GSYMTest.cpp
54.9 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
//===- llvm/unittest/DebugInfo/GSYMTest.cpp -------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/DebugInfo/GSYM/Header.h"
#include "llvm/DebugInfo/GSYM/FileEntry.h"
#include "llvm/DebugInfo/GSYM/FileWriter.h"
#include "llvm/DebugInfo/GSYM/FunctionInfo.h"
#include "llvm/DebugInfo/GSYM/GsymCreator.h"
#include "llvm/DebugInfo/GSYM/GsymReader.h"
#include "llvm/DebugInfo/GSYM/InlineInfo.h"
#include "llvm/DebugInfo/GSYM/Range.h"
#include "llvm/DebugInfo/GSYM/StringTable.h"
#include "llvm/Support/DataExtractor.h"
#include "llvm/Support/Endian.h"
#include "llvm/Testing/Support/Error.h"
#include "gtest/gtest.h"
#include "gmock/gmock.h"
#include <string>
using namespace llvm;
using namespace gsym;
void checkError(ArrayRef<std::string> ExpectedMsgs, Error Err) {
ASSERT_TRUE(bool(Err));
size_t WhichMsg = 0;
Error Remaining =
handleErrors(std::move(Err), [&](const ErrorInfoBase &Actual) {
ASSERT_LT(WhichMsg, ExpectedMsgs.size());
// Use .str(), because googletest doesn't visualise a StringRef
// properly.
EXPECT_EQ(Actual.message(), ExpectedMsgs[WhichMsg++]);
});
EXPECT_EQ(WhichMsg, ExpectedMsgs.size());
EXPECT_FALSE(Remaining);
}
void checkError(std::string ExpectedMsg, Error Err) {
checkError(ArrayRef<std::string>{ExpectedMsg}, std::move(Err));
}
TEST(GSYMTest, TestFileEntry) {
// Make sure default constructed GSYM FileEntry has zeroes in the
// directory and basename string table indexes.
FileEntry empty1;
FileEntry empty2;
EXPECT_EQ(empty1.Dir, 0u);
EXPECT_EQ(empty1.Base, 0u);
// Verify equality operator works
FileEntry a1(10, 30);
FileEntry a2(10, 30);
FileEntry b(10, 40);
EXPECT_EQ(empty1, empty2);
EXPECT_EQ(a1, a2);
EXPECT_NE(a1, b);
EXPECT_NE(a1, empty1);
// Test we can use llvm::gsym::FileEntry in llvm::DenseMap.
DenseMap<FileEntry, uint32_t> EntryToIndex;
constexpr uint32_t Index1 = 1;
constexpr uint32_t Index2 = 1;
auto R = EntryToIndex.insert(std::make_pair(a1, Index1));
EXPECT_TRUE(R.second);
EXPECT_EQ(R.first->second, Index1);
R = EntryToIndex.insert(std::make_pair(a1, Index1));
EXPECT_FALSE(R.second);
EXPECT_EQ(R.first->second, Index1);
R = EntryToIndex.insert(std::make_pair(b, Index2));
EXPECT_TRUE(R.second);
EXPECT_EQ(R.first->second, Index2);
R = EntryToIndex.insert(std::make_pair(a1, Index2));
EXPECT_FALSE(R.second);
EXPECT_EQ(R.first->second, Index2);
}
TEST(GSYMTest, TestFunctionInfo) {
// Test GSYM FunctionInfo structs and functionality.
FunctionInfo invalid;
EXPECT_FALSE(invalid.isValid());
EXPECT_FALSE(invalid.hasRichInfo());
const uint64_t StartAddr = 0x1000;
const uint64_t EndAddr = 0x1100;
const uint64_t Size = EndAddr - StartAddr;
const uint32_t NameOffset = 30;
FunctionInfo FI(StartAddr, Size, NameOffset);
EXPECT_TRUE(FI.isValid());
EXPECT_FALSE(FI.hasRichInfo());
EXPECT_EQ(FI.startAddress(), StartAddr);
EXPECT_EQ(FI.endAddress(), EndAddr);
EXPECT_EQ(FI.size(), Size);
const uint32_t FileIdx = 1;
const uint32_t Line = 12;
FI.OptLineTable = LineTable();
FI.OptLineTable->push(LineEntry(StartAddr,FileIdx,Line));
EXPECT_TRUE(FI.hasRichInfo());
FI.clear();
EXPECT_FALSE(FI.isValid());
EXPECT_FALSE(FI.hasRichInfo());
FunctionInfo A1(0x1000, 0x100, NameOffset);
FunctionInfo A2(0x1000, 0x100, NameOffset);
FunctionInfo B;
// Check == operator
EXPECT_EQ(A1, A2);
// Make sure things are not equal if they only differ by start address.
B = A2;
B.setStartAddress(0x2000);
EXPECT_NE(B, A2);
// Make sure things are not equal if they only differ by size.
B = A2;
B.setSize(0x101);
EXPECT_NE(B, A2);
// Make sure things are not equal if they only differ by name.
B = A2;
B.Name = 60;
EXPECT_NE(B, A2);
// Check < operator.
// Check less than where address differs.
B = A2;
B.setStartAddress(A2.startAddress() + 0x1000);
EXPECT_LT(A1, B);
// We use the < operator to take a variety of different FunctionInfo
// structs from a variety of sources: symtab, debug info, runtime info
// and we sort them and want the sorting to allow us to quickly get the
// best version of a function info.
FunctionInfo FISymtab(StartAddr, Size, NameOffset);
FunctionInfo FIWithLines(StartAddr, Size, NameOffset);
FIWithLines.OptLineTable = LineTable();
FIWithLines.OptLineTable->push(LineEntry(StartAddr,FileIdx,Line));
// Test that a FunctionInfo with just a name and size is less than one
// that has name, size and any number of line table entries
EXPECT_LT(FISymtab, FIWithLines);
FunctionInfo FIWithLinesAndInline = FIWithLines;
FIWithLinesAndInline.Inline = InlineInfo();
FIWithLinesAndInline.Inline->Ranges.insert(
AddressRange(StartAddr, StartAddr + 0x10));
// Test that a FunctionInfo with name, size, and line entries is less than
// the same one with valid inline info
EXPECT_LT(FIWithLines, FIWithLinesAndInline);
// Test if we have an entry with lines and one with more lines for the same
// range, the ones with more lines is greater than the one with less.
FunctionInfo FIWithMoreLines = FIWithLines;
FIWithMoreLines.OptLineTable->push(LineEntry(StartAddr,FileIdx,Line+5));
EXPECT_LT(FIWithLines, FIWithMoreLines);
// Test that if we have the same number of lines we compare the line entries
// in the FunctionInfo.OptLineTable.Lines vector.
FunctionInfo FIWithLinesWithHigherAddress = FIWithLines;
FIWithLinesWithHigherAddress.OptLineTable->get(0).Addr += 0x10;
EXPECT_LT(FIWithLines, FIWithLinesWithHigherAddress);
}
static void TestFunctionInfoDecodeError(llvm::support::endianness ByteOrder,
std::string Bytes,
const uint64_t BaseAddr,
std::string ExpectedErrorMsg) {
uint8_t AddressSize = 4;
DataExtractor Data(Bytes, ByteOrder == llvm::support::little, AddressSize);
llvm::Expected<FunctionInfo> Decoded = FunctionInfo::decode(Data, BaseAddr);
// Make sure decoding fails.
ASSERT_FALSE((bool)Decoded);
// Make sure decoded object is the same as the one we encoded.
checkError(ExpectedErrorMsg, Decoded.takeError());
}
TEST(GSYMTest, TestFunctionInfoDecodeErrors) {
// Test decoding FunctionInfo objects that ensure we report an appropriate
// error message.
const llvm::support::endianness ByteOrder = llvm::support::little;
SmallString<512> Str;
raw_svector_ostream OutStrm(Str);
FileWriter FW(OutStrm, ByteOrder);
const uint64_t BaseAddr = 0x100;
TestFunctionInfoDecodeError(ByteOrder, OutStrm.str(), BaseAddr,
"0x00000000: missing FunctionInfo Size");
FW.writeU32(0x100); // Function size.
TestFunctionInfoDecodeError(ByteOrder, OutStrm.str(), BaseAddr,
"0x00000004: missing FunctionInfo Name");
// Write out an invalid Name string table offset of zero.
FW.writeU32(0);
TestFunctionInfoDecodeError(ByteOrder, OutStrm.str(), BaseAddr,
"0x00000004: invalid FunctionInfo Name value 0x00000000");
// Modify the Name to be 0x00000001, which is a valid value.
