exact.go 20.7 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

// Package exact implements Values representing untyped
// Go constants and the corresponding operations. Values
// and operations have unlimited precision.
//
// A special Unknown value may be used when a value
// is unknown due to an error. Operations on unknown
// values produce unknown values unless specified
// otherwise.
//
package exact // import "llvm.org/llgo/third_party/gotools/go/exact"

import (
	"fmt"
	"go/token"
	"math/big"
	"strconv"
)

// Kind specifies the kind of value represented by a Value.
type Kind int

// Implementation note: Kinds must be enumerated in
// order of increasing "complexity" (used by match).

const (
	// unknown values
	Unknown Kind = iota

	// non-numeric values
	Bool
	String

	// numeric values
	Int
	Float
	Complex
)

// A Value represents a mathematically exact value of a given Kind.
type Value interface {
	// Kind returns the value kind; it is always the smallest
	// kind in which the value can be represented exactly.
	Kind() Kind

	// String returns a human-readable form of the value.
	String() string

	// Prevent external implementations.
	implementsValue()
}

// ----------------------------------------------------------------------------
// Implementations

type (
	unknownVal struct{}
	boolVal    bool
	stringVal  string
	int64Val   int64
	intVal     struct{ val *big.Int }
	floatVal   struct{ val *big.Rat }
	complexVal struct{ re, im *big.Rat }
)

func (unknownVal) Kind() Kind { return Unknown }
func (boolVal) Kind() Kind    { return Bool }
func (stringVal) Kind() Kind  { return String }
func (int64Val) Kind() Kind   { return Int }
func (intVal) Kind() Kind     { return Int }
func (floatVal) Kind() Kind   { return Float }
func (complexVal) Kind() Kind { return Complex }

func (unknownVal) String() string   { return "unknown" }
func (x boolVal) String() string    { return fmt.Sprintf("%v", bool(x)) }
func (x stringVal) String() string  { return strconv.Quote(string(x)) }
func (x int64Val) String() string   { return strconv.FormatInt(int64(x), 10) }
func (x intVal) String() string     { return x.val.String() }
func (x floatVal) String() string   { return x.val.String() }
func (x complexVal) String() string { return fmt.Sprintf("(%s + %si)", x.re, x.im) }

func (unknownVal) implementsValue() {}
func (boolVal) implementsValue()    {}
func (stringVal) implementsValue()  {}
func (int64Val) implementsValue()   {}
func (intVal) implementsValue()     {}
func (floatVal) implementsValue()   {}
func (complexVal) implementsValue() {}

// int64 bounds
var (
	minInt64 = big.NewInt(-1 << 63)
	maxInt64 = big.NewInt(1<<63 - 1)
)

func normInt(x *big.Int) Value {
	if minInt64.Cmp(x) <= 0 && x.Cmp(maxInt64) <= 0 {
		return int64Val(x.Int64())
	}
	return intVal{x}
}

func normFloat(x *big.Rat) Value {
	if x.IsInt() {
		return normInt(x.Num())
	}
	return floatVal{x}
}

func normComplex(re, im *big.Rat) Value {
	if im.Sign() == 0 {
		return normFloat(re)
	}
	return complexVal{re, im}
}

// ----------------------------------------------------------------------------
// Factories

// MakeUnknown returns the Unknown value.
func MakeUnknown() Value { return unknownVal{} }

// MakeBool returns the Bool value for x.
func MakeBool(b bool) Value { return boolVal(b) }

// MakeString returns the String value for x.
func MakeString(s string) Value { return stringVal(s) }

// MakeInt64 returns the Int value for x.
func MakeInt64(x int64) Value { return int64Val(x) }

// MakeUint64 returns the Int value for x.
func MakeUint64(x uint64) Value { return normInt(new(big.Int).SetUint64(x)) }

// MakeFloat64 returns the numeric value for x.
// If x is not finite, the result is unknown.
func MakeFloat64(x float64) Value {
	if f := new(big.Rat).SetFloat64(x); f != nil {
		return normFloat(f)
	}
	return unknownVal{}
}

