bugprone-unhandled-self-assignment
cert-oop54-cpp redirects here as an alias for this check. For the CERT alias, the WarnOnlyIfThisHasSuspiciousField option is set to 0.
Finds user-defined copy assignment operators which do not protect the code against self-assignment either by checking self-assignment explicitly or using the copy-and-swap or the copy-and-move method.
By default, this check searches only those classes which have any pointer or C array field to avoid false positives. In case of a pointer or a C array, it's likely that self-copy assignment breaks the object if the copy assignment operator was not written with care.
See also: OOP54-CPP. Gracefully handle self-copy assignment
A copy assignment operator must prevent that self-copy assignment ruins the object state. A typical use case is when the class has a pointer field and the copy assignment operator first releases the pointed object and then tries to assign it:
class T {
int* p;
public:
T(const T &rhs) : p(rhs.p ? new int(*rhs.p) : nullptr) {}
~T() { delete p; }
// ...
T& operator=(const T &rhs) {
delete p;
p = new int(*rhs.p);
return *this;
}
};
There are two common C++ patterns to avoid this problem. The first is the self-assignment check:
class T {
int* p;
public:
T(const T &rhs) : p(rhs.p ? new int(*rhs.p) : nullptr) {}
~T() { delete p; }
// ...
T& operator=(const T &rhs) {
if(this == &rhs)
return *this;
delete p;
p = new int(*rhs.p);
return *this;
}
};
The second one is the copy-and-swap method when we create a temporary copy
(using the copy constructor) and then swap this temporary object with this
:
class T {
int* p;
public:
T(const T &rhs) : p(rhs.p ? new int(*rhs.p) : nullptr) {}
~T() { delete p; }
// ...
void swap(T &rhs) {
using std::swap;
swap(p, rhs.p);
}
T& operator=(const T &rhs) {
T(rhs).swap(*this);
return *this;
}
};
There is a third pattern which is less common. Let's call it the copy-and-move method
when we create a temporary copy (using the copy constructor) and then move this
temporary object into this
(needs a move assignment operator):
class T {
int* p;
public:
T(const T &rhs) : p(rhs.p ? new int(*rhs.p) : nullptr) {}
~T() { delete p; }
// ...
T& operator=(const T &rhs) {
T t = rhs;
*this = std::move(t);
return *this;
}
T& operator=(T &&rhs) {
p = rhs.p;
rhs.p = nullptr;
return *this;
}
};