FW.fixup32(0x00000001, 4);
TestFunctionInfoDecodeError(ByteOrder, OutStrm.str(), BaseAddr,
"0x00000008: missing FunctionInfo InfoType value");
auto FixupOffset = FW.tell();
FW.writeU32(1); // InfoType::LineTableInfo.
TestFunctionInfoDecodeError(ByteOrder, OutStrm.str(), BaseAddr,
"0x0000000c: missing FunctionInfo InfoType length");
FW.fixup32(4, FixupOffset); // Write an invalid InfoType enumeration value
FW.writeU32(0); // LineTableInfo InfoType data length.
TestFunctionInfoDecodeError(ByteOrder, OutStrm.str(), BaseAddr,
"0x00000008: unsupported InfoType 4");
}
static void TestFunctionInfoEncodeError(llvm::support::endianness ByteOrder,
const FunctionInfo &FI,
std::string ExpectedErrorMsg) {
SmallString<512> Str;
raw_svector_ostream OutStrm(Str);
FileWriter FW(OutStrm, ByteOrder);
Expected<uint64_t> ExpectedOffset = FI.encode(FW);
ASSERT_FALSE(ExpectedOffset);
checkError(ExpectedErrorMsg, ExpectedOffset.takeError());
}
TEST(GSYMTest, TestFunctionInfoEncodeErrors) {
const uint64_t FuncAddr = 0x1000;
const uint64_t FuncSize = 0x100;
const uint32_t InvalidName = 0;
const uint32_t ValidName = 1;
FunctionInfo InvalidNameFI(FuncAddr, FuncSize, InvalidName);
TestFunctionInfoEncodeError(llvm::support::little, InvalidNameFI,
"attempted to encode invalid FunctionInfo object");
FunctionInfo InvalidLineTableFI(FuncAddr, FuncSize, ValidName);
// Empty line tables are not valid. Verify if the encoding of anything
// in our line table fails, that we see get the error propagated.
InvalidLineTableFI.OptLineTable = LineTable();
TestFunctionInfoEncodeError(llvm::support::little, InvalidLineTableFI,
"attempted to encode invalid LineTable object");
FunctionInfo InvalidInlineInfoFI(FuncAddr, FuncSize, ValidName);
// Empty line tables are not valid. Verify if the encoding of anything
// in our line table fails, that we see get the error propagated.
InvalidInlineInfoFI.Inline = InlineInfo();
TestFunctionInfoEncodeError(llvm::support::little, InvalidInlineInfoFI,
"attempted to encode invalid InlineInfo object");
}
static void TestFunctionInfoEncodeDecode(llvm::support::endianness ByteOrder,
const FunctionInfo &FI) {
// Test encoding and decoding FunctionInfo objects.
SmallString<512> Str;
raw_svector_ostream OutStrm(Str);
FileWriter FW(OutStrm, ByteOrder);
llvm::Expected<uint64_t> ExpectedOffset = FI.encode(FW);
ASSERT_TRUE(bool(ExpectedOffset));
// Verify we got the encoded offset back from the encode function.
ASSERT_EQ(ExpectedOffset.get(), 0ULL);
std::string Bytes(OutStrm.str());
uint8_t AddressSize = 4;
DataExtractor Data(Bytes, ByteOrder == llvm::support::little, AddressSize);
llvm::Expected<FunctionInfo> Decoded = FunctionInfo::decode(Data,
FI.Range.Start);
// Make sure decoding succeeded.
ASSERT_TRUE((bool)Decoded);
// Make sure decoded object is the same as the one we encoded.
EXPECT_EQ(FI, Decoded.get());
}
static void AddLines(uint64_t FuncAddr, uint32_t FileIdx, FunctionInfo &FI) {
FI.OptLineTable = LineTable();
LineEntry Line0(FuncAddr + 0x000, FileIdx, 10);
LineEntry Line1(FuncAddr + 0x010, FileIdx, 11);
LineEntry Line2(FuncAddr + 0x100, FileIdx, 1000);
FI.OptLineTable->push(Line0);
FI.OptLineTable->push(Line1);
FI.OptLineTable->push(Line2);
}
static void AddInline(uint64_t FuncAddr, uint64_t FuncSize, FunctionInfo &FI) {
FI.Inline = InlineInfo();
FI.Inline->Ranges.insert(AddressRange(FuncAddr, FuncAddr + FuncSize));
InlineInfo Inline1;
Inline1.Ranges.insert(AddressRange(FuncAddr + 0x10, FuncAddr + 0x30));
Inline1.Name = 1;
Inline1.CallFile = 1;
Inline1.CallLine = 11;
FI.Inline->Children.push_back(Inline1);
}
TEST(GSYMTest, TestFunctionInfoEncoding) {
constexpr uint64_t FuncAddr = 0x1000;
constexpr uint64_t FuncSize = 0x100;
constexpr uint32_t FuncName = 1;
constexpr uint32_t FileIdx = 1;
// Make sure that we can encode and decode a FunctionInfo with no line table
// or inline info.
FunctionInfo FI(FuncAddr, FuncSize, FuncName);
TestFunctionInfoEncodeDecode(llvm::support::little, FI);
TestFunctionInfoEncodeDecode(llvm::support::big, FI);
// Make sure that we can encode and decode a FunctionInfo with a line table
// and no inline info.
FunctionInfo FILines(FuncAddr, FuncSize, FuncName);
AddLines(FuncAddr, FileIdx, FILines);
TestFunctionInfoEncodeDecode(llvm::support::little, FILines);
TestFunctionInfoEncodeDecode(llvm::support::big, FILines);
// Make sure that we can encode and decode a FunctionInfo with no line table
// and with inline info.
FunctionInfo FIInline(FuncAddr, FuncSize, FuncName);
AddInline(FuncAddr, FuncSize, FIInline);
TestFunctionInfoEncodeDecode(llvm::support::little, FIInline);
TestFunctionInfoEncodeDecode(llvm::support::big, FIInline);
// Make sure that we can encode and decode a FunctionInfo with no line table
// and with inline info.
FunctionInfo FIBoth(FuncAddr, FuncSize, FuncName);
AddLines(FuncAddr, FileIdx, FIBoth);
AddInline(FuncAddr, FuncSize, FIBoth);
TestFunctionInfoEncodeDecode(llvm::support::little, FIBoth);
TestFunctionInfoEncodeDecode(llvm::support::big, FIBoth);
}
static void TestInlineInfoEncodeDecode(llvm::support::endianness ByteOrder,
const InlineInfo &Inline) {
// Test encoding and decoding InlineInfo objects
SmallString<512> Str;
raw_svector_ostream OutStrm(Str);
FileWriter FW(OutStrm, ByteOrder);
const uint64_t BaseAddr = Inline.Ranges[0].Start;
llvm::Error Err = Inline.encode(FW, BaseAddr);
ASSERT_FALSE(Err);
std::string Bytes(OutStrm.str());
uint8_t AddressSize = 4;
DataExtractor Data(Bytes, ByteOrder == llvm::support::little, AddressSize);
llvm::Expected<InlineInfo> Decoded = InlineInfo::decode(Data, BaseAddr);
// Make sure decoding succeeded.
ASSERT_TRUE((bool)Decoded);
// Make sure decoded object is the same as the one we encoded.
EXPECT_EQ(Inline, Decoded.get());
}
static void TestInlineInfoDecodeError(llvm::support::endianness ByteOrder,
std::string Bytes,
const uint64_t BaseAddr,
std::string ExpectedErrorMsg) {
uint8_t AddressSize = 4;
DataExtractor Data(Bytes, ByteOrder == llvm::support::little, AddressSize);
llvm::Expected<InlineInfo> Decoded = InlineInfo::decode(Data, BaseAddr);
// Make sure decoding fails.
ASSERT_FALSE((bool)Decoded);
// Make sure decoded object is the same as the one we encoded.
checkError(ExpectedErrorMsg, Decoded.takeError());
}
static void TestInlineInfoEncodeError(llvm::support::endianness ByteOrder,
const InlineInfo &Inline,
std::string ExpectedErrorMsg) {
SmallString<512> Str;
raw_svector_ostream OutStrm(Str);
FileWriter FW(OutStrm, ByteOrder);
const uint64_t BaseAddr = Inline.Ranges.empty() ? 0 : Inline.Ranges[0].Start;
llvm::Error Err = Inline.encode(FW, BaseAddr);
checkError(ExpectedErrorMsg, std::move(Err));
}
TEST(GSYMTest, TestInlineInfo) {
// Test InlineInfo structs.
