MLIRContext.cpp 23.8 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641
//===- MLIRContext.cpp - MLIR Type Classes --------------------------------===//
//
// Part of the MLIR Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "mlir/IR/MLIRContext.h"
#include "AffineExprDetail.h"
#include "AffineMapDetail.h"
#include "AttributeDetail.h"
#include "IntegerSetDetail.h"
#include "LocationDetail.h"
#include "TypeDetail.h"
#include "mlir/IR/AffineExpr.h"
#include "mlir/IR/AffineMap.h"
#include "mlir/IR/Attributes.h"
#include "mlir/IR/Diagnostics.h"
#include "mlir/IR/Dialect.h"
#include "mlir/IR/Function.h"
#include "mlir/IR/Identifier.h"
#include "mlir/IR/IntegerSet.h"
#include "mlir/IR/Location.h"
#include "mlir/IR/Module.h"
#include "mlir/IR/Types.h"
#include "mlir/Support/STLExtras.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/ADT/Twine.h"
#include "llvm/Support/Allocator.h"
#include "llvm/Support/RWMutex.h"
#include "llvm/Support/raw_ostream.h"
#include <memory>

using namespace mlir;
using namespace mlir::detail;

using llvm::hash_combine;
using llvm::hash_combine_range;

/// A utility function to safely get or create a uniqued instance within the
/// given set container.
template <typename ValueT, typename DenseInfoT, typename KeyT,
          typename ConstructorFn>
static ValueT safeGetOrCreate(DenseSet<ValueT, DenseInfoT> &container,
                              KeyT &&key, llvm::sys::SmartRWMutex<true> &mutex,
                              ConstructorFn &&constructorFn) {
  { // Check for an existing instance in read-only mode.
    llvm::sys::SmartScopedReader<true> instanceLock(mutex);
    auto it = container.find_as(key);
    if (it != container.end())
      return *it;
  }

  // Acquire a writer-lock so that we can safely create the new instance.
  llvm::sys::SmartScopedWriter<true> instanceLock(mutex);

  // Check for an existing instance again here, because another writer thread
  // may have already created one.
  auto existing = container.insert_as(ValueT(), key);
  if (!existing.second)
    return *existing.first;

  // Otherwise, construct a new instance of the value.
  return *existing.first = constructorFn();
}

namespace {
/// A builtin dialect to define types/etc that are necessary for the validity of
/// the IR.
struct BuiltinDialect : public Dialect {
  BuiltinDialect(MLIRContext *context) : Dialect(/*name=*/"", context) {
    addAttributes<AffineMapAttr, ArrayAttr, BoolAttr, DenseElementsAttr,
                  DictionaryAttr, FloatAttr, SymbolRefAttr, IntegerAttr,
                  IntegerSetAttr, OpaqueAttr, OpaqueElementsAttr,
                  SparseElementsAttr, StringAttr, TypeAttr, UnitAttr>();
    addAttributes<CallSiteLoc, FileLineColLoc, FusedLoc, NameLoc, OpaqueLoc,
                  UnknownLoc>();

    addTypes<ComplexType, FloatType, FunctionType, IndexType, IntegerType,
             MemRefType, UnrankedMemRefType, NoneType, OpaqueType,
             RankedTensorType, TupleType, UnrankedTensorType, VectorType>();

    // TODO: These operations should be moved to a different dialect when they
    // have been fully decoupled from the core.
    addOperations<FuncOp, ModuleOp, ModuleTerminatorOp>();
  }
};

struct AffineMapKeyInfo : DenseMapInfo<AffineMap> {
  // Affine maps are uniqued based on their dim/symbol counts and affine
  // expressions.
  using KeyTy = std::tuple<unsigned, unsigned, ArrayRef<AffineExpr>>;
  using DenseMapInfo<AffineMap>::isEqual;

  static unsigned getHashValue(const AffineMap &key) {
    return getHashValue(
        KeyTy(key.getNumDims(), key.getNumSymbols(), key.getResults()));
  }

  static unsigned getHashValue(KeyTy key) {
    return hash_combine(
        std::get<0>(key), std::get<1>(key),
        hash_combine_range(std::get<2>(key).begin(), std::get<2>(key).end()));
  }

