ConvertFromLLVMIR.cpp
23 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
//===- ConvertFromLLVMIR.cpp - MLIR to LLVM IR conversion -----------------===//
//
// Part of the MLIR Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements a translation between LLVM IR and the MLIR LLVM dialect.
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/LLVMIR/LLVMDialect.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/MLIRContext.h"
#include "mlir/IR/Module.h"
#include "mlir/IR/StandardTypes.h"
#include "mlir/Target/LLVMIR.h"
#include "mlir/Translation.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Type.h"
#include "llvm/IRReader/IRReader.h"
#include "llvm/Support/Error.h"
#include "llvm/Support/SourceMgr.h"
using namespace mlir;
using namespace mlir::LLVM;
// Utility to print an LLVM value as a string for passing to emitError().
// FIXME: Diagnostic should be able to natively handle types that have
// operator << (raw_ostream&) defined.
static std::string diag(llvm::Value &v) {
std::string s;
llvm::raw_string_ostream os(s);
os << v;
return os.str();
}
// Handles importing globals and functions from an LLVM module.
namespace {
class Importer {
public:
Importer(MLIRContext *context, ModuleOp module)
: b(context), context(context), module(module),
unknownLoc(FileLineColLoc::get("imported-bitcode", 0, 0, context)) {
b.setInsertionPointToStart(module.getBody());
dialect = context->getRegisteredDialect<LLVMDialect>();
}
/// Imports `f` into the current module.
LogicalResult processFunction(llvm::Function *f);
/// Imports GV as a GlobalOp, creating it if it doesn't exist.
GlobalOp processGlobal(llvm::GlobalVariable *GV);
private:
/// Imports `bb` into `block`, which must be initially empty.
LogicalResult processBasicBlock(llvm::BasicBlock *bb, Block *block);
/// Imports `inst` and populates instMap[inst] with the imported Value.
LogicalResult processInstruction(llvm::Instruction *inst);
/// Creates an LLVMType for `type`.
LLVMType processType(llvm::Type *type);
/// `value` is an SSA-use. Return the remapped version of `value` or a
/// placeholder that will be remapped later if this is an instruction that
/// has not yet been visited.
Value processValue(llvm::Value *value);
/// Create the most accurate Location possible using a llvm::DebugLoc and
/// possibly an llvm::Instruction to narrow the Location if debug information
/// is unavailable.
Location processDebugLoc(const llvm::DebugLoc &loc,
llvm::Instruction *inst = nullptr);
/// `br` branches to `target`. Return the block arguments to attach to the
/// generated branch op. These should be in the same order as the PHIs in
/// `target`.
SmallVector<Value, 4> processBranchArgs(llvm::BranchInst *br,
llvm::BasicBlock *target);
/// Return `value` as an attribute to attach to a GlobalOp.
Attribute getConstantAsAttr(llvm::Constant *value);
/// Return `c` as an MLIR Value. This could either be a ConstantOp, or
/// an expanded sequence of ops in the current function's entry block (for
/// ConstantExprs or ConstantGEPs).
Value processConstant(llvm::Constant *c);
/// The current builder, pointing at where the next Instruction should be
/// generated.
OpBuilder b;
/// The current context.
MLIRContext *context;
/// The current module being created.
ModuleOp module;
/// The entry block of the current function being processed.
Block *currentEntryBlock;
/// Globals are inserted before the first function, if any.
Block::iterator getGlobalInsertPt() {
auto i = module.getBody()->begin();
while (!isa<LLVMFuncOp>(i) && !isa<ModuleTerminatorOp>(i))
++i;
return i;
}
/// Functions are always inserted before the module terminator.
Block::iterator getFuncInsertPt() {
return std::prev(module.getBody()->end());
}
/// Remapped blocks, for the current function.
DenseMap<llvm::BasicBlock *, Block *> blocks;
/// Remapped values. These are function-local.
DenseMap<llvm::Value *, Value> instMap;
/// Instructions that had not been defined when first encountered as a use.
/// Maps to the dummy Operation that was created in processValue().
DenseMap<llvm::Value *, Operation *> unknownInstMap;
/// Uniquing map of GlobalVariables.
