// Accesses the raw APInt value at this iterator position.
APInt DenseElementsAttr::IntElementIterator::operator*() const {
return readBits(getData(),
getDataIndex() * getDenseElementStorageWidth(bitWidth),
bitWidth);
}
DenseElementsAttr::FloatElementIterator::FloatElementIterator(
const llvm::fltSemantics &smt, IntElementIterator it)
: llvm::mapped_iterator<IntElementIterator,
std::function<APFloat(const APInt &)>>(
it, [&](const APInt &val) { return APFloat(smt, val); }) {}
//===----------------------------------------------------------------------===//
// DenseElementsAttr
//===----------------------------------------------------------------------===//
DenseElementsAttr DenseElementsAttr::get(ShapedType type,
ArrayRef<Attribute> values) {
assert(type.getElementType().isIntOrFloat() &&
"expected int or float element type");
assert(hasSameElementsOrSplat(type, values));
auto eltType = type.getElementType();
size_t bitWidth = getDenseElementBitwidth(eltType);
size_t storageBitWidth = getDenseElementStorageWidth(bitWidth);
// Compress the attribute values into a character buffer.
SmallVector<char, 8> data(llvm::divideCeil(storageBitWidth, CHAR_BIT) *
values.size());
APInt intVal;
for (unsigned i = 0, e = values.size(); i < e; ++i) {
assert(eltType == values[i].getType() &&
"expected attribute value to have element type");
switch (eltType.getKind()) {
case StandardTypes::BF16:
case StandardTypes::F16:
case StandardTypes::F32:
case StandardTypes::F64:
intVal = values[i].cast<FloatAttr>().getValue().bitcastToAPInt();
break;
case StandardTypes::Integer:
intVal = values[i].isa<BoolAttr>()
? APInt(1, values[i].cast<BoolAttr>().getValue() ? 1 : 0)
: values[i].cast<IntegerAttr>().getValue();
break;
default:
llvm_unreachable("unexpected element type");
}
assert(intVal.getBitWidth() == bitWidth &&
"expected value to have same bitwidth as element type");
writeBits(data.data(), i * storageBitWidth, intVal);
}
return getRaw(type, data, /*isSplat=*/(values.size() == 1));
}
DenseElementsAttr DenseElementsAttr::get(ShapedType type,
ArrayRef<bool> values) {
assert(hasSameElementsOrSplat(type, values));
assert(type.getElementType().isInteger(1));
std::vector<char> buff(llvm::divideCeil(values.size(), CHAR_BIT));
for (int i = 0, e = values.size(); i != e; ++i)
setBit(buff.data(), i, values[i]);
return getRaw(type, buff, /*isSplat=*/(values.size() == 1));
}
/// Constructs a dense integer elements attribute from an array of APInt
/// values. Each APInt value is expected to have the same bitwidth as the
/// element type of 'type'.
DenseElementsAttr DenseElementsAttr::get(ShapedType type,
ArrayRef<APInt> values) {
assert(type.getElementType().isa<IntegerType>());
return getRaw(type, values);
}
// Constructs a dense float elements attribute from an array of APFloat
// values. Each APFloat value is expected to have the same bitwidth as the
// element type of 'type'.
DenseElementsAttr DenseElementsAttr::get(ShapedType type,
ArrayRef<APFloat> values) {
assert(type.getElementType().isa<FloatType>());
// Convert the APFloat values to APInt and create a dense elements attribute.
std::vector<APInt> intValues(values.size());
for (unsigned i = 0, e = values.size(); i != e; ++i)
intValues[i] = values[i].bitcastToAPInt();
return getRaw(type, intValues);
}
// Constructs a dense elements attribute from an array of raw APInt values.
// Each APInt value is expected to have the same bitwidth as the element type
// of 'type'.