// MakeFromLiteral returns the corresponding integer, floating-point,
// imaginary, character, or string value for a Go literal string. The
// result is nil if the literal string is invalid.
func MakeFromLiteral(lit string, tok token.Token) Value {
	switch tok {
	case token.INT:
		if x, err := strconv.ParseInt(lit, 0, 64); err == nil {
			return int64Val(x)
		}
		if x, ok := new(big.Int).SetString(lit, 0); ok {
			return intVal{x}
		}

	case token.FLOAT:
		if x, ok := new(big.Rat).SetString(lit); ok {
			return normFloat(x)
		}

	case token.IMAG:
		if n := len(lit); n > 0 && lit[n-1] == 'i' {
			if im, ok := new(big.Rat).SetString(lit[0 : n-1]); ok {
				return normComplex(big.NewRat(0, 1), im)
			}
		}

	case token.CHAR:
		if n := len(lit); n >= 2 {
			if code, _, _, err := strconv.UnquoteChar(lit[1:n-1], '\''); err == nil {
				return int64Val(code)
			}
		}

	case token.STRING:
		if s, err := strconv.Unquote(lit); err == nil {
			return stringVal(s)
		}
	}

	return nil
}

// ----------------------------------------------------------------------------
// Accessors
//
// For unknown arguments the result is the zero value for the respective
// accessor type, except for Sign, where the result is 1.

// BoolVal returns the Go boolean value of x, which must be a Bool or an Unknown.
// If x is Unknown, the result is false.
func BoolVal(x Value) bool {
	switch x := x.(type) {
	case boolVal:
		return bool(x)
	case unknownVal:
		return false
	}
	panic(fmt.Sprintf("%v not a Bool", x))
}

// StringVal returns the Go string value of x, which must be a String or an Unknown.
// If x is Unknown, the result is "".
func StringVal(x Value) string {
	switch x := x.(type) {
	case stringVal:
		return string(x)
	case unknownVal:
		return ""
	}
	panic(fmt.Sprintf("%v not a String", x))
}

// Int64Val returns the Go int64 value of x and whether the result is exact;
// x must be an Int or an Unknown. If the result is not exact, its value is undefined.
// If x is Unknown, the result is (0, false).
func Int64Val(x Value) (int64, bool) {
	switch x := x.(type) {
	case int64Val:
		return int64(x), true
	case intVal:
		return x.val.Int64(), x.val.BitLen() <= 63
	case unknownVal:
		return 0, false
	}
	panic(fmt.Sprintf("%v not an Int", x))
}

// Uint64Val returns the Go uint64 value of x and whether the result is exact;
// x must be an Int or an Unknown. If the result is not exact, its value is undefined.
// If x is Unknown, the result is (0, false).
func Uint64Val(x Value) (uint64, bool) {
	switch x := x.(type) {
	case int64Val:
		return uint64(x), x >= 0
	case intVal:
		return x.val.Uint64(), x.val.Sign() >= 0 && x.val.BitLen() <= 64
	case unknownVal:
		return 0, false
	}
	panic(fmt.Sprintf("%v not an Int", x))
}

// Float32Val is like Float64Val but for float32 instead of float64.
func Float32Val(x Value) (float32, bool) {
	switch x := x.(type) {
	case int64Val:
		f := float32(x)
		return f, int64Val(f) == x
	case intVal:
		return ratToFloat32(new(big.Rat).SetFrac(x.val, int1))
	case floatVal:
		return ratToFloat32(x.val)
	case unknownVal:
		return 0, false
	}
	panic(fmt.Sprintf("%v not a Float", x))
}

// Float64Val returns the nearest Go float64 value of x and whether the result is exact;
// x must be numeric but not Complex, or Unknown. For values too small (too close to 0)
// to represent as float64, Float64Val silently underflows to 0. The result sign always
// matches the sign of x, even for 0.
// If x is Unknown, the result is (0, false).
func Float64Val(x Value) (float64, bool) {
	switch x := x.(type) {
	case int64Val:
		f := float64(int64(x))
		return f, int64Val(f) == x
	case intVal:
		return new(big.Rat).SetFrac(x.val, int1).Float64()
	case floatVal:
		return x.val.Float64()
	case unknownVal:
		return 0, false
	}
	panic(fmt.Sprintf("%v not a Float", x))
}

