ARMAsmPrinter.cpp
78.8 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
//===-- ARMAsmPrinter.cpp - Print machine code to an ARM .s file ----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains a printer that converts from our internal representation
// of machine-dependent LLVM code to GAS-format ARM assembly language.
//
//===----------------------------------------------------------------------===//
#include "ARMAsmPrinter.h"
#include "ARM.h"
#include "ARMConstantPoolValue.h"
#include "ARMMachineFunctionInfo.h"
#include "ARMTargetMachine.h"
#include "ARMTargetObjectFile.h"
#include "MCTargetDesc/ARMAddressingModes.h"
#include "MCTargetDesc/ARMInstPrinter.h"
#include "MCTargetDesc/ARMMCExpr.h"
#include "TargetInfo/ARMTargetInfo.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/BinaryFormat/COFF.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineJumpTableInfo.h"
#include "llvm/CodeGen/MachineModuleInfoImpls.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Mangler.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Type.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/MC/MCAssembler.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCELFStreamer.h"
#include "llvm/MC/MCInst.h"
#include "llvm/MC/MCInstBuilder.h"
#include "llvm/MC/MCObjectStreamer.h"
#include "llvm/MC/MCStreamer.h"
#include "llvm/MC/MCSymbol.h"
#include "llvm/Support/ARMBuildAttributes.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/TargetParser.h"
#include "llvm/Support/TargetRegistry.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetMachine.h"
using namespace llvm;
#define DEBUG_TYPE "asm-printer"
ARMAsmPrinter::ARMAsmPrinter(TargetMachine &TM,
std::unique_ptr<MCStreamer> Streamer)
: AsmPrinter(TM, std::move(Streamer)), Subtarget(nullptr), AFI(nullptr),
MCP(nullptr), InConstantPool(false), OptimizationGoals(-1) {}
void ARMAsmPrinter::EmitFunctionBodyEnd() {
// Make sure to terminate any constant pools that were at the end
// of the function.
if (!InConstantPool)
return;
InConstantPool = false;
OutStreamer->EmitDataRegion(MCDR_DataRegionEnd);
}
void ARMAsmPrinter::EmitFunctionEntryLabel() {
if (AFI->isThumbFunction()) {
OutStreamer->EmitAssemblerFlag(MCAF_Code16);
OutStreamer->EmitThumbFunc(CurrentFnSym);
} else {
OutStreamer->EmitAssemblerFlag(MCAF_Code32);
}
OutStreamer->EmitLabel(CurrentFnSym);
}
void ARMAsmPrinter::EmitXXStructor(const DataLayout &DL, const Constant *CV) {
uint64_t Size = getDataLayout().getTypeAllocSize(CV->getType());
assert(Size && "C++ constructor pointer had zero size!");
const GlobalValue *GV = dyn_cast<GlobalValue>(CV->stripPointerCasts());
assert(GV && "C++ constructor pointer was not a GlobalValue!");
const MCExpr *E = MCSymbolRefExpr::create(GetARMGVSymbol(GV,
ARMII::MO_NO_FLAG),
(Subtarget->isTargetELF()
? MCSymbolRefExpr::VK_ARM_TARGET1
: MCSymbolRefExpr::VK_None),
OutContext);
OutStreamer->EmitValue(E, Size);
}
void ARMAsmPrinter::EmitGlobalVariable(const GlobalVariable *GV) {
if (PromotedGlobals.count(GV))
// The global was promoted into a constant pool. It should not be emitted.
return;
AsmPrinter::EmitGlobalVariable(GV);
}
/// runOnMachineFunction - This uses the EmitInstruction()
/// method to print assembly for each instruction.
///
bool ARMAsmPrinter::runOnMachineFunction(MachineFunction &MF) {
AFI = MF.getInfo<ARMFunctionInfo>();
MCP = MF.getConstantPool();
Subtarget = &MF.getSubtarget<ARMSubtarget>();
SetupMachineFunction(MF);
const Function &F = MF.getFunction();
const TargetMachine& TM = MF.getTarget();
// Collect all globals that had their storage promoted to a constant pool.
// Functions are emitted before variables, so this accumulates promoted
// globals from all functions in PromotedGlobals.
for (auto *GV : AFI->getGlobalsPromotedToConstantPool())
PromotedGlobals.insert(GV);
// Calculate this function's optimization goal.
unsigned OptimizationGoal;
if (F.hasOptNone())
// For best debugging illusion, speed and small size sacrificed
OptimizationGoal = 6;
else if (F.hasMinSize())
// Aggressively for small size, speed and debug illusion sacrificed
OptimizationGoal = 4;
else if (F.hasOptSize())
// For small size, but speed and debugging illusion preserved
OptimizationGoal = 3;
else if (TM.getOptLevel() == CodeGenOpt::Aggressive)
// Aggressively for speed, small size and debug illusion sacrificed
OptimizationGoal = 2;
else if (TM.getOptLevel() > CodeGenOpt::None)
// For speed, but small size and good debug illusion preserved
OptimizationGoal = 1;
else // TM.getOptLevel() == CodeGenOpt::None
// For good debugging, but speed and small size preserved
OptimizationGoal = 5;
// Combine a new optimization goal with existing ones.
if (OptimizationGoals == -1) // uninitialized goals
OptimizationGoals = OptimizationGoal;
else if (OptimizationGoals != (int)OptimizationGoal) // conflicting goals
OptimizationGoals = 0;
if (Subtarget->isTargetCOFF()) {
bool Internal = F.hasInternalLinkage();
COFF::SymbolStorageClass Scl = Internal ? COFF::IMAGE_SYM_CLASS_STATIC
: COFF::IMAGE_SYM_CLASS_EXTERNAL;
int Type = COFF::IMAGE_SYM_DTYPE_FUNCTION << COFF::SCT_COMPLEX_TYPE_SHIFT;
OutStreamer->BeginCOFFSymbolDef(CurrentFnSym);
OutStreamer->EmitCOFFSymbolStorageClass(Scl);
OutStreamer->EmitCOFFSymbolType(Type);
OutStreamer->EndCOFFSymbolDef();
}
// Emit the rest of the function body.
EmitFunctionBody();
// Emit the XRay table for this function.
emitXRayTable();
// If we need V4T thumb mode Register Indirect Jump pads, emit them.
// These are created per function, rather than per TU, since it's
// relatively easy to exceed the thumb branch range within a TU.
if (! ThumbIndirectPads.empty()) {
OutStreamer->EmitAssemblerFlag(MCAF_Code16);
EmitAlignment(Align(2));
for (std::pair<unsigned, MCSymbol *> &TIP : ThumbIndirectPads) {
OutStreamer->EmitLabel(TIP.second);
EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tBX)
.addReg(TIP.first)
// Add predicate operands.
.addImm(ARMCC::AL)
.addReg(0));
}
ThumbIndirectPads.clear();
}
// We didn't modify anything.
return false;
}
void ARMAsmPrinter::PrintSymbolOperand(const MachineOperand &MO,
raw_ostream &O) {
assert(MO.isGlobal() && "caller should check MO.isGlobal");
unsigned TF = MO.getTargetFlags();
if (TF & ARMII::MO_LO16)
O << ":lower16:";
else if (TF & ARMII::MO_HI16)
O << ":upper16:";
GetARMGVSymbol(MO.getGlobal(), TF)->print(O, MAI);
printOffset(MO.getOffset(), O);
}
void ARMAsmPrinter::printOperand(const MachineInstr *MI, int OpNum,
raw_ostream &O) {
const MachineOperand &MO = MI->getOperand(OpNum);
switch (MO.getType()) {
default: llvm_unreachable("<unknown operand type>");
case MachineOperand::MO_Register: {
Register Reg = MO.getReg();
assert(Register::isPhysicalRegister(Reg));
assert(!MO.getSubReg() && "Subregs should be eliminated!");
if(ARM::GPRPairRegClass.contains(Reg)) {
const MachineFunction &MF = *MI->getParent()->getParent();
const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
Reg = TRI->getSubReg(Reg, ARM::gsub_0);
}
O << ARMInstPrinter::getRegisterName(Reg);
break;
}
case MachineOperand::MO_Immediate: {
O << '#';
unsigned TF = MO.getTargetFlags();
if (TF == ARMII::MO_LO16)
O << ":lower16:";
else if (TF == ARMII::MO_HI16)
O << ":upper16:";
O << MO.getImm();
break;
}
case MachineOperand::MO_MachineBasicBlock:
MO.getMBB()->getSymbol()->print(O, MAI);
return;
case MachineOperand::MO_GlobalAddress: {
PrintSymbolOperand(MO, O);
break;
}
case MachineOperand::MO_ConstantPoolIndex:
if (Subtarget->genExecuteOnly())
llvm_unreachable("execute-only should not generate constant pools");
GetCPISymbol(MO.getIndex())->print(O, MAI);
break;
}
}
MCSymbol *ARMAsmPrinter::GetCPISymbol(unsigned CPID) const {
// The AsmPrinter::GetCPISymbol superclass method tries to use CPID as
// indexes in MachineConstantPool, which isn't in sync with indexes used here.
const DataLayout &DL = getDataLayout();
return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) +
"CPI" + Twine(getFunctionNumber()) + "_" +
Twine(CPID));
}
//===--------------------------------------------------------------------===//
MCSymbol *ARMAsmPrinter::
GetARMJTIPICJumpTableLabel(unsigned uid) const {
const DataLayout &DL = getDataLayout();
SmallString<60> Name;
raw_svector_ostream(Name) << DL.getPrivateGlobalPrefix() << "JTI"
<< getFunctionNumber() << '_' << uid;
return OutContext.getOrCreateSymbol(Name);
}
bool ARMAsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNum,
const char *ExtraCode, raw_ostream &O) {
// Does this asm operand have a single letter operand modifier?
if (ExtraCode && ExtraCode[0]) {
if (ExtraCode[1] != 0) return true; // Unknown modifier.
switch (ExtraCode[0]) {
default:
// See if this is a generic print operand
return AsmPrinter::PrintAsmOperand(MI, OpNum, ExtraCode, O);
case 'P': // Print a VFP double precision register.
case 'q': // Print a NEON quad precision register.
printOperand(MI, OpNum, O);
return false;
case 'y': // Print a VFP single precision register as indexed double.
if (MI->getOperand(OpNum).isReg()) {
Register Reg = MI->getOperand(OpNum).getReg();
const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
// Find the 'd' register that has this 's' register as a sub-register,
// and determine the lane number.
for (MCSuperRegIterator SR(Reg, TRI); SR.isValid(); ++SR) {
if (!ARM::DPRRegClass.contains(*SR))
continue;
bool Lane0 = TRI->getSubReg(*SR, ARM::ssub_0) == Reg;
O << ARMInstPrinter::getRegisterName(*SR) << (Lane0 ? "[0]" : "[1]");
return false;
}
}
return true;
case 'B': // Bitwise inverse of integer or symbol without a preceding #.
if (!MI->getOperand(OpNum).isImm())
return true;
O << ~(MI->getOperand(OpNum).getImm());
return false;
case 'L': // The low 16 bits of an immediate constant.
if (!MI->getOperand(OpNum).isImm())
return true;
O << (MI->getOperand(OpNum).getImm() & 0xffff);
return false;
case 'M': { // A register range suitable for LDM/STM.
if (!MI->getOperand(OpNum).isReg())
return true;
const MachineOperand &MO = MI->getOperand(OpNum);
Register RegBegin = MO.getReg();
// This takes advantage of the 2 operand-ness of ldm/stm and that we've
// already got the operands in registers that are operands to the
// inline asm statement.