DenseElementsAttr DenseElementsAttr::getRaw(ShapedType type,
ArrayRef<APInt> values) {
assert(hasSameElementsOrSplat(type, values));
size_t bitWidth = getDenseElementBitwidth(type.getElementType());
size_t storageBitWidth = getDenseElementStorageWidth(bitWidth);
std::vector<char> elementData(llvm::divideCeil(storageBitWidth, CHAR_BIT) *
values.size());
for (unsigned i = 0, e = values.size(); i != e; ++i) {
assert(values[i].getBitWidth() == bitWidth);
writeBits(elementData.data(), i * storageBitWidth, values[i]);
}
return getRaw(type, elementData, /*isSplat=*/(values.size() == 1));
}
DenseElementsAttr DenseElementsAttr::getRaw(ShapedType type,
ArrayRef<char> data, bool isSplat) {
assert((type.isa<RankedTensorType>() || type.isa<VectorType>()) &&
"type must be ranked tensor or vector");
assert(type.hasStaticShape() && "type must have static shape");
return Base::get(type.getContext(), StandardAttributes::DenseElements, type,
data, isSplat);
}
/// Check the information for a c++ data type, check if this type is valid for
/// the current attribute. This method is used to verify specific type
/// invariants that the templatized 'getValues' method cannot.
static bool isValidIntOrFloat(ShapedType type, int64_t dataEltSize,
bool isInt) {
// Make sure that the data element size is the same as the type element width.
if (getDenseElementBitwidth(type.getElementType()) !=
static_cast<size_t>(dataEltSize * CHAR_BIT))
return false;
// Check that the element type is valid.
return isInt ? type.getElementType().isa<IntegerType>()
: type.getElementType().isa<FloatType>();
}
/// Overload of the 'getRaw' method that asserts that the given type is of
/// integer type. This method is used to verify type invariants that the
/// templatized 'get' method cannot.
DenseElementsAttr DenseElementsAttr::getRawIntOrFloat(ShapedType type,
ArrayRef<char> data,
int64_t dataEltSize,
bool isInt) {
assert(::isValidIntOrFloat(type, dataEltSize, isInt));
int64_t numElements = data.size() / dataEltSize;
assert(numElements == 1 || numElements == type.getNumElements());
return getRaw(type, data, /*isSplat=*/numElements == 1);
}
/// A method used to verify specific type invariants that the templatized 'get'
/// method cannot.
bool DenseElementsAttr::isValidIntOrFloat(int64_t dataEltSize,
bool isInt) const {
return ::isValidIntOrFloat(getType(), dataEltSize, isInt);
}
/// Return the raw storage data held by this attribute.
ArrayRef<char> DenseElementsAttr::getRawData() const {
return static_cast<ImplType *>(impl)->data;
}
/// Returns if this attribute corresponds to a splat, i.e. if all element
/// values are the same.
bool DenseElementsAttr::isSplat() const { return getImpl()->isSplat; }
/// Return the held element values as a range of Attributes.
auto DenseElementsAttr::getAttributeValues() const
-> llvm::iterator_range<AttributeElementIterator> {
return {attr_value_begin(), attr_value_end()};
}
auto DenseElementsAttr::attr_value_begin() const -> AttributeElementIterator {
return AttributeElementIterator(*this, 0);
}
auto DenseElementsAttr::attr_value_end() const -> AttributeElementIterator {
return AttributeElementIterator(*this, getNumElements());
}
/// Return the held element values as a range of bool. The element type of
/// this attribute must be of integer type of bitwidth 1.
auto DenseElementsAttr::getBoolValues() const
-> llvm::iterator_range<BoolElementIterator> {
auto eltType = getType().getElementType().dyn_cast<IntegerType>();
assert(eltType && eltType.getWidth() == 1 && "expected i1 integer type");
(void)eltType;
return {BoolElementIterator(*this, 0),
BoolElementIterator(*this, getNumElements())};
}
/// Return the held element values as a range of APInts. The element type of
/// this attribute must be of integer type.
auto DenseElementsAttr::getIntValues() const
-> llvm::iterator_range<IntElementIterator> {
assert(getType().getElementType().isa<IntegerType>() &&
"expected integer type");
return {raw_int_begin(), raw_int_end()};
}
auto DenseElementsAttr::int_value_begin() const -> IntElementIterator {
assert(getType().getElementType().isa<IntegerType>() &&
"expected integer type");
return raw_int_begin();
}
auto DenseElementsAttr::int_value_end() const -> IntElementIterator {
assert(getType().getElementType().isa<IntegerType>() &&
"expected integer type");
return raw_int_end();
}
/// Return the held element values as a range of APFloat. The element type of
/// this attribute must be of float type.
auto DenseElementsAttr::getFloatValues() const
-> llvm::iterator_range<FloatElementIterator> {
auto elementType = getType().getElementType().cast<FloatType>();
assert(elementType.isa<FloatType>() && "expected float type");
const auto &elementSemantics = elementType.getFloatSemantics();
return {FloatElementIterator(elementSemantics, raw_int_begin()),
FloatElementIterator(elementSemantics, raw_int_end())};
}
auto DenseElementsAttr::float_value_begin() const -> FloatElementIterator {
return getFloatValues().begin();
}
auto DenseElementsAttr::float_value_end() const -> FloatElementIterator {
return getFloatValues().end();
}
/// Return a new DenseElementsAttr that has the same data as the current
/// attribute, but has been reshaped to 'newType'. The new type must have the
/// same total number of elements as well as element type.
