PrologEpilogInserter.cpp 50.3 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305
//===- PrologEpilogInserter.cpp - Insert Prolog/Epilog code in function ---===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This pass is responsible for finalizing the functions frame layout, saving
// callee saved registers, and for emitting prolog & epilog code for the
// function.
//
// This pass must be run after register allocation.  After this pass is
// executed, it is illegal to construct MO_FrameIndex operands.
//
//===----------------------------------------------------------------------===//

#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/RegisterScavenging.h"
#include "llvm/CodeGen/TargetFrameLowering.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/CodeGen/TargetOpcodes.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/CodeGen/WinEHFuncInfo.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/CallingConv.h"
#include "llvm/IR/DebugInfoMetadata.h"
#include "llvm/IR/DiagnosticInfo.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/InlineAsm.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/InitializePasses.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/Pass.h"
#include "llvm/Support/CodeGen.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetOptions.h"
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <functional>
#include <limits>
#include <utility>
#include <vector>

using namespace llvm;

#define DEBUG_TYPE "prologepilog"

using MBBVector = SmallVector<MachineBasicBlock *, 4>;

STATISTIC(NumLeafFuncWithSpills, "Number of leaf functions with CSRs");
STATISTIC(NumFuncSeen, "Number of functions seen in PEI");


namespace {

class PEI : public MachineFunctionPass {
public:
  static char ID;

  PEI() : MachineFunctionPass(ID) {
    initializePEIPass(*PassRegistry::getPassRegistry());
  }

  void getAnalysisUsage(AnalysisUsage &AU) const override;

  /// runOnMachineFunction - Insert prolog/epilog code and replace abstract
  /// frame indexes with appropriate references.
  bool runOnMachineFunction(MachineFunction &MF) override;

private:
  RegScavenger *RS;

  // MinCSFrameIndex, MaxCSFrameIndex - Keeps the range of callee saved
  // stack frame indexes.
  unsigned MinCSFrameIndex = std::numeric_limits<unsigned>::max();
  unsigned MaxCSFrameIndex = 0;

  // Save and Restore blocks of the current function. Typically there is a
  // single save block, unless Windows EH funclets are involved.
  MBBVector SaveBlocks;
  MBBVector RestoreBlocks;

  // Flag to control whether to use the register scavenger to resolve
  // frame index materialization registers. Set according to
  // TRI->requiresFrameIndexScavenging() for the current function.
  bool FrameIndexVirtualScavenging;

  // Flag to control whether the scavenger should be passed even though
  // FrameIndexVirtualScavenging is used.
  bool FrameIndexEliminationScavenging;

  // Emit remarks.
  MachineOptimizationRemarkEmitter *ORE = nullptr;

  void calculateCallFrameInfo(MachineFunction &MF);
  void calculateSaveRestoreBlocks(MachineFunction &MF);
  void spillCalleeSavedRegs(MachineFunction &MF);

  void calculateFrameObjectOffsets(MachineFunction &MF);
  void replaceFrameIndices(MachineFunction &MF);
  void replaceFrameIndices(MachineBasicBlock *BB, MachineFunction &MF,
                           int &SPAdj);
  void insertPrologEpilogCode(MachineFunction &MF);
};

} // end anonymous namespace

char PEI::ID = 0;

char &llvm::PrologEpilogCodeInserterID = PEI::ID;

static cl::opt<unsigned>
WarnStackSize("warn-stack-size", cl::Hidden, cl::init((unsigned)-1),
              cl::desc("Warn for stack size bigger than the given"
                       " number"));

INITIALIZE_PASS_BEGIN(PEI, DEBUG_TYPE, "Prologue/Epilogue Insertion", false,
                      false)
INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
INITIALIZE_PASS_DEPENDENCY(MachineOptimizationRemarkEmitterPass)
INITIALIZE_PASS_END(PEI, DEBUG_TYPE,
                    "Prologue/Epilogue Insertion & Frame Finalization", false,
                    false)

MachineFunctionPass *llvm::createPrologEpilogInserterPass() {
  return new PEI();
}

STATISTIC(NumBytesStackSpace,
          "Number of bytes used for stack in all functions");

void PEI::getAnalysisUsage(AnalysisUsage &AU) const {
  AU.setPreservesCFG();
  AU.addPreserved<MachineLoopInfo>();
  AU.addPreserved<MachineDominatorTree>();
  AU.addRequired<MachineOptimizationRemarkEmitterPass>();
  MachineFunctionPass::getAnalysisUsage(AU);
}

/// StackObjSet - A set of stack object indexes
using StackObjSet = SmallSetVector<int, 8>;

using SavedDbgValuesMap =
    SmallDenseMap<MachineBasicBlock *, SmallVector<MachineInstr *, 4>, 4>;

/// Stash DBG_VALUEs that describe parameters and which are placed at the start
/// of the block. Later on, after the prologue code has been emitted, the
/// stashed DBG_VALUEs will be reinserted at the start of the block.
static void stashEntryDbgValues(MachineBasicBlock &MBB,
                                SavedDbgValuesMap &EntryDbgValues) {
  SmallVector<const MachineInstr *, 4> FrameIndexValues;

  for (auto &MI : MBB) {
    if (!MI.isDebugInstr())
      break;
    if (!MI.isDebugValue() || !MI.getDebugVariable()->isParameter())
      continue;
    if (MI.getOperand(0).isFI()) {
      // We can only emit valid locations for frame indices after the frame
      // setup, so do not stash away them.
      FrameIndexValues.push_back(&MI);
      continue;
    }
    const DILocalVariable *Var = MI.getDebugVariable();
    const DIExpression *Expr = MI.getDebugExpression();
    auto Overlaps = [Var, Expr](const MachineInstr *DV) {
      return Var == DV->getDebugVariable() &&
             Expr->fragmentsOverlap(DV->getDebugExpression());
    };
    // See if the debug value overlaps with any preceding debug value that will
    // not be stashed. If that is the case, then we can't stash this value, as
    // we would then reorder the values at reinsertion.
    if (llvm::none_of(FrameIndexValues, Overlaps))
      EntryDbgValues[&MBB].push_back(&MI);
  }

  // Remove stashed debug values from the block.
  if (EntryDbgValues.count(&MBB))
    for (auto *MI : EntryDbgValues[&MBB])
      MI->removeFromParent();
}

/// runOnMachineFunction - Insert prolog/epilog code and replace abstract
/// frame indexes with appropriate references.
bool PEI::runOnMachineFunction(MachineFunction &MF) {
  NumFuncSeen++;
  const Function &F = MF.getFunction();
  const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
  const TargetFrameLowering *TFI = MF.getSubtarget().getFrameLowering();