// BitLen returns the number of bits required to represent
// the absolute value x in binary representation; x must be an Int or an Unknown.
// If x is Unknown, the result is 0.
func BitLen(x Value) int {
	switch x := x.(type) {
	case int64Val:
		return new(big.Int).SetInt64(int64(x)).BitLen()
	case intVal:
		return x.val.BitLen()
	case unknownVal:
		return 0
	}
	panic(fmt.Sprintf("%v not an Int", x))
}

// Sign returns -1, 0, or 1 depending on whether x < 0, x == 0, or x > 0;
// x must be numeric or Unknown. For complex values x, the sign is 0 if x == 0,
// otherwise it is != 0. If x is Unknown, the result is 1.
func Sign(x Value) int {
	switch x := x.(type) {
	case int64Val:
		switch {
		case x < 0:
			return -1
		case x > 0:
			return 1
		}
		return 0
	case intVal:
		return x.val.Sign()
	case floatVal:
		return x.val.Sign()
	case complexVal:
		return x.re.Sign() | x.im.Sign()
	case unknownVal:
		return 1 // avoid spurious division by zero errors
	}
	panic(fmt.Sprintf("%v not numeric", x))
}

// ----------------------------------------------------------------------------
// Support for serializing/deserializing integers

const (
	// Compute the size of a Word in bytes.
	_m       = ^big.Word(0)
	_log     = _m>>8&1 + _m>>16&1 + _m>>32&1
	wordSize = 1 << _log
)

// Bytes returns the bytes for the absolute value of x in little-
// endian binary representation; x must be an Int.
func Bytes(x Value) []byte {
	var val *big.Int
	switch x := x.(type) {
	case int64Val:
		val = new(big.Int).SetInt64(int64(x))
	case intVal:
		val = x.val
	default:
		panic(fmt.Sprintf("%v not an Int", x))
	}

	words := val.Bits()
	bytes := make([]byte, len(words)*wordSize)

	i := 0
	for _, w := range words {
		for j := 0; j < wordSize; j++ {
			bytes[i] = byte(w)
			w >>= 8
			i++
		}
	}
	// remove leading 0's
	for i > 0 && bytes[i-1] == 0 {
		i--
	}

	return bytes[:i]
}

// MakeFromBytes returns the Int value given the bytes of its little-endian
// binary representation. An empty byte slice argument represents 0.
func MakeFromBytes(bytes []byte) Value {
	words := make([]big.Word, (len(bytes)+(wordSize-1))/wordSize)

	i := 0
	var w big.Word
	var s uint
	for _, b := range bytes {
		w |= big.Word(b) << s
		if s += 8; s == wordSize*8 {
			words[i] = w
			i++
			w = 0
			s = 0
		}
	}
	// store last word
	if i < len(words) {
		words[i] = w
		i++
	}
	// remove leading 0's
	for i > 0 && words[i-1] == 0 {
		i--
	}

	return normInt(new(big.Int).SetBits(words[:i]))
}

// ----------------------------------------------------------------------------
// Support for disassembling fractions

// Num returns the numerator of x; x must be Int, Float, or Unknown.
// If x is Unknown, the result is Unknown, otherwise it is an Int
// with the same sign as x.
func Num(x Value) Value {
	switch x := x.(type) {
	case unknownVal, int64Val, intVal:
		return x
	case floatVal:
		return normInt(x.val.Num())
	}
	panic(fmt.Sprintf("%v not Int or Float", x))
}

// Denom returns the denominator of x; x must be Int, Float, or Unknown.
// If x is Unknown, the result is Unknown, otherwise it is an Int >= 1.
func Denom(x Value) Value {
	switch x := x.(type) {
	case unknownVal:
		return x
	case int64Val, intVal:
		return int64Val(1)
	case floatVal:
		return normInt(x.val.Denom())
	}
	panic(fmt.Sprintf("%v not Int or Float", x))
}

// ----------------------------------------------------------------------------
// Support for assembling/disassembling complex numbers