InlineInfo II;
EXPECT_FALSE(II.isValid());
II.Ranges.insert(AddressRange(0x1000, 0x2000));
// Make sure InlineInfo in valid with just an address range since
// top level InlineInfo objects have ranges with no name, call file
// or call line
EXPECT_TRUE(II.isValid());
// Make sure InlineInfo isn't after being cleared.
II.clear();
EXPECT_FALSE(II.isValid());
// Create an InlineInfo that contains the following data. The
// indentation of the address range indicates the parent child
// relationships of the InlineInfo objects:
//
// Variable Range and values
// =========== ====================================================
// Root [0x100-0x200) (no name, file, or line)
// Inline1 [0x150-0x160) Name = 1, File = 1, Line = 11
// Inline1Sub1 [0x152-0x155) Name = 2, File = 2, Line = 22
// Inline1Sub2 [0x157-0x158) Name = 3, File = 3, Line = 33
InlineInfo Root;
Root.Ranges.insert(AddressRange(0x100, 0x200));
InlineInfo Inline1;
Inline1.Ranges.insert(AddressRange(0x150, 0x160));
Inline1.Name = 1;
Inline1.CallFile = 1;
Inline1.CallLine = 11;
InlineInfo Inline1Sub1;
Inline1Sub1.Ranges.insert(AddressRange(0x152, 0x155));
Inline1Sub1.Name = 2;
Inline1Sub1.CallFile = 2;
Inline1Sub1.CallLine = 22;
InlineInfo Inline1Sub2;
Inline1Sub2.Ranges.insert(AddressRange(0x157, 0x158));
Inline1Sub2.Name = 3;
Inline1Sub2.CallFile = 3;
Inline1Sub2.CallLine = 33;
Inline1.Children.push_back(Inline1Sub1);
Inline1.Children.push_back(Inline1Sub2);
Root.Children.push_back(Inline1);
// Make sure an address that is out of range won't match
EXPECT_FALSE(Root.getInlineStack(0x50));
// Verify that we get no inline stacks for addresses out of [0x100-0x200)
EXPECT_FALSE(Root.getInlineStack(Root.Ranges[0].Start - 1));
EXPECT_FALSE(Root.getInlineStack(Root.Ranges[0].End));
// Verify we get no inline stack entries for addresses that are in
// [0x100-0x200) but not in [0x150-0x160)
EXPECT_FALSE(Root.getInlineStack(Inline1.Ranges[0].Start - 1));
EXPECT_FALSE(Root.getInlineStack(Inline1.Ranges[0].End));
// Verify we get one inline stack entry for addresses that are in
// [[0x150-0x160)) but not in [0x152-0x155) or [0x157-0x158)
auto InlineInfos = Root.getInlineStack(Inline1.Ranges[0].Start);
ASSERT_TRUE(InlineInfos);
ASSERT_EQ(InlineInfos->size(), 1u);
ASSERT_EQ(*InlineInfos->at(0), Inline1);
InlineInfos = Root.getInlineStack(Inline1.Ranges[0].End - 1);
EXPECT_TRUE(InlineInfos);
ASSERT_EQ(InlineInfos->size(), 1u);
ASSERT_EQ(*InlineInfos->at(0), Inline1);
// Verify we get two inline stack entries for addresses that are in
// [0x152-0x155)
InlineInfos = Root.getInlineStack(Inline1Sub1.Ranges[0].Start);
EXPECT_TRUE(InlineInfos);
ASSERT_EQ(InlineInfos->size(), 2u);
ASSERT_EQ(*InlineInfos->at(0), Inline1Sub1);
ASSERT_EQ(*InlineInfos->at(1), Inline1);
InlineInfos = Root.getInlineStack(Inline1Sub1.Ranges[0].End - 1);
EXPECT_TRUE(InlineInfos);
ASSERT_EQ(InlineInfos->size(), 2u);
ASSERT_EQ(*InlineInfos->at(0), Inline1Sub1);
ASSERT_EQ(*InlineInfos->at(1), Inline1);
// Verify we get two inline stack entries for addresses that are in
// [0x157-0x158)
InlineInfos = Root.getInlineStack(Inline1Sub2.Ranges[0].Start);
EXPECT_TRUE(InlineInfos);
ASSERT_EQ(InlineInfos->size(), 2u);
ASSERT_EQ(*InlineInfos->at(0), Inline1Sub2);
ASSERT_EQ(*InlineInfos->at(1), Inline1);
InlineInfos = Root.getInlineStack(Inline1Sub2.Ranges[0].End - 1);
EXPECT_TRUE(InlineInfos);
ASSERT_EQ(InlineInfos->size(), 2u);
ASSERT_EQ(*InlineInfos->at(0), Inline1Sub2);
ASSERT_EQ(*InlineInfos->at(1), Inline1);
// Test encoding and decoding InlineInfo objects
TestInlineInfoEncodeDecode(llvm::support::little, Root);
TestInlineInfoEncodeDecode(llvm::support::big, Root);
}
TEST(GSYMTest, TestInlineInfoEncodeErrors) {
// Test InlineInfo encoding errors.
// Test that we get an error when trying to encode an InlineInfo object
// that has no ranges.
InlineInfo Empty;
std::string EmptyErr("attempted to encode invalid InlineInfo object");
TestInlineInfoEncodeError(llvm::support::little, Empty, EmptyErr);
TestInlineInfoEncodeError(llvm::support::big, Empty, EmptyErr);
// Verify that we get an error trying to encode an InlineInfo object that has
// a child InlineInfo that has no ranges.
InlineInfo ContainsEmpty;
ContainsEmpty.Ranges.insert({0x100,200});
ContainsEmpty.Children.push_back(Empty);
TestInlineInfoEncodeError(llvm::support::little, ContainsEmpty, EmptyErr);
TestInlineInfoEncodeError(llvm::support::big, ContainsEmpty, EmptyErr);
// Verify that we get an error trying to encode an InlineInfo object that has
// a child whose address range is not contained in the parent address range.
InlineInfo ChildNotContained;
std::string ChildNotContainedErr("child range not contained in parent");
ChildNotContained.Ranges.insert({0x100,200});
InlineInfo ChildNotContainedChild;
ChildNotContainedChild.Ranges.insert({0x200,300});
ChildNotContained.Children.push_back(ChildNotContainedChild);
TestInlineInfoEncodeError(llvm::support::little, ChildNotContained,
ChildNotContainedErr);
TestInlineInfoEncodeError(llvm::support::big, ChildNotContained,
ChildNotContainedErr);
}
TEST(GSYMTest, TestInlineInfoDecodeErrors) {
// Test decoding InlineInfo objects that ensure we report an appropriate
// error message.
const llvm::support::endianness ByteOrder = llvm::support::little;
SmallString<512> Str;
raw_svector_ostream OutStrm(Str);
FileWriter FW(OutStrm, ByteOrder);
const uint64_t BaseAddr = 0x100;
TestInlineInfoDecodeError(ByteOrder, OutStrm.str(), BaseAddr,
"0x00000000: missing InlineInfo address ranges data");
AddressRanges Ranges;
Ranges.insert({BaseAddr, BaseAddr+0x100});
Ranges.encode(FW, BaseAddr);
TestInlineInfoDecodeError(ByteOrder, OutStrm.str(), BaseAddr,
"0x00000004: missing InlineInfo uint8_t indicating children");
FW.writeU8(0);
TestInlineInfoDecodeError(ByteOrder, OutStrm.str(), BaseAddr,
"0x00000005: missing InlineInfo uint32_t for name");
FW.writeU32(0);
TestInlineInfoDecodeError(ByteOrder, OutStrm.str(), BaseAddr,
"0x00000009: missing ULEB128 for InlineInfo call file");
FW.writeU8(0);
TestInlineInfoDecodeError(ByteOrder, OutStrm.str(), BaseAddr,
"0x0000000a: missing ULEB128 for InlineInfo call line");
}
TEST(GSYMTest, TestLineEntry) {
// test llvm::gsym::LineEntry structs.
const uint64_t ValidAddr = 0x1000;
const uint64_t InvalidFileIdx = 0;
const uint32_t ValidFileIdx = 1;
const uint32_t ValidLine = 5;
LineEntry Invalid;
EXPECT_FALSE(Invalid.isValid());
// Make sure that an entry is invalid if it has a bad file index.