  static bool isEqual(const KeyTy &lhs, AffineMap rhs) {
    if (rhs == getEmptyKey() || rhs == getTombstoneKey())
      return false;
    return lhs == std::make_tuple(rhs.getNumDims(), rhs.getNumSymbols(),
                                  rhs.getResults());
  }
};

struct IntegerSetKeyInfo : DenseMapInfo<IntegerSet> {
  // Integer sets are uniqued based on their dim/symbol counts, affine
  // expressions appearing in the LHS of constraints, and eqFlags.
  using KeyTy =
      std::tuple<unsigned, unsigned, ArrayRef<AffineExpr>, ArrayRef<bool>>;
  using DenseMapInfo<IntegerSet>::isEqual;

  static unsigned getHashValue(const IntegerSet &key) {
    return getHashValue(KeyTy(key.getNumDims(), key.getNumSymbols(),
                              key.getConstraints(), key.getEqFlags()));
  }

  static unsigned getHashValue(KeyTy key) {
    return hash_combine(
        std::get<0>(key), std::get<1>(key),
        hash_combine_range(std::get<2>(key).begin(), std::get<2>(key).end()),
        hash_combine_range(std::get<3>(key).begin(), std::get<3>(key).end()));
  }

  static bool isEqual(const KeyTy &lhs, IntegerSet rhs) {
    if (rhs == getEmptyKey() || rhs == getTombstoneKey())
      return false;
    return lhs == std::make_tuple(rhs.getNumDims(), rhs.getNumSymbols(),
                                  rhs.getConstraints(), rhs.getEqFlags());
  }
};
} // end anonymous namespace.

namespace mlir {
/// This is the implementation of the MLIRContext class, using the pImpl idiom.
/// This class is completely private to this file, so everything is public.
class MLIRContextImpl {
public:
  //===--------------------------------------------------------------------===//
  // Identifier uniquing
  //===--------------------------------------------------------------------===//

  // Identifier allocator and mutex for thread safety.
  llvm::BumpPtrAllocator identifierAllocator;
  llvm::sys::SmartRWMutex<true> identifierMutex;

  //===--------------------------------------------------------------------===//
  // Diagnostics
  //===--------------------------------------------------------------------===//
  DiagnosticEngine diagEngine;

  //===--------------------------------------------------------------------===//
  // Other
  //===--------------------------------------------------------------------===//

  /// A general purpose mutex to lock access to parts of the context that do not
  /// have a more specific mutex, e.g. registry operations.
  llvm::sys::SmartRWMutex<true> contextMutex;

  /// This is a list of dialects that are created referring to this context.
  /// The MLIRContext owns the objects.
  std::vector<std::unique_ptr<Dialect>> dialects;

  /// This is a mapping from operation name to AbstractOperation for registered
  /// operations.
  llvm::StringMap<AbstractOperation> registeredOperations;

  /// This is a mapping from class identifier to Dialect for registered
  /// attributes and types.
  DenseMap<const ClassID *, Dialect *> registeredDialectSymbols;

  /// These are identifiers uniqued into this MLIRContext.
  llvm::StringMap<char, llvm::BumpPtrAllocator &> identifiers;

  //===--------------------------------------------------------------------===//
  // Affine uniquing
  //===--------------------------------------------------------------------===//

  // Affine allocator and mutex for thread safety.
  llvm::BumpPtrAllocator affineAllocator;
  llvm::sys::SmartRWMutex<true> affineMutex;

  // Affine map uniquing.
  using AffineMapSet = DenseSet<AffineMap, AffineMapKeyInfo>;
  AffineMapSet affineMaps;

  // Integer set uniquing.
  using IntegerSets = DenseSet<IntegerSet, IntegerSetKeyInfo>;
  IntegerSets integerSets;

  // Affine expression uniquing.
  StorageUniquer affineUniquer;

  //===--------------------------------------------------------------------===//
  // Type uniquing
  //===--------------------------------------------------------------------===//
  StorageUniquer typeUniquer;