DenseMap<llvm::GlobalVariable *, GlobalOp> globals;
/// Cached FileLineColLoc::get("imported-bitcode", 0, 0).
Location unknownLoc;
/// Cached dialect.
LLVMDialect *dialect;
};
} // namespace
Location Importer::processDebugLoc(const llvm::DebugLoc &loc,
llvm::Instruction *inst) {
if (!loc && inst) {
std::string s;
llvm::raw_string_ostream os(s);
os << "llvm-imported-inst-%";
inst->printAsOperand(os, /*PrintType=*/false);
return FileLineColLoc::get(os.str(), 0, 0, context);
} else if (!loc) {
return unknownLoc;
}
// FIXME: Obtain the filename from DILocationInfo.
return FileLineColLoc::get("imported-bitcode", loc.getLine(), loc.getCol(),
context);
}
LLVMType Importer::processType(llvm::Type *type) {
switch (type->getTypeID()) {
case llvm::Type::FloatTyID:
return LLVMType::getFloatTy(dialect);
case llvm::Type::DoubleTyID:
return LLVMType::getDoubleTy(dialect);
case llvm::Type::IntegerTyID:
return LLVMType::getIntNTy(dialect, type->getIntegerBitWidth());
case llvm::Type::PointerTyID:
return processType(type->getPointerElementType())
.getPointerTo(type->getPointerAddressSpace());
case llvm::Type::ArrayTyID:
return LLVMType::getArrayTy(processType(type->getArrayElementType()),
type->getArrayNumElements());
case llvm::Type::VectorTyID: {
if (type->getVectorIsScalable())
emitError(unknownLoc) << "scalable vector types not supported";
return LLVMType::getVectorTy(processType(type->getVectorElementType()),
type->getVectorNumElements());
}
case llvm::Type::VoidTyID:
return LLVMType::getVoidTy(dialect);
case llvm::Type::FP128TyID:
return LLVMType::getFP128Ty(dialect);
case llvm::Type::X86_FP80TyID:
return LLVMType::getX86_FP80Ty(dialect);
case llvm::Type::StructTyID: {
SmallVector<LLVMType, 4> elementTypes;
for (unsigned i = 0, e = type->getStructNumElements(); i != e; ++i)
elementTypes.push_back(processType(type->getStructElementType(i)));
return LLVMType::getStructTy(dialect, elementTypes,
cast<llvm::StructType>(type)->isPacked());
}
case llvm::Type::FunctionTyID: {
llvm::FunctionType *fty = cast<llvm::FunctionType>(type);
SmallVector<LLVMType, 4> paramTypes;
for (unsigned i = 0, e = fty->getNumParams(); i != e; ++i)
paramTypes.push_back(processType(fty->getParamType(i)));
return LLVMType::getFunctionTy(processType(fty->getReturnType()),
paramTypes, fty->isVarArg());
}
default: {
// FIXME: Diagnostic should be able to natively handle types that have
// operator<<(raw_ostream&) defined.
std::string s;
llvm::raw_string_ostream os(s);
os << *type;
emitError(unknownLoc) << "unhandled type: " << os.str();
return {};
}
}
}
// Get the given constant as an attribute. Not all constants can be represented
// as attributes.
Attribute Importer::getConstantAsAttr(llvm::Constant *value) {
if (auto *ci = dyn_cast<llvm::ConstantInt>(value))
return b.getIntegerAttr(
IntegerType::get(ci->getType()->getBitWidth(), context),
ci->getValue());
if (auto *c = dyn_cast<llvm::ConstantDataArray>(value))
if (c->isString())
return b.getStringAttr(c->getAsString());
if (auto *c = dyn_cast<llvm::ConstantFP>(value)) {
if (c->getType()->isDoubleTy())
return b.getFloatAttr(FloatType::getF64(context), c->getValueAPF());
else if (c->getType()->isFloatingPointTy())
return b.getFloatAttr(FloatType::getF32(context), c->getValueAPF());
}
return Attribute();
}
/// Converts LLVM global variable linkage type into the LLVM dialect predicate.
