LoopsToGPU.cpp
21.5 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
//===- LoopsToGPU.cpp - Convert an affine loop nest to a GPU kernel -------===//
//
// Part of the MLIR Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This implements a straightforward conversion of an loop nest into a GPU
// kernel. The caller is expected to guarantee that the conversion is correct
// or to further transform the kernel to ensure correctness.
//
//===----------------------------------------------------------------------===//
#include "mlir/Conversion/LoopsToGPU/LoopsToGPU.h"
#include "mlir/Conversion/AffineToStandard/AffineToStandard.h"
#include "mlir/Dialect/AffineOps/AffineOps.h"
#include "mlir/Dialect/GPU/GPUDialect.h"
#include "mlir/Dialect/LoopOps/LoopOps.h"
#include "mlir/Dialect/StandardOps/Ops.h"
#include "mlir/IR/AffineExpr.h"
#include "mlir/IR/Builders.h"
#include "mlir/Transforms/LoopUtils.h"
#include "mlir/Transforms/RegionUtils.h"
#include "llvm/ADT/Sequence.h"
#include "llvm/Support/Debug.h"
#define DEBUG_TYPE "loops-to-gpu"
using namespace mlir;
using namespace mlir::loop;
using llvm::seq;
// Extract an indexed value from KernelDim3.
static Value getDim3Value(const gpu::KernelDim3 &dim3, unsigned pos) {
switch (pos) {
case 0:
return dim3.x;
case 1:
return dim3.y;
case 2:
return dim3.z;
default:
llvm_unreachable("dim3 position out of bounds");
}
return nullptr;
}
// Get the lower bound-related operands of a loop operation.
static Operation::operand_range getLowerBoundOperands(AffineForOp forOp) {
return forOp.getLowerBoundOperands();
}
static SmallVector<Value, 1> getLowerBoundOperands(ForOp forOp) {
SmallVector<Value, 1> bounds(1, forOp.lowerBound());
return bounds;
}
// Get the upper bound-related operands of a loop operation.
static Operation::operand_range getUpperBoundOperands(AffineForOp forOp) {
return forOp.getUpperBoundOperands();
}
static SmallVector<Value, 1> getUpperBoundOperands(ForOp forOp) {
SmallVector<Value, 1> bounds(1, forOp.upperBound());
return bounds;
}
// Get a Value that corresponds to the loop step. If the step is an attribute,
// materialize a corresponding constant using builder.
static Value getOrCreateStep(AffineForOp forOp, OpBuilder &builder) {
return builder.create<ConstantIndexOp>(forOp.getLoc(), forOp.getStep());
}
static Value getOrCreateStep(ForOp forOp, OpBuilder &) { return forOp.step(); }
// Get a Value for the loop lower bound. If the value requires computation,
// materialize the instructions using builder.
static Value getOrEmitLowerBound(AffineForOp forOp, OpBuilder &builder) {
return lowerAffineLowerBound(forOp, builder);
}
static Value getOrEmitLowerBound(ForOp forOp, OpBuilder &) {
return forOp.lowerBound();
}
// Get a Value for the loop upper bound. If the value requires computation,
// materialize the instructions using builder.
static Value getOrEmitUpperBound(AffineForOp forOp, OpBuilder &builder) {
return lowerAffineUpperBound(forOp, builder);
}
static Value getOrEmitUpperBound(ForOp forOp, OpBuilder &) {
return forOp.upperBound();
}
// Check the structure of the loop nest:
// - there are enough loops to map to numDims;
// - the loops are perfectly nested;
// - the loop bounds can be computed above the outermost loop.
// This roughly corresponds to the "matcher" part of the pattern-based
// rewriting infrastructure.
template <typename OpTy>
static LogicalResult checkLoopNestMappableImpl(OpTy forOp, unsigned numDims) {
Region &limit = forOp.region();
for (unsigned i = 0, e = numDims; i < e; ++i) {
Operation *nested = &forOp.getBody()->front();
if (!areValuesDefinedAbove(getLowerBoundOperands(forOp), limit) ||
!areValuesDefinedAbove(getUpperBoundOperands(forOp), limit))
return forOp.emitError(
"loops with bounds depending on other mapped loops "
"are not supported");
// The innermost loop can have an arbitrary body, skip the perfect nesting
// check for it.