// MakeImag returns the numeric value x*i (possibly 0);
// x must be Int, Float, or Unknown.
// If x is Unknown, the result is Unknown.
func MakeImag(x Value) Value {
	var im *big.Rat
	switch x := x.(type) {
	case unknownVal:
		return x
	case int64Val:
		im = big.NewRat(int64(x), 1)
	case intVal:
		im = new(big.Rat).SetFrac(x.val, int1)
	case floatVal:
		im = x.val
	default:
		panic(fmt.Sprintf("%v not Int or Float", x))
	}
	return normComplex(rat0, im)
}

// Real returns the real part of x, which must be a numeric or unknown value.
// If x is Unknown, the result is Unknown.
func Real(x Value) Value {
	switch x := x.(type) {
	case unknownVal, int64Val, intVal, floatVal:
		return x
	case complexVal:
		return normFloat(x.re)
	}
	panic(fmt.Sprintf("%v not numeric", x))
}

// Imag returns the imaginary part of x, which must be a numeric or unknown value.
// If x is Unknown, the result is Unknown.
func Imag(x Value) Value {
	switch x := x.(type) {
	case unknownVal:
		return x
	case int64Val, intVal, floatVal:
		return int64Val(0)
	case complexVal:
		return normFloat(x.im)
	}
	panic(fmt.Sprintf("%v not numeric", x))
}

// ----------------------------------------------------------------------------
// Operations

// is32bit reports whether x can be represented using 32 bits.
func is32bit(x int64) bool {
	const s = 32
	return -1<<(s-1) <= x && x <= 1<<(s-1)-1
}

// is63bit reports whether x can be represented using 63 bits.
func is63bit(x int64) bool {
	const s = 63
	return -1<<(s-1) <= x && x <= 1<<(s-1)-1
}

// UnaryOp returns the result of the unary expression op y.
// The operation must be defined for the operand.
// If size >= 0 it specifies the ^ (xor) result size in bytes.
// If y is Unknown, the result is Unknown.
//
func UnaryOp(op token.Token, y Value, size int) Value {
	switch op {
	case token.ADD:
		switch y.(type) {
		case unknownVal, int64Val, intVal, floatVal, complexVal:
			return y
		}

	case token.SUB:
		switch y := y.(type) {
		case unknownVal:
			return y
		case int64Val:
			if z := -y; z != y {
				return z // no overflow
			}
			return normInt(new(big.Int).Neg(big.NewInt(int64(y))))
		case intVal:
			return normInt(new(big.Int).Neg(y.val))
		case floatVal:
			return normFloat(new(big.Rat).Neg(y.val))
		case complexVal:
			return normComplex(new(big.Rat).Neg(y.re), new(big.Rat).Neg(y.im))
		}

	case token.XOR:
		var z big.Int
		switch y := y.(type) {
		case unknownVal:
			return y
		case int64Val:
			z.Not(big.NewInt(int64(y)))
		case intVal:
			z.Not(y.val)
		default:
			goto Error
		}
		// For unsigned types, the result will be negative and
		// thus "too large": We must limit the result size to
		// the type's size.
		if size >= 0 {
			s := uint(size) * 8
			z.AndNot(&z, new(big.Int).Lsh(big.NewInt(-1), s)) // z &^= (-1)<<s
		}
		return normInt(&z)

	case token.NOT:
		switch y := y.(type) {
		case unknownVal:
			return y
		case boolVal:
			return !y
		}
	}

Error:
	panic(fmt.Sprintf("invalid unary operation %s%v", op, y))
}

var (
	int1 = big.NewInt(1)
	rat0 = big.NewRat(0, 1)
)

func ord(x Value) int {
	switch x.(type) {
	default:
		return 0
	case boolVal, stringVal:
		return 1
	case int64Val:
		return 2
	case intVal:
		return 3
	case floatVal:
		return 4
	case complexVal:
		return 5
	}
}