static LLVM::Linkage
processLinkage(llvm::GlobalVariable::LinkageTypes linkage) {
switch (linkage) {
case llvm::GlobalValue::PrivateLinkage:
return LLVM::Linkage::Private;
case llvm::GlobalValue::InternalLinkage:
return LLVM::Linkage::Internal;
case llvm::GlobalValue::AvailableExternallyLinkage:
return LLVM::Linkage::AvailableExternally;
case llvm::GlobalValue::LinkOnceAnyLinkage:
return LLVM::Linkage::Linkonce;
case llvm::GlobalValue::WeakAnyLinkage:
return LLVM::Linkage::Weak;
case llvm::GlobalValue::CommonLinkage:
return LLVM::Linkage::Common;
case llvm::GlobalValue::AppendingLinkage:
return LLVM::Linkage::Appending;
case llvm::GlobalValue::ExternalWeakLinkage:
return LLVM::Linkage::ExternWeak;
case llvm::GlobalValue::LinkOnceODRLinkage:
return LLVM::Linkage::LinkonceODR;
case llvm::GlobalValue::WeakODRLinkage:
return LLVM::Linkage::WeakODR;
case llvm::GlobalValue::ExternalLinkage:
return LLVM::Linkage::External;
}
llvm_unreachable("unhandled linkage type");
}
GlobalOp Importer::processGlobal(llvm::GlobalVariable *GV) {
auto it = globals.find(GV);
if (it != globals.end())
return it->second;
OpBuilder b(module.getBody(), getGlobalInsertPt());
Attribute valueAttr;
if (GV->hasInitializer())
valueAttr = getConstantAsAttr(GV->getInitializer());
GlobalOp op = b.create<GlobalOp>(
UnknownLoc::get(context), processType(GV->getValueType()),
GV->isConstant(), processLinkage(GV->getLinkage()), GV->getName(),
valueAttr);
if (GV->hasInitializer() && !valueAttr) {
Region &r = op.getInitializerRegion();
currentEntryBlock = b.createBlock(&r);
b.setInsertionPoint(currentEntryBlock, currentEntryBlock->begin());
Value v = processConstant(GV->getInitializer());
b.create<ReturnOp>(op.getLoc(), ArrayRef<Value>({v}));
}
return globals[GV] = op;
}
Value Importer::processConstant(llvm::Constant *c) {
if (Attribute attr = getConstantAsAttr(c)) {
// These constants can be represented as attributes.
OpBuilder b(currentEntryBlock, currentEntryBlock->begin());
return instMap[c] = b.create<ConstantOp>(unknownLoc,
processType(c->getType()), attr);
}
if (auto *cn = dyn_cast<llvm::ConstantPointerNull>(c)) {
OpBuilder b(currentEntryBlock, currentEntryBlock->begin());
return instMap[c] =
b.create<NullOp>(unknownLoc, processType(cn->getType()));
}
if (auto *ce = dyn_cast<llvm::ConstantExpr>(c)) {
llvm::Instruction *i = ce->getAsInstruction();
OpBuilder::InsertionGuard guard(b);
b.setInsertionPoint(currentEntryBlock, currentEntryBlock->begin());
if (failed(processInstruction(i)))
return nullptr;
assert(instMap.count(i));
// Remove this zombie LLVM instruction now, leaving us only with the MLIR
// op.
i->deleteValue();
return instMap[c] = instMap[i];
}
emitError(unknownLoc) << "unhandled constant: " << diag(*c);
return nullptr;
}
Value Importer::processValue(llvm::Value *value) {
auto it = instMap.find(value);
if (it != instMap.end())
return it->second;
// We don't expect to see instructions in dominator order. If we haven't seen
// this instruction yet, create an unknown op and remap it later.
if (isa<llvm::Instruction>(value)) {
OperationState state(UnknownLoc::get(context), "unknown");
state.addTypes({processType(value->getType())});
unknownInstMap[value] = b.createOperation(state);
return unknownInstMap[value]->getResult(0);
}
if (auto *GV = dyn_cast<llvm::GlobalVariable>(value)) {
return b.create<AddressOfOp>(UnknownLoc::get(context), processGlobal(GV),
ArrayRef<NamedAttribute>());
}
// Note, constant global variables are both GlobalVariables and Constants,
// so we handle GlobalVariables first above.
if (auto *c = dyn_cast<llvm::Constant>(value))
return processConstant(c);
emitError(unknownLoc) << "unhandled value: " << diag(*value);
return nullptr;
}
// Maps from LLVM opcode to MLIR OperationName. This is deliberately ordered
// as in llvm/IR/Instructions.def to aid comprehension and spot missing
// instructions.