  RS = TRI->requiresRegisterScavenging(MF) ? new RegScavenger() : nullptr;
  FrameIndexVirtualScavenging = TRI->requiresFrameIndexScavenging(MF);
  ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE();

  // Calculate the MaxCallFrameSize and AdjustsStack variables for the
  // function's frame information. Also eliminates call frame pseudo
  // instructions.
  calculateCallFrameInfo(MF);

  // Determine placement of CSR spill/restore code and prolog/epilog code:
  // place all spills in the entry block, all restores in return blocks.
  calculateSaveRestoreBlocks(MF);

  // Stash away DBG_VALUEs that should not be moved by insertion of prolog code.
  SavedDbgValuesMap EntryDbgValues;
  for (MachineBasicBlock *SaveBlock : SaveBlocks)
    stashEntryDbgValues(*SaveBlock, EntryDbgValues);

  // Handle CSR spilling and restoring, for targets that need it.
  if (MF.getTarget().usesPhysRegsForPEI())
    spillCalleeSavedRegs(MF);

  // Allow the target machine to make final modifications to the function
  // before the frame layout is finalized.
  TFI->processFunctionBeforeFrameFinalized(MF, RS);

  // Calculate actual frame offsets for all abstract stack objects...
  calculateFrameObjectOffsets(MF);

  // Add prolog and epilog code to the function.  This function is required
  // to align the stack frame as necessary for any stack variables or
  // called functions.  Because of this, calculateCalleeSavedRegisters()
  // must be called before this function in order to set the AdjustsStack
  // and MaxCallFrameSize variables.
  if (!F.hasFnAttribute(Attribute::Naked))
    insertPrologEpilogCode(MF);

  // Reinsert stashed debug values at the start of the entry blocks.
  for (auto &I : EntryDbgValues)
    I.first->insert(I.first->begin(), I.second.begin(), I.second.end());

  // Replace all MO_FrameIndex operands with physical register references
  // and actual offsets.
  //
  replaceFrameIndices(MF);

  // If register scavenging is needed, as we've enabled doing it as a
  // post-pass, scavenge the virtual registers that frame index elimination
  // inserted.
  if (TRI->requiresRegisterScavenging(MF) && FrameIndexVirtualScavenging)
    scavengeFrameVirtualRegs(MF, *RS);

  // Warn on stack size when we exceeds the given limit.
  MachineFrameInfo &MFI = MF.getFrameInfo();
  uint64_t StackSize = MFI.getStackSize();
  if (WarnStackSize.getNumOccurrences() > 0 && WarnStackSize < StackSize) {
    DiagnosticInfoStackSize DiagStackSize(F, StackSize);
    F.getContext().diagnose(DiagStackSize);
  }
  ORE->emit([&]() {
    return MachineOptimizationRemarkAnalysis(DEBUG_TYPE, "StackSize",
                                             MF.getFunction().getSubprogram(),
                                             &MF.front())
           << ore::NV("NumStackBytes", StackSize) << " stack bytes in function";
  });

  delete RS;
  SaveBlocks.clear();
  RestoreBlocks.clear();
  MFI.setSavePoint(nullptr);
  MFI.setRestorePoint(nullptr);
  return true;
}

/// Calculate the MaxCallFrameSize and AdjustsStack
/// variables for the function's frame information and eliminate call frame
/// pseudo instructions.
void PEI::calculateCallFrameInfo(MachineFunction &MF) {
  const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
  const TargetFrameLowering *TFI = MF.getSubtarget().getFrameLowering();
  MachineFrameInfo &MFI = MF.getFrameInfo();

  unsigned MaxCallFrameSize = 0;
  bool AdjustsStack = MFI.adjustsStack();

  // Get the function call frame set-up and tear-down instruction opcode
  unsigned FrameSetupOpcode = TII.getCallFrameSetupOpcode();
  unsigned FrameDestroyOpcode = TII.getCallFrameDestroyOpcode();

  // Early exit for targets which have no call frame setup/destroy pseudo
  // instructions.
  if (FrameSetupOpcode == ~0u && FrameDestroyOpcode == ~0u)
    return;

  std::vector<MachineBasicBlock::iterator> FrameSDOps;
  for (MachineFunction::iterator BB = MF.begin(), E = MF.end(); BB != E; ++BB)
    for (MachineBasicBlock::iterator I = BB->begin(); I != BB->end(); ++I)
      if (TII.isFrameInstr(*I)) {
        unsigned Size = TII.getFrameSize(*I);
        if (Size > MaxCallFrameSize) MaxCallFrameSize = Size;
        AdjustsStack = true;
        FrameSDOps.push_back(I);
      } else if (I->isInlineAsm()) {
        // Some inline asm's need a stack frame, as indicated by operand 1.
        unsigned ExtraInfo = I->getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
        if (ExtraInfo & InlineAsm::Extra_IsAlignStack)
          AdjustsStack = true;
      }

  assert(!MFI.isMaxCallFrameSizeComputed() ||
         (MFI.getMaxCallFrameSize() == MaxCallFrameSize &&
          MFI.adjustsStack() == AdjustsStack));
  MFI.setAdjustsStack(AdjustsStack);
  MFI.setMaxCallFrameSize(MaxCallFrameSize);

  for (std::vector<MachineBasicBlock::iterator>::iterator
         i = FrameSDOps.begin(), e = FrameSDOps.end(); i != e; ++i) {
    MachineBasicBlock::iterator I = *i;

    // If call frames are not being included as part of the stack frame, and
    // the target doesn't indicate otherwise, remove the call frame pseudos
    // here. The sub/add sp instruction pairs are still inserted, but we don't
    // need to track the SP adjustment for frame index elimination.
    if (TFI->canSimplifyCallFramePseudos(MF))
      TFI->eliminateCallFramePseudoInstr(MF, *I->getParent(), I);
  }
}

/// Compute the sets of entry and return blocks for saving and restoring
/// callee-saved registers, and placing prolog and epilog code.
void PEI::calculateSaveRestoreBlocks(MachineFunction &MF) {
  const MachineFrameInfo &MFI = MF.getFrameInfo();

  // Even when we do not change any CSR, we still want to insert the
  // prologue and epilogue of the function.
  // So set the save points for those.