O << "{";
if (ARM::GPRPairRegClass.contains(RegBegin)) {
const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
Register Reg0 = TRI->getSubReg(RegBegin, ARM::gsub_0);
O << ARMInstPrinter::getRegisterName(Reg0) << ", ";
RegBegin = TRI->getSubReg(RegBegin, ARM::gsub_1);
}
O << ARMInstPrinter::getRegisterName(RegBegin);
// FIXME: The register allocator not only may not have given us the
// registers in sequence, but may not be in ascending registers. This
// will require changes in the register allocator that'll need to be
// propagated down here if the operands change.
unsigned RegOps = OpNum + 1;
while (MI->getOperand(RegOps).isReg()) {
O << ", "
<< ARMInstPrinter::getRegisterName(MI->getOperand(RegOps).getReg());
RegOps++;
}
O << "}";
return false;
}
case 'R': // The most significant register of a pair.
case 'Q': { // The least significant register of a pair.
if (OpNum == 0)
return true;
const MachineOperand &FlagsOP = MI->getOperand(OpNum - 1);
if (!FlagsOP.isImm())
return true;
unsigned Flags = FlagsOP.getImm();
// This operand may not be the one that actually provides the register. If
// it's tied to a previous one then we should refer instead to that one
// for registers and their classes.
unsigned TiedIdx;
if (InlineAsm::isUseOperandTiedToDef(Flags, TiedIdx)) {
for (OpNum = InlineAsm::MIOp_FirstOperand; TiedIdx; --TiedIdx) {
unsigned OpFlags = MI->getOperand(OpNum).getImm();
OpNum += InlineAsm::getNumOperandRegisters(OpFlags) + 1;
}
Flags = MI->getOperand(OpNum).getImm();
// Later code expects OpNum to be pointing at the register rather than
// the flags.
OpNum += 1;
}
unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags);
unsigned RC;
bool FirstHalf;
const ARMBaseTargetMachine &ATM =
static_cast<const ARMBaseTargetMachine &>(TM);
// 'Q' should correspond to the low order register and 'R' to the high
// order register. Whether this corresponds to the upper or lower half
// depends on the endianess mode.
if (ExtraCode[0] == 'Q')
FirstHalf = ATM.isLittleEndian();
else
// ExtraCode[0] == 'R'.
FirstHalf = !ATM.isLittleEndian();
const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
if (InlineAsm::hasRegClassConstraint(Flags, RC) &&
ARM::GPRPairRegClass.hasSubClassEq(TRI->getRegClass(RC))) {
if (NumVals != 1)
return true;
const MachineOperand &MO = MI->getOperand(OpNum);
if (!MO.isReg())
return true;
const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
Register Reg =
TRI->getSubReg(MO.getReg(), FirstHalf ? ARM::gsub_0 : ARM::gsub_1);
O << ARMInstPrinter::getRegisterName(Reg);
return false;
}
if (NumVals != 2)
return true;
unsigned RegOp = FirstHalf ? OpNum : OpNum + 1;
if (RegOp >= MI->getNumOperands())
return true;
const MachineOperand &MO = MI->getOperand(RegOp);
if (!MO.isReg())
return true;
Register Reg = MO.getReg();
O << ARMInstPrinter::getRegisterName(Reg);
return false;
}
case 'e': // The low doubleword register of a NEON quad register.
case 'f': { // The high doubleword register of a NEON quad register.
if (!MI->getOperand(OpNum).isReg())
return true;
Register Reg = MI->getOperand(OpNum).getReg();
if (!ARM::QPRRegClass.contains(Reg))
return true;
const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
Register SubReg =
TRI->getSubReg(Reg, ExtraCode[0] == 'e' ? ARM::dsub_0 : ARM::dsub_1);
O << ARMInstPrinter::getRegisterName(SubReg);
return false;
}
// This modifier is not yet supported.
case 'h': // A range of VFP/NEON registers suitable for VLD1/VST1.
return true;
case 'H': { // The highest-numbered register of a pair.
const MachineOperand &MO = MI->getOperand(OpNum);
if (!MO.isReg())
return true;
const MachineFunction &MF = *MI->getParent()->getParent();
const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
Register Reg = MO.getReg();
if(!ARM::GPRPairRegClass.contains(Reg))
return false;
Reg = TRI->getSubReg(Reg, ARM::gsub_1);
O << ARMInstPrinter::getRegisterName(Reg);
return false;
}
}
}
printOperand(MI, OpNum, O);
return false;
}
bool ARMAsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI,
unsigned OpNum, const char *ExtraCode,
raw_ostream &O) {
// Does this asm operand have a single letter operand modifier?
if (ExtraCode && ExtraCode[0]) {
if (ExtraCode[1] != 0) return true; // Unknown modifier.
switch (ExtraCode[0]) {
case 'A': // A memory operand for a VLD1/VST1 instruction.
default: return true; // Unknown modifier.
case 'm': // The base register of a memory operand.
if (!MI->getOperand(OpNum).isReg())
return true;
O << ARMInstPrinter::getRegisterName(MI->getOperand(OpNum).getReg());
return false;
}
}
const MachineOperand &MO = MI->getOperand(OpNum);
assert(MO.isReg() && "unexpected inline asm memory operand");
O << "[" << ARMInstPrinter::getRegisterName(MO.getReg()) << "]";
return false;
}
static bool isThumb(const MCSubtargetInfo& STI) {
return STI.getFeatureBits()[ARM::ModeThumb];
}
void ARMAsmPrinter::emitInlineAsmEnd(const MCSubtargetInfo &StartInfo,
const MCSubtargetInfo *EndInfo) const {
// If either end mode is unknown (EndInfo == NULL) or different than
// the start mode, then restore the start mode.
const bool WasThumb = isThumb(StartInfo);
if (!EndInfo || WasThumb != isThumb(*EndInfo)) {
OutStreamer->EmitAssemblerFlag(WasThumb ? MCAF_Code16 : MCAF_Code32);
}
}
void ARMAsmPrinter::EmitStartOfAsmFile(Module &M) {
const Triple &TT = TM.getTargetTriple();
// Use unified assembler syntax.
OutStreamer->EmitAssemblerFlag(MCAF_SyntaxUnified);
// Emit ARM Build Attributes
if (TT.isOSBinFormatELF())
emitAttributes();
// Use the triple's architecture and subarchitecture to determine
// if we're thumb for the purposes of the top level code16 assembler
// flag.
if (!M.getModuleInlineAsm().empty() && TT.isThumb())
OutStreamer->EmitAssemblerFlag(MCAF_Code16);
}
static void
emitNonLazySymbolPointer(MCStreamer &OutStreamer, MCSymbol *StubLabel,
MachineModuleInfoImpl::StubValueTy &MCSym) {
// L_foo$stub:
OutStreamer.EmitLabel(StubLabel);
// .indirect_symbol _foo
OutStreamer.EmitSymbolAttribute(MCSym.getPointer(), MCSA_IndirectSymbol);
if (MCSym.getInt())
// External to current translation unit.
OutStreamer.EmitIntValue(0, 4/*size*/);
else
// Internal to current translation unit.
//
// When we place the LSDA into the TEXT section, the type info
// pointers need to be indirect and pc-rel. We accomplish this by
// using NLPs; however, sometimes the types are local to the file.
// We need to fill in the value for the NLP in those cases.
OutStreamer.EmitValue(
MCSymbolRefExpr::create(MCSym.getPointer(), OutStreamer.getContext()),
4 /*size*/);
}
void ARMAsmPrinter::EmitEndOfAsmFile(Module &M) {
const Triple &TT = TM.getTargetTriple();
if (TT.isOSBinFormatMachO()) {
// All darwin targets use mach-o.
const TargetLoweringObjectFileMachO &TLOFMacho =
static_cast<const TargetLoweringObjectFileMachO &>(getObjFileLowering());
MachineModuleInfoMachO &MMIMacho =
MMI->getObjFileInfo<MachineModuleInfoMachO>();
// Output non-lazy-pointers for external and common global variables.
MachineModuleInfoMachO::SymbolListTy Stubs = MMIMacho.GetGVStubList();
if (!Stubs.empty()) {
// Switch with ".non_lazy_symbol_pointer" directive.
OutStreamer->SwitchSection(TLOFMacho.getNonLazySymbolPointerSection());
EmitAlignment(Align(4));
for (auto &Stub : Stubs)
emitNonLazySymbolPointer(*OutStreamer, Stub.first, Stub.second);
Stubs.clear();
OutStreamer->AddBlankLine();
}
Stubs = MMIMacho.GetThreadLocalGVStubList();
if (!Stubs.empty()) {
// Switch with ".non_lazy_symbol_pointer" directive.