#define INST(llvm_n, mlir_n) \
{ llvm::Instruction::llvm_n, LLVM::mlir_n##Op::getOperationName() }
static const DenseMap<unsigned, StringRef> opcMap = {
// Ret is handled specially.
// Br is handled specially.
// FIXME: switch
// FIXME: indirectbr
// FIXME: invoke
// FIXME: resume
// FIXME: unreachable
// FIXME: cleanupret
// FIXME: catchret
// FIXME: catchswitch
// FIXME: callbr
// FIXME: fneg
INST(Add, Add), INST(FAdd, FAdd), INST(Sub, Sub), INST(FSub, FSub),
INST(Mul, Mul), INST(FMul, FMul), INST(UDiv, UDiv), INST(SDiv, SDiv),
INST(FDiv, FDiv), INST(URem, URem), INST(SRem, SRem), INST(FRem, FRem),
INST(Shl, Shl), INST(LShr, LShr), INST(AShr, AShr), INST(And, And),
INST(Or, Or), INST(Xor, XOr), INST(Alloca, Alloca), INST(Load, Load),
INST(Store, Store),
// Getelementptr is handled specially.
INST(Ret, Return),
// FIXME: fence
// FIXME: atomiccmpxchg
// FIXME: atomicrmw
INST(Trunc, Trunc), INST(ZExt, ZExt), INST(SExt, SExt),
INST(FPToUI, FPToUI), INST(FPToSI, FPToSI), INST(UIToFP, UIToFP),
INST(SIToFP, SIToFP), INST(FPTrunc, FPTrunc), INST(FPExt, FPExt),
INST(PtrToInt, PtrToInt), INST(IntToPtr, IntToPtr), INST(BitCast, Bitcast),
INST(AddrSpaceCast, AddrSpaceCast),
// FIXME: cleanuppad
// FIXME: catchpad
// ICmp is handled specially.
// FIXME: fcmp
// PHI is handled specially.
INST(Call, Call),
// FIXME: select
// FIXME: vaarg
// FIXME: extractelement
// FIXME: insertelement
// FIXME: shufflevector
// FIXME: extractvalue
// FIXME: insertvalue
// FIXME: landingpad
};
#undef INST
static ICmpPredicate getICmpPredicate(llvm::CmpInst::Predicate p) {
switch (p) {
default:
llvm_unreachable("incorrect comparison predicate");
case llvm::CmpInst::Predicate::ICMP_EQ:
return LLVM::ICmpPredicate::eq;
case llvm::CmpInst::Predicate::ICMP_NE:
return LLVM::ICmpPredicate::ne;
case llvm::CmpInst::Predicate::ICMP_SLT:
return LLVM::ICmpPredicate::slt;
case llvm::CmpInst::Predicate::ICMP_SLE:
return LLVM::ICmpPredicate::sle;
case llvm::CmpInst::Predicate::ICMP_SGT:
return LLVM::ICmpPredicate::sgt;
case llvm::CmpInst::Predicate::ICMP_SGE:
return LLVM::ICmpPredicate::sge;
case llvm::CmpInst::Predicate::ICMP_ULT:
return LLVM::ICmpPredicate::ult;
case llvm::CmpInst::Predicate::ICMP_ULE:
return LLVM::ICmpPredicate::ule;
case llvm::CmpInst::Predicate::ICMP_UGT:
return LLVM::ICmpPredicate::ugt;
case llvm::CmpInst::Predicate::ICMP_UGE:
return LLVM::ICmpPredicate::uge;
}
llvm_unreachable("incorrect comparison predicate");
}
// `br` branches to `target`. Return the branch arguments to `br`, in the
// same order of the PHIs in `target`.