// match returns the matching representation (same type) with the
// smallest complexity for two values x and y. If one of them is
// numeric, both of them must be numeric. If one of them is Unknown,
// both results are Unknown.
//
func match(x, y Value) (_, _ Value) {
	if ord(x) > ord(y) {
		y, x = match(y, x)
		return x, y
	}
	// ord(x) <= ord(y)

	switch x := x.(type) {
	case unknownVal:
		return x, x

	case boolVal, stringVal, complexVal:
		return x, y

	case int64Val:
		switch y := y.(type) {
		case int64Val:
			return x, y
		case intVal:
			return intVal{big.NewInt(int64(x))}, y
		case floatVal:
			return floatVal{big.NewRat(int64(x), 1)}, y
		case complexVal:
			return complexVal{big.NewRat(int64(x), 1), rat0}, y
		}

	case intVal:
		switch y := y.(type) {
		case intVal:
			return x, y
		case floatVal:
			return floatVal{new(big.Rat).SetFrac(x.val, int1)}, y
		case complexVal:
			return complexVal{new(big.Rat).SetFrac(x.val, int1), rat0}, y
		}

	case floatVal:
		switch y := y.(type) {
		case floatVal:
			return x, y
		case complexVal:
			return complexVal{x.val, rat0}, y
		}
	}

	panic("unreachable")
}

// BinaryOp returns the result of the binary expression x op y.
// The operation must be defined for the operands. If one of the
// operands is Unknown, the result is Unknown.
// To force integer division of Int operands, use op == token.QUO_ASSIGN
// instead of token.QUO; the result is guaranteed to be Int in this case.
// Division by zero leads to a run-time panic.
//
func BinaryOp(x Value, op token.Token, y Value) Value {
	x, y = match(x, y)

	switch x := x.(type) {
	case unknownVal:
		return x

	case boolVal:
		y := y.(boolVal)
		switch op {
		case token.LAND:
			return x && y
		case token.LOR:
			return x || y
		}

	case int64Val:
		a := int64(x)
		b := int64(y.(int64Val))
		var c int64
		switch op {
		case token.ADD:
			if !is63bit(a) || !is63bit(b) {
				return normInt(new(big.Int).Add(big.NewInt(a), big.NewInt(b)))
			}
			c = a + b
		case token.SUB:
			if !is63bit(a) || !is63bit(b) {
				return normInt(new(big.Int).Sub(big.NewInt(a), big.NewInt(b)))
			}
			c = a - b
		case token.MUL:
			if !is32bit(a) || !is32bit(b) {
				return normInt(new(big.Int).Mul(big.NewInt(a), big.NewInt(b)))
			}
			c = a * b
		case token.QUO:
			return normFloat(new(big.Rat).SetFrac(big.NewInt(a), big.NewInt(b)))
		case token.QUO_ASSIGN: // force integer division
			c = a / b
		case token.REM:
			c = a % b
		case token.AND:
			c = a & b
		case token.OR:
			c = a | b
		case token.XOR:
			c = a ^ b
		case token.AND_NOT:
			c = a &^ b
		default:
			goto Error
		}
		return int64Val(c)

	case intVal:
		a := x.val
		b := y.(intVal).val
		var c big.Int
		switch op {
		case token.ADD:
			c.Add(a, b)
		case token.SUB:
			c.Sub(a, b)
		case token.MUL:
			c.Mul(a, b)
		case token.QUO:
			return normFloat(new(big.Rat).SetFrac(a, b))
		case token.QUO_ASSIGN: // force integer division
			c.Quo(a, b)
		case token.REM:
			c.Rem(a, b)
		case token.AND:
			c.And(a, b)
		case token.OR:
			c.Or(a, b)
		case token.XOR:
			c.Xor(a, b)
		case token.AND_NOT:
			c.AndNot(a, b)
		default:
			goto Error
		}
		return normInt(&c)

	case floatVal:
		a := x.val
		b := y.(floatVal).val
		var c big.Rat
		switch op {
		case token.ADD:
			c.Add(a, b)
		case token.SUB:
			c.Sub(a, b)
		case token.MUL:
			c.Mul(a, b)
		case token.QUO:
			c.Quo(a, b)
		default:
			goto Error
		}
		return normFloat(&c)