DenseElementsAttr DenseElementsAttr::reshape(ShapedType newType) {
ShapedType curType = getType();
if (curType == newType)
return *this;
(void)curType;
assert(newType.getElementType() == curType.getElementType() &&
"expected the same element type");
assert(newType.getNumElements() == curType.getNumElements() &&
"expected the same number of elements");
return getRaw(newType, getRawData(), isSplat());
}
DenseElementsAttr
DenseElementsAttr::mapValues(Type newElementType,
function_ref<APInt(const APInt &)> mapping) const {
return cast<DenseIntElementsAttr>().mapValues(newElementType, mapping);
}
DenseElementsAttr DenseElementsAttr::mapValues(
Type newElementType, function_ref<APInt(const APFloat &)> mapping) const {
return cast<DenseFPElementsAttr>().mapValues(newElementType, mapping);
}
//===----------------------------------------------------------------------===//
// DenseFPElementsAttr
//===----------------------------------------------------------------------===//
template <typename Fn, typename Attr>
static ShapedType mappingHelper(Fn mapping, Attr &attr, ShapedType inType,
Type newElementType,
llvm::SmallVectorImpl<char> &data) {
size_t bitWidth = getDenseElementBitwidth(newElementType);
size_t storageBitWidth = getDenseElementStorageWidth(bitWidth);
ShapedType newArrayType;
if (inType.isa<RankedTensorType>())
newArrayType = RankedTensorType::get(inType.getShape(), newElementType);
else if (inType.isa<UnrankedTensorType>())
newArrayType = RankedTensorType::get(inType.getShape(), newElementType);
else if (inType.isa<VectorType>())
newArrayType = VectorType::get(inType.getShape(), newElementType);
else
assert(newArrayType && "Unhandled tensor type");
size_t numRawElements = attr.isSplat() ? 1 : newArrayType.getNumElements();
data.resize(llvm::divideCeil(storageBitWidth, CHAR_BIT) * numRawElements);
// Functor used to process a single element value of the attribute.
auto processElt = [&](decltype(*attr.begin()) value, size_t index) {
auto newInt = mapping(value);
assert(newInt.getBitWidth() == bitWidth);
writeBits(data.data(), index * storageBitWidth, newInt);
};
// Check for the splat case.
if (attr.isSplat()) {
processElt(*attr.begin(), /*index=*/0);
return newArrayType;
}
// Otherwise, process all of the element values.
uint64_t elementIdx = 0;
for (auto value : attr)
processElt(value, elementIdx++);
return newArrayType;
}
DenseElementsAttr DenseFPElementsAttr::mapValues(
Type newElementType, function_ref<APInt(const APFloat &)> mapping) const {
llvm::SmallVector<char, 8> elementData;
auto newArrayType =
mappingHelper(mapping, *this, getType(), newElementType, elementData);
return getRaw(newArrayType, elementData, isSplat());
}
/// Method for supporting type inquiry through isa, cast and dyn_cast.
bool DenseFPElementsAttr::classof(Attribute attr) {
return attr.isa<DenseElementsAttr>() &&
attr.getType().cast<ShapedType>().getElementType().isa<FloatType>();
}
//===----------------------------------------------------------------------===//
// DenseIntElementsAttr
//===----------------------------------------------------------------------===//
DenseElementsAttr DenseIntElementsAttr::mapValues(
Type newElementType, function_ref<APInt(const APInt &)> mapping) const {
llvm::SmallVector<char, 8> elementData;
auto newArrayType =
mappingHelper(mapping, *this, getType(), newElementType, elementData);
return getRaw(newArrayType, elementData, isSplat());
}
/// Method for supporting type inquiry through isa, cast and dyn_cast.