OutStreamer->SwitchSection(TLOFMacho.getThreadLocalPointerSection());
EmitAlignment(Align(4));
for (auto &Stub : Stubs)
emitNonLazySymbolPointer(*OutStreamer, Stub.first, Stub.second);
Stubs.clear();
OutStreamer->AddBlankLine();
}
// Funny Darwin hack: This flag tells the linker that no global symbols
// contain code that falls through to other global symbols (e.g. the obvious
// implementation of multiple entry points). If this doesn't occur, the
// linker can safely perform dead code stripping. Since LLVM never
// generates code that does this, it is always safe to set.
OutStreamer->EmitAssemblerFlag(MCAF_SubsectionsViaSymbols);
}
// The last attribute to be emitted is ABI_optimization_goals
MCTargetStreamer &TS = *OutStreamer->getTargetStreamer();
ARMTargetStreamer &ATS = static_cast<ARMTargetStreamer &>(TS);
if (OptimizationGoals > 0 &&
(Subtarget->isTargetAEABI() || Subtarget->isTargetGNUAEABI() ||
Subtarget->isTargetMuslAEABI()))
ATS.emitAttribute(ARMBuildAttrs::ABI_optimization_goals, OptimizationGoals);
OptimizationGoals = -1;
ATS.finishAttributeSection();
}
//===----------------------------------------------------------------------===//
// Helper routines for EmitStartOfAsmFile() and EmitEndOfAsmFile()
// FIXME:
// The following seem like one-off assembler flags, but they actually need
// to appear in the .ARM.attributes section in ELF.
// Instead of subclassing the MCELFStreamer, we do the work here.
// Returns true if all functions have the same function attribute value.
// It also returns true when the module has no functions.
static bool checkFunctionsAttributeConsistency(const Module &M, StringRef Attr,
StringRef Value) {
return !any_of(M, [&](const Function &F) {
return F.getFnAttribute(Attr).getValueAsString() != Value;
});
}
void ARMAsmPrinter::emitAttributes() {
MCTargetStreamer &TS = *OutStreamer->getTargetStreamer();
ARMTargetStreamer &ATS = static_cast<ARMTargetStreamer &>(TS);
ATS.emitTextAttribute(ARMBuildAttrs::conformance, "2.09");
ATS.switchVendor("aeabi");
// Compute ARM ELF Attributes based on the default subtarget that
// we'd have constructed. The existing ARM behavior isn't LTO clean
// anyhow.
// FIXME: For ifunc related functions we could iterate over and look
// for a feature string that doesn't match the default one.
const Triple &TT = TM.getTargetTriple();
StringRef CPU = TM.getTargetCPU();
StringRef FS = TM.getTargetFeatureString();
std::string ArchFS = ARM_MC::ParseARMTriple(TT, CPU);
if (!FS.empty()) {
if (!ArchFS.empty())
ArchFS = (Twine(ArchFS) + "," + FS).str();
else
ArchFS = FS;
}
const ARMBaseTargetMachine &ATM =
static_cast<const ARMBaseTargetMachine &>(TM);
const ARMSubtarget STI(TT, CPU, ArchFS, ATM, ATM.isLittleEndian());
// Emit build attributes for the available hardware.
ATS.emitTargetAttributes(STI);
// RW data addressing.
if (isPositionIndependent()) {
ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_RW_data,
ARMBuildAttrs::AddressRWPCRel);
} else if (STI.isRWPI()) {
// RWPI specific attributes.
ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_RW_data,
ARMBuildAttrs::AddressRWSBRel);
}
// RO data addressing.
if (isPositionIndependent() || STI.isROPI()) {
ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_RO_data,
ARMBuildAttrs::AddressROPCRel);
}
// GOT use.
if (isPositionIndependent()) {
ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_GOT_use,
ARMBuildAttrs::AddressGOT);
} else {
ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_GOT_use,
ARMBuildAttrs::AddressDirect);
}
// Set FP Denormals.
if (checkFunctionsAttributeConsistency(*MMI->getModule(),
"denormal-fp-math",
"preserve-sign") ||
TM.Options.FPDenormalMode == FPDenormal::PreserveSign)
ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal,
ARMBuildAttrs::PreserveFPSign);
else if (checkFunctionsAttributeConsistency(*MMI->getModule(),
"denormal-fp-math",
"positive-zero") ||
TM.Options.FPDenormalMode == FPDenormal::PositiveZero)
ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal,
ARMBuildAttrs::PositiveZero);
else if (!TM.Options.UnsafeFPMath)
ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal,
ARMBuildAttrs::IEEEDenormals);
else {
if (!STI.hasVFP2Base()) {
// When the target doesn't have an FPU (by design or
// intention), the assumptions made on the software support
// mirror that of the equivalent hardware support *if it
// existed*. For v7 and better we indicate that denormals are
// flushed preserving sign, and for V6 we indicate that
// denormals are flushed to positive zero.
if (STI.hasV7Ops())
ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal,
ARMBuildAttrs::PreserveFPSign);
} else if (STI.hasVFP3Base()) {
// In VFPv4, VFPv4U, VFPv3, or VFPv3U, it is preserved. That is,
// the sign bit of the zero matches the sign bit of the input or
// result that is being flushed to zero.
ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal,
ARMBuildAttrs::PreserveFPSign);
}
// For VFPv2 implementations it is implementation defined as
// to whether denormals are flushed to positive zero or to
// whatever the sign of zero is (ARM v7AR ARM 2.7.5). Historically
// LLVM has chosen to flush this to positive zero (most likely for
// GCC compatibility), so that's the chosen value here (the
// absence of its emission implies zero).
}
// Set FP exceptions and rounding
if (checkFunctionsAttributeConsistency(*MMI->getModule(),
"no-trapping-math", "true") ||
TM.Options.NoTrappingFPMath)
ATS.emitAttribute(ARMBuildAttrs::ABI_FP_exceptions,
ARMBuildAttrs::Not_Allowed);
else if (!TM.Options.UnsafeFPMath) {
ATS.emitAttribute(ARMBuildAttrs::ABI_FP_exceptions, ARMBuildAttrs::Allowed);
// If the user has permitted this code to choose the IEEE 754
// rounding at run-time, emit the rounding attribute.
if (TM.Options.HonorSignDependentRoundingFPMathOption)
ATS.emitAttribute(ARMBuildAttrs::ABI_FP_rounding, ARMBuildAttrs::Allowed);
}
// TM.Options.NoInfsFPMath && TM.Options.NoNaNsFPMath is the
// equivalent of GCC's -ffinite-math-only flag.
if (TM.Options.NoInfsFPMath && TM.Options.NoNaNsFPMath)
ATS.emitAttribute(ARMBuildAttrs::ABI_FP_number_model,
ARMBuildAttrs::Allowed);
else
ATS.emitAttribute(ARMBuildAttrs::ABI_FP_number_model,
ARMBuildAttrs::AllowIEEE754);
// FIXME: add more flags to ARMBuildAttributes.h
// 8-bytes alignment stuff.
ATS.emitAttribute(ARMBuildAttrs::ABI_align_needed, 1);
ATS.emitAttribute(ARMBuildAttrs::ABI_align_preserved, 1);
// Hard float. Use both S and D registers and conform to AAPCS-VFP.
if (STI.isAAPCS_ABI() && TM.Options.FloatABIType == FloatABI::Hard)
ATS.emitAttribute(ARMBuildAttrs::ABI_VFP_args, ARMBuildAttrs::HardFPAAPCS);
// FIXME: To support emitting this build attribute as GCC does, the
// -mfp16-format option and associated plumbing must be
// supported. For now the __fp16 type is exposed by default, so this
// attribute should be emitted with value 1.
ATS.emitAttribute(ARMBuildAttrs::ABI_FP_16bit_format,
ARMBuildAttrs::FP16FormatIEEE);
if (MMI) {
if (const Module *SourceModule = MMI->getModule()) {
// ABI_PCS_wchar_t to indicate wchar_t width
// FIXME: There is no way to emit value 0 (wchar_t prohibited).
if (auto WCharWidthValue = mdconst::extract_or_null<ConstantInt>(
SourceModule->getModuleFlag("wchar_size"))) {
int WCharWidth = WCharWidthValue->getZExtValue();
assert((WCharWidth == 2 || WCharWidth == 4) &&
"wchar_t width must be 2 or 4 bytes");
ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_wchar_t, WCharWidth);
}
// ABI_enum_size to indicate enum width
// FIXME: There is no way to emit value 0 (enums prohibited) or value 3
// (all enums contain a value needing 32 bits to encode).
if (auto EnumWidthValue = mdconst::extract_or_null<ConstantInt>(
SourceModule->getModuleFlag("min_enum_size"))) {
int EnumWidth = EnumWidthValue->getZExtValue();
assert((EnumWidth == 1 || EnumWidth == 4) &&
"Minimum enum width must be 1 or 4 bytes");
int EnumBuildAttr = EnumWidth == 1 ? 1 : 2;
ATS.emitAttribute(ARMBuildAttrs::ABI_enum_size, EnumBuildAttr);
}
}
}
// We currently do not support using R9 as the TLS pointer.
if (STI.isRWPI())
ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_R9_use,
ARMBuildAttrs::R9IsSB);
else if (STI.isR9Reserved())
ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_R9_use,
ARMBuildAttrs::R9Reserved);
else
ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_R9_use,
ARMBuildAttrs::R9IsGPR);
}
//===----------------------------------------------------------------------===//
static MCSymbol *getBFLabel(StringRef Prefix, unsigned FunctionNumber,
unsigned LabelId, MCContext &Ctx) {
MCSymbol *Label = Ctx.getOrCreateSymbol(Twine(Prefix)
+ "BF" + Twine(FunctionNumber) + "_" + Twine(LabelId));
return Label;
}
static MCSymbol *getPICLabel(StringRef Prefix, unsigned FunctionNumber,
unsigned LabelId, MCContext &Ctx) {
MCSymbol *Label = Ctx.getOrCreateSymbol(Twine(Prefix)
+ "PC" + Twine(FunctionNumber) + "_" + Twine(LabelId));
return Label;
}
static MCSymbolRefExpr::VariantKind
getModifierVariantKind(ARMCP::ARMCPModifier Modifier) {
switch (Modifier) {
case ARMCP::no_modifier:
return MCSymbolRefExpr::VK_None;
case ARMCP::TLSGD:
return MCSymbolRefExpr::VK_TLSGD;
case ARMCP::TPOFF:
return MCSymbolRefExpr::VK_TPOFF;
case ARMCP::GOTTPOFF:
return MCSymbolRefExpr::VK_GOTTPOFF;
case ARMCP::SBREL:
return MCSymbolRefExpr::VK_ARM_SBREL;
case ARMCP::GOT_PREL:
return MCSymbolRefExpr::VK_ARM_GOT_PREL;
case ARMCP::SECREL:
return MCSymbolRefExpr::VK_SECREL;
}
llvm_unreachable("Invalid ARMCPModifier!");
}
MCSymbol *ARMAsmPrinter::GetARMGVSymbol(const GlobalValue *GV,
unsigned char TargetFlags) {
if (Subtarget->isTargetMachO()) {
bool IsIndirect =
(TargetFlags & ARMII::MO_NONLAZY) && Subtarget->isGVIndirectSymbol(GV);
if (!IsIndirect)
return getSymbol(GV);
// FIXME: Remove this when Darwin transition to @GOT like syntax.