  // Use the points found by shrink-wrapping, if any.
  if (MFI.getSavePoint()) {
    SaveBlocks.push_back(MFI.getSavePoint());
    assert(MFI.getRestorePoint() && "Both restore and save must be set");
    MachineBasicBlock *RestoreBlock = MFI.getRestorePoint();
    // If RestoreBlock does not have any successor and is not a return block
    // then the end point is unreachable and we do not need to insert any
    // epilogue.
    if (!RestoreBlock->succ_empty() || RestoreBlock->isReturnBlock())
      RestoreBlocks.push_back(RestoreBlock);
    return;
  }

  // Save refs to entry and return blocks.
  SaveBlocks.push_back(&MF.front());
  for (MachineBasicBlock &MBB : MF) {
    if (MBB.isEHFuncletEntry())
      SaveBlocks.push_back(&MBB);
    if (MBB.isReturnBlock())
      RestoreBlocks.push_back(&MBB);
  }
}

static void assignCalleeSavedSpillSlots(MachineFunction &F,
                                        const BitVector &SavedRegs,
                                        unsigned &MinCSFrameIndex,
                                        unsigned &MaxCSFrameIndex) {
  if (SavedRegs.empty())
    return;

  const TargetRegisterInfo *RegInfo = F.getSubtarget().getRegisterInfo();
  const MCPhysReg *CSRegs = F.getRegInfo().getCalleeSavedRegs();

  std::vector<CalleeSavedInfo> CSI;
  for (unsigned i = 0; CSRegs[i]; ++i) {
    unsigned Reg = CSRegs[i];
    if (SavedRegs.test(Reg))
      CSI.push_back(CalleeSavedInfo(Reg));
  }

  const TargetFrameLowering *TFI = F.getSubtarget().getFrameLowering();
  MachineFrameInfo &MFI = F.getFrameInfo();
  if (!TFI->assignCalleeSavedSpillSlots(F, RegInfo, CSI)) {
    // If target doesn't implement this, use generic code.

    if (CSI.empty())
      return; // Early exit if no callee saved registers are modified!

    unsigned NumFixedSpillSlots;
    const TargetFrameLowering::SpillSlot *FixedSpillSlots =
        TFI->getCalleeSavedSpillSlots(NumFixedSpillSlots);

    // Now that we know which registers need to be saved and restored, allocate
    // stack slots for them.
    for (auto &CS : CSI) {
      // If the target has spilled this register to another register, we don't
      // need to allocate a stack slot.
      if (CS.isSpilledToReg())
        continue;

      unsigned Reg = CS.getReg();
      const TargetRegisterClass *RC = RegInfo->getMinimalPhysRegClass(Reg);

      int FrameIdx;
      if (RegInfo->hasReservedSpillSlot(F, Reg, FrameIdx)) {
        CS.setFrameIdx(FrameIdx);
        continue;
      }

      // Check to see if this physreg must be spilled to a particular stack slot
      // on this target.
      const TargetFrameLowering::SpillSlot *FixedSlot = FixedSpillSlots;
      while (FixedSlot != FixedSpillSlots + NumFixedSpillSlots &&
             FixedSlot->Reg != Reg)
        ++FixedSlot;

      unsigned Size = RegInfo->getSpillSize(*RC);
      if (FixedSlot == FixedSpillSlots + NumFixedSpillSlots) {
        // Nope, just spill it anywhere convenient.
        unsigned Align = RegInfo->getSpillAlignment(*RC);
        unsigned StackAlign = TFI->getStackAlignment();

        // We may not be able to satisfy the desired alignment specification of
        // the TargetRegisterClass if the stack alignment is smaller. Use the
        // min.
        Align = std::min(Align, StackAlign);
        FrameIdx = MFI.CreateStackObject(Size, Align, true);
        if ((unsigned)FrameIdx < MinCSFrameIndex) MinCSFrameIndex = FrameIdx;
        if ((unsigned)FrameIdx > MaxCSFrameIndex) MaxCSFrameIndex = FrameIdx;
      } else {
        // Spill it to the stack where we must.
        FrameIdx = MFI.CreateFixedSpillStackObject(Size, FixedSlot->Offset);
      }

      CS.setFrameIdx(FrameIdx);
    }
  }

  MFI.setCalleeSavedInfo(CSI);
}

/// Helper function to update the liveness information for the callee-saved
/// registers.
static void updateLiveness(MachineFunction &MF) {
  MachineFrameInfo &MFI = MF.getFrameInfo();
  // Visited will contain all the basic blocks that are in the region
  // where the callee saved registers are alive:
  // - Anything that is not Save or Restore -> LiveThrough.
  // - Save -> LiveIn.
  // - Restore -> LiveOut.
  // The live-out is not attached to the block, so no need to keep
  // Restore in this set.
  SmallPtrSet<MachineBasicBlock *, 8> Visited;
  SmallVector<MachineBasicBlock *, 8> WorkList;
  MachineBasicBlock *Entry = &MF.front();
  MachineBasicBlock *Save = MFI.getSavePoint();

  if (!Save)
    Save = Entry;

  if (Entry != Save) {
    WorkList.push_back(Entry);
    Visited.insert(Entry);
  }
  Visited.insert(Save);

  MachineBasicBlock *Restore = MFI.getRestorePoint();
  if (Restore)
    // By construction Restore cannot be visited, otherwise it
    // means there exists a path to Restore that does not go
    // through Save.
    WorkList.push_back(Restore);

  while (!WorkList.empty()) {
    const MachineBasicBlock *CurBB = WorkList.pop_back_val();
    // By construction, the region that is after the save point is
    // dominated by the Save and post-dominated by the Restore.
    if (CurBB == Save && Save != Restore)
      continue;
    // Enqueue all the successors not already visited.
    // Those are by construction either before Save or after Restore.
    for (MachineBasicBlock *SuccBB : CurBB->successors())
      if (Visited.insert(SuccBB).second)
        WorkList.push_back(SuccBB);
  }

  const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo();

  MachineRegisterInfo &MRI = MF.getRegInfo();
  for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
    for (MachineBasicBlock *MBB : Visited) {
      MCPhysReg Reg = CSI[i].getReg();
      // Add the callee-saved register as live-in.
      // It's killed at the spill.
      if (!MRI.isReserved(Reg) && !MBB->isLiveIn(Reg))
        MBB->addLiveIn(Reg);
    }
    // If callee-saved register is spilled to another register rather than
    // spilling to stack, the destination register has to be marked as live for
    // each MBB between the prologue and epilogue so that it is not clobbered
    // before it is reloaded in the epilogue. The Visited set contains all
    // blocks outside of the region delimited by prologue/epilogue.
    if (CSI[i].isSpilledToReg()) {
      for (MachineBasicBlock &MBB : MF) {
        if (Visited.count(&MBB))
          continue;
        MCPhysReg DstReg = CSI[i].getDstReg();
        if (!MBB.isLiveIn(DstReg))
          MBB.addLiveIn(DstReg);
      }
    }
  }

}

/// Insert restore code for the callee-saved registers used in the function.
static void insertCSRSaves(MachineBasicBlock &SaveBlock,
                           ArrayRef<CalleeSavedInfo> CSI) {
  MachineFunction &MF = *SaveBlock.getParent();
  const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
  const TargetFrameLowering *TFI = MF.getSubtarget().getFrameLowering();
  const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();