bool DenseIntElementsAttr::classof(Attribute attr) {
return attr.isa<DenseElementsAttr>() &&
attr.getType().cast<ShapedType>().getElementType().isa<IntegerType>();
}
//===----------------------------------------------------------------------===//
// OpaqueElementsAttr
//===----------------------------------------------------------------------===//
OpaqueElementsAttr OpaqueElementsAttr::get(Dialect *dialect, ShapedType type,
StringRef bytes) {
assert(TensorType::isValidElementType(type.getElementType()) &&
"Input element type should be a valid tensor element type");
return Base::get(type.getContext(), StandardAttributes::OpaqueElements, type,
dialect, bytes);
}
StringRef OpaqueElementsAttr::getValue() const { return getImpl()->bytes; }
/// Return the value at the given index. If index does not refer to a valid
/// element, then a null attribute is returned.
Attribute OpaqueElementsAttr::getValue(ArrayRef<uint64_t> index) const {
assert(isValidIndex(index) && "expected valid multi-dimensional index");
if (Dialect *dialect = getDialect())
return dialect->extractElementHook(*this, index);
return Attribute();
}
Dialect *OpaqueElementsAttr::getDialect() const { return getImpl()->dialect; }
bool OpaqueElementsAttr::decode(ElementsAttr &result) {
if (auto *d = getDialect())
return d->decodeHook(*this, result);
return true;
}
//===----------------------------------------------------------------------===//
// SparseElementsAttr
//===----------------------------------------------------------------------===//
SparseElementsAttr SparseElementsAttr::get(ShapedType type,
DenseElementsAttr indices,
DenseElementsAttr values) {
assert(indices.getType().getElementType().isInteger(64) &&
"expected sparse indices to be 64-bit integer values");
assert((type.isa<RankedTensorType>() || type.isa<VectorType>()) &&
"type must be ranked tensor or vector");
assert(type.hasStaticShape() && "type must have static shape");
return Base::get(type.getContext(), StandardAttributes::SparseElements, type,
indices.cast<DenseIntElementsAttr>(), values);
}
DenseIntElementsAttr SparseElementsAttr::getIndices() const {
return getImpl()->indices;
}
DenseElementsAttr SparseElementsAttr::getValues() const {
return getImpl()->values;
}
/// Return the value of the element at the given index.
Attribute SparseElementsAttr::getValue(ArrayRef<uint64_t> index) const {
assert(isValidIndex(index) && "expected valid multi-dimensional index");
auto type = getType();
// The sparse indices are 64-bit integers, so we can reinterpret the raw data
// as a 1-D index array.
auto sparseIndices = getIndices();
auto sparseIndexValues = sparseIndices.getValues<uint64_t>();
// Check to see if the indices are a splat.
if (sparseIndices.isSplat()) {
// If the index is also not a splat of the index value, we know that the
// value is zero.
auto splatIndex = *sparseIndexValues.begin();
if (llvm::any_of(index, [=](uint64_t i) { return i != splatIndex; }))
return getZeroAttr();
// If the indices are a splat, we also expect the values to be a splat.
assert(getValues().isSplat() && "expected splat values");
return getValues().getSplatValue();
}
// Build a mapping between known indices and the offset of the stored element.
llvm::SmallDenseMap<llvm::ArrayRef<uint64_t>, size_t> mappedIndices;
auto numSparseIndices = sparseIndices.getType().getDimSize(0);
size_t rank = type.getRank();
for (size_t i = 0, e = numSparseIndices; i != e; ++i)
mappedIndices.try_emplace(
{&*std::next(sparseIndexValues.begin(), i * rank), rank}, i);
// Look for the provided index key within the mapped indices. If the provided
// index is not found, then return a zero attribute.
auto it = mappedIndices.find(index);
if (it == mappedIndices.end())
return getZeroAttr();
// Otherwise, return the held sparse value element.
return getValues().getValue(it->second);
}
/// Get a zero APFloat for the given sparse attribute.
APFloat SparseElementsAttr::getZeroAPFloat() const {
auto eltType = getType().getElementType().cast<FloatType>();
return APFloat(eltType.getFloatSemantics());
}
/// Get a zero APInt for the given sparse attribute.
APInt SparseElementsAttr::getZeroAPInt() const {
auto eltType = getType().getElementType().cast<IntegerType>();
return APInt::getNullValue(eltType.getWidth());
}
/// Get a zero attribute for the given attribute type.