	case complexVal:
		y := y.(complexVal)
		a, b := x.re, x.im
		c, d := y.re, y.im
		var re, im big.Rat
		switch op {
		case token.ADD:
			// (a+c) + i(b+d)
			re.Add(a, c)
			im.Add(b, d)
		case token.SUB:
			// (a-c) + i(b-d)
			re.Sub(a, c)
			im.Sub(b, d)
		case token.MUL:
			// (ac-bd) + i(bc+ad)
			var ac, bd, bc, ad big.Rat
			ac.Mul(a, c)
			bd.Mul(b, d)
			bc.Mul(b, c)
			ad.Mul(a, d)
			re.Sub(&ac, &bd)
			im.Add(&bc, &ad)
		case token.QUO:
			// (ac+bd)/s + i(bc-ad)/s, with s = cc + dd
			var ac, bd, bc, ad, s, cc, dd big.Rat
			ac.Mul(a, c)
			bd.Mul(b, d)
			bc.Mul(b, c)
			ad.Mul(a, d)
			cc.Mul(c, c)
			dd.Mul(d, d)
			s.Add(&cc, &dd)
			re.Add(&ac, &bd)
			re.Quo(&re, &s)
			im.Sub(&bc, &ad)
			im.Quo(&im, &s)
		default:
			goto Error
		}
		return normComplex(&re, &im)

	case stringVal:
		if op == token.ADD {
			return x + y.(stringVal)
		}
	}

Error:
	panic(fmt.Sprintf("invalid binary operation %v %s %v", x, op, y))
}

// Shift returns the result of the shift expression x op s
// with op == token.SHL or token.SHR (<< or >>). x must be
// an Int or an Unknown. If x is Unknown, the result is x.
//
func Shift(x Value, op token.Token, s uint) Value {
	switch x := x.(type) {
	case unknownVal:
		return x

	case int64Val:
		if s == 0 {
			return x
		}
		switch op {
		case token.SHL:
			z := big.NewInt(int64(x))
			return normInt(z.Lsh(z, s))
		case token.SHR:
			return x >> s
		}

	case intVal:
		if s == 0 {
			return x
		}
		var z big.Int
		switch op {
		case token.SHL:
			return normInt(z.Lsh(x.val, s))
		case token.SHR:
			return normInt(z.Rsh(x.val, s))
		}
	}

	panic(fmt.Sprintf("invalid shift %v %s %d", x, op, s))
}

func cmpZero(x int, op token.Token) bool {
	switch op {
	case token.EQL:
		return x == 0
	case token.NEQ:
		return x != 0
	case token.LSS:
		return x < 0
	case token.LEQ:
		return x <= 0
	case token.GTR:
		return x > 0
	case token.GEQ:
		return x >= 0
	}
	panic("unreachable")
}

// Compare returns the result of the comparison x op y.
// The comparison must be defined for the operands.
// If one of the operands is Unknown, the result is
// false.
//
func Compare(x Value, op token.Token, y Value) bool {
	x, y = match(x, y)

	switch x := x.(type) {
	case unknownVal:
		return false

	case boolVal:
		y := y.(boolVal)
		switch op {
		case token.EQL:
			return x == y
		case token.NEQ:
			return x != y
		}

	case int64Val:
		y := y.(int64Val)
		switch op {
		case token.EQL:
			return x == y
		case token.NEQ:
			return x != y
		case token.LSS:
			return x < y
		case token.LEQ:
			return x <= y
		case token.GTR:
			return x > y
		case token.GEQ:
			return x >= y
		}

	case intVal:
		return cmpZero(x.val.Cmp(y.(intVal).val), op)

	case floatVal:
		return cmpZero(x.val.Cmp(y.(floatVal).val), op)

	case complexVal:
		y := y.(complexVal)
		re := x.re.Cmp(y.re)
		im := x.im.Cmp(y.im)
		switch op {
		case token.EQL:
			return re == 0 && im == 0
		case token.NEQ:
			return re != 0 || im != 0
		}

	case stringVal:
		y := y.(stringVal)
		switch op {
		case token.EQL:
			return x == y
		case token.NEQ:
			return x != y
		case token.LSS:
			return x < y
		case token.LEQ:
			return x <= y
		case token.GTR:
			return x > y
		case token.GEQ:
			return x >= y
		}
	}

	panic(fmt.Sprintf("invalid comparison %v %s %v", x, op, y))
}