LineEntry BadFile(ValidAddr, InvalidFileIdx, ValidLine);
EXPECT_FALSE(BadFile.isValid());
// Test operators
LineEntry E1(ValidAddr, ValidFileIdx, ValidLine);
LineEntry E2(ValidAddr, ValidFileIdx, ValidLine);
LineEntry DifferentAddr(ValidAddr + 1, ValidFileIdx, ValidLine);
LineEntry DifferentFile(ValidAddr, ValidFileIdx + 1, ValidLine);
LineEntry DifferentLine(ValidAddr, ValidFileIdx, ValidLine + 1);
EXPECT_TRUE(E1.isValid());
EXPECT_EQ(E1, E2);
EXPECT_NE(E1, DifferentAddr);
EXPECT_NE(E1, DifferentFile);
EXPECT_NE(E1, DifferentLine);
EXPECT_LT(E1, DifferentAddr);
}
TEST(GSYMTest, TestRanges) {
// test llvm::gsym::AddressRange.
const uint64_t StartAddr = 0x1000;
const uint64_t EndAddr = 0x2000;
// Verify constructor and API to ensure it takes start and end address.
const AddressRange Range(StartAddr, EndAddr);
EXPECT_EQ(Range.size(), EndAddr - StartAddr);
// Verify llvm::gsym::AddressRange::contains().
EXPECT_FALSE(Range.contains(0));
EXPECT_FALSE(Range.contains(StartAddr - 1));
EXPECT_TRUE(Range.contains(StartAddr));
EXPECT_TRUE(Range.contains(EndAddr - 1));
EXPECT_FALSE(Range.contains(EndAddr));
EXPECT_FALSE(Range.contains(UINT64_MAX));
const AddressRange RangeSame(StartAddr, EndAddr);
const AddressRange RangeDifferentStart(StartAddr + 1, EndAddr);
const AddressRange RangeDifferentEnd(StartAddr, EndAddr + 1);
const AddressRange RangeDifferentStartEnd(StartAddr + 1, EndAddr + 1);
// Test == and != with values that are the same
EXPECT_EQ(Range, RangeSame);
EXPECT_FALSE(Range != RangeSame);
// Test == and != with values that are the different
EXPECT_NE(Range, RangeDifferentStart);
EXPECT_NE(Range, RangeDifferentEnd);
EXPECT_NE(Range, RangeDifferentStartEnd);
EXPECT_FALSE(Range == RangeDifferentStart);
EXPECT_FALSE(Range == RangeDifferentEnd);
EXPECT_FALSE(Range == RangeDifferentStartEnd);
// Test "bool operator<(const AddressRange &, const AddressRange &)".
EXPECT_FALSE(Range < RangeSame);
EXPECT_FALSE(RangeSame < Range);
EXPECT_LT(Range, RangeDifferentStart);
EXPECT_LT(Range, RangeDifferentEnd);
EXPECT_LT(Range, RangeDifferentStartEnd);
// Test "bool operator<(const AddressRange &, uint64_t)"
EXPECT_LT(Range.Start, StartAddr + 1);
// Test "bool operator<(uint64_t, const AddressRange &)"
EXPECT_LT(StartAddr - 1, Range.Start);
// Verify llvm::gsym::AddressRange::isContiguousWith() and
// llvm::gsym::AddressRange::intersects().
const AddressRange EndsBeforeRangeStart(0, StartAddr - 1);
const AddressRange EndsAtRangeStart(0, StartAddr);
const AddressRange OverlapsRangeStart(StartAddr - 1, StartAddr + 1);
const AddressRange InsideRange(StartAddr + 1, EndAddr - 1);
const AddressRange OverlapsRangeEnd(EndAddr - 1, EndAddr + 1);
const AddressRange StartsAtRangeEnd(EndAddr, EndAddr + 0x100);
const AddressRange StartsAfterRangeEnd(EndAddr + 1, EndAddr + 0x100);
EXPECT_FALSE(Range.intersects(EndsBeforeRangeStart));
EXPECT_FALSE(Range.intersects(EndsAtRangeStart));
EXPECT_TRUE(Range.intersects(OverlapsRangeStart));
EXPECT_TRUE(Range.intersects(InsideRange));
EXPECT_TRUE(Range.intersects(OverlapsRangeEnd));
EXPECT_FALSE(Range.intersects(StartsAtRangeEnd));
EXPECT_FALSE(Range.intersects(StartsAfterRangeEnd));
// Test the functions that maintain GSYM address ranges:
// "bool AddressRange::contains(uint64_t Addr) const;"
// "void AddressRanges::insert(const AddressRange &R);"
AddressRanges Ranges;
Ranges.insert(AddressRange(0x1000, 0x2000));
Ranges.insert(AddressRange(0x2000, 0x3000));
Ranges.insert(AddressRange(0x4000, 0x5000));
EXPECT_FALSE(Ranges.contains(0));
EXPECT_FALSE(Ranges.contains(0x1000 - 1));
EXPECT_TRUE(Ranges.contains(0x1000));
EXPECT_TRUE(Ranges.contains(0x2000));
EXPECT_TRUE(Ranges.contains(0x4000));
EXPECT_TRUE(Ranges.contains(0x2000 - 1));
EXPECT_TRUE(Ranges.contains(0x3000 - 1));
EXPECT_FALSE(Ranges.contains(0x3000 + 1));
EXPECT_TRUE(Ranges.contains(0x5000 - 1));
EXPECT_FALSE(Ranges.contains(0x5000 + 1));
EXPECT_FALSE(Ranges.contains(UINT64_MAX));
EXPECT_FALSE(Ranges.contains(AddressRange()));
EXPECT_FALSE(Ranges.contains(AddressRange(0x1000-1, 0x1000)));
EXPECT_FALSE(Ranges.contains(AddressRange(0x1000, 0x1000)));
EXPECT_TRUE(Ranges.contains(AddressRange(0x1000, 0x1000+1)));
EXPECT_TRUE(Ranges.contains(AddressRange(0x1000, 0x2000)));
EXPECT_FALSE(Ranges.contains(AddressRange(0x1000, 0x2001)));
EXPECT_TRUE(Ranges.contains(AddressRange(0x2000, 0x3000)));
EXPECT_FALSE(Ranges.contains(AddressRange(0x2000, 0x3001)));
EXPECT_FALSE(Ranges.contains(AddressRange(0x3000, 0x3001)));
EXPECT_FALSE(Ranges.contains(AddressRange(0x1500, 0x4500)));
EXPECT_FALSE(Ranges.contains(AddressRange(0x5000, 0x5001)));
// Verify that intersecting ranges get combined
Ranges.clear();
Ranges.insert(AddressRange(0x1100, 0x1F00));
// Verify a wholy contained range that is added doesn't do anything.
Ranges.insert(AddressRange(0x1500, 0x1F00));
EXPECT_EQ(Ranges.size(), 1u);
EXPECT_EQ(Ranges[0], AddressRange(0x1100, 0x1F00));
// Verify a range that starts before and intersects gets combined.
Ranges.insert(AddressRange(0x1000, Ranges[0].Start + 1));
EXPECT_EQ(Ranges.size(), 1u);
EXPECT_EQ(Ranges[0], AddressRange(0x1000, 0x1F00));
// Verify a range that starts inside and extends ranges gets combined.
Ranges.insert(AddressRange(Ranges[0].End - 1, 0x2000));
EXPECT_EQ(Ranges.size(), 1u);
EXPECT_EQ(Ranges[0], AddressRange(0x1000, 0x2000));
// Verify that adjacent ranges don't get combined
Ranges.insert(AddressRange(0x2000, 0x3000));
EXPECT_EQ(Ranges.size(), 2u);
EXPECT_EQ(Ranges[0], AddressRange(0x1000, 0x2000));
EXPECT_EQ(Ranges[1], AddressRange(0x2000, 0x3000));
// Verify if we add an address range that intersects two ranges
// that they get combined
Ranges.insert(AddressRange(Ranges[0].End - 1, Ranges[1].Start + 1));
EXPECT_EQ(Ranges.size(), 1u);
EXPECT_EQ(Ranges[0], AddressRange(0x1000, 0x3000));
Ranges.insert(AddressRange(0x3000, 0x4000));
Ranges.insert(AddressRange(0x4000, 0x5000));
Ranges.insert(AddressRange(0x2000, 0x4500));
EXPECT_EQ(Ranges.size(), 1u);
EXPECT_EQ(Ranges[0], AddressRange(0x1000, 0x5000));
}
TEST(GSYMTest, TestStringTable) {
StringTable StrTab(StringRef("\0Hello\0World\0", 13));
// Test extracting strings from a string table.