if (i == e - 1)
break;
auto begin = forOp.getBody()->begin(), end = forOp.getBody()->end();
if (forOp.getBody()->empty() || std::next(begin, 2) != end)
return forOp.emitError("expected perfectly nested loops in the body");
if (!(forOp = dyn_cast<OpTy>(nested)))
return nested->emitError("expected a nested loop");
}
return success();
}
template <typename OpTy>
static LogicalResult checkLoopNestMappable(OpTy forOp, unsigned numBlockDims,
unsigned numThreadDims) {
if (numBlockDims < 1 || numThreadDims < 1) {
LLVM_DEBUG(llvm::dbgs() << "nothing to map");
return success();
}
OpBuilder builder(forOp.getOperation());
if (numBlockDims > 3) {
return forOp.emitError("cannot map to more than 3 block dimensions");
}
if (numThreadDims > 3) {
return forOp.emitError("cannot map to more than 3 thread dimensions");
}
return checkLoopNestMappableImpl(forOp, numBlockDims + numThreadDims);
}
template <typename OpTy>
static LogicalResult checkLoopOpMappable(OpTy forOp, unsigned numBlockDims,
unsigned numThreadDims) {
if (numBlockDims < 1 || numThreadDims < 1) {
LLVM_DEBUG(llvm::dbgs() << "nothing to map");
return success();
}
if (numBlockDims > 3) {
return forOp.emitError("cannot map to more than 3 block dimensions");
}
if (numThreadDims > 3) {
return forOp.emitError("cannot map to more than 3 thread dimensions");
}
if (numBlockDims != numThreadDims) {
// TODO(ravishankarm) : This can probably be relaxed by having a one-trip
// loop for the missing dimension, but there is not reason to handle this
// case for now.
return forOp.emitError(
"mismatch in block dimensions and thread dimensions");
}
// Check that the forOp contains perfectly nested loops for numBlockDims
if (failed(checkLoopNestMappableImpl(forOp, numBlockDims))) {
return failure();
}
// Get to the innermost loop.
for (auto i : seq<unsigned>(0, numBlockDims - 1)) {
forOp = cast<OpTy>(&forOp.getBody()->front());
(void)i;
}
// The forOp now points to the body of the innermost loop mapped to blocks.
for (Operation &op : *forOp.getBody()) {
// If the operation is a loop, check that it is mappable to workItems.
if (auto innerLoop = dyn_cast<OpTy>(&op)) {
if (failed(checkLoopNestMappableImpl(innerLoop, numThreadDims))) {
return failure();
}
continue;
}
// TODO(ravishankarm) : If it is not a loop op, it is assumed that the
// statement is executed by all threads. It might be a collective operation,
// or some non-side effect instruction. Have to decide on "allowable"
// statements and check for those here.
}
return success();
}
namespace {
// Helper structure that holds common state of the loop to GPU kernel
// conversion.
struct LoopToGpuConverter {
template <typename OpTy>
Optional<OpTy> collectBounds(OpTy forOp, unsigned numLoops);
template <typename OpTy>
void createLaunch(OpTy rootForOp, OpTy innermostForOp, unsigned numBlockDims,
unsigned numThreadDims);
// Ranges of the loops mapped to blocks or threads.
SmallVector<Value, 6> dims;
// Lower bounds of the loops mapped to blocks or threads.
SmallVector<Value, 6> lbs;
// Induction variables of the loops mapped to blocks or threads.
SmallVector<Value, 6> ivs;
// Steps of the loops mapped to blocks or threads.
SmallVector<Value, 6> steps;
};
} // namespace
// Return true if the value is obviously a constant "one".
static bool isConstantOne(Value value) {
if (auto def = dyn_cast_or_null<ConstantIndexOp>(value.getDefiningOp()))
return def.getValue() == 1;
return false;
}
// Collect ranges, bounds, steps and induction variables in preparation for
// mapping a loop nest of depth "numLoops" rooted at "forOp" to a GPU kernel.
// This may fail if the IR for computing loop bounds cannot be constructed, for
// example if an affine loop uses semi-affine maps. Return the last loop to be
// mapped on success, llvm::None on failure.