  /// Cached Type Instances.
  FloatType bf16Ty, f16Ty, f32Ty, f64Ty;
  IndexType indexTy;
  IntegerType int1Ty, int8Ty, int16Ty, int32Ty, int64Ty, int128Ty;
  NoneType noneType;

  //===--------------------------------------------------------------------===//
  // Attribute uniquing
  //===--------------------------------------------------------------------===//
  StorageUniquer attributeUniquer;

  /// Cached Attribute Instances.
  BoolAttr falseAttr, trueAttr;
  UnitAttr unitAttr;
  UnknownLoc unknownLocAttr;

public:
  MLIRContextImpl() : identifiers(identifierAllocator) {}
};
} // end namespace mlir

MLIRContext::MLIRContext() : impl(new MLIRContextImpl()) {
  new BuiltinDialect(this);
  registerAllDialects(this);

  // Initialize several common attributes and types to avoid the need to lock
  // the context when accessing them.

  //// Types.
  /// Floating-point Types.
  impl->bf16Ty = TypeUniquer::get<FloatType>(this, StandardTypes::BF16);
  impl->f16Ty = TypeUniquer::get<FloatType>(this, StandardTypes::F16);
  impl->f32Ty = TypeUniquer::get<FloatType>(this, StandardTypes::F32);
  impl->f64Ty = TypeUniquer::get<FloatType>(this, StandardTypes::F64);
  /// Index Type.
  impl->indexTy = TypeUniquer::get<IndexType>(this, StandardTypes::Index);
  /// Integer Types.
  impl->int1Ty = TypeUniquer::get<IntegerType>(this, StandardTypes::Integer, 1);
  impl->int8Ty = TypeUniquer::get<IntegerType>(this, StandardTypes::Integer, 8);
  impl->int16Ty =
      TypeUniquer::get<IntegerType>(this, StandardTypes::Integer, 16);
  impl->int32Ty =
      TypeUniquer::get<IntegerType>(this, StandardTypes::Integer, 32);
  impl->int64Ty =
      TypeUniquer::get<IntegerType>(this, StandardTypes::Integer, 64);
  impl->int128Ty =
      TypeUniquer::get<IntegerType>(this, StandardTypes::Integer, 128);
  /// None Type.
  impl->noneType = TypeUniquer::get<NoneType>(this, StandardTypes::None);

  //// Attributes.
  //// Note: These must be registered after the types as they may generate one
  //// of the above types internally.
  /// Bool Attributes.
  // Note: The context is also used within the BoolAttrStorage.
  impl->falseAttr = AttributeUniquer::get<BoolAttr>(
      this, StandardAttributes::Bool, this, false);
  impl->trueAttr = AttributeUniquer::get<BoolAttr>(
      this, StandardAttributes::Bool, this, true);
  /// Unit Attribute.
  impl->unitAttr =
      AttributeUniquer::get<UnitAttr>(this, StandardAttributes::Unit);
  /// Unknown Location Attribute.
  impl->unknownLocAttr = AttributeUniquer::get<UnknownLoc>(
      this, StandardAttributes::UnknownLocation);
}

MLIRContext::~MLIRContext() {}

/// Copy the specified array of elements into memory managed by the provided
/// bump pointer allocator.  This assumes the elements are all PODs.
template <typename T>
static ArrayRef<T> copyArrayRefInto(llvm::BumpPtrAllocator &allocator,
                                    ArrayRef<T> elements) {
  auto result = allocator.Allocate<T>(elements.size());
  std::uninitialized_copy(elements.begin(), elements.end(), result);
  return ArrayRef<T>(result, elements.size());
}

//===----------------------------------------------------------------------===//
// Diagnostic Handlers
//===----------------------------------------------------------------------===//

/// Returns the diagnostic engine for this context.
DiagnosticEngine &MLIRContext::getDiagEngine() { return getImpl().diagEngine; }

//===----------------------------------------------------------------------===//
// Dialect and Operation Registration
//===----------------------------------------------------------------------===//

/// Return information about all registered IR dialects.
std::vector<Dialect *> MLIRContext::getRegisteredDialects() {
  // Lock access to the context registry.
  llvm::sys::SmartScopedReader<true> registryLock(getImpl().contextMutex);

  std::vector<Dialect *> result;
  result.reserve(getImpl().dialects.size());
  for (auto &dialect : getImpl().dialects)
    result.push_back(dialect.get());
  return result;
}