SmallVector<Value, 4> Importer::processBranchArgs(llvm::BranchInst *br,
llvm::BasicBlock *target) {
SmallVector<Value, 4> v;
for (auto inst = target->begin(); isa<llvm::PHINode>(inst); ++inst) {
auto *PN = cast<llvm::PHINode>(&*inst);
v.push_back(processValue(PN->getIncomingValueForBlock(br->getParent())));
}
return v;
}
LogicalResult Importer::processInstruction(llvm::Instruction *inst) {
// FIXME: Support uses of SubtargetData. Currently inbounds GEPs, fast-math
// flags and call / operand attributes are not supported.
Location loc = processDebugLoc(inst->getDebugLoc(), inst);
Value &v = instMap[inst];
assert(!v && "processInstruction must be called only once per instruction!");
switch (inst->getOpcode()) {
default:
return emitError(loc) << "unknown instruction: " << diag(*inst);
case llvm::Instruction::Add:
case llvm::Instruction::FAdd:
case llvm::Instruction::Sub:
case llvm::Instruction::FSub:
case llvm::Instruction::Mul:
case llvm::Instruction::FMul:
case llvm::Instruction::UDiv:
case llvm::Instruction::SDiv:
case llvm::Instruction::FDiv:
case llvm::Instruction::URem:
case llvm::Instruction::SRem:
case llvm::Instruction::FRem:
case llvm::Instruction::Shl:
case llvm::Instruction::LShr:
case llvm::Instruction::AShr:
case llvm::Instruction::And:
case llvm::Instruction::Or:
case llvm::Instruction::Xor:
case llvm::Instruction::Alloca:
case llvm::Instruction::Load:
case llvm::Instruction::Store:
case llvm::Instruction::Ret:
case llvm::Instruction::Trunc:
case llvm::Instruction::ZExt:
case llvm::Instruction::SExt:
case llvm::Instruction::FPToUI:
case llvm::Instruction::FPToSI:
case llvm::Instruction::UIToFP:
case llvm::Instruction::SIToFP:
case llvm::Instruction::FPTrunc:
case llvm::Instruction::FPExt:
case llvm::Instruction::PtrToInt:
case llvm::Instruction::IntToPtr:
case llvm::Instruction::AddrSpaceCast:
case llvm::Instruction::BitCast: {
OperationState state(loc, opcMap.lookup(inst->getOpcode()));
SmallVector<Value, 4> ops;
ops.reserve(inst->getNumOperands());
for (auto *op : inst->operand_values())
ops.push_back(processValue(op));
state.addOperands(ops);
if (!inst->getType()->isVoidTy())
state.addTypes(ArrayRef<Type>({processType(inst->getType())}));
Operation *op = b.createOperation(state);
if (!inst->getType()->isVoidTy())
v = op->getResult(0);
return success();
}
case llvm::Instruction::ICmp: {
v = b.create<ICmpOp>(
loc, getICmpPredicate(cast<llvm::ICmpInst>(inst)->getPredicate()),
processValue(inst->getOperand(0)), processValue(inst->getOperand(1)));
return success();
}
case llvm::Instruction::Br: {
auto *brInst = cast<llvm::BranchInst>(inst);
OperationState state(loc,
brInst->isConditional() ? "llvm.cond_br" : "llvm.br");
SmallVector<Value, 4> ops;
if (brInst->isConditional())
ops.push_back(processValue(brInst->getCondition()));
state.addOperands(ops);
SmallVector<Block *, 4> succs;
for (auto *succ : llvm::reverse(brInst->successors()))
state.addSuccessor(blocks[succ], processBranchArgs(brInst, succ));
b.createOperation(state);
return success();
}
case llvm::Instruction::PHI: {
v = b.getInsertionBlock()->addArgument(processType(inst->getType()));
return success();
}
case llvm::Instruction::Call: {
llvm::CallInst *ci = cast<llvm::CallInst>(inst);
SmallVector<Value, 4> ops;
ops.reserve(inst->getNumOperands());
for (auto &op : ci->arg_operands())
ops.push_back(processValue(op.get()));
SmallVector<Type, 2> tys;
if (!ci->getType()->isVoidTy())
tys.push_back(processType(inst->getType()));
Operation *op;
if (llvm::Function *callee = ci->getCalledFunction()) {
op = b.create<CallOp>(loc, tys, b.getSymbolRefAttr(callee->getName()),
ops);
} else {
ops.insert(ops.begin(), processValue(ci->getCalledValue()));
op = b.create<CallOp>(loc, tys, ops, ArrayRef<NamedAttribute>());
}
if (!ci->getType()->isVoidTy())
v = op->getResult(0);
return success();
}
case llvm::Instruction::GetElementPtr: {
// FIXME: Support inbounds GEPs.