MCSymbol *MCSym = getSymbolWithGlobalValueBase(GV, "$non_lazy_ptr");
MachineModuleInfoMachO &MMIMachO =
MMI->getObjFileInfo<MachineModuleInfoMachO>();
MachineModuleInfoImpl::StubValueTy &StubSym =
GV->isThreadLocal() ? MMIMachO.getThreadLocalGVStubEntry(MCSym)
: MMIMachO.getGVStubEntry(MCSym);
if (!StubSym.getPointer())
StubSym = MachineModuleInfoImpl::StubValueTy(getSymbol(GV),
!GV->hasInternalLinkage());
return MCSym;
} else if (Subtarget->isTargetCOFF()) {
assert(Subtarget->isTargetWindows() &&
"Windows is the only supported COFF target");
bool IsIndirect =
(TargetFlags & (ARMII::MO_DLLIMPORT | ARMII::MO_COFFSTUB));
if (!IsIndirect)
return getSymbol(GV);
SmallString<128> Name;
if (TargetFlags & ARMII::MO_DLLIMPORT)
Name = "__imp_";
else if (TargetFlags & ARMII::MO_COFFSTUB)
Name = ".refptr.";
getNameWithPrefix(Name, GV);
MCSymbol *MCSym = OutContext.getOrCreateSymbol(Name);
if (TargetFlags & ARMII::MO_COFFSTUB) {
MachineModuleInfoCOFF &MMICOFF =
MMI->getObjFileInfo<MachineModuleInfoCOFF>();
MachineModuleInfoImpl::StubValueTy &StubSym =
MMICOFF.getGVStubEntry(MCSym);
if (!StubSym.getPointer())
StubSym = MachineModuleInfoImpl::StubValueTy(getSymbol(GV), true);
}
return MCSym;
} else if (Subtarget->isTargetELF()) {
return getSymbol(GV);
}
llvm_unreachable("unexpected target");
}
void ARMAsmPrinter::
EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) {
const DataLayout &DL = getDataLayout();
int Size = DL.getTypeAllocSize(MCPV->getType());
ARMConstantPoolValue *ACPV = static_cast<ARMConstantPoolValue*>(MCPV);
if (ACPV->isPromotedGlobal()) {
// This constant pool entry is actually a global whose storage has been
// promoted into the constant pool. This global may be referenced still
// by debug information, and due to the way AsmPrinter is set up, the debug
// info is immutable by the time we decide to promote globals to constant
// pools. Because of this, we need to ensure we emit a symbol for the global
// with private linkage (the default) so debug info can refer to it.
//
// However, if this global is promoted into several functions we must ensure
// we don't try and emit duplicate symbols!
auto *ACPC = cast<ARMConstantPoolConstant>(ACPV);
for (const auto *GV : ACPC->promotedGlobals()) {
if (!EmittedPromotedGlobalLabels.count(GV)) {
MCSymbol *GVSym = getSymbol(GV);
OutStreamer->EmitLabel(GVSym);
EmittedPromotedGlobalLabels.insert(GV);
}
}
return EmitGlobalConstant(DL, ACPC->getPromotedGlobalInit());
}
MCSymbol *MCSym;
if (ACPV->isLSDA()) {
MCSym = getCurExceptionSym();
} else if (ACPV->isBlockAddress()) {
const BlockAddress *BA =
cast<ARMConstantPoolConstant>(ACPV)->getBlockAddress();
MCSym = GetBlockAddressSymbol(BA);
} else if (ACPV->isGlobalValue()) {
const GlobalValue *GV = cast<ARMConstantPoolConstant>(ACPV)->getGV();
// On Darwin, const-pool entries may get the "FOO$non_lazy_ptr" mangling, so
// flag the global as MO_NONLAZY.
unsigned char TF = Subtarget->isTargetMachO() ? ARMII::MO_NONLAZY : 0;
MCSym = GetARMGVSymbol(GV, TF);
} else if (ACPV->isMachineBasicBlock()) {
const MachineBasicBlock *MBB = cast<ARMConstantPoolMBB>(ACPV)->getMBB();
MCSym = MBB->getSymbol();
} else {
assert(ACPV->isExtSymbol() && "unrecognized constant pool value");
auto Sym = cast<ARMConstantPoolSymbol>(ACPV)->getSymbol();
MCSym = GetExternalSymbolSymbol(Sym);
}
// Create an MCSymbol for the reference.
const MCExpr *Expr =
MCSymbolRefExpr::create(MCSym, getModifierVariantKind(ACPV->getModifier()),
OutContext);
if (ACPV->getPCAdjustment()) {
MCSymbol *PCLabel =
getPICLabel(DL.getPrivateGlobalPrefix(), getFunctionNumber(),
ACPV->getLabelId(), OutContext);
const MCExpr *PCRelExpr = MCSymbolRefExpr::create(PCLabel, OutContext);
PCRelExpr =
MCBinaryExpr::createAdd(PCRelExpr,
MCConstantExpr::create(ACPV->getPCAdjustment(),
OutContext),
OutContext);
if (ACPV->mustAddCurrentAddress()) {
// We want "(<expr> - .)", but MC doesn't have a concept of the '.'
// label, so just emit a local label end reference that instead.
MCSymbol *DotSym = OutContext.createTempSymbol();
OutStreamer->EmitLabel(DotSym);
const MCExpr *DotExpr = MCSymbolRefExpr::create(DotSym, OutContext);
PCRelExpr = MCBinaryExpr::createSub(PCRelExpr, DotExpr, OutContext);
}
Expr = MCBinaryExpr::createSub(Expr, PCRelExpr, OutContext);
}
OutStreamer->EmitValue(Expr, Size);
}
void ARMAsmPrinter::EmitJumpTableAddrs(const MachineInstr *MI) {
const MachineOperand &MO1 = MI->getOperand(1);
unsigned JTI = MO1.getIndex();
// Make sure the Thumb jump table is 4-byte aligned. This will be a nop for
// ARM mode tables.
EmitAlignment(Align(4));
// Emit a label for the jump table.
MCSymbol *JTISymbol = GetARMJTIPICJumpTableLabel(JTI);
OutStreamer->EmitLabel(JTISymbol);
// Mark the jump table as data-in-code.
OutStreamer->EmitDataRegion(MCDR_DataRegionJT32);
// Emit each entry of the table.
const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
for (MachineBasicBlock *MBB : JTBBs) {
// Construct an MCExpr for the entry. We want a value of the form:
// (BasicBlockAddr - TableBeginAddr)
//
// For example, a table with entries jumping to basic blocks BB0 and BB1
// would look like:
// LJTI_0_0:
// .word (LBB0 - LJTI_0_0)
// .word (LBB1 - LJTI_0_0)
const MCExpr *Expr = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext);
if (isPositionIndependent() || Subtarget->isROPI())
Expr = MCBinaryExpr::createSub(Expr, MCSymbolRefExpr::create(JTISymbol,
OutContext),
OutContext);
// If we're generating a table of Thumb addresses in static relocation
// model, we need to add one to keep interworking correctly.
else if (AFI->isThumbFunction())
Expr = MCBinaryExpr::createAdd(Expr, MCConstantExpr::create(1,OutContext),
OutContext);
OutStreamer->EmitValue(Expr, 4);
}
// Mark the end of jump table data-in-code region.
OutStreamer->EmitDataRegion(MCDR_DataRegionEnd);
}
void ARMAsmPrinter::EmitJumpTableInsts(const MachineInstr *MI) {
const MachineOperand &MO1 = MI->getOperand(1);
unsigned JTI = MO1.getIndex();
// Make sure the Thumb jump table is 4-byte aligned. This will be a nop for
// ARM mode tables.
EmitAlignment(Align(4));
// Emit a label for the jump table.
MCSymbol *JTISymbol = GetARMJTIPICJumpTableLabel(JTI);
OutStreamer->EmitLabel(JTISymbol);
// Emit each entry of the table.
const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
for (MachineBasicBlock *MBB : JTBBs) {
const MCExpr *MBBSymbolExpr = MCSymbolRefExpr::create(MBB->getSymbol(),
OutContext);
// If this isn't a TBB or TBH, the entries are direct branch instructions.
EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::t2B)
.addExpr(MBBSymbolExpr)
.addImm(ARMCC::AL)
.addReg(0));
}
}
void ARMAsmPrinter::EmitJumpTableTBInst(const MachineInstr *MI,
unsigned OffsetWidth) {
assert((OffsetWidth == 1 || OffsetWidth == 2) && "invalid tbb/tbh width");
const MachineOperand &MO1 = MI->getOperand(1);
unsigned JTI = MO1.getIndex();
if (Subtarget->isThumb1Only())
EmitAlignment(Align(4));
MCSymbol *JTISymbol = GetARMJTIPICJumpTableLabel(JTI);
OutStreamer->EmitLabel(JTISymbol);
// Emit each entry of the table.
const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
// Mark the jump table as data-in-code.