  MachineBasicBlock::iterator I = SaveBlock.begin();
  if (!TFI->spillCalleeSavedRegisters(SaveBlock, I, CSI, TRI)) {
    for (const CalleeSavedInfo &CS : CSI) {
      // Insert the spill to the stack frame.
      unsigned Reg = CS.getReg();

      if (CS.isSpilledToReg()) {
        BuildMI(SaveBlock, I, DebugLoc(),
                TII.get(TargetOpcode::COPY), CS.getDstReg())
          .addReg(Reg, getKillRegState(true));
      } else {
        const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg);
        TII.storeRegToStackSlot(SaveBlock, I, Reg, true, CS.getFrameIdx(), RC,
                                TRI);
      }
    }
  }
}

/// Insert restore code for the callee-saved registers used in the function.
static void insertCSRRestores(MachineBasicBlock &RestoreBlock,
                              std::vector<CalleeSavedInfo> &CSI) {
  MachineFunction &MF = *RestoreBlock.getParent();
  const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
  const TargetFrameLowering *TFI = MF.getSubtarget().getFrameLowering();
  const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();

  // Restore all registers immediately before the return and any
  // terminators that precede it.
  MachineBasicBlock::iterator I = RestoreBlock.getFirstTerminator();

  if (!TFI->restoreCalleeSavedRegisters(RestoreBlock, I, CSI, TRI)) {
    for (const CalleeSavedInfo &CI : reverse(CSI)) {
      unsigned Reg = CI.getReg();
      if (CI.isSpilledToReg()) {
        BuildMI(RestoreBlock, I, DebugLoc(), TII.get(TargetOpcode::COPY), Reg)
          .addReg(CI.getDstReg(), getKillRegState(true));
      } else {
        const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg);
        TII.loadRegFromStackSlot(RestoreBlock, I, Reg, CI.getFrameIdx(), RC, TRI);
        assert(I != RestoreBlock.begin() &&
               "loadRegFromStackSlot didn't insert any code!");
        // Insert in reverse order.  loadRegFromStackSlot can insert
        // multiple instructions.
      }
    }
  }
}

void PEI::spillCalleeSavedRegs(MachineFunction &MF) {
  // We can't list this requirement in getRequiredProperties because some
  // targets (WebAssembly) use virtual registers past this point, and the pass
  // pipeline is set up without giving the passes a chance to look at the
  // TargetMachine.
  // FIXME: Find a way to express this in getRequiredProperties.
  assert(MF.getProperties().hasProperty(
      MachineFunctionProperties::Property::NoVRegs));

  const Function &F = MF.getFunction();
  const TargetFrameLowering *TFI = MF.getSubtarget().getFrameLowering();
  MachineFrameInfo &MFI = MF.getFrameInfo();
  MinCSFrameIndex = std::numeric_limits<unsigned>::max();
  MaxCSFrameIndex = 0;

  // Determine which of the registers in the callee save list should be saved.
  BitVector SavedRegs;
  TFI->determineCalleeSaves(MF, SavedRegs, RS);

  // Assign stack slots for any callee-saved registers that must be spilled.
  assignCalleeSavedSpillSlots(MF, SavedRegs, MinCSFrameIndex, MaxCSFrameIndex);

  // Add the code to save and restore the callee saved registers.
  if (!F.hasFnAttribute(Attribute::Naked)) {
    MFI.setCalleeSavedInfoValid(true);

    std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo();
    if (!CSI.empty()) {
      if (!MFI.hasCalls())
        NumLeafFuncWithSpills++;

      for (MachineBasicBlock *SaveBlock : SaveBlocks) {
        insertCSRSaves(*SaveBlock, CSI);
        // Update the live-in information of all the blocks up to the save
        // point.
        updateLiveness(MF);
      }
      for (MachineBasicBlock *RestoreBlock : RestoreBlocks)
        insertCSRRestores(*RestoreBlock, CSI);
    }
  }
}

/// AdjustStackOffset - Helper function used to adjust the stack frame offset.
static inline void
AdjustStackOffset(MachineFrameInfo &MFI, int FrameIdx,
                  bool StackGrowsDown, int64_t &Offset,
                  unsigned &MaxAlign, unsigned Skew) {
  // If the stack grows down, add the object size to find the lowest address.
  if (StackGrowsDown)
    Offset += MFI.getObjectSize(FrameIdx);

  unsigned Align = MFI.getObjectAlignment(FrameIdx);

  // If the alignment of this object is greater than that of the stack, then
  // increase the stack alignment to match.
  MaxAlign = std::max(MaxAlign, Align);

  // Adjust to alignment boundary.
  Offset = alignTo(Offset, Align, Skew);

  if (StackGrowsDown) {
    LLVM_DEBUG(dbgs() << "alloc FI(" << FrameIdx << ") at SP[" << -Offset
                      << "]\n");
    MFI.setObjectOffset(FrameIdx, -Offset); // Set the computed offset
  } else {
    LLVM_DEBUG(dbgs() << "alloc FI(" << FrameIdx << ") at SP[" << Offset
                      << "]\n");
    MFI.setObjectOffset(FrameIdx, Offset);
    Offset += MFI.getObjectSize(FrameIdx);
  }
}

/// Compute which bytes of fixed and callee-save stack area are unused and keep
/// track of them in StackBytesFree.
static inline void
computeFreeStackSlots(MachineFrameInfo &MFI, bool StackGrowsDown,
                      unsigned MinCSFrameIndex, unsigned MaxCSFrameIndex,
                      int64_t FixedCSEnd, BitVector &StackBytesFree) {
  // Avoid undefined int64_t -> int conversion below in extreme case.
  if (FixedCSEnd > std::numeric_limits<int>::max())
    return;

  StackBytesFree.resize(FixedCSEnd, true);

  SmallVector<int, 16> AllocatedFrameSlots;
  // Add fixed objects.
  for (int i = MFI.getObjectIndexBegin(); i != 0; ++i)
    // StackSlot scavenging is only implemented for the default stack.
    if (MFI.getStackID(i) == TargetStackID::Default)
      AllocatedFrameSlots.push_back(i);
  // Add callee-save objects.
  for (int i = MinCSFrameIndex; i <= (int)MaxCSFrameIndex; ++i)
    if (MFI.getStackID(i) == TargetStackID::Default)
      AllocatedFrameSlots.push_back(i);

  for (int i : AllocatedFrameSlots) {
    // These are converted from int64_t, but they should always fit in int
    // because of the FixedCSEnd check above.
    int ObjOffset = MFI.getObjectOffset(i);
    int ObjSize = MFI.getObjectSize(i);
    int ObjStart, ObjEnd;
    if (StackGrowsDown) {
      // ObjOffset is negative when StackGrowsDown is true.
      ObjStart = -ObjOffset - ObjSize;
      ObjEnd = -ObjOffset;
    } else {
      ObjStart = ObjOffset;
      ObjEnd = ObjOffset + ObjSize;
    }
    // Ignore fixed holes that are in the previous stack frame.
    if (ObjEnd > 0)
      StackBytesFree.reset(ObjStart, ObjEnd);
  }
}