EXPECT_EQ(StrTab.getString(0), "");
EXPECT_EQ(StrTab.getString(1), "Hello");
EXPECT_EQ(StrTab.getString(7), "World");
EXPECT_EQ(StrTab.getString(8), "orld");
// Test pointing to last NULL terminator gets empty string.
EXPECT_EQ(StrTab.getString(12), "");
// Test pointing to past end gets empty string.
EXPECT_EQ(StrTab.getString(13), "");
}
static void TestFileWriterHelper(llvm::support::endianness ByteOrder) {
SmallString<512> Str;
raw_svector_ostream OutStrm(Str);
FileWriter FW(OutStrm, ByteOrder);
const int64_t MinSLEB = INT64_MIN;
const int64_t MaxSLEB = INT64_MAX;
const uint64_t MinULEB = 0;
const uint64_t MaxULEB = UINT64_MAX;
const uint8_t U8 = 0x10;
const uint16_t U16 = 0x1122;
const uint32_t U32 = 0x12345678;
const uint64_t U64 = 0x33445566778899aa;
const char *Hello = "hello";
FW.writeU8(U8);
FW.writeU16(U16);
FW.writeU32(U32);
FW.writeU64(U64);
FW.alignTo(16);
const off_t FixupOffset = FW.tell();
FW.writeU32(0);
FW.writeSLEB(MinSLEB);
FW.writeSLEB(MaxSLEB);
FW.writeULEB(MinULEB);
FW.writeULEB(MaxULEB);
FW.writeNullTerminated(Hello);
// Test Seek, Tell using Fixup32.
FW.fixup32(U32, FixupOffset);
std::string Bytes(OutStrm.str());
uint8_t AddressSize = 4;
DataExtractor Data(Bytes, ByteOrder == llvm::support::little, AddressSize);
uint64_t Offset = 0;
EXPECT_EQ(Data.getU8(&Offset), U8);
EXPECT_EQ(Data.getU16(&Offset), U16);
EXPECT_EQ(Data.getU32(&Offset), U32);
EXPECT_EQ(Data.getU64(&Offset), U64);
Offset = alignTo(Offset, 16);
EXPECT_EQ(Data.getU32(&Offset), U32);
EXPECT_EQ(Data.getSLEB128(&Offset), MinSLEB);
EXPECT_EQ(Data.getSLEB128(&Offset), MaxSLEB);
EXPECT_EQ(Data.getULEB128(&Offset), MinULEB);
EXPECT_EQ(Data.getULEB128(&Offset), MaxULEB);
EXPECT_EQ(Data.getCStrRef(&Offset), StringRef(Hello));
}
TEST(GSYMTest, TestFileWriter) {
TestFileWriterHelper(llvm::support::little);
TestFileWriterHelper(llvm::support::big);
}
TEST(GSYMTest, TestAddressRangeEncodeDecode) {
// Test encoding and decoding AddressRange objects. AddressRange objects
// are always stored as offsets from the a base address. The base address
// is the FunctionInfo's base address for function level ranges, and is
// the base address of the parent range for subranges.
SmallString<512> Str;
raw_svector_ostream OutStrm(Str);
const auto ByteOrder = llvm::support::endian::system_endianness();
FileWriter FW(OutStrm, ByteOrder);
const uint64_t BaseAddr = 0x1000;
const AddressRange Range1(0x1000, 0x1010);
const AddressRange Range2(0x1020, 0x1030);
Range1.encode(FW, BaseAddr);
Range2.encode(FW, BaseAddr);
std::string Bytes(OutStrm.str());
uint8_t AddressSize = 4;
DataExtractor Data(Bytes, ByteOrder == llvm::support::little, AddressSize);
AddressRange DecodedRange1, DecodedRange2;
uint64_t Offset = 0;
DecodedRange1.decode(Data, BaseAddr, Offset);
DecodedRange2.decode(Data, BaseAddr, Offset);
EXPECT_EQ(Range1, DecodedRange1);
EXPECT_EQ(Range2, DecodedRange2);
}
static void TestAddressRangeEncodeDecodeHelper(const AddressRanges &Ranges,
const uint64_t BaseAddr) {
SmallString<512> Str;
raw_svector_ostream OutStrm(Str);
const auto ByteOrder = llvm::support::endian::system_endianness();
FileWriter FW(OutStrm, ByteOrder);
Ranges.encode(FW, BaseAddr);
std::string Bytes(OutStrm.str());
uint8_t AddressSize = 4;
DataExtractor Data(Bytes, ByteOrder == llvm::support::little, AddressSize);
AddressRanges DecodedRanges;
uint64_t Offset = 0;
DecodedRanges.decode(Data, BaseAddr, Offset);
EXPECT_EQ(Ranges, DecodedRanges);
}
TEST(GSYMTest, TestAddressRangesEncodeDecode) {
// Test encoding and decoding AddressRanges. AddressRanges objects contain
// ranges that are stored as offsets from the a base address. The base address
// is the FunctionInfo's base address for function level ranges, and is the
// base address of the parent range for subranges.
const uint64_t BaseAddr = 0x1000;
// Test encoding and decoding with no ranges.
AddressRanges Ranges;
TestAddressRangeEncodeDecodeHelper(Ranges, BaseAddr);
// Test encoding and decoding with 1 range.
Ranges.insert(AddressRange(0x1000, 0x1010));
TestAddressRangeEncodeDecodeHelper(Ranges, BaseAddr);
// Test encoding and decoding with multiple ranges.
Ranges.insert(AddressRange(0x1020, 0x1030));
Ranges.insert(AddressRange(0x1050, 0x1070));
TestAddressRangeEncodeDecodeHelper(Ranges, BaseAddr);
}
static void TestLineTableHelper(llvm::support::endianness ByteOrder,
const LineTable <) {
SmallString<512> Str;
raw_svector_ostream OutStrm(Str);
FileWriter FW(OutStrm, ByteOrder);
const uint64_t BaseAddr = LT[0].Addr;
llvm::Error Err = LT.encode(FW, BaseAddr);
ASSERT_FALSE(Err);
std::string Bytes(OutStrm.str());
uint8_t AddressSize = 4;
DataExtractor Data(Bytes, ByteOrder == llvm::support::little, AddressSize);
llvm::Expected<LineTable> Decoded = LineTable::decode(Data, BaseAddr);
// Make sure decoding succeeded.
ASSERT_TRUE((bool)Decoded);
// Make sure decoded object is the same as the one we encoded.
EXPECT_EQ(LT, Decoded.get());
}
TEST(GSYMTest, TestLineTable) {
const uint64_t StartAddr = 0x1000;
const uint32_t FileIdx = 1;
LineTable LT;
LineEntry Line0(StartAddr+0x000, FileIdx, 10);
LineEntry Line1(StartAddr+0x010, FileIdx, 11);
LineEntry Line2(StartAddr+0x100, FileIdx, 1000);
ASSERT_TRUE(LT.empty());
ASSERT_EQ(LT.size(), (size_t)0);
LT.push(Line0);
ASSERT_EQ(LT.size(), (size_t)1);
LT.push(Line1);
LT.push(Line2);
LT.push(LineEntry(StartAddr+0x120, FileIdx, 900));
LT.push(LineEntry(StartAddr+0x120, FileIdx, 2000));
LT.push(LineEntry(StartAddr+0x121, FileIdx, 2001));
LT.push(LineEntry(StartAddr+0x122, FileIdx, 2002));
LT.push(LineEntry(StartAddr+0x123, FileIdx, 2003));
ASSERT_FALSE(LT.empty());
ASSERT_EQ(LT.size(), (size_t)8);
// Test operator[].
ASSERT_EQ(LT[0], Line0);
ASSERT_EQ(LT[1], Line1);
ASSERT_EQ(LT[2], Line2);
// Test encoding and decoding line tables.
TestLineTableHelper(llvm::support::little, LT);
TestLineTableHelper(llvm::support::big, LT);
// Verify the clear method works as expected.
LT.clear();
ASSERT_TRUE(LT.empty());
ASSERT_EQ(LT.size(), (size_t)0);
LineTable LT1;
LineTable LT2;
// Test that two empty line tables are equal and neither are less than
// each other.