OutStreamer->EmitDataRegion(OffsetWidth == 1 ? MCDR_DataRegionJT8
: MCDR_DataRegionJT16);
for (auto MBB : JTBBs) {
const MCExpr *MBBSymbolExpr = MCSymbolRefExpr::create(MBB->getSymbol(),
OutContext);
// Otherwise it's an offset from the dispatch instruction. Construct an
// MCExpr for the entry. We want a value of the form:
// (BasicBlockAddr - TBBInstAddr + 4) / 2
//
// For example, a TBB table with entries jumping to basic blocks BB0 and BB1
// would look like:
// LJTI_0_0:
// .byte (LBB0 - (LCPI0_0 + 4)) / 2
// .byte (LBB1 - (LCPI0_0 + 4)) / 2
// where LCPI0_0 is a label defined just before the TBB instruction using
// this table.
MCSymbol *TBInstPC = GetCPISymbol(MI->getOperand(0).getImm());
const MCExpr *Expr = MCBinaryExpr::createAdd(
MCSymbolRefExpr::create(TBInstPC, OutContext),
MCConstantExpr::create(4, OutContext), OutContext);
Expr = MCBinaryExpr::createSub(MBBSymbolExpr, Expr, OutContext);
Expr = MCBinaryExpr::createDiv(Expr, MCConstantExpr::create(2, OutContext),
OutContext);
OutStreamer->EmitValue(Expr, OffsetWidth);
}
// Mark the end of jump table data-in-code region. 32-bit offsets use
// actual branch instructions here, so we don't mark those as a data-region
// at all.
OutStreamer->EmitDataRegion(MCDR_DataRegionEnd);
// Make sure the next instruction is 2-byte aligned.
EmitAlignment(Align(2));
}
void ARMAsmPrinter::EmitUnwindingInstruction(const MachineInstr *MI) {
assert(MI->getFlag(MachineInstr::FrameSetup) &&
"Only instruction which are involved into frame setup code are allowed");
MCTargetStreamer &TS = *OutStreamer->getTargetStreamer();
ARMTargetStreamer &ATS = static_cast<ARMTargetStreamer &>(TS);
const MachineFunction &MF = *MI->getParent()->getParent();
const TargetRegisterInfo *TargetRegInfo =
MF.getSubtarget().getRegisterInfo();
const MachineRegisterInfo &MachineRegInfo = MF.getRegInfo();
Register FramePtr = TargetRegInfo->getFrameRegister(MF);
unsigned Opc = MI->getOpcode();
unsigned SrcReg, DstReg;
if (Opc == ARM::tPUSH || Opc == ARM::tLDRpci) {
// Two special cases:
// 1) tPUSH does not have src/dst regs.
// 2) for Thumb1 code we sometimes materialize the constant via constpool
// load. Yes, this is pretty fragile, but for now I don't see better
// way... :(
SrcReg = DstReg = ARM::SP;
} else {
SrcReg = MI->getOperand(1).getReg();
DstReg = MI->getOperand(0).getReg();
}
// Try to figure out the unwinding opcode out of src / dst regs.
if (MI->mayStore()) {
// Register saves.
assert(DstReg == ARM::SP &&
"Only stack pointer as a destination reg is supported");
SmallVector<unsigned, 4> RegList;
// Skip src & dst reg, and pred ops.
unsigned StartOp = 2 + 2;
// Use all the operands.
unsigned NumOffset = 0;
// Amount of SP adjustment folded into a push.
unsigned Pad = 0;
switch (Opc) {
default:
MI->print(errs());
llvm_unreachable("Unsupported opcode for unwinding information");
case ARM::tPUSH:
// Special case here: no src & dst reg, but two extra imp ops.
StartOp = 2; NumOffset = 2;
LLVM_FALLTHROUGH;
case ARM::STMDB_UPD:
case ARM::t2STMDB_UPD:
case ARM::VSTMDDB_UPD:
assert(SrcReg == ARM::SP &&
"Only stack pointer as a source reg is supported");
for (unsigned i = StartOp, NumOps = MI->getNumOperands() - NumOffset;
i != NumOps; ++i) {
const MachineOperand &MO = MI->getOperand(i);
// Actually, there should never be any impdef stuff here. Skip it
// temporary to workaround PR11902.
if (MO.isImplicit())
continue;
// Registers, pushed as a part of folding an SP update into the
// push instruction are marked as undef and should not be
// restored when unwinding, because the function can modify the
// corresponding stack slots.
if (MO.isUndef()) {
assert(RegList.empty() &&
"Pad registers must come before restored ones");
unsigned Width =
TargetRegInfo->getRegSizeInBits(MO.getReg(), MachineRegInfo) / 8;
Pad += Width;
continue;
}
// Check for registers that are remapped (for a Thumb1 prologue that
// saves high registers).
Register Reg = MO.getReg();
if (unsigned RemappedReg = AFI->EHPrologueRemappedRegs.lookup(Reg))
Reg = RemappedReg;
RegList.push_back(Reg);
}
break;
case ARM::STR_PRE_IMM:
case ARM::STR_PRE_REG:
case ARM::t2STR_PRE:
assert(MI->getOperand(2).getReg() == ARM::SP &&
"Only stack pointer as a source reg is supported");
RegList.push_back(SrcReg);
break;
}
if (MAI->getExceptionHandlingType() == ExceptionHandling::ARM) {
ATS.emitRegSave(RegList, Opc == ARM::VSTMDDB_UPD);
// Account for the SP adjustment, folded into the push.
if (Pad)
ATS.emitPad(Pad);
}
} else {
// Changes of stack / frame pointer.
if (SrcReg == ARM::SP) {
int64_t Offset = 0;
switch (Opc) {
default:
MI->print(errs());
llvm_unreachable("Unsupported opcode for unwinding information");
case ARM::MOVr:
case ARM::tMOVr:
Offset = 0;
break;
case ARM::ADDri:
case ARM::t2ADDri:
case ARM::t2ADDri12:
case ARM::t2ADDspImm:
case ARM::t2ADDspImm12:
Offset = -MI->getOperand(2).getImm();
break;
case ARM::SUBri:
case ARM::t2SUBri:
case ARM::t2SUBri12:
case ARM::t2SUBspImm:
case ARM::t2SUBspImm12:
Offset = MI->getOperand(2).getImm();
break;
case ARM::tSUBspi:
Offset = MI->getOperand(2).getImm()*4;
break;
case ARM::tADDspi:
case ARM::tADDrSPi:
Offset = -MI->getOperand(2).getImm()*4;
break;
case ARM::tLDRpci: {
// Grab the constpool index and check, whether it corresponds to
// original or cloned constpool entry.
unsigned CPI = MI->getOperand(1).getIndex();
const MachineConstantPool *MCP = MF.getConstantPool();
if (CPI >= MCP->getConstants().size())
CPI = AFI->getOriginalCPIdx(CPI);
assert(CPI != -1U && "Invalid constpool index");
// Derive the actual offset.
const MachineConstantPoolEntry &CPE = MCP->getConstants()[CPI];
assert(!CPE.isMachineConstantPoolEntry() && "Invalid constpool entry");
// FIXME: Check for user, it should be "add" instruction!
Offset = -cast<ConstantInt>(CPE.Val.ConstVal)->getSExtValue();
break;
}
}
if (MAI->getExceptionHandlingType() == ExceptionHandling::ARM) {
if (DstReg == FramePtr && FramePtr != ARM::SP)
// Set-up of the frame pointer. Positive values correspond to "add"
// instruction.
ATS.emitSetFP(FramePtr, ARM::SP, -Offset);
else if (DstReg == ARM::SP) {
// Change of SP by an offset. Positive values correspond to "sub"
// instruction.
ATS.emitPad(Offset);
} else {
// Move of SP to a register. Positive values correspond to an "add"
// instruction.
ATS.emitMovSP(DstReg, -Offset);
}
}
} else if (DstReg == ARM::SP) {
MI->print(errs());
llvm_unreachable("Unsupported opcode for unwinding information");
} else if (Opc == ARM::tMOVr) {
// If a Thumb1 function spills r8-r11, we copy the values to low
// registers before pushing them. Record the copy so we can emit the
// correct ".save" later.
AFI->EHPrologueRemappedRegs[DstReg] = SrcReg;
} else {
MI->print(errs());
llvm_unreachable("Unsupported opcode for unwinding information");
}
}
}
// Simple pseudo-instructions have their lowering (with expansion to real
// instructions) auto-generated.
#include "ARMGenMCPseudoLowering.inc"
void ARMAsmPrinter::EmitInstruction(const MachineInstr *MI) {
const DataLayout &DL = getDataLayout();
MCTargetStreamer &TS = *OutStreamer->getTargetStreamer();
ARMTargetStreamer &ATS = static_cast<ARMTargetStreamer &>(TS);
const MachineFunction &MF = *MI->getParent()->getParent();
const ARMSubtarget &STI = MF.getSubtarget<ARMSubtarget>();
unsigned FramePtr = STI.useR7AsFramePointer() ? ARM::R7 : ARM::R11;
// If we just ended a constant pool, mark it as such.
if (InConstantPool && MI->getOpcode() != ARM::CONSTPOOL_ENTRY) {
OutStreamer->EmitDataRegion(MCDR_DataRegionEnd);
InConstantPool = false;
}
// Emit unwinding stuff for frame-related instructions
if (Subtarget->isTargetEHABICompatible() &&
MI->getFlag(MachineInstr::FrameSetup))
EmitUnwindingInstruction(MI);
// Do any auto-generated pseudo lowerings.
if (emitPseudoExpansionLowering(*OutStreamer, MI))
return;
assert(!convertAddSubFlagsOpcode(MI->getOpcode()) &&
"Pseudo flag setting opcode should be expanded early");
// Check for manual lowerings.
unsigned Opc = MI->getOpcode();
switch (Opc) {
case ARM::t2MOVi32imm: llvm_unreachable("Should be lowered by thumb2it pass");
case ARM::DBG_VALUE: llvm_unreachable("Should be handled by generic printing");
case ARM::LEApcrel:
case ARM::tLEApcrel:
case ARM::t2LEApcrel: {
// FIXME: Need to also handle globals and externals
MCSymbol *CPISymbol = GetCPISymbol(MI->getOperand(1).getIndex());
EmitToStreamer(*OutStreamer, MCInstBuilder(MI->getOpcode() ==
ARM::t2LEApcrel ? ARM::t2ADR
: (MI->getOpcode() == ARM::tLEApcrel ? ARM::tADR
: ARM::ADR))
.addReg(MI->getOperand(0).getReg())
.addExpr(MCSymbolRefExpr::create(CPISymbol, OutContext))
// Add predicate operands.