/// Get a registered IR dialect with the given namespace. If none is found,
/// then return nullptr.
Dialect *MLIRContext::getRegisteredDialect(StringRef name) {
  // Lock access to the context registry.
  llvm::sys::SmartScopedReader<true> registryLock(getImpl().contextMutex);
  for (auto &dialect : getImpl().dialects)
    if (name == dialect->getNamespace())
      return dialect.get();
  return nullptr;
}

/// Register this dialect object with the specified context.  The context
/// takes ownership of the heap allocated dialect.
void Dialect::registerDialect(MLIRContext *context) {
  auto &impl = context->getImpl();
  std::unique_ptr<Dialect> dialect(this);

  // Lock access to the context registry.
  llvm::sys::SmartScopedWriter<true> registryLock(impl.contextMutex);

  // Get the correct insertion position sorted by namespace.
  auto insertPt =
      llvm::lower_bound(impl.dialects, dialect,
                        [](const std::unique_ptr<Dialect> &lhs,
                           const std::unique_ptr<Dialect> &rhs) {
                          return lhs->getNamespace() < rhs->getNamespace();
                        });

  // Abort if dialect with namespace has already been registered.
  if (insertPt != impl.dialects.end() &&
      (*insertPt)->getNamespace() == getNamespace()) {
    llvm::report_fatal_error("a dialect with namespace '" + getNamespace() +
                             "' has already been registered");
  }
  impl.dialects.insert(insertPt, std::move(dialect));
}

/// Return information about all registered operations.  This isn't very
/// efficient, typically you should ask the operations about their properties
/// directly.
std::vector<AbstractOperation *> MLIRContext::getRegisteredOperations() {
  std::vector<std::pair<StringRef, AbstractOperation *>> opsToSort;

  { // Lock access to the context registry.
    llvm::sys::SmartScopedReader<true> registryLock(getImpl().contextMutex);

    // We just have the operations in a non-deterministic hash table order. Dump
    // into a temporary array, then sort it by operation name to get a stable
    // ordering.
    llvm::StringMap<AbstractOperation> &registeredOps =
        getImpl().registeredOperations;

    opsToSort.reserve(registeredOps.size());
    for (auto &elt : registeredOps)
      opsToSort.push_back({elt.first(), &elt.second});
  }

  llvm::array_pod_sort(opsToSort.begin(), opsToSort.end());

  std::vector<AbstractOperation *> result;
  result.reserve(opsToSort.size());
  for (auto &elt : opsToSort)
    result.push_back(elt.second);
  return result;
}

void Dialect::addOperation(AbstractOperation opInfo) {
  assert((getNamespace().empty() ||
          opInfo.name.split('.').first == getNamespace()) &&
         "op name doesn't start with dialect namespace");
  assert(&opInfo.dialect == this && "Dialect object mismatch");
  auto &impl = context->getImpl();

  // Lock access to the context registry.
  llvm::sys::SmartScopedWriter<true> registryLock(impl.contextMutex);
  if (!impl.registeredOperations.insert({opInfo.name, opInfo}).second) {
    llvm::errs() << "error: operation named '" << opInfo.name
                 << "' is already registered.\n";
    abort();
  }
}

/// Register a dialect-specific symbol(e.g. type) with the current context.
void Dialect::addSymbol(const ClassID *const classID) {
  auto &impl = context->getImpl();

  // Lock access to the context registry.
  llvm::sys::SmartScopedWriter<true> registryLock(impl.contextMutex);
  if (!impl.registeredDialectSymbols.insert({classID, this}).second) {
    llvm::errs() << "error: dialect symbol already registered.\n";
    abort();
  }
}

/// Look up the specified operation in the operation set and return a pointer
/// to it if present.  Otherwise, return a null pointer.
const AbstractOperation *AbstractOperation::lookup(StringRef opName,
                                                   MLIRContext *context) {
  auto &impl = context->getImpl();