ASSERT_EQ(LT1, LT2);
ASSERT_FALSE(LT1 < LT1);
ASSERT_FALSE(LT1 < LT2);
ASSERT_FALSE(LT2 < LT1);
ASSERT_FALSE(LT2 < LT2);
// Test that a line table with less number of line entries is less than a
// line table with more line entries and that they are not equal.
LT2.push(Line0);
ASSERT_LT(LT1, LT2);
ASSERT_NE(LT1, LT2);
// Test that two line tables with the same entries are equal.
LT1.push(Line0);
ASSERT_EQ(LT1, LT2);
ASSERT_FALSE(LT1 < LT2);
ASSERT_FALSE(LT2 < LT2);
}
static void TestLineTableDecodeError(llvm::support::endianness ByteOrder,
std::string Bytes,
const uint64_t BaseAddr,
std::string ExpectedErrorMsg) {
uint8_t AddressSize = 4;
DataExtractor Data(Bytes, ByteOrder == llvm::support::little, AddressSize);
llvm::Expected<LineTable> Decoded = LineTable::decode(Data, BaseAddr);
// Make sure decoding fails.
ASSERT_FALSE((bool)Decoded);
// Make sure decoded object is the same as the one we encoded.
checkError(ExpectedErrorMsg, Decoded.takeError());
}
TEST(GSYMTest, TestLineTableDecodeErrors) {
// Test decoding InlineInfo objects that ensure we report an appropriate
// error message.
const llvm::support::endianness ByteOrder = llvm::support::little;
SmallString<512> Str;
raw_svector_ostream OutStrm(Str);
FileWriter FW(OutStrm, ByteOrder);
const uint64_t BaseAddr = 0x100;
TestLineTableDecodeError(ByteOrder, OutStrm.str(), BaseAddr,
"0x00000000: missing LineTable MinDelta");
FW.writeU8(1); // MinDelta (ULEB)
TestLineTableDecodeError(ByteOrder, OutStrm.str(), BaseAddr,
"0x00000001: missing LineTable MaxDelta");
FW.writeU8(10); // MaxDelta (ULEB)
TestLineTableDecodeError(ByteOrder, OutStrm.str(), BaseAddr,
"0x00000002: missing LineTable FirstLine");
FW.writeU8(20); // FirstLine (ULEB)
TestLineTableDecodeError(ByteOrder, OutStrm.str(), BaseAddr,
"0x00000003: EOF found before EndSequence");
// Test a SetFile with the argument missing from the stream
FW.writeU8(1); // SetFile opcode (uint8_t)
TestLineTableDecodeError(ByteOrder, OutStrm.str(), BaseAddr,
"0x00000004: EOF found before SetFile value");
FW.writeU8(5); // SetFile value as index (ULEB)
// Test a AdvancePC with the argument missing from the stream
FW.writeU8(2); // AdvancePC opcode (uint8_t)
TestLineTableDecodeError(ByteOrder, OutStrm.str(), BaseAddr,
"0x00000006: EOF found before AdvancePC value");
FW.writeU8(20); // AdvancePC value as offset (ULEB)
// Test a AdvancePC with the argument missing from the stream
FW.writeU8(3); // AdvanceLine opcode (uint8_t)
TestLineTableDecodeError(ByteOrder, OutStrm.str(), BaseAddr,
"0x00000008: EOF found before AdvanceLine value");
FW.writeU8(20); // AdvanceLine value as offset (LLEB)
}
TEST(GSYMTest, TestLineTableEncodeErrors) {
const uint64_t BaseAddr = 0x1000;
const uint32_t FileIdx = 1;
const llvm::support::endianness ByteOrder = llvm::support::little;
SmallString<512> Str;
raw_svector_ostream OutStrm(Str);
FileWriter FW(OutStrm, ByteOrder);
LineTable LT;
checkError("attempted to encode invalid LineTable object",
LT.encode(FW, BaseAddr));
// Try to encode a line table where a line entry has an address that is less
// than BaseAddr and verify we get an appropriate error.
LineEntry Line0(BaseAddr+0x000, FileIdx, 10);
LineEntry Line1(BaseAddr+0x010, FileIdx, 11);
LT.push(Line0);
LT.push(Line1);
checkError("LineEntry has address 0x1000 which is less than the function "
"start address 0x1010", LT.encode(FW, BaseAddr+0x10));
LT.clear();
// Try to encode a line table where a line entries has an address that is less
// than BaseAddr and verify we get an appropriate error.
LT.push(Line1);
LT.push(Line0);
checkError("LineEntry in LineTable not in ascending order",
LT.encode(FW, BaseAddr));
LT.clear();
}
static void TestHeaderEncodeError(const Header &H,
std::string ExpectedErrorMsg) {
const support::endianness ByteOrder = llvm::support::little;
SmallString<512> Str;
raw_svector_ostream OutStrm(Str);
FileWriter FW(OutStrm, ByteOrder);
llvm::Error Err = H.encode(FW);
checkError(ExpectedErrorMsg, std::move(Err));
}
static void TestHeaderDecodeError(std::string Bytes,
std::string ExpectedErrorMsg) {
const support::endianness ByteOrder = llvm::support::little;
uint8_t AddressSize = 4;
DataExtractor Data(Bytes, ByteOrder == llvm::support::little, AddressSize);
llvm::Expected<Header> Decoded = Header::decode(Data);
// Make sure decoding fails.
ASSERT_FALSE((bool)Decoded);
// Make sure decoded object is the same as the one we encoded.
checkError(ExpectedErrorMsg, Decoded.takeError());
}
// Populate a GSYM header with valid values.
static void InitHeader(Header &H) {
H.Magic = GSYM_MAGIC;
H.Version = GSYM_VERSION;
H.AddrOffSize = 4;
H.UUIDSize = 16;
H.BaseAddress = 0x1000;
H.NumAddresses = 1;
H.StrtabOffset= 0x2000;
H.StrtabSize = 0x1000;
for (size_t i=0; i<GSYM_MAX_UUID_SIZE; ++i) {
if (i < H.UUIDSize)
H.UUID[i] = i;
else
H.UUID[i] = 0;
}
}
TEST(GSYMTest, TestHeaderEncodeErrors) {
Header H;
InitHeader(H);
H.Magic = 12;
TestHeaderEncodeError(H, "invalid GSYM magic 0x0000000c");
InitHeader(H);
H.Version = 12;
TestHeaderEncodeError(H, "unsupported GSYM version 12");
InitHeader(H);
H.AddrOffSize = 12;
TestHeaderEncodeError(H, "invalid address offset size 12");
InitHeader(H);
H.UUIDSize = 128;
TestHeaderEncodeError(H, "invalid UUID size 128");
}
TEST(GSYMTest, TestHeaderDecodeErrors) {
const llvm::support::endianness ByteOrder = llvm::support::little;
SmallString<512> Str;
raw_svector_ostream OutStrm(Str);
FileWriter FW(OutStrm, ByteOrder);
Header H;
InitHeader(H);
llvm::Error Err = H.encode(FW);
ASSERT_FALSE(Err);
FW.fixup32(12, offsetof(Header, Magic));
TestHeaderDecodeError(OutStrm.str(), "invalid GSYM magic 0x0000000c");
FW.fixup32(GSYM_MAGIC, offsetof(Header, Magic));
FW.fixup32(12, offsetof(Header, Version));
TestHeaderDecodeError(OutStrm.str(), "unsupported GSYM version 12");
FW.fixup32(GSYM_VERSION, offsetof(Header, Version));
FW.fixup32(12, offsetof(Header, AddrOffSize));
TestHeaderDecodeError(OutStrm.str(), "invalid address offset size 12");
FW.fixup32(4, offsetof(Header, AddrOffSize));
FW.fixup32(128, offsetof(Header, UUIDSize));
TestHeaderDecodeError(OutStrm.str(), "invalid UUID size 128");
}
static void TestHeaderEncodeDecode(const Header &H,
support::endianness ByteOrder) {
uint8_t AddressSize = 4;
SmallString<512> Str;
raw_svector_ostream OutStrm(Str);
FileWriter FW(OutStrm, ByteOrder);
llvm::Error Err = H.encode(FW);
ASSERT_FALSE(Err);
std::string Bytes(OutStrm.str());
DataExtractor Data(Bytes, ByteOrder == llvm::support::little, AddressSize);
llvm::Expected<Header> Decoded = Header::decode(Data);
// Make sure decoding succeeded.