template <typename OpTy>
Optional<OpTy> LoopToGpuConverter::collectBounds(OpTy forOp,
unsigned numLoops) {
OpBuilder builder(forOp.getOperation());
dims.reserve(numLoops);
lbs.reserve(numLoops);
ivs.reserve(numLoops);
steps.reserve(numLoops);
OpTy currentLoop = forOp;
for (unsigned i = 0; i < numLoops; ++i) {
Value lowerBound = getOrEmitLowerBound(currentLoop, builder);
Value upperBound = getOrEmitUpperBound(currentLoop, builder);
if (!lowerBound || !upperBound) {
return llvm::None;
}
Value range =
builder.create<SubIOp>(currentLoop.getLoc(), upperBound, lowerBound);
Value step = getOrCreateStep(currentLoop, builder);
if (!isConstantOne(step))
range = builder.create<SignedDivIOp>(currentLoop.getLoc(), range, step);
dims.push_back(range);
lbs.push_back(lowerBound);
ivs.push_back(currentLoop.getInductionVar());
steps.push_back(step);
if (i != numLoops - 1)
currentLoop = cast<OpTy>(¤tLoop.getBody()->front());
}
return currentLoop;
}
/// Given `nDims` perfectly nested loops rooted as `rootForOp`, convert them o
/// be partitioned across workgroups or workitems. The values for the
/// workgroup/workitem id along each dimension is passed in with `ids`. The
/// number of workgroups/workitems along each dimension are passed in with
/// `nids`. The innermost loop is mapped to the x-dimension, followed by the
/// next innermost loop to y-dimension, followed by z-dimension.
template <typename OpTy>
static OpTy createGPULaunchLoops(OpTy rootForOp, ArrayRef<Value> ids,
ArrayRef<Value> nids) {
auto nDims = ids.size();
assert(nDims == nids.size());
for (auto dim : llvm::seq<unsigned>(0, nDims)) {
// TODO(ravishankarm): Don't always need to generate a loop here. If nids >=
// number of iterations of the original loop, this becomes a if
// condition. Though that does rely on how the workgroup/workitem sizes are
// specified to begin with.
mapLoopToProcessorIds(rootForOp, ids[dim], nids[dim]);
if (dim != nDims - 1) {
rootForOp = cast<OpTy>(rootForOp.getBody()->front());
}
}
return rootForOp;
}
/// Utility method to convert the gpu::KernelDim3 object for representing id of
/// each workgroup/workitem and number of workgroup/workitems along a dimension
/// of the launch into a container.
static void packIdAndNumId(gpu::KernelDim3 kernelIds,
gpu::KernelDim3 kernelNids, unsigned nDims,
SmallVectorImpl<Value> &ids,
SmallVectorImpl<Value> &nids) {
assert(nDims <= 3 && "invalid number of launch dimensions");
SmallVector<Value, 3> allIds = {kernelIds.z, kernelIds.y, kernelIds.x};
SmallVector<Value, 3> allNids = {kernelNids.z, kernelNids.y, kernelNids.x};
ids.clear();
ids.append(std::next(allIds.begin(), allIds.size() - nDims), allIds.end());
nids.clear();
nids.append(std::next(allNids.begin(), allNids.size() - nDims),
allNids.end());
}
/// Generate the body of the launch operation.
template <typename OpTy>
static LogicalResult
createLaunchBody(OpBuilder &builder, OpTy rootForOp, gpu::LaunchOp launchOp,
unsigned numBlockDims, unsigned numThreadDims) {
OpBuilder::InsertionGuard bodyInsertionGuard(builder);
builder.setInsertionPointToEnd(&launchOp.body().front());
auto returnOp = builder.create<gpu::ReturnOp>(launchOp.getLoc());
rootForOp.getOperation()->moveBefore(returnOp);
SmallVector<Value, 3> workgroupID, numWorkGroups;
packIdAndNumId(launchOp.getBlockIds(), launchOp.getGridSize(), numBlockDims,
workgroupID, numWorkGroups);
// Partition the loop for mapping to workgroups.
auto loopOp = createGPULaunchLoops(rootForOp, workgroupID, numWorkGroups);
// Iterate over the body of the loopOp and get the loops to partition for
// thread blocks.
SmallVector<OpTy, 1> threadRootForOps;
for (Operation &op : *loopOp.getBody()) {
if (auto threadRootForOp = dyn_cast<OpTy>(&op)) {
threadRootForOps.push_back(threadRootForOp);
}
}
SmallVector<Value, 3> workItemID, workGroupSize;
packIdAndNumId(launchOp.getThreadIds(), launchOp.getBlockSize(),
numThreadDims, workItemID, workGroupSize);
for (auto &loopOp : threadRootForOps) {
builder.setInsertionPoint(loopOp);
createGPULaunchLoops(loopOp, workItemID, workGroupSize);
}
return success();
}
// Convert the computation rooted at the `rootForOp`, into a GPU kernel with the
// given workgroup size and number of workgroups.