/// Assign frame object to an unused portion of the stack in the fixed stack
/// object range.  Return true if the allocation was successful.
static inline bool scavengeStackSlot(MachineFrameInfo &MFI, int FrameIdx,
                                     bool StackGrowsDown, unsigned MaxAlign,
                                     BitVector &StackBytesFree) {
  if (MFI.isVariableSizedObjectIndex(FrameIdx))
    return false;

  if (StackBytesFree.none()) {
    // clear it to speed up later scavengeStackSlot calls to
    // StackBytesFree.none()
    StackBytesFree.clear();
    return false;
  }

  unsigned ObjAlign = MFI.getObjectAlignment(FrameIdx);
  if (ObjAlign > MaxAlign)
    return false;

  int64_t ObjSize = MFI.getObjectSize(FrameIdx);
  int FreeStart;
  for (FreeStart = StackBytesFree.find_first(); FreeStart != -1;
       FreeStart = StackBytesFree.find_next(FreeStart)) {

    // Check that free space has suitable alignment.
    unsigned ObjStart = StackGrowsDown ? FreeStart + ObjSize : FreeStart;
    if (alignTo(ObjStart, ObjAlign) != ObjStart)
      continue;

    if (FreeStart + ObjSize > StackBytesFree.size())
      return false;

    bool AllBytesFree = true;
    for (unsigned Byte = 0; Byte < ObjSize; ++Byte)
      if (!StackBytesFree.test(FreeStart + Byte)) {
        AllBytesFree = false;
        break;
      }
    if (AllBytesFree)
      break;
  }

  if (FreeStart == -1)
    return false;

  if (StackGrowsDown) {
    int ObjStart = -(FreeStart + ObjSize);
    LLVM_DEBUG(dbgs() << "alloc FI(" << FrameIdx << ") scavenged at SP["
                      << ObjStart << "]\n");
    MFI.setObjectOffset(FrameIdx, ObjStart);
  } else {
    LLVM_DEBUG(dbgs() << "alloc FI(" << FrameIdx << ") scavenged at SP["
                      << FreeStart << "]\n");
    MFI.setObjectOffset(FrameIdx, FreeStart);
  }

  StackBytesFree.reset(FreeStart, FreeStart + ObjSize);
  return true;
}

/// AssignProtectedObjSet - Helper function to assign large stack objects (i.e.,
/// those required to be close to the Stack Protector) to stack offsets.
static void
AssignProtectedObjSet(const StackObjSet &UnassignedObjs,
                      SmallSet<int, 16> &ProtectedObjs,
                      MachineFrameInfo &MFI, bool StackGrowsDown,
                      int64_t &Offset, unsigned &MaxAlign, unsigned Skew) {

  for (StackObjSet::const_iterator I = UnassignedObjs.begin(),
        E = UnassignedObjs.end(); I != E; ++I) {
    int i = *I;
    AdjustStackOffset(MFI, i, StackGrowsDown, Offset, MaxAlign, Skew);
    ProtectedObjs.insert(i);
  }
}

/// calculateFrameObjectOffsets - Calculate actual frame offsets for all of the
/// abstract stack objects.
void PEI::calculateFrameObjectOffsets(MachineFunction &MF) {
  const TargetFrameLowering &TFI = *MF.getSubtarget().getFrameLowering();

  bool StackGrowsDown =
    TFI.getStackGrowthDirection() == TargetFrameLowering::StackGrowsDown;

  // Loop over all of the stack objects, assigning sequential addresses...
  MachineFrameInfo &MFI = MF.getFrameInfo();

  // Start at the beginning of the local area.
  // The Offset is the distance from the stack top in the direction
  // of stack growth -- so it's always nonnegative.
  int LocalAreaOffset = TFI.getOffsetOfLocalArea();
  if (StackGrowsDown)
    LocalAreaOffset = -LocalAreaOffset;
  assert(LocalAreaOffset >= 0
         && "Local area offset should be in direction of stack growth");
  int64_t Offset = LocalAreaOffset;

  // Skew to be applied to alignment.
  unsigned Skew = TFI.getStackAlignmentSkew(MF);

#ifdef EXPENSIVE_CHECKS
  for (unsigned i = 0, e = MFI.getObjectIndexEnd(); i != e; ++i)
    if (!MFI.isDeadObjectIndex(i) &&
        MFI.getStackID(i) == TargetStackID::Default)
      assert(MFI.getObjectAlignment(i) <= MFI.getMaxAlignment() &&
             "MaxAlignment is invalid");
#endif

  // If there are fixed sized objects that are preallocated in the local area,
  // non-fixed objects can't be allocated right at the start of local area.
  // Adjust 'Offset' to point to the end of last fixed sized preallocated
  // object.
  for (int i = MFI.getObjectIndexBegin(); i != 0; ++i) {
    if (MFI.getStackID(i) !=
        TargetStackID::Default) // Only allocate objects on the default stack.
      continue;

    int64_t FixedOff;
    if (StackGrowsDown) {
      // The maximum distance from the stack pointer is at lower address of
      // the object -- which is given by offset. For down growing stack
      // the offset is negative, so we negate the offset to get the distance.
      FixedOff = -MFI.getObjectOffset(i);
    } else {
      // The maximum distance from the start pointer is at the upper
      // address of the object.
      FixedOff = MFI.getObjectOffset(i) + MFI.getObjectSize(i);
    }
    if (FixedOff > Offset) Offset = FixedOff;
  }

  // First assign frame offsets to stack objects that are used to spill
  // callee saved registers.
  if (StackGrowsDown) {
    for (unsigned i = MinCSFrameIndex; i <= MaxCSFrameIndex; ++i) {
      if (MFI.getStackID(i) !=
          TargetStackID::Default) // Only allocate objects on the default stack.
        continue;

      // If the stack grows down, we need to add the size to find the lowest
      // address of the object.
      Offset += MFI.getObjectSize(i);

      unsigned Align = MFI.getObjectAlignment(i);
      // Adjust to alignment boundary
      Offset = alignTo(Offset, Align, Skew);