llvm::GetElementPtrInst *gep = cast<llvm::GetElementPtrInst>(inst);
SmallVector<Value, 4> ops;
for (auto *op : gep->operand_values())
ops.push_back(processValue(op));
v = b.create<GEPOp>(loc, processType(inst->getType()), ops,
ArrayRef<NamedAttribute>());
return success();
}
}
}
LogicalResult Importer::processFunction(llvm::Function *f) {
blocks.clear();
instMap.clear();
unknownInstMap.clear();
b.setInsertionPoint(module.getBody(), getFuncInsertPt());
LLVMFuncOp fop = b.create<LLVMFuncOp>(UnknownLoc::get(context), f->getName(),
processType(f->getFunctionType()));
if (f->isDeclaration())
return success();
// Eagerly create all blocks.
SmallVector<Block *, 4> blockList;
for (llvm::BasicBlock &bb : *f) {
blockList.push_back(b.createBlock(&fop.body(), fop.body().end()));
blocks[&bb] = blockList.back();
}
currentEntryBlock = blockList[0];
// Add function arguments to the entry block.
for (auto &arg : f->args())
instMap[&arg] = blockList[0]->addArgument(processType(arg.getType()));
for (auto bbs : llvm::zip(*f, blockList)) {
if (failed(processBasicBlock(&std::get<0>(bbs), std::get<1>(bbs))))
return failure();
}
// Now that all instructions are guaranteed to have been visited, ensure
// any unknown uses we encountered are remapped.
for (auto &llvmAndUnknown : unknownInstMap) {
assert(instMap.count(llvmAndUnknown.first));
Value newValue = instMap[llvmAndUnknown.first];
Value oldValue = llvmAndUnknown.second->getResult(0);
oldValue.replaceAllUsesWith(newValue);
llvmAndUnknown.second->erase();
}
return success();
}
LogicalResult Importer::processBasicBlock(llvm::BasicBlock *bb, Block *block) {
b.setInsertionPointToStart(block);
for (llvm::Instruction &inst : *bb) {
if (failed(processInstruction(&inst)))
return failure();
}
return success();
}
OwningModuleRef
mlir::translateLLVMIRToModule(std::unique_ptr<llvm::Module> llvmModule,
MLIRContext *context) {
OwningModuleRef module(ModuleOp::create(
FileLineColLoc::get("", /*line=*/0, /*column=*/0, context)));
Importer deserializer(context, module.get());
for (llvm::GlobalVariable &gv : llvmModule->globals()) {
if (!deserializer.processGlobal(&gv))
return {};
}
for (llvm::Function &f : llvmModule->functions()) {
if (failed(deserializer.processFunction(&f)))
return {};
}
return module;
}
// Deserializes the LLVM bitcode stored in `input` into an MLIR module in the
// LLVM dialect.
OwningModuleRef translateLLVMIRToModule(llvm::SourceMgr &sourceMgr,
MLIRContext *context) {
LLVMDialect *dialect = context->getRegisteredDialect<LLVMDialect>();
assert(dialect && "Could not find LLVMDialect?");
llvm::SMDiagnostic err;
std::unique_ptr<llvm::Module> llvmModule =
llvm::parseIR(*sourceMgr.getMemoryBuffer(sourceMgr.getMainFileID()), err,
dialect->getLLVMContext(),
/*UpgradeDebugInfo=*/true,
/*DataLayoutString=*/"");
if (!llvmModule) {
std::string errStr;
llvm::raw_string_ostream errStream(errStr);
err.print(/*ProgName=*/"", errStream);
emitError(UnknownLoc::get(context)) << errStream.str();
return {};
}
return translateLLVMIRToModule(std::move(llvmModule), context);
}
static TranslateToMLIRRegistration
fromLLVM("import-llvm",
[](llvm::SourceMgr &sourceMgr, MLIRContext *context) {
return translateLLVMIRToModule(sourceMgr, context);
});