template <typename OpTy>
static LogicalResult createLaunchFromOp(OpTy rootForOp,
ArrayRef<Value> numWorkGroups,
ArrayRef<Value> workGroupSizes) {
OpBuilder builder(rootForOp.getOperation());
if (numWorkGroups.size() > 3) {
return rootForOp.emitError("invalid ")
<< numWorkGroups.size() << "-D workgroup specification";
}
auto loc = rootForOp.getLoc();
Value one = builder.create<ConstantOp>(
loc, builder.getIntegerAttr(builder.getIndexType(), 1));
SmallVector<Value, 3> numWorkGroups3D(3, one), workGroupSize3D(3, one);
for (auto numWorkGroup : enumerate(numWorkGroups)) {
numWorkGroups3D[numWorkGroup.index()] = numWorkGroup.value();
}
for (auto workGroupSize : enumerate(workGroupSizes)) {
workGroupSize3D[workGroupSize.index()] = workGroupSize.value();
}
// Get the values used within the region of the rootForOp but defined above
// it.
llvm::SetVector<Value> valuesToForwardSet;
getUsedValuesDefinedAbove(rootForOp.region(), rootForOp.region(),
valuesToForwardSet);
// Also add the values used for the lb, ub, and step of the rootForOp.
valuesToForwardSet.insert(rootForOp.getOperands().begin(),
rootForOp.getOperands().end());
auto valuesToForward = valuesToForwardSet.takeVector();
auto launchOp = builder.create<gpu::LaunchOp>(
rootForOp.getLoc(), numWorkGroups3D[0], numWorkGroups3D[1],
numWorkGroups3D[2], workGroupSize3D[0], workGroupSize3D[1],
workGroupSize3D[2], valuesToForward);
if (failed(createLaunchBody(builder, rootForOp, launchOp,
numWorkGroups.size(), workGroupSizes.size()))) {
return failure();
}
// Replace values that are used within the region of the launchOp but are
// defined outside. They all are replaced with kernel arguments.
for (auto pair :
llvm::zip_first(valuesToForward, launchOp.getKernelArguments())) {
Value from = std::get<0>(pair);
Value to = std::get<1>(pair);
replaceAllUsesInRegionWith(from, to, launchOp.body());
}
return success();
}
// Replace the rooted at "rootForOp" with a GPU launch operation. This expects
// "innermostForOp" to point to the last loop to be transformed to the kernel,
// and to have (numBlockDims + numThreadDims) perfectly nested loops between
// "rootForOp" and "innermostForOp".
// TODO(ravishankarm) : This method can be modified to use the
// createLaunchFromOp method, since that is a strict generalization of this
// method.
template <typename OpTy>
void LoopToGpuConverter::createLaunch(OpTy rootForOp, OpTy innermostForOp,
unsigned numBlockDims,
unsigned numThreadDims) {
OpBuilder builder(rootForOp.getOperation());
// Prepare the grid and block sizes for the launch operation. If there is
// no loop mapped to a specific dimension, use constant "1" as its size.
Value constOne = (numBlockDims < 3 || numThreadDims < 3)
? builder.create<ConstantIndexOp>(rootForOp.getLoc(), 1)
: nullptr;
Value gridSizeX = dims[0];
Value gridSizeY = numBlockDims > 1 ? dims[1] : constOne;
Value gridSizeZ = numBlockDims > 2 ? dims[2] : constOne;
Value blockSizeX = dims[numBlockDims];
Value blockSizeY = numThreadDims > 1 ? dims[numBlockDims + 1] : constOne;
Value blockSizeZ = numThreadDims > 2 ? dims[numBlockDims + 2] : constOne;
// Create a launch op and move the body region of the innermost loop to the
// launch op. Pass the values defined outside the outermost loop and used
// inside the innermost loop and loop lower bounds as kernel data arguments.
// Still assuming perfect nesting so there are no values other than induction
// variables that are defined in one loop and used in deeper loops.
llvm::SetVector<Value> valuesToForwardSet;
getUsedValuesDefinedAbove(innermostForOp.region(), rootForOp.region(),
valuesToForwardSet);
auto valuesToForward = valuesToForwardSet.takeVector();
auto originallyForwardedValues = valuesToForward.size();
valuesToForward.insert(valuesToForward.end(), lbs.begin(), lbs.end());
valuesToForward.insert(valuesToForward.end(), steps.begin(), steps.end());
auto launchOp = builder.create<gpu::LaunchOp>(
rootForOp.getLoc(), gridSizeX, gridSizeY, gridSizeZ, blockSizeX,
blockSizeY, blockSizeZ, valuesToForward);
valuesToForward.resize(originallyForwardedValues);
// Replace the loop terminator (loops contain only a single block) with the
// gpu return and move the operations from the loop body block to the gpu
// launch body block. Do not move the entire block because of the difference
// in block arguments.