.addImm(MI->getOperand(2).getImm())
.addReg(MI->getOperand(3).getReg()));
return;
}
case ARM::LEApcrelJT:
case ARM::tLEApcrelJT:
case ARM::t2LEApcrelJT: {
MCSymbol *JTIPICSymbol =
GetARMJTIPICJumpTableLabel(MI->getOperand(1).getIndex());
EmitToStreamer(*OutStreamer, MCInstBuilder(MI->getOpcode() ==
ARM::t2LEApcrelJT ? ARM::t2ADR
: (MI->getOpcode() == ARM::tLEApcrelJT ? ARM::tADR
: ARM::ADR))
.addReg(MI->getOperand(0).getReg())
.addExpr(MCSymbolRefExpr::create(JTIPICSymbol, OutContext))
// Add predicate operands.
.addImm(MI->getOperand(2).getImm())
.addReg(MI->getOperand(3).getReg()));
return;
}
// Darwin call instructions are just normal call instructions with different
// clobber semantics (they clobber R9).
case ARM::BX_CALL: {
EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVr)
.addReg(ARM::LR)
.addReg(ARM::PC)
// Add predicate operands.
.addImm(ARMCC::AL)
.addReg(0)
// Add 's' bit operand (always reg0 for this)
.addReg(0));
assert(Subtarget->hasV4TOps());
EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::BX)
.addReg(MI->getOperand(0).getReg()));
return;
}
case ARM::tBX_CALL: {
if (Subtarget->hasV5TOps())
llvm_unreachable("Expected BLX to be selected for v5t+");
// On ARM v4t, when doing a call from thumb mode, we need to ensure
// that the saved lr has its LSB set correctly (the arch doesn't
// have blx).
// So here we generate a bl to a small jump pad that does bx rN.
// The jump pads are emitted after the function body.
Register TReg = MI->getOperand(0).getReg();
MCSymbol *TRegSym = nullptr;
for (std::pair<unsigned, MCSymbol *> &TIP : ThumbIndirectPads) {
if (TIP.first == TReg) {
TRegSym = TIP.second;
break;
}
}
if (!TRegSym) {
TRegSym = OutContext.createTempSymbol();
ThumbIndirectPads.push_back(std::make_pair(TReg, TRegSym));
}
// Create a link-saving branch to the Reg Indirect Jump Pad.
EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tBL)
// Predicate comes first here.
.addImm(ARMCC::AL).addReg(0)
.addExpr(MCSymbolRefExpr::create(TRegSym, OutContext)));
return;
}
case ARM::BMOVPCRX_CALL: {
EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVr)
.addReg(ARM::LR)
.addReg(ARM::PC)
// Add predicate operands.
.addImm(ARMCC::AL)
.addReg(0)
// Add 's' bit operand (always reg0 for this)
.addReg(0));
EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVr)
.addReg(ARM::PC)
.addReg(MI->getOperand(0).getReg())
// Add predicate operands.
.addImm(ARMCC::AL)
.addReg(0)
// Add 's' bit operand (always reg0 for this)
.addReg(0));
return;
}
case ARM::BMOVPCB_CALL: {
EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVr)
.addReg(ARM::LR)
.addReg(ARM::PC)
// Add predicate operands.
.addImm(ARMCC::AL)
.addReg(0)
// Add 's' bit operand (always reg0 for this)
.addReg(0));
const MachineOperand &Op = MI->getOperand(0);
const GlobalValue *GV = Op.getGlobal();
const unsigned TF = Op.getTargetFlags();
MCSymbol *GVSym = GetARMGVSymbol(GV, TF);
const MCExpr *GVSymExpr = MCSymbolRefExpr::create(GVSym, OutContext);
EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::Bcc)
.addExpr(GVSymExpr)
// Add predicate operands.
.addImm(ARMCC::AL)
.addReg(0));
return;
}
case ARM::MOVi16_ga_pcrel:
case ARM::t2MOVi16_ga_pcrel: {
MCInst TmpInst;
TmpInst.setOpcode(Opc == ARM::MOVi16_ga_pcrel? ARM::MOVi16 : ARM::t2MOVi16);
TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg()));
unsigned TF = MI->getOperand(1).getTargetFlags();
const GlobalValue *GV = MI->getOperand(1).getGlobal();
MCSymbol *GVSym = GetARMGVSymbol(GV, TF);
const MCExpr *GVSymExpr = MCSymbolRefExpr::create(GVSym, OutContext);
MCSymbol *LabelSym =
getPICLabel(DL.getPrivateGlobalPrefix(), getFunctionNumber(),
MI->getOperand(2).getImm(), OutContext);
const MCExpr *LabelSymExpr= MCSymbolRefExpr::create(LabelSym, OutContext);
unsigned PCAdj = (Opc == ARM::MOVi16_ga_pcrel) ? 8 : 4;
const MCExpr *PCRelExpr =
ARMMCExpr::createLower16(MCBinaryExpr::createSub(GVSymExpr,
MCBinaryExpr::createAdd(LabelSymExpr,
MCConstantExpr::create(PCAdj, OutContext),
OutContext), OutContext), OutContext);
TmpInst.addOperand(MCOperand::createExpr(PCRelExpr));
// Add predicate operands.
TmpInst.addOperand(MCOperand::createImm(ARMCC::AL));
TmpInst.addOperand(MCOperand::createReg(0));
// Add 's' bit operand (always reg0 for this)
TmpInst.addOperand(MCOperand::createReg(0));
EmitToStreamer(*OutStreamer, TmpInst);
return;
}
case ARM::MOVTi16_ga_pcrel:
case ARM::t2MOVTi16_ga_pcrel: {
MCInst TmpInst;
TmpInst.setOpcode(Opc == ARM::MOVTi16_ga_pcrel
? ARM::MOVTi16 : ARM::t2MOVTi16);
TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg()));
TmpInst.addOperand(MCOperand::createReg(MI->getOperand(1).getReg()));
unsigned TF = MI->getOperand(2).getTargetFlags();
const GlobalValue *GV = MI->getOperand(2).getGlobal();
MCSymbol *GVSym = GetARMGVSymbol(GV, TF);
const MCExpr *GVSymExpr = MCSymbolRefExpr::create(GVSym, OutContext);
MCSymbol *LabelSym =
getPICLabel(DL.getPrivateGlobalPrefix(), getFunctionNumber(),
MI->getOperand(3).getImm(), OutContext);
const MCExpr *LabelSymExpr= MCSymbolRefExpr::create(LabelSym, OutContext);
unsigned PCAdj = (Opc == ARM::MOVTi16_ga_pcrel) ? 8 : 4;
const MCExpr *PCRelExpr =
ARMMCExpr::createUpper16(MCBinaryExpr::createSub(GVSymExpr,
MCBinaryExpr::createAdd(LabelSymExpr,
MCConstantExpr::create(PCAdj, OutContext),
OutContext), OutContext), OutContext);
TmpInst.addOperand(MCOperand::createExpr(PCRelExpr));
// Add predicate operands.
TmpInst.addOperand(MCOperand::createImm(ARMCC::AL));
TmpInst.addOperand(MCOperand::createReg(0));
// Add 's' bit operand (always reg0 for this)
TmpInst.addOperand(MCOperand::createReg(0));
EmitToStreamer(*OutStreamer, TmpInst);
return;
}
case ARM::t2BFi:
case ARM::t2BFic:
case ARM::t2BFLi:
case ARM::t2BFr:
case ARM::t2BFLr: {
// This is a Branch Future instruction.
const MCExpr *BranchLabel = MCSymbolRefExpr::create(
getBFLabel(DL.getPrivateGlobalPrefix(), getFunctionNumber(),
MI->getOperand(0).getIndex(), OutContext),
OutContext);
auto MCInst = MCInstBuilder(Opc).addExpr(BranchLabel);
if (MI->getOperand(1).isReg()) {
// For BFr/BFLr
MCInst.addReg(MI->getOperand(1).getReg());
} else {
// For BFi/BFLi/BFic
const MCExpr *BranchTarget;
if (MI->getOperand(1).isMBB())
BranchTarget = MCSymbolRefExpr::create(
MI->getOperand(1).getMBB()->getSymbol(), OutContext);
else if (MI->getOperand(1).isGlobal()) {
const GlobalValue *GV = MI->getOperand(1).getGlobal();
BranchTarget = MCSymbolRefExpr::create(
GetARMGVSymbol(GV, MI->getOperand(1).getTargetFlags()), OutContext);
} else if (MI->getOperand(1).isSymbol()) {
BranchTarget = MCSymbolRefExpr::create(
GetExternalSymbolSymbol(MI->getOperand(1).getSymbolName()),
OutContext);
} else
llvm_unreachable("Unhandled operand kind in Branch Future instruction");
MCInst.addExpr(BranchTarget);
}
if (Opc == ARM::t2BFic) {
const MCExpr *ElseLabel = MCSymbolRefExpr::create(
getBFLabel(DL.getPrivateGlobalPrefix(), getFunctionNumber(),
MI->getOperand(2).getIndex(), OutContext),
OutContext);
MCInst.addExpr(ElseLabel);
MCInst.addImm(MI->getOperand(3).getImm());
} else {
MCInst.addImm(MI->getOperand(2).getImm())
.addReg(MI->getOperand(3).getReg());
}
EmitToStreamer(*OutStreamer, MCInst);
return;
}
case ARM::t2BF_LabelPseudo: {
// This is a pseudo op for a label used by a branch future instruction
// Emit the label.
OutStreamer->EmitLabel(getBFLabel(DL.getPrivateGlobalPrefix(),
getFunctionNumber(),
MI->getOperand(0).getIndex(), OutContext));
return;
}
case ARM::tPICADD: {
// This is a pseudo op for a label + instruction sequence, which looks like:
// LPC0:
// add r0, pc
// This adds the address of LPC0 to r0.
// Emit the label.