Attribute SparseElementsAttr::getZeroAttr() const {
auto eltType = getType().getElementType();
// Handle floating point elements.
if (eltType.isa<FloatType>())
return FloatAttr::get(eltType, 0);
// Otherwise, this is an integer.
auto intEltTy = eltType.cast<IntegerType>();
if (intEltTy.getWidth() == 1)
return BoolAttr::get(false, eltType.getContext());
return IntegerAttr::get(eltType, 0);
}
/// Flatten, and return, all of the sparse indices in this attribute in
/// row-major order.
std::vector<ptrdiff_t> SparseElementsAttr::getFlattenedSparseIndices() const {
std::vector<ptrdiff_t> flatSparseIndices;
// The sparse indices are 64-bit integers, so we can reinterpret the raw data
// as a 1-D index array.
auto sparseIndices = getIndices();
auto sparseIndexValues = sparseIndices.getValues<uint64_t>();
if (sparseIndices.isSplat()) {
SmallVector<uint64_t, 8> indices(getType().getRank(),
*sparseIndexValues.begin());
flatSparseIndices.push_back(getFlattenedIndex(indices));
return flatSparseIndices;
}
// Otherwise, reinterpret each index as an ArrayRef when flattening.
auto numSparseIndices = sparseIndices.getType().getDimSize(0);
size_t rank = getType().getRank();
for (size_t i = 0, e = numSparseIndices; i != e; ++i)
flatSparseIndices.push_back(getFlattenedIndex(
{&*std::next(sparseIndexValues.begin(), i * rank), rank}));
return flatSparseIndices;
}
//===----------------------------------------------------------------------===//
// NamedAttributeList
//===----------------------------------------------------------------------===//
NamedAttributeList::NamedAttributeList(ArrayRef<NamedAttribute> attributes) {
setAttrs(attributes);
}
ArrayRef<NamedAttribute> NamedAttributeList::getAttrs() const {
return attrs ? attrs.getValue() : llvm::None;
}
/// Replace the held attributes with ones provided in 'newAttrs'.
void NamedAttributeList::setAttrs(ArrayRef<NamedAttribute> attributes) {
// Don't create an attribute list if there are no attributes.
if (attributes.empty())
attrs = nullptr;
else
attrs = DictionaryAttr::get(attributes, attributes[0].second.getContext());
}
/// Return the specified attribute if present, null otherwise.
Attribute NamedAttributeList::get(StringRef name) const {
return attrs ? attrs.get(name) : nullptr;
}
/// Return the specified attribute if present, null otherwise.
Attribute NamedAttributeList::get(Identifier name) const {
return attrs ? attrs.get(name) : nullptr;
}
/// If the an attribute exists with the specified name, change it to the new
/// value. Otherwise, add a new attribute with the specified name/value.
void NamedAttributeList::set(Identifier name, Attribute value) {
assert(value && "attributes may never be null");
// If we already have this attribute, replace it.
auto origAttrs = getAttrs();
SmallVector<NamedAttribute, 8> newAttrs(origAttrs.begin(), origAttrs.end());
for (auto &elt : newAttrs)
if (elt.first == name) {
elt.second = value;
attrs = DictionaryAttr::get(newAttrs, value.getContext());
return;
}
// Otherwise, add it.
newAttrs.push_back({name, value});
attrs = DictionaryAttr::get(newAttrs, value.getContext());
}
/// Remove the attribute with the specified name if it exists. The return
/// value indicates whether the attribute was present or not.
auto NamedAttributeList::remove(Identifier name) -> RemoveResult {
auto origAttrs = getAttrs();
for (unsigned i = 0, e = origAttrs.size(); i != e; ++i) {
if (origAttrs[i].first == name) {
// Handle the simple case of removing the only attribute in the list.
if (e == 1) {
attrs = nullptr;
return RemoveResult::Removed;
}
SmallVector<NamedAttribute, 8> newAttrs;
newAttrs.reserve(origAttrs.size() - 1);
newAttrs.append(origAttrs.begin(), origAttrs.begin() + i);
newAttrs.append(origAttrs.begin() + i + 1, origAttrs.end());
attrs = DictionaryAttr::get(newAttrs, newAttrs[0].second.getContext());
return RemoveResult::Removed;
}
}
return RemoveResult::NotFound;
}