      LLVM_DEBUG(dbgs() << "alloc FI(" << i << ") at SP[" << -Offset << "]\n");
      MFI.setObjectOffset(i, -Offset);        // Set the computed offset
    }
  } else if (MaxCSFrameIndex >= MinCSFrameIndex) {
    // Be careful about underflow in comparisons agains MinCSFrameIndex.
    for (unsigned i = MaxCSFrameIndex; i != MinCSFrameIndex - 1; --i) {
      if (MFI.getStackID(i) !=
          TargetStackID::Default) // Only allocate objects on the default stack.
        continue;

      if (MFI.isDeadObjectIndex(i))
        continue;

      unsigned Align = MFI.getObjectAlignment(i);
      // Adjust to alignment boundary
      Offset = alignTo(Offset, Align, Skew);

      LLVM_DEBUG(dbgs() << "alloc FI(" << i << ") at SP[" << Offset << "]\n");
      MFI.setObjectOffset(i, Offset);
      Offset += MFI.getObjectSize(i);
    }
  }

  // FixedCSEnd is the stack offset to the end of the fixed and callee-save
  // stack area.
  int64_t FixedCSEnd = Offset;
  unsigned MaxAlign = MFI.getMaxAlignment();

  // Make sure the special register scavenging spill slot is closest to the
  // incoming stack pointer if a frame pointer is required and is closer
  // to the incoming rather than the final stack pointer.
  const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo();
  bool EarlyScavengingSlots = (TFI.hasFP(MF) &&
                               TFI.isFPCloseToIncomingSP() &&
                               RegInfo->useFPForScavengingIndex(MF) &&
                               !RegInfo->needsStackRealignment(MF));
  if (RS && EarlyScavengingSlots) {
    SmallVector<int, 2> SFIs;
    RS->getScavengingFrameIndices(SFIs);
    for (SmallVectorImpl<int>::iterator I = SFIs.begin(),
           IE = SFIs.end(); I != IE; ++I)
      AdjustStackOffset(MFI, *I, StackGrowsDown, Offset, MaxAlign, Skew);
  }

  // FIXME: Once this is working, then enable flag will change to a target
  // check for whether the frame is large enough to want to use virtual
  // frame index registers. Functions which don't want/need this optimization
  // will continue to use the existing code path.
  if (MFI.getUseLocalStackAllocationBlock()) {
    unsigned Align = MFI.getLocalFrameMaxAlign().value();

    // Adjust to alignment boundary.
    Offset = alignTo(Offset, Align, Skew);

    LLVM_DEBUG(dbgs() << "Local frame base offset: " << Offset << "\n");

    // Resolve offsets for objects in the local block.
    for (unsigned i = 0, e = MFI.getLocalFrameObjectCount(); i != e; ++i) {
      std::pair<int, int64_t> Entry = MFI.getLocalFrameObjectMap(i);
      int64_t FIOffset = (StackGrowsDown ? -Offset : Offset) + Entry.second;
      LLVM_DEBUG(dbgs() << "alloc FI(" << Entry.first << ") at SP[" << FIOffset
                        << "]\n");
      MFI.setObjectOffset(Entry.first, FIOffset);
    }
    // Allocate the local block
    Offset += MFI.getLocalFrameSize();

    MaxAlign = std::max(Align, MaxAlign);
  }

  // Retrieve the Exception Handler registration node.
  int EHRegNodeFrameIndex = std::numeric_limits<int>::max();
  if (const WinEHFuncInfo *FuncInfo = MF.getWinEHFuncInfo())
    EHRegNodeFrameIndex = FuncInfo->EHRegNodeFrameIndex;

  // Make sure that the stack protector comes before the local variables on the
  // stack.
  SmallSet<int, 16> ProtectedObjs;
  if (MFI.hasStackProtectorIndex()) {
    int StackProtectorFI = MFI.getStackProtectorIndex();
    StackObjSet LargeArrayObjs;
    StackObjSet SmallArrayObjs;
    StackObjSet AddrOfObjs;

    // If we need a stack protector, we need to make sure that
    // LocalStackSlotPass didn't already allocate a slot for it.
    // If we are told to use the LocalStackAllocationBlock, the stack protector
    // is expected to be already pre-allocated.
    if (!MFI.getUseLocalStackAllocationBlock())
      AdjustStackOffset(MFI, StackProtectorFI, StackGrowsDown, Offset, MaxAlign,
                        Skew);
    else if (!MFI.isObjectPreAllocated(MFI.getStackProtectorIndex()))
      llvm_unreachable(
          "Stack protector not pre-allocated by LocalStackSlotPass.");

    // Assign large stack objects first.
    for (unsigned i = 0, e = MFI.getObjectIndexEnd(); i != e; ++i) {
      if (MFI.isObjectPreAllocated(i) && MFI.getUseLocalStackAllocationBlock())
        continue;
      if (i >= MinCSFrameIndex && i <= MaxCSFrameIndex)
        continue;
      if (RS && RS->isScavengingFrameIndex((int)i))
        continue;
      if (MFI.isDeadObjectIndex(i))
        continue;
      if (StackProtectorFI == (int)i || EHRegNodeFrameIndex == (int)i)
        continue;
      if (MFI.getStackID(i) !=
          TargetStackID::Default) // Only allocate objects on the default stack.
        continue;

      switch (MFI.getObjectSSPLayout(i)) {
      case MachineFrameInfo::SSPLK_None:
        continue;
      case MachineFrameInfo::SSPLK_SmallArray:
        SmallArrayObjs.insert(i);
        continue;
      case MachineFrameInfo::SSPLK_AddrOf:
        AddrOfObjs.insert(i);
        continue;
      case MachineFrameInfo::SSPLK_LargeArray:
        LargeArrayObjs.insert(i);
        continue;
      }
      llvm_unreachable("Unexpected SSPLayoutKind.");
    }

    // We expect **all** the protected stack objects to be pre-allocated by
    // LocalStackSlotPass. If it turns out that PEI still has to allocate some
    // of them, we may end up messing up the expected order of the objects.
    if (MFI.getUseLocalStackAllocationBlock() &&
        !(LargeArrayObjs.empty() && SmallArrayObjs.empty() &&
          AddrOfObjs.empty()))
      llvm_unreachable("Found protected stack objects not pre-allocated by "
                       "LocalStackSlotPass.");

    AssignProtectedObjSet(LargeArrayObjs, ProtectedObjs, MFI, StackGrowsDown,
                          Offset, MaxAlign, Skew);
    AssignProtectedObjSet(SmallArrayObjs, ProtectedObjs, MFI, StackGrowsDown,
                          Offset, MaxAlign, Skew);
    AssignProtectedObjSet(AddrOfObjs, ProtectedObjs, MFI, StackGrowsDown,
                          Offset, MaxAlign, Skew);
  }

  SmallVector<int, 8> ObjectsToAllocate;