OutStreamer->EmitLabel(getPICLabel(DL.getPrivateGlobalPrefix(),
getFunctionNumber(),
MI->getOperand(2).getImm(), OutContext));
// Form and emit the add.
EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tADDhirr)
.addReg(MI->getOperand(0).getReg())
.addReg(MI->getOperand(0).getReg())
.addReg(ARM::PC)
// Add predicate operands.
.addImm(ARMCC::AL)
.addReg(0));
return;
}
case ARM::PICADD: {
// This is a pseudo op for a label + instruction sequence, which looks like:
// LPC0:
// add r0, pc, r0
// This adds the address of LPC0 to r0.
// Emit the label.
OutStreamer->EmitLabel(getPICLabel(DL.getPrivateGlobalPrefix(),
getFunctionNumber(),
MI->getOperand(2).getImm(), OutContext));
// Form and emit the add.
EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::ADDrr)
.addReg(MI->getOperand(0).getReg())
.addReg(ARM::PC)
.addReg(MI->getOperand(1).getReg())
// Add predicate operands.
.addImm(MI->getOperand(3).getImm())
.addReg(MI->getOperand(4).getReg())
// Add 's' bit operand (always reg0 for this)
.addReg(0));
return;
}
case ARM::PICSTR:
case ARM::PICSTRB:
case ARM::PICSTRH:
case ARM::PICLDR:
case ARM::PICLDRB:
case ARM::PICLDRH:
case ARM::PICLDRSB:
case ARM::PICLDRSH: {
// This is a pseudo op for a label + instruction sequence, which looks like:
// LPC0:
// OP r0, [pc, r0]
// The LCP0 label is referenced by a constant pool entry in order to get
// a PC-relative address at the ldr instruction.
// Emit the label.
OutStreamer->EmitLabel(getPICLabel(DL.getPrivateGlobalPrefix(),
getFunctionNumber(),
MI->getOperand(2).getImm(), OutContext));
// Form and emit the load
unsigned Opcode;
switch (MI->getOpcode()) {
default:
llvm_unreachable("Unexpected opcode!");
case ARM::PICSTR: Opcode = ARM::STRrs; break;
case ARM::PICSTRB: Opcode = ARM::STRBrs; break;
case ARM::PICSTRH: Opcode = ARM::STRH; break;
case ARM::PICLDR: Opcode = ARM::LDRrs; break;
case ARM::PICLDRB: Opcode = ARM::LDRBrs; break;
case ARM::PICLDRH: Opcode = ARM::LDRH; break;
case ARM::PICLDRSB: Opcode = ARM::LDRSB; break;
case ARM::PICLDRSH: Opcode = ARM::LDRSH; break;
}
EmitToStreamer(*OutStreamer, MCInstBuilder(Opcode)
.addReg(MI->getOperand(0).getReg())
.addReg(ARM::PC)
.addReg(MI->getOperand(1).getReg())
.addImm(0)
// Add predicate operands.
.addImm(MI->getOperand(3).getImm())
.addReg(MI->getOperand(4).getReg()));
return;
}
case ARM::CONSTPOOL_ENTRY: {
if (Subtarget->genExecuteOnly())
llvm_unreachable("execute-only should not generate constant pools");
/// CONSTPOOL_ENTRY - This instruction represents a floating constant pool
/// in the function. The first operand is the ID# for this instruction, the
/// second is the index into the MachineConstantPool that this is, the third
/// is the size in bytes of this constant pool entry.
/// The required alignment is specified on the basic block holding this MI.
unsigned LabelId = (unsigned)MI->getOperand(0).getImm();
unsigned CPIdx = (unsigned)MI->getOperand(1).getIndex();
// If this is the first entry of the pool, mark it.
if (!InConstantPool) {
OutStreamer->EmitDataRegion(MCDR_DataRegion);
InConstantPool = true;
}
OutStreamer->EmitLabel(GetCPISymbol(LabelId));
const MachineConstantPoolEntry &MCPE = MCP->getConstants()[CPIdx];
if (MCPE.isMachineConstantPoolEntry())
EmitMachineConstantPoolValue(MCPE.Val.MachineCPVal);
else
EmitGlobalConstant(DL, MCPE.Val.ConstVal);
return;
}
case ARM::JUMPTABLE_ADDRS:
EmitJumpTableAddrs(MI);
return;
case ARM::JUMPTABLE_INSTS:
EmitJumpTableInsts(MI);
return;
case ARM::JUMPTABLE_TBB:
case ARM::JUMPTABLE_TBH:
EmitJumpTableTBInst(MI, MI->getOpcode() == ARM::JUMPTABLE_TBB ? 1 : 2);
return;
case ARM::t2BR_JT: {
EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVr)
.addReg(ARM::PC)
.addReg(MI->getOperand(0).getReg())
// Add predicate operands.
.addImm(ARMCC::AL)
.addReg(0));
return;
}
case ARM::t2TBB_JT:
case ARM::t2TBH_JT: {
unsigned Opc = MI->getOpcode() == ARM::t2TBB_JT ? ARM::t2TBB : ARM::t2TBH;
// Lower and emit the PC label, then the instruction itself.
OutStreamer->EmitLabel(GetCPISymbol(MI->getOperand(3).getImm()));
EmitToStreamer(*OutStreamer, MCInstBuilder(Opc)
.addReg(MI->getOperand(0).getReg())
.addReg(MI->getOperand(1).getReg())
// Add predicate operands.
.addImm(ARMCC::AL)
.addReg(0));
return;
}
case ARM::tTBB_JT:
case ARM::tTBH_JT: {
bool Is8Bit = MI->getOpcode() == ARM::tTBB_JT;
Register Base = MI->getOperand(0).getReg();
Register Idx = MI->getOperand(1).getReg();
assert(MI->getOperand(1).isKill() && "We need the index register as scratch!");
// Multiply up idx if necessary.
if (!Is8Bit)
EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLSLri)
.addReg(Idx)
.addReg(ARM::CPSR)
.addReg(Idx)
.addImm(1)
// Add predicate operands.
.addImm(ARMCC::AL)
.addReg(0));
if (Base == ARM::PC) {
// TBB [base, idx] =
// ADDS idx, idx, base
// LDRB idx, [idx, #4] ; or LDRH if TBH
// LSLS idx, #1
// ADDS pc, pc, idx
// When using PC as the base, it's important that there is no padding
// between the last ADDS and the start of the jump table. The jump table
// is 4-byte aligned, so we ensure we're 4 byte aligned here too.
//
// FIXME: Ideally we could vary the LDRB index based on the padding
// between the sequence and jump table, however that relies on MCExprs
// for load indexes which are currently not supported.
OutStreamer->EmitCodeAlignment(4);
EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tADDhirr)
.addReg(Idx)
.addReg(Idx)
.addReg(Base)
// Add predicate operands.
.addImm(ARMCC::AL)
.addReg(0));
unsigned Opc = Is8Bit ? ARM::tLDRBi : ARM::tLDRHi;
EmitToStreamer(*OutStreamer, MCInstBuilder(Opc)
.addReg(Idx)
.addReg(Idx)
.addImm(Is8Bit ? 4 : 2)
// Add predicate operands.
.addImm(ARMCC::AL)
.addReg(0));
} else {
// TBB [base, idx] =
// LDRB idx, [base, idx] ; or LDRH if TBH
// LSLS idx, #1
// ADDS pc, pc, idx
unsigned Opc = Is8Bit ? ARM::tLDRBr : ARM::tLDRHr;
EmitToStreamer(*OutStreamer, MCInstBuilder(Opc)
.addReg(Idx)
.addReg(Base)
.addReg(Idx)
// Add predicate operands.
.addImm(ARMCC::AL)
.addReg(0));
}
EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLSLri)
.addReg(Idx)
.addReg(ARM::CPSR)
.addReg(Idx)
.addImm(1)
// Add predicate operands.
.addImm(ARMCC::AL)
.addReg(0));
OutStreamer->EmitLabel(GetCPISymbol(MI->getOperand(3).getImm()));
EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tADDhirr)
.addReg(ARM::PC)
.addReg(ARM::PC)
.addReg(Idx)
// Add predicate operands.
.addImm(ARMCC::AL)
.addReg(0));
return;
}
case ARM::tBR_JTr:
case ARM::BR_JTr: {
// mov pc, target
MCInst TmpInst;
unsigned Opc = MI->getOpcode() == ARM::BR_JTr ?
ARM::MOVr : ARM::tMOVr;
TmpInst.setOpcode(Opc);
TmpInst.addOperand(MCOperand::createReg(ARM::PC));
TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg()));
// Add predicate operands.
TmpInst.addOperand(MCOperand::createImm(ARMCC::AL));
TmpInst.addOperand(MCOperand::createReg(0));
// Add 's' bit operand (always reg0 for this)
if (Opc == ARM::MOVr)
TmpInst.addOperand(MCOperand::createReg(0));
EmitToStreamer(*OutStreamer, TmpInst);
return;
}
case ARM::BR_JTm_i12: {
// ldr pc, target
MCInst TmpInst;
TmpInst.setOpcode(ARM::LDRi12);
TmpInst.addOperand(MCOperand::createReg(ARM::PC));
TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg()));
TmpInst.addOperand(MCOperand::createImm(MI->getOperand(2).getImm()));
// Add predicate operands.
TmpInst.addOperand(MCOperand::createImm(ARMCC::AL));
TmpInst.addOperand(MCOperand::createReg(0));
EmitToStreamer(*OutStreamer, TmpInst);
return;
}
case ARM::BR_JTm_rs: {
// ldr pc, target
MCInst TmpInst;
TmpInst.setOpcode(ARM::LDRrs);
TmpInst.addOperand(MCOperand::createReg(ARM::PC));
TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg()));
TmpInst.addOperand(MCOperand::createReg(MI->getOperand(1).getReg()));
TmpInst.addOperand(MCOperand::createImm(MI->getOperand(2).getImm()));
// Add predicate operands.
TmpInst.addOperand(MCOperand::createImm(ARMCC::AL));
TmpInst.addOperand(MCOperand::createReg(0));
EmitToStreamer(*OutStreamer, TmpInst);
return;
}
case ARM::BR_JTadd: {
// add pc, target, idx
EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::ADDrr)
.addReg(ARM::PC)
.addReg(MI->getOperand(0).getReg())
.addReg(MI->getOperand(1).getReg())
// Add predicate operands.