ASSERT_TRUE((bool)Decoded);
EXPECT_EQ(H, Decoded.get());
}
TEST(GSYMTest, TestHeaderEncodeDecode) {
Header H;
InitHeader(H);
TestHeaderEncodeDecode(H, llvm::support::little);
TestHeaderEncodeDecode(H, llvm::support::big);
}
static void TestGsymCreatorEncodeError(llvm::support::endianness ByteOrder,
const GsymCreator &GC,
std::string ExpectedErrorMsg) {
SmallString<512> Str;
raw_svector_ostream OutStrm(Str);
FileWriter FW(OutStrm, ByteOrder);
llvm::Error Err = GC.encode(FW);
ASSERT_TRUE(bool(Err));
checkError(ExpectedErrorMsg, std::move(Err));
}
TEST(GSYMTest, TestGsymCreatorEncodeErrors) {
const uint8_t ValidUUID[] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,
14, 15, 16};
const uint8_t InvalidUUID[] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,
14, 15, 16, 17, 18, 19, 20, 21};
// Verify we get an error when trying to encode an GsymCreator with no
// function infos. We shouldn't be saving a GSYM file in this case since
// there is nothing inside of it.
GsymCreator GC;
TestGsymCreatorEncodeError(llvm::support::little, GC,
"no functions to encode");
const uint64_t FuncAddr = 0x1000;
const uint64_t FuncSize = 0x100;
const uint32_t FuncName = GC.insertString("foo");
// Verify we get an error trying to encode a GsymCreator that isn't
// finalized.
GC.addFunctionInfo(FunctionInfo(FuncAddr, FuncSize, FuncName));
TestGsymCreatorEncodeError(llvm::support::little, GC,
"GsymCreator wasn't finalized prior to encoding");
std::string finalizeIssues;
raw_string_ostream OS(finalizeIssues);
llvm::Error finalizeErr = GC.finalize(OS);
ASSERT_FALSE(bool(finalizeErr));
finalizeErr = GC.finalize(OS);
ASSERT_TRUE(bool(finalizeErr));
checkError("already finalized", std::move(finalizeErr));
// Verify we get an error trying to encode a GsymCreator with a UUID that is
// too long.
GC.setUUID(InvalidUUID);
TestGsymCreatorEncodeError(llvm::support::little, GC,
"invalid UUID size 21");
GC.setUUID(ValidUUID);
// Verify errors are propagated when we try to encoding an invalid line
// table.
GC.forEachFunctionInfo([](FunctionInfo &FI) -> bool {
FI.OptLineTable = LineTable(); // Invalid line table.
return false; // Stop iterating
});
TestGsymCreatorEncodeError(llvm::support::little, GC,
"attempted to encode invalid LineTable object");
// Verify errors are propagated when we try to encoding an invalid inline
// info.
GC.forEachFunctionInfo([](FunctionInfo &FI) -> bool {
FI.OptLineTable = llvm::None;
FI.Inline = InlineInfo(); // Invalid InlineInfo.
return false; // Stop iterating
});
TestGsymCreatorEncodeError(llvm::support::little, GC,
"attempted to encode invalid InlineInfo object");
}
static void Compare(const GsymCreator &GC, const GsymReader &GR) {
// Verify that all of the data in a GsymCreator is correctly decoded from
// a GsymReader. To do this, we iterator over
GC.forEachFunctionInfo([&](const FunctionInfo &FI) -> bool {
auto DecodedFI = GR.getFunctionInfo(FI.Range.Start);
EXPECT_TRUE(bool(DecodedFI));
EXPECT_EQ(FI, *DecodedFI);
return true; // Keep iterating over all FunctionInfo objects.
});
}
static void TestEncodeDecode(const GsymCreator &GC,
support::endianness ByteOrder, uint16_t Version,
uint8_t AddrOffSize, uint64_t BaseAddress,
uint32_t NumAddresses, ArrayRef<uint8_t> UUID) {
SmallString<512> Str;
raw_svector_ostream OutStrm(Str);
FileWriter FW(OutStrm, ByteOrder);
llvm::Error Err = GC.encode(FW);
ASSERT_FALSE((bool)Err);
Expected<GsymReader> GR = GsymReader::copyBuffer(OutStrm.str());
ASSERT_TRUE(bool(GR));
const Header &Hdr = GR->getHeader();
EXPECT_EQ(Hdr.Version, Version);
EXPECT_EQ(Hdr.AddrOffSize, AddrOffSize);
EXPECT_EQ(Hdr.UUIDSize, UUID.size());
EXPECT_EQ(Hdr.BaseAddress, BaseAddress);
EXPECT_EQ(Hdr.NumAddresses, NumAddresses);
EXPECT_EQ(ArrayRef<uint8_t>(Hdr.UUID, Hdr.UUIDSize), UUID);
Compare(GC, GR.get());
}
TEST(GSYMTest, TestGsymCreator1ByteAddrOffsets) {
uint8_t UUID[] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16};
GsymCreator GC;
GC.setUUID(UUID);
constexpr uint64_t BaseAddr = 0x1000;
constexpr uint8_t AddrOffSize = 1;
const uint32_t Func1Name = GC.insertString("foo");
const uint32_t Func2Name = GC.insertString("bar");
GC.addFunctionInfo(FunctionInfo(BaseAddr+0x00, 0x10, Func1Name));
GC.addFunctionInfo(FunctionInfo(BaseAddr+0x20, 0x10, Func2Name));
Error Err = GC.finalize(llvm::nulls());
ASSERT_FALSE(Err);
TestEncodeDecode(GC, llvm::support::little,
GSYM_VERSION,
AddrOffSize,
BaseAddr,
2, // NumAddresses
ArrayRef<uint8_t>(UUID));
TestEncodeDecode(GC, llvm::support::big,
GSYM_VERSION,
AddrOffSize,
BaseAddr,
2, // NumAddresses
ArrayRef<uint8_t>(UUID));
}
TEST(GSYMTest, TestGsymCreator2ByteAddrOffsets) {
uint8_t UUID[] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16};
GsymCreator GC;
GC.setUUID(UUID);
constexpr uint64_t BaseAddr = 0x1000;
constexpr uint8_t AddrOffSize = 2;
const uint32_t Func1Name = GC.insertString("foo");
const uint32_t Func2Name = GC.insertString("bar");
GC.addFunctionInfo(FunctionInfo(BaseAddr+0x000, 0x100, Func1Name));
GC.addFunctionInfo(FunctionInfo(BaseAddr+0x200, 0x100, Func2Name));
Error Err = GC.finalize(llvm::nulls());
ASSERT_FALSE(Err);
TestEncodeDecode(GC, llvm::support::little,
GSYM_VERSION,
AddrOffSize,
BaseAddr,
2, // NumAddresses
ArrayRef<uint8_t>(UUID));
TestEncodeDecode(GC, llvm::support::big,
GSYM_VERSION,
AddrOffSize,
BaseAddr,
2, // NumAddresses
ArrayRef<uint8_t>(UUID));
}
TEST(GSYMTest, TestGsymCreator4ByteAddrOffsets) {
uint8_t UUID[] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16};
GsymCreator GC;
GC.setUUID(UUID);
constexpr uint64_t BaseAddr = 0x1000;
constexpr uint8_t AddrOffSize = 4;
const uint32_t Func1Name = GC.insertString("foo");
const uint32_t Func2Name = GC.insertString("bar");
GC.addFunctionInfo(FunctionInfo(BaseAddr+0x000, 0x100, Func1Name));
GC.addFunctionInfo(FunctionInfo(BaseAddr+0x20000, 0x100, Func2Name));
Error Err = GC.finalize(llvm::nulls());
ASSERT_FALSE(Err);
TestEncodeDecode(GC, llvm::support::little,
GSYM_VERSION,
AddrOffSize,
BaseAddr,
2, // NumAddresses
ArrayRef<uint8_t>(UUID));
TestEncodeDecode(GC, llvm::support::big,
GSYM_VERSION,
AddrOffSize,
BaseAddr,
2, // NumAddresses
ArrayRef<uint8_t>(UUID));
}
TEST(GSYMTest, TestGsymCreator8ByteAddrOffsets) {
uint8_t UUID[] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16};
GsymCreator GC;
GC.setUUID(UUID);
constexpr uint64_t BaseAddr = 0x1000;