  // Then prepare to assign frame offsets to stack objects that are not used to
  // spill callee saved registers.
  for (unsigned i = 0, e = MFI.getObjectIndexEnd(); i != e; ++i) {
    if (MFI.isObjectPreAllocated(i) && MFI.getUseLocalStackAllocationBlock())
      continue;
    if (i >= MinCSFrameIndex && i <= MaxCSFrameIndex)
      continue;
    if (RS && RS->isScavengingFrameIndex((int)i))
      continue;
    if (MFI.isDeadObjectIndex(i))
      continue;
    if (MFI.getStackProtectorIndex() == (int)i || EHRegNodeFrameIndex == (int)i)
      continue;
    if (ProtectedObjs.count(i))
      continue;
    if (MFI.getStackID(i) !=
        TargetStackID::Default) // Only allocate objects on the default stack.
      continue;

    // Add the objects that we need to allocate to our working set.
    ObjectsToAllocate.push_back(i);
  }

  // Allocate the EH registration node first if one is present.
  if (EHRegNodeFrameIndex != std::numeric_limits<int>::max())
    AdjustStackOffset(MFI, EHRegNodeFrameIndex, StackGrowsDown, Offset,
                      MaxAlign, Skew);

  // Give the targets a chance to order the objects the way they like it.
  if (MF.getTarget().getOptLevel() != CodeGenOpt::None &&
      MF.getTarget().Options.StackSymbolOrdering)
    TFI.orderFrameObjects(MF, ObjectsToAllocate);

  // Keep track of which bytes in the fixed and callee-save range are used so we
  // can use the holes when allocating later stack objects.  Only do this if
  // stack protector isn't being used and the target requests it and we're
  // optimizing.
  BitVector StackBytesFree;
  if (!ObjectsToAllocate.empty() &&
      MF.getTarget().getOptLevel() != CodeGenOpt::None &&
      MFI.getStackProtectorIndex() < 0 && TFI.enableStackSlotScavenging(MF))
    computeFreeStackSlots(MFI, StackGrowsDown, MinCSFrameIndex, MaxCSFrameIndex,
                          FixedCSEnd, StackBytesFree);

  // Now walk the objects and actually assign base offsets to them.
  for (auto &Object : ObjectsToAllocate)
    if (!scavengeStackSlot(MFI, Object, StackGrowsDown, MaxAlign,
                           StackBytesFree))
      AdjustStackOffset(MFI, Object, StackGrowsDown, Offset, MaxAlign, Skew);

  // Make sure the special register scavenging spill slot is closest to the
  // stack pointer.
  if (RS && !EarlyScavengingSlots) {
    SmallVector<int, 2> SFIs;
    RS->getScavengingFrameIndices(SFIs);
    for (SmallVectorImpl<int>::iterator I = SFIs.begin(),
           IE = SFIs.end(); I != IE; ++I)
      AdjustStackOffset(MFI, *I, StackGrowsDown, Offset, MaxAlign, Skew);
  }

  if (!TFI.targetHandlesStackFrameRounding()) {
    // If we have reserved argument space for call sites in the function
    // immediately on entry to the current function, count it as part of the
    // overall stack size.
    if (MFI.adjustsStack() && TFI.hasReservedCallFrame(MF))
      Offset += MFI.getMaxCallFrameSize();

    // Round up the size to a multiple of the alignment.  If the function has
    // any calls or alloca's, align to the target's StackAlignment value to
    // ensure that the callee's frame or the alloca data is suitably aligned;
    // otherwise, for leaf functions, align to the TransientStackAlignment
    // value.
    unsigned StackAlign;
    if (MFI.adjustsStack() || MFI.hasVarSizedObjects() ||
        (RegInfo->needsStackRealignment(MF) && MFI.getObjectIndexEnd() != 0))
      StackAlign = TFI.getStackAlignment();
    else
      StackAlign = TFI.getTransientStackAlignment();

    // If the frame pointer is eliminated, all frame offsets will be relative to
    // SP not FP. Align to MaxAlign so this works.
    StackAlign = std::max(StackAlign, MaxAlign);
    Offset = alignTo(Offset, StackAlign, Skew);
  }

  // Update frame info to pretend that this is part of the stack...
  int64_t StackSize = Offset - LocalAreaOffset;
  MFI.setStackSize(StackSize);
  NumBytesStackSpace += StackSize;
}

/// insertPrologEpilogCode - Scan the function for modified callee saved
/// registers, insert spill code for these callee saved registers, then add
/// prolog and epilog code to the function.
void PEI::insertPrologEpilogCode(MachineFunction &MF) {
  const TargetFrameLowering &TFI = *MF.getSubtarget().getFrameLowering();

  // Add prologue to the function...
  for (MachineBasicBlock *SaveBlock : SaveBlocks)
    TFI.emitPrologue(MF, *SaveBlock);

  // Add epilogue to restore the callee-save registers in each exiting block.
  for (MachineBasicBlock *RestoreBlock : RestoreBlocks)
    TFI.emitEpilogue(MF, *RestoreBlock);

  for (MachineBasicBlock *SaveBlock : SaveBlocks)
    TFI.inlineStackProbe(MF, *SaveBlock);

  // Emit additional code that is required to support segmented stacks, if
  // we've been asked for it.  This, when linked with a runtime with support
  // for segmented stacks (libgcc is one), will result in allocating stack
  // space in small chunks instead of one large contiguous block.
  if (MF.shouldSplitStack()) {
    for (MachineBasicBlock *SaveBlock : SaveBlocks)
      TFI.adjustForSegmentedStacks(MF, *SaveBlock);
    // Record that there are split-stack functions, so we will emit a
    // special section to tell the linker.
    MF.getMMI().setHasSplitStack(true);
  } else
    MF.getMMI().setHasNosplitStack(true);

  // Emit additional code that is required to explicitly handle the stack in
  // HiPE native code (if needed) when loaded in the Erlang/OTP runtime. The
  // approach is rather similar to that of Segmented Stacks, but it uses a
  // different conditional check and another BIF for allocating more stack
  // space.
  if (MF.getFunction().getCallingConv() == CallingConv::HiPE)
    for (MachineBasicBlock *SaveBlock : SaveBlocks)
      TFI.adjustForHiPEPrologue(MF, *SaveBlock);
}

/// replaceFrameIndices - Replace all MO_FrameIndex operands with physical
/// register references and actual offsets.
void PEI::replaceFrameIndices(MachineFunction &MF) {
  const auto &ST = MF.getSubtarget();
  const TargetFrameLowering &TFI = *ST.getFrameLowering();
  if (!TFI.needsFrameIndexResolution(MF))
    return;

  const TargetRegisterInfo *TRI = ST.getRegisterInfo();

  // Allow the target to determine this after knowing the frame size.
  FrameIndexEliminationScavenging = (RS && !FrameIndexVirtualScavenging) ||
    TRI->requiresFrameIndexReplacementScavenging(MF);