.addImm(ARMCC::AL)
.addReg(0)
// Add 's' bit operand (always reg0 for this)
.addReg(0));
return;
}
case ARM::SPACE:
OutStreamer->EmitZeros(MI->getOperand(1).getImm());
return;
case ARM::TRAP: {
// Non-Darwin binutils don't yet support the "trap" mnemonic.
// FIXME: Remove this special case when they do.
if (!Subtarget->isTargetMachO()) {
uint32_t Val = 0xe7ffdefeUL;
OutStreamer->AddComment("trap");
ATS.emitInst(Val);
return;
}
break;
}
case ARM::TRAPNaCl: {
uint32_t Val = 0xe7fedef0UL;
OutStreamer->AddComment("trap");
ATS.emitInst(Val);
return;
}
case ARM::tTRAP: {
// Non-Darwin binutils don't yet support the "trap" mnemonic.
// FIXME: Remove this special case when they do.
if (!Subtarget->isTargetMachO()) {
uint16_t Val = 0xdefe;
OutStreamer->AddComment("trap");
ATS.emitInst(Val, 'n');
return;
}
break;
}
case ARM::t2Int_eh_sjlj_setjmp:
case ARM::t2Int_eh_sjlj_setjmp_nofp:
case ARM::tInt_eh_sjlj_setjmp: {
// Two incoming args: GPR:$src, GPR:$val
// mov $val, pc
// adds $val, #7
// str $val, [$src, #4]
// movs r0, #0
// b LSJLJEH
// movs r0, #1
// LSJLJEH:
Register SrcReg = MI->getOperand(0).getReg();
Register ValReg = MI->getOperand(1).getReg();
MCSymbol *Label = OutContext.createTempSymbol("SJLJEH", false, true);
OutStreamer->AddComment("eh_setjmp begin");
EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVr)
.addReg(ValReg)
.addReg(ARM::PC)
// Predicate.
.addImm(ARMCC::AL)
.addReg(0));
EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tADDi3)
.addReg(ValReg)
// 's' bit operand
.addReg(ARM::CPSR)
.addReg(ValReg)
.addImm(7)
// Predicate.
.addImm(ARMCC::AL)
.addReg(0));
EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tSTRi)
.addReg(ValReg)
.addReg(SrcReg)
// The offset immediate is #4. The operand value is scaled by 4 for the
// tSTR instruction.
.addImm(1)
// Predicate.
.addImm(ARMCC::AL)
.addReg(0));
EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVi8)
.addReg(ARM::R0)
.addReg(ARM::CPSR)
.addImm(0)
// Predicate.
.addImm(ARMCC::AL)
.addReg(0));
const MCExpr *SymbolExpr = MCSymbolRefExpr::create(Label, OutContext);
EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tB)
.addExpr(SymbolExpr)
.addImm(ARMCC::AL)
.addReg(0));
OutStreamer->AddComment("eh_setjmp end");
EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVi8)
.addReg(ARM::R0)
.addReg(ARM::CPSR)
.addImm(1)
// Predicate.
.addImm(ARMCC::AL)
.addReg(0));
OutStreamer->EmitLabel(Label);
return;
}
case ARM::Int_eh_sjlj_setjmp_nofp:
case ARM::Int_eh_sjlj_setjmp: {
// Two incoming args: GPR:$src, GPR:$val
// add $val, pc, #8
// str $val, [$src, #+4]
// mov r0, #0
// add pc, pc, #0
// mov r0, #1
Register SrcReg = MI->getOperand(0).getReg();
Register ValReg = MI->getOperand(1).getReg();
OutStreamer->AddComment("eh_setjmp begin");
EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::ADDri)
.addReg(ValReg)
.addReg(ARM::PC)
.addImm(8)
// Predicate.
.addImm(ARMCC::AL)
.addReg(0)
// 's' bit operand (always reg0 for this).
.addReg(0));
EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::STRi12)
.addReg(ValReg)
.addReg(SrcReg)
.addImm(4)
// Predicate.
.addImm(ARMCC::AL)
.addReg(0));
EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVi)
.addReg(ARM::R0)
.addImm(0)
// Predicate.
.addImm(ARMCC::AL)
.addReg(0)
// 's' bit operand (always reg0 for this).
.addReg(0));
EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::ADDri)
.addReg(ARM::PC)
.addReg(ARM::PC)
.addImm(0)
// Predicate.
.addImm(ARMCC::AL)
.addReg(0)
// 's' bit operand (always reg0 for this).
.addReg(0));
OutStreamer->AddComment("eh_setjmp end");
EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVi)
.addReg(ARM::R0)
.addImm(1)
// Predicate.
.addImm(ARMCC::AL)
.addReg(0)
// 's' bit operand (always reg0 for this).
.addReg(0));
return;
}
case ARM::Int_eh_sjlj_longjmp: {
// ldr sp, [$src, #8]
// ldr $scratch, [$src, #4]
// ldr r7, [$src]
// bx $scratch
Register SrcReg = MI->getOperand(0).getReg();
Register ScratchReg = MI->getOperand(1).getReg();
EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::LDRi12)
.addReg(ARM::SP)
.addReg(SrcReg)
.addImm(8)
// Predicate.
.addImm(ARMCC::AL)
.addReg(0));
EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::LDRi12)
.addReg(ScratchReg)
.addReg(SrcReg)
.addImm(4)
// Predicate.
.addImm(ARMCC::AL)
.addReg(0));
if (STI.isTargetDarwin() || STI.isTargetWindows()) {
// These platforms always use the same frame register
EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::LDRi12)
.addReg(FramePtr)
.addReg(SrcReg)
.addImm(0)
// Predicate.
.addImm(ARMCC::AL)
.addReg(0));
} else {
// If the calling code might use either R7 or R11 as
// frame pointer register, restore it into both.
EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::LDRi12)
.addReg(ARM::R7)
.addReg(SrcReg)
.addImm(0)
// Predicate.
.addImm(ARMCC::AL)
.addReg(0));
EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::LDRi12)
.addReg(ARM::R11)
.addReg(SrcReg)
.addImm(0)
// Predicate.
.addImm(ARMCC::AL)
.addReg(0));
}
assert(Subtarget->hasV4TOps());
EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::BX)
.addReg(ScratchReg)
// Predicate.
.addImm(ARMCC::AL)
.addReg(0));
return;
}
case ARM::tInt_eh_sjlj_longjmp: {
// ldr $scratch, [$src, #8]
// mov sp, $scratch
// ldr $scratch, [$src, #4]
// ldr r7, [$src]
// bx $scratch
Register SrcReg = MI->getOperand(0).getReg();
Register ScratchReg = MI->getOperand(1).getReg();
EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLDRi)
.addReg(ScratchReg)
.addReg(SrcReg)
// The offset immediate is #8. The operand value is scaled by 4 for the
// tLDR instruction.
.addImm(2)
// Predicate.
.addImm(ARMCC::AL)
.addReg(0));
EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVr)
.addReg(ARM::SP)
.addReg(ScratchReg)
// Predicate.
.addImm(ARMCC::AL)
.addReg(0));
EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLDRi)
.addReg(ScratchReg)
.addReg(SrcReg)
.addImm(1)
// Predicate.
.addImm(ARMCC::AL)
.addReg(0));
if (STI.isTargetDarwin() || STI.isTargetWindows()) {
// These platforms always use the same frame register
EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLDRi)
.addReg(FramePtr)
.addReg(SrcReg)
.addImm(0)
// Predicate.
.addImm(ARMCC::AL)
.addReg(0));
} else {
// If the calling code might use either R7 or R11 as
// frame pointer register, restore it into both.
EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLDRi)
.addReg(ARM::R7)
.addReg(SrcReg)
.addImm(0)
// Predicate.
.addImm(ARMCC::AL)
.addReg(0));
EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLDRi)
.addReg(ARM::R11)
.addReg(SrcReg)
.addImm(0)
// Predicate.
.addImm(ARMCC::AL)
.addReg(0));
}
EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tBX)
.addReg(ScratchReg)
// Predicate.
.addImm(ARMCC::AL)
.addReg(0));
return;
}
case ARM::tInt_WIN_eh_sjlj_longjmp: {
// ldr.w r11, [$src, #0]
// ldr.w sp, [$src, #8]
// ldr.w pc, [$src, #4]
Register SrcReg = MI->getOperand(0).getReg();
EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::t2LDRi12)
.addReg(ARM::R11)
.addReg(SrcReg)
.addImm(0)
// Predicate
.addImm(ARMCC::AL)
.addReg(0));
EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::t2LDRi12)
.addReg(ARM::SP)
.addReg(SrcReg)
.addImm(8)
// Predicate
.addImm(ARMCC::AL)
.addReg(0));
EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::t2LDRi12)
.addReg(ARM::PC)
.addReg(SrcReg)
.addImm(4)
// Predicate
.addImm(ARMCC::AL)
.addReg(0));
return;
}
case ARM::PATCHABLE_FUNCTION_ENTER:
LowerPATCHABLE_FUNCTION_ENTER(*MI);
return;
case ARM::PATCHABLE_FUNCTION_EXIT:
LowerPATCHABLE_FUNCTION_EXIT(*MI);
return;
case ARM::PATCHABLE_TAIL_CALL:
LowerPATCHABLE_TAIL_CALL(*MI);
return;
}
MCInst TmpInst;
LowerARMMachineInstrToMCInst(MI, TmpInst, *this);
EmitToStreamer(*OutStreamer, TmpInst);
}
//===----------------------------------------------------------------------===//
// Target Registry Stuff
//===----------------------------------------------------------------------===//
// Force static initialization.
extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeARMAsmPrinter() {
RegisterAsmPrinter<ARMAsmPrinter> X(getTheARMLETarget());
RegisterAsmPrinter<ARMAsmPrinter> Y(getTheARMBETarget());
RegisterAsmPrinter<ARMAsmPrinter> A(getTheThumbLETarget());
RegisterAsmPrinter<ARMAsmPrinter> B(getTheThumbBETarget());
}