  // Lock access to the context registry.
  llvm::sys::SmartScopedReader<true> registryLock(impl.contextMutex);
  auto it = impl.registeredOperations.find(opName);
  if (it != impl.registeredOperations.end())
    return &it->second;
  return nullptr;
}

//===----------------------------------------------------------------------===//
// Identifier uniquing
//===----------------------------------------------------------------------===//

/// Return an identifier for the specified string.
Identifier Identifier::get(StringRef str, MLIRContext *context) {
  assert(!str.empty() && "Cannot create an empty identifier");
  assert(str.find('\0') == StringRef::npos &&
         "Cannot create an identifier with a nul character");

  auto &impl = context->getImpl();

  { // Check for an existing identifier in read-only mode.
    llvm::sys::SmartScopedReader<true> contextLock(impl.identifierMutex);
    auto it = impl.identifiers.find(str);
    if (it != impl.identifiers.end())
      return Identifier(it->getKeyData());
  }

  // Acquire a writer-lock so that we can safely create the new instance.
  llvm::sys::SmartScopedWriter<true> contextLock(impl.identifierMutex);
  auto it = impl.identifiers.insert({str, char()}).first;
  return Identifier(it->getKeyData());
}

//===----------------------------------------------------------------------===//
// Type uniquing
//===----------------------------------------------------------------------===//

static Dialect &lookupDialectForSymbol(MLIRContext *ctx,
                                       const ClassID *const classID) {
  auto &impl = ctx->getImpl();
  auto it = impl.registeredDialectSymbols.find(classID);
  assert(it != impl.registeredDialectSymbols.end() &&
         "symbol is not registered.");
  return *it->second;
}

/// Returns the storage unqiuer used for constructing type storage instances.
/// This should not be used directly.
StorageUniquer &MLIRContext::getTypeUniquer() { return getImpl().typeUniquer; }

/// Get the dialect that registered the type with the provided typeid.
Dialect &TypeUniquer::lookupDialectForType(MLIRContext *ctx,
                                           const ClassID *const typeID) {
  return lookupDialectForSymbol(ctx, typeID);
}

FloatType FloatType::get(StandardTypes::Kind kind, MLIRContext *context) {
  assert(kindof(kind) && "Not a FP kind.");
  switch (kind) {
  case StandardTypes::BF16:
    return context->getImpl().bf16Ty;
  case StandardTypes::F16:
    return context->getImpl().f16Ty;
  case StandardTypes::F32:
    return context->getImpl().f32Ty;
  case StandardTypes::F64:
    return context->getImpl().f64Ty;
  default:
    llvm_unreachable("unexpected floating-point kind");
  }
}

/// Get an instance of the IndexType.
IndexType IndexType::get(MLIRContext *context) {
  return context->getImpl().indexTy;
}

/// Return an existing integer type instance if one is cached within the
/// context.
static IntegerType getCachedIntegerType(unsigned width, MLIRContext *context) {
  switch (width) {
  case 1:
    return context->getImpl().int1Ty;
  case 8:
    return context->getImpl().int8Ty;
  case 16:
    return context->getImpl().int16Ty;
  case 32:
    return context->getImpl().int32Ty;
  case 64:
    return context->getImpl().int64Ty;
  case 128:
    return context->getImpl().int128Ty;
  default:
    return IntegerType();
  }
}

IntegerType IntegerType::get(unsigned width, MLIRContext *context) {
  if (auto cached = getCachedIntegerType(width, context))
    return cached;
  return Base::get(context, StandardTypes::Integer, width);
}

IntegerType IntegerType::getChecked(unsigned width, MLIRContext *context,
                                    Location location) {
  if (auto cached = getCachedIntegerType(width, context))
    return cached;
  return Base::getChecked(location, context, StandardTypes::Integer, width);
}

/// Get an instance of the NoneType.
NoneType NoneType::get(MLIRContext *context) {
  return context->getImpl().noneType;
}

//===----------------------------------------------------------------------===//
// Attribute uniquing
//===----------------------------------------------------------------------===//

/// Returns the storage uniquer used for constructing attribute storage
/// instances. This should not be used directly.
StorageUniquer &MLIRContext::getAttributeUniquer() {
  return getImpl().attributeUniquer;
}