constexpr uint8_t AddrOffSize = 8;
const uint32_t Func1Name = GC.insertString("foo");
const uint32_t Func2Name = GC.insertString("bar");
GC.addFunctionInfo(FunctionInfo(BaseAddr+0x000, 0x100, Func1Name));
GC.addFunctionInfo(FunctionInfo(BaseAddr+0x100000000, 0x100, Func2Name));
Error Err = GC.finalize(llvm::nulls());
ASSERT_FALSE(Err);
TestEncodeDecode(GC, llvm::support::little,
GSYM_VERSION,
AddrOffSize,
BaseAddr,
2, // NumAddresses
ArrayRef<uint8_t>(UUID));
TestEncodeDecode(GC, llvm::support::big,
GSYM_VERSION,
AddrOffSize,
BaseAddr,
2, // NumAddresses
ArrayRef<uint8_t>(UUID));
}
static void VerifyFunctionInfo(const GsymReader &GR, uint64_t Addr,
const FunctionInfo &FI) {
auto ExpFI = GR.getFunctionInfo(Addr);
ASSERT_TRUE(bool(ExpFI));
ASSERT_EQ(FI, ExpFI.get());
}
static void VerifyFunctionInfoError(const GsymReader &GR, uint64_t Addr,
std::string ErrMessage) {
auto ExpFI = GR.getFunctionInfo(Addr);
ASSERT_FALSE(bool(ExpFI));
checkError(ErrMessage, ExpFI.takeError());
}
TEST(GSYMTest, TestGsymReader) {
uint8_t UUID[] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16};
GsymCreator GC;
GC.setUUID(UUID);
constexpr uint64_t BaseAddr = 0x1000;
constexpr uint64_t Func1Addr = BaseAddr;
constexpr uint64_t Func2Addr = BaseAddr+0x20;
constexpr uint64_t FuncSize = 0x10;
const uint32_t Func1Name = GC.insertString("foo");
const uint32_t Func2Name = GC.insertString("bar");
const auto ByteOrder = support::endian::system_endianness();
GC.addFunctionInfo(FunctionInfo(Func1Addr, FuncSize, Func1Name));
GC.addFunctionInfo(FunctionInfo(Func2Addr, FuncSize, Func2Name));
Error FinalizeErr = GC.finalize(llvm::nulls());
ASSERT_FALSE(FinalizeErr);
SmallString<512> Str;
raw_svector_ostream OutStrm(Str);
FileWriter FW(OutStrm, ByteOrder);
llvm::Error Err = GC.encode(FW);
ASSERT_FALSE((bool)Err);
if (auto ExpectedGR = GsymReader::copyBuffer(OutStrm.str())) {
const GsymReader &GR = ExpectedGR.get();
VerifyFunctionInfoError(GR, Func1Addr-1, "address 0xfff not in GSYM");
FunctionInfo Func1(Func1Addr, FuncSize, Func1Name);
VerifyFunctionInfo(GR, Func1Addr, Func1);
VerifyFunctionInfo(GR, Func1Addr+1, Func1);
VerifyFunctionInfo(GR, Func1Addr+FuncSize-1, Func1);
VerifyFunctionInfoError(GR, Func1Addr+FuncSize,
"address 0x1010 not in GSYM");
VerifyFunctionInfoError(GR, Func2Addr-1, "address 0x101f not in GSYM");
FunctionInfo Func2(Func2Addr, FuncSize, Func2Name);
VerifyFunctionInfo(GR, Func2Addr, Func2);
VerifyFunctionInfo(GR, Func2Addr+1, Func2);
VerifyFunctionInfo(GR, Func2Addr+FuncSize-1, Func2);
VerifyFunctionInfoError(GR, Func2Addr+FuncSize,
"address 0x1030 not in GSYM");
}
}
TEST(GSYMTest, TestGsymLookups) {
// Test creating a GSYM file with a function that has a inline information.
// Verify that lookups work correctly. Lookups do not decode the entire
// FunctionInfo or InlineInfo, they only extract information needed for the
// lookup to happen which avoids allocations which can slow down
// symbolication.
GsymCreator GC;
FunctionInfo FI(0x1000, 0x100, GC.insertString("main"));
const auto ByteOrder = support::endian::system_endianness();
FI.OptLineTable = LineTable();
const uint32_t MainFileIndex = GC.insertFile("/tmp/main.c");
const uint32_t FooFileIndex = GC.insertFile("/tmp/foo.h");
FI.OptLineTable->push(LineEntry(0x1000, MainFileIndex, 5));
FI.OptLineTable->push(LineEntry(0x1010, FooFileIndex, 10));
FI.OptLineTable->push(LineEntry(0x1012, FooFileIndex, 20));
FI.OptLineTable->push(LineEntry(0x1014, FooFileIndex, 11));
FI.OptLineTable->push(LineEntry(0x1016, FooFileIndex, 30));
FI.OptLineTable->push(LineEntry(0x1018, FooFileIndex, 12));
FI.OptLineTable->push(LineEntry(0x1020, MainFileIndex, 8));
FI.Inline = InlineInfo();
FI.Inline->Name = GC.insertString("inline1");
FI.Inline->CallFile = MainFileIndex;
FI.Inline->CallLine = 6;
FI.Inline->Ranges.insert(AddressRange(0x1010, 0x1020));
InlineInfo Inline2;
Inline2.Name = GC.insertString("inline2");
Inline2.CallFile = FooFileIndex;
Inline2.CallLine = 33;
Inline2.Ranges.insert(AddressRange(0x1012, 0x1014));
FI.Inline->Children.emplace_back(Inline2);
InlineInfo Inline3;
Inline3.Name = GC.insertString("inline3");
Inline3.CallFile = FooFileIndex;
Inline3.CallLine = 35;
Inline3.Ranges.insert(AddressRange(0x1016, 0x1018));
FI.Inline->Children.emplace_back(Inline3);
GC.addFunctionInfo(std::move(FI));
Error FinalizeErr = GC.finalize(llvm::nulls());
ASSERT_FALSE(FinalizeErr);
SmallString<512> Str;
raw_svector_ostream OutStrm(Str);
FileWriter FW(OutStrm, ByteOrder);
llvm::Error Err = GC.encode(FW);
ASSERT_FALSE((bool)Err);
Expected<GsymReader> GR = GsymReader::copyBuffer(OutStrm.str());
ASSERT_TRUE(bool(GR));
// Verify inline info is correct when doing lookups.
auto LR = GR->lookup(0x1000);
ASSERT_THAT_EXPECTED(LR, Succeeded());
EXPECT_THAT(LR->Locations,
testing::ElementsAre(SourceLocation{"main", "/tmp", "main.c", 5}));
LR = GR->lookup(0x100F);
ASSERT_THAT_EXPECTED(LR, Succeeded());
EXPECT_THAT(LR->Locations,
testing::ElementsAre(SourceLocation{"main", "/tmp", "main.c", 5}));
LR = GR->lookup(0x1010);
ASSERT_THAT_EXPECTED(LR, Succeeded());
EXPECT_THAT(LR->Locations,
testing::ElementsAre(SourceLocation{"inline1", "/tmp", "foo.h", 10},
SourceLocation{"main", "/tmp", "main.c", 6}));
LR = GR->lookup(0x1012);
ASSERT_THAT_EXPECTED(LR, Succeeded());
EXPECT_THAT(LR->Locations,
testing::ElementsAre(SourceLocation{"inline2", "/tmp", "foo.h", 20},
SourceLocation{"inline1", "/tmp", "foo.h", 33},
SourceLocation{"main", "/tmp", "main.c", 6}));
LR = GR->lookup(0x1014);
ASSERT_THAT_EXPECTED(LR, Succeeded());
EXPECT_THAT(LR->Locations,
testing::ElementsAre(SourceLocation{"inline1", "/tmp", "foo.h", 11},
SourceLocation{"main", "/tmp", "main.c", 6}));
LR = GR->lookup(0x1016);
ASSERT_THAT_EXPECTED(LR, Succeeded());
EXPECT_THAT(LR->Locations,
testing::ElementsAre(SourceLocation{"inline3", "/tmp", "foo.h", 30},
SourceLocation{"inline1", "/tmp", "foo.h", 35},
SourceLocation{"main", "/tmp", "main.c", 6}));
LR = GR->lookup(0x1018);
ASSERT_THAT_EXPECTED(LR, Succeeded());
EXPECT_THAT(LR->Locations,
testing::ElementsAre(SourceLocation{"inline1", "/tmp", "foo.h", 12},
SourceLocation{"main", "/tmp", "main.c", 6}));
LR = GR->lookup(0x1020);
ASSERT_THAT_EXPECTED(LR, Succeeded());
EXPECT_THAT(LR->Locations,
testing::ElementsAre(SourceLocation{"main", "/tmp", "main.c", 8}));
}