  // Store SPAdj at exit of a basic block.
  SmallVector<int, 8> SPState;
  SPState.resize(MF.getNumBlockIDs());
  df_iterator_default_set<MachineBasicBlock*> Reachable;

  // Iterate over the reachable blocks in DFS order.
  for (auto DFI = df_ext_begin(&MF, Reachable), DFE = df_ext_end(&MF, Reachable);
       DFI != DFE; ++DFI) {
    int SPAdj = 0;
    // Check the exit state of the DFS stack predecessor.
    if (DFI.getPathLength() >= 2) {
      MachineBasicBlock *StackPred = DFI.getPath(DFI.getPathLength() - 2);
      assert(Reachable.count(StackPred) &&
             "DFS stack predecessor is already visited.\n");
      SPAdj = SPState[StackPred->getNumber()];
    }
    MachineBasicBlock *BB = *DFI;
    replaceFrameIndices(BB, MF, SPAdj);
    SPState[BB->getNumber()] = SPAdj;
  }

  // Handle the unreachable blocks.
  for (auto &BB : MF) {
    if (Reachable.count(&BB))
      // Already handled in DFS traversal.
      continue;
    int SPAdj = 0;
    replaceFrameIndices(&BB, MF, SPAdj);
  }
}

void PEI::replaceFrameIndices(MachineBasicBlock *BB, MachineFunction &MF,
                              int &SPAdj) {
  assert(MF.getSubtarget().getRegisterInfo() &&
         "getRegisterInfo() must be implemented!");
  const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
  const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
  const TargetFrameLowering *TFI = MF.getSubtarget().getFrameLowering();

  if (RS && FrameIndexEliminationScavenging)
    RS->enterBasicBlock(*BB);

  bool InsideCallSequence = false;

  for (MachineBasicBlock::iterator I = BB->begin(); I != BB->end(); ) {
    if (TII.isFrameInstr(*I)) {
      InsideCallSequence = TII.isFrameSetup(*I);
      SPAdj += TII.getSPAdjust(*I);
      I = TFI->eliminateCallFramePseudoInstr(MF, *BB, I);
      continue;
    }

    MachineInstr &MI = *I;
    bool DoIncr = true;
    bool DidFinishLoop = true;
    for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
      if (!MI.getOperand(i).isFI())
        continue;

      // Frame indices in debug values are encoded in a target independent
      // way with simply the frame index and offset rather than any
      // target-specific addressing mode.
      if (MI.isDebugValue()) {
        assert(i == 0 && "Frame indices can only appear as the first "
                         "operand of a DBG_VALUE machine instruction");
        unsigned Reg;
        unsigned FrameIdx = MI.getOperand(0).getIndex();
        unsigned Size = MF.getFrameInfo().getObjectSize(FrameIdx);

        int64_t Offset =
            TFI->getFrameIndexReference(MF, FrameIdx, Reg);
        MI.getOperand(0).ChangeToRegister(Reg, false /*isDef*/);
        MI.getOperand(0).setIsDebug();

        const DIExpression *DIExpr = MI.getDebugExpression();

        // If we have a direct DBG_VALUE, and its location expression isn't
        // currently complex, then adding an offset will morph it into a
        // complex location that is interpreted as being a memory address.
        // This changes a pointer-valued variable to dereference that pointer,
        // which is incorrect. Fix by adding DW_OP_stack_value.
        unsigned PrependFlags = DIExpression::ApplyOffset;
        if (!MI.isIndirectDebugValue() && !DIExpr->isComplex())
          PrependFlags |= DIExpression::StackValue;

        // If we have DBG_VALUE that is indirect and has a Implicit location
        // expression need to insert a deref before prepending a Memory
        // location expression. Also after doing this we change the DBG_VALUE
        // to be direct.
        if (MI.isIndirectDebugValue() && DIExpr->isImplicit()) {
          SmallVector<uint64_t, 2> Ops = {dwarf::DW_OP_deref_size, Size};
          bool WithStackValue = true;
          DIExpr = DIExpression::prependOpcodes(DIExpr, Ops, WithStackValue);
          // Make the DBG_VALUE direct.
          MI.getOperand(1).ChangeToRegister(0, false);
        }
        DIExpr = DIExpression::prepend(DIExpr, PrependFlags, Offset);
        MI.getOperand(3).setMetadata(DIExpr);
        continue;
      }

      // TODO: This code should be commoned with the code for
      // PATCHPOINT. There's no good reason for the difference in
      // implementation other than historical accident.  The only
      // remaining difference is the unconditional use of the stack
      // pointer as the base register.
      if (MI.getOpcode() == TargetOpcode::STATEPOINT) {
        assert((!MI.isDebugValue() || i == 0) &&
               "Frame indicies can only appear as the first operand of a "
               "DBG_VALUE machine instruction");
        unsigned Reg;
        MachineOperand &Offset = MI.getOperand(i + 1);
        int refOffset = TFI->getFrameIndexReferencePreferSP(
            MF, MI.getOperand(i).getIndex(), Reg, /*IgnoreSPUpdates*/ false);
        Offset.setImm(Offset.getImm() + refOffset + SPAdj);
        MI.getOperand(i).ChangeToRegister(Reg, false /*isDef*/);
        continue;
      }

      // Some instructions (e.g. inline asm instructions) can have
      // multiple frame indices and/or cause eliminateFrameIndex
      // to insert more than one instruction. We need the register
      // scavenger to go through all of these instructions so that
      // it can update its register information. We keep the
      // iterator at the point before insertion so that we can
      // revisit them in full.
      bool AtBeginning = (I == BB->begin());
      if (!AtBeginning) --I;

      // If this instruction has a FrameIndex operand, we need to
      // use that target machine register info object to eliminate
      // it.
      TRI.eliminateFrameIndex(MI, SPAdj, i,
                              FrameIndexEliminationScavenging ?  RS : nullptr);

      // Reset the iterator if we were at the beginning of the BB.
      if (AtBeginning) {
        I = BB->begin();
        DoIncr = false;
      }

      DidFinishLoop = false;
      break;
    }

    // If we are looking at a call sequence, we need to keep track of
    // the SP adjustment made by each instruction in the sequence.
    // This includes both the frame setup/destroy pseudos (handled above),
    // as well as other instructions that have side effects w.r.t the SP.
    // Note that this must come after eliminateFrameIndex, because
    // if I itself referred to a frame index, we shouldn't count its own
    // adjustment.
    if (DidFinishLoop && InsideCallSequence)
      SPAdj += TII.getSPAdjust(MI);

    if (DoIncr && I != BB->end()) ++I;

    // Update register states.
    if (RS && FrameIndexEliminationScavenging && DidFinishLoop)
      RS->forward(MI);
  }
}