/// Returns a functor used to initialize new attribute storage instances.
std::function<void(AttributeStorage *)>
AttributeUniquer::getInitFn(MLIRContext *ctx, const ClassID *const attrID) {
  return [ctx, attrID](AttributeStorage *storage) {
    storage->initializeDialect(lookupDialectForSymbol(ctx, attrID));

    // If the attribute did not provide a type, then default to NoneType.
    if (!storage->getType())
      storage->setType(NoneType::get(ctx));
  };
}

BoolAttr BoolAttr::get(bool value, MLIRContext *context) {
  return value ? context->getImpl().trueAttr : context->getImpl().falseAttr;
}

UnitAttr UnitAttr::get(MLIRContext *context) {
  return context->getImpl().unitAttr;
}

Location UnknownLoc::get(MLIRContext *context) {
  return context->getImpl().unknownLocAttr;
}

//===----------------------------------------------------------------------===//
// AffineMap uniquing
//===----------------------------------------------------------------------===//

StorageUniquer &MLIRContext::getAffineUniquer() {
  return getImpl().affineUniquer;
}

AffineMap AffineMap::getImpl(unsigned dimCount, unsigned symbolCount,
                             ArrayRef<AffineExpr> results,
                             MLIRContext *context) {
  auto &impl = context->getImpl();
  auto key = std::make_tuple(dimCount, symbolCount, results);

  // Safely get or create an AffineMap instance.
  return safeGetOrCreate(impl.affineMaps, key, impl.affineMutex, [&] {
    auto *res = impl.affineAllocator.Allocate<detail::AffineMapStorage>();

    // Copy the results into the bump pointer.
    results = copyArrayRefInto(impl.affineAllocator, results);

    // Initialize the memory using placement new.
    new (res) detail::AffineMapStorage{dimCount, symbolCount, results, context};
    return AffineMap(res);
  });
}

AffineMap AffineMap::get(MLIRContext *context) {
  return getImpl(/*dimCount=*/0, /*symbolCount=*/0, /*results=*/{}, context);
}

AffineMap AffineMap::get(unsigned dimCount, unsigned symbolCount,
                         ArrayRef<AffineExpr> results) {
  // The number of results can't be zero.
  assert(!results.empty());
  return getImpl(dimCount, symbolCount, results, results[0].getContext());
}

//===----------------------------------------------------------------------===//
// Integer Sets: these are allocated into the bump pointer, and are immutable.
// Unlike AffineMap's, these are uniqued only if they are small.
//===----------------------------------------------------------------------===//

IntegerSet IntegerSet::get(unsigned dimCount, unsigned symbolCount,
                           ArrayRef<AffineExpr> constraints,
                           ArrayRef<bool> eqFlags) {
  // The number of constraints can't be zero.
  assert(!constraints.empty());
  assert(constraints.size() == eqFlags.size());

  auto &impl = constraints[0].getContext()->getImpl();

  // A utility function to construct a new IntegerSetStorage instance.
  auto constructorFn = [&] {
    auto *res = impl.affineAllocator.Allocate<detail::IntegerSetStorage>();

    // Copy the results and equality flags into the bump pointer.
    constraints = copyArrayRefInto(impl.affineAllocator, constraints);
    eqFlags = copyArrayRefInto(impl.affineAllocator, eqFlags);

    // Initialize the memory using placement new.
    new (res)
        detail::IntegerSetStorage{dimCount, symbolCount, constraints, eqFlags};
    return IntegerSet(res);
  };

  // If this instance is uniqued, then we handle it separately so that multiple
  // threads may simultaneously access existing instances.
  if (constraints.size() < IntegerSet::kUniquingThreshold) {
    auto key = std::make_tuple(dimCount, symbolCount, constraints, eqFlags);
    return safeGetOrCreate(impl.integerSets, key, impl.affineMutex,
                           constructorFn);
  }

  // Otherwise, acquire a writer-lock so that we can safely create the new
  // instance.
  llvm::sys::SmartScopedWriter<true> affineLock(impl.affineMutex);
  return constructorFn();
}