Operation &terminator = innermostForOp.getBody()->back();
Location terminatorLoc = terminator.getLoc();
terminator.erase();
builder.setInsertionPointToEnd(innermostForOp.getBody());
builder.create<gpu::ReturnOp>(terminatorLoc);
launchOp.body().front().getOperations().splice(
launchOp.body().front().begin(),
innermostForOp.getBody()->getOperations());
// Remap the loop iterators to use block/thread identifiers instead. Loops
// may iterate from LB with step S whereas GPU thread/block ids always iterate
// from 0 to N with step 1. Therefore, loop induction variables are replaced
// with (gpu-thread/block-id * S) + LB.
builder.setInsertionPointToStart(&launchOp.body().front());
auto lbArgumentIt = std::next(launchOp.getKernelArguments().begin(),
originallyForwardedValues);
auto stepArgumentIt = std::next(lbArgumentIt, lbs.size());
for (auto en : llvm::enumerate(ivs)) {
Value id =
en.index() < numBlockDims
? getDim3Value(launchOp.getBlockIds(), en.index())
: getDim3Value(launchOp.getThreadIds(), en.index() - numBlockDims);
Value step = steps[en.index()];
if (!isConstantOne(step))
id = builder.create<MulIOp>(rootForOp.getLoc(), step, id);
Value ivReplacement =
builder.create<AddIOp>(rootForOp.getLoc(), *lbArgumentIt, id);
en.value().replaceAllUsesWith(ivReplacement);
replaceAllUsesInRegionWith(steps[en.index()], *stepArgumentIt,
launchOp.body());
std::advance(lbArgumentIt, 1);
std::advance(stepArgumentIt, 1);
}
// Remap the values defined outside the body to use kernel arguments instead.
// The list of kernel arguments also contains the lower bounds for loops at
// trailing positions, make sure we don't touch those.
for (auto pair :
llvm::zip_first(valuesToForward, launchOp.getKernelArguments())) {
Value from = std::get<0>(pair);
Value to = std::get<1>(pair);
replaceAllUsesInRegionWith(from, to, launchOp.body());
}
// We are done and can erase the original outermost loop.
rootForOp.erase();
}
// Generic loop to GPU kernel conversion function.
template <typename OpTy>
static LogicalResult convertLoopNestToGPULaunch(OpTy forOp,
unsigned numBlockDims,
unsigned numThreadDims) {
if (failed(checkLoopNestMappable(forOp, numBlockDims, numThreadDims)))
return failure();
LoopToGpuConverter converter;
auto maybeInnerLoop =
converter.collectBounds(forOp, numBlockDims + numThreadDims);
if (!maybeInnerLoop)
return failure();
converter.createLaunch(forOp, *maybeInnerLoop, numBlockDims, numThreadDims);
return success();
}
// Generic loop to GPU kernel conversion function when loop is imperfectly
// nested. The workgroup size and num workgroups is provided as input
template <typename OpTy>
static LogicalResult convertLoopToGPULaunch(OpTy forOp,
ArrayRef<Value> numWorkGroups,
ArrayRef<Value> workGroupSize) {
if (failed(checkLoopOpMappable(forOp, numWorkGroups.size(),
workGroupSize.size()))) {
return failure();
}
return createLaunchFromOp(forOp, numWorkGroups, workGroupSize);
}
LogicalResult mlir::convertAffineLoopNestToGPULaunch(AffineForOp forOp,
unsigned numBlockDims,
unsigned numThreadDims) {
return ::convertLoopNestToGPULaunch(forOp, numBlockDims, numThreadDims);
}
LogicalResult mlir::convertLoopNestToGPULaunch(ForOp forOp,
unsigned numBlockDims,
unsigned numThreadDims) {
return ::convertLoopNestToGPULaunch(forOp, numBlockDims, numThreadDims);
}
LogicalResult mlir::convertLoopToGPULaunch(loop::ForOp forOp,
ArrayRef<Value> numWorkGroups,
ArrayRef<Value> workGroupSizes) {
return ::convertLoopToGPULaunch(forOp, numWorkGroups, workGroupSizes);
}