ARMAsmPrinter.cpp 78.8 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156
//===-- ARMAsmPrinter.cpp - Print machine code to an ARM .s file ----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains a printer that converts from our internal representation
// of machine-dependent LLVM code to GAS-format ARM assembly language.
//
//===----------------------------------------------------------------------===//

#include "ARMAsmPrinter.h"
#include "ARM.h"
#include "ARMConstantPoolValue.h"
#include "ARMMachineFunctionInfo.h"
#include "ARMTargetMachine.h"
#include "ARMTargetObjectFile.h"
#include "MCTargetDesc/ARMAddressingModes.h"
#include "MCTargetDesc/ARMInstPrinter.h"
#include "MCTargetDesc/ARMMCExpr.h"
#include "TargetInfo/ARMTargetInfo.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/BinaryFormat/COFF.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineJumpTableInfo.h"
#include "llvm/CodeGen/MachineModuleInfoImpls.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Mangler.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Type.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/MC/MCAssembler.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCELFStreamer.h"
#include "llvm/MC/MCInst.h"
#include "llvm/MC/MCInstBuilder.h"
#include "llvm/MC/MCObjectStreamer.h"
#include "llvm/MC/MCStreamer.h"
#include "llvm/MC/MCSymbol.h"
#include "llvm/Support/ARMBuildAttributes.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/TargetParser.h"
#include "llvm/Support/TargetRegistry.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetMachine.h"
using namespace llvm;

#define DEBUG_TYPE "asm-printer"

ARMAsmPrinter::ARMAsmPrinter(TargetMachine &TM,
                             std::unique_ptr<MCStreamer> Streamer)
    : AsmPrinter(TM, std::move(Streamer)), Subtarget(nullptr), AFI(nullptr),
      MCP(nullptr), InConstantPool(false), OptimizationGoals(-1) {}

void ARMAsmPrinter::EmitFunctionBodyEnd() {
  // Make sure to terminate any constant pools that were at the end
  // of the function.
  if (!InConstantPool)
    return;
  InConstantPool = false;
  OutStreamer->EmitDataRegion(MCDR_DataRegionEnd);
}

void ARMAsmPrinter::EmitFunctionEntryLabel() {
  if (AFI->isThumbFunction()) {
    OutStreamer->EmitAssemblerFlag(MCAF_Code16);
    OutStreamer->EmitThumbFunc(CurrentFnSym);
  } else {
    OutStreamer->EmitAssemblerFlag(MCAF_Code32);
  }
  OutStreamer->EmitLabel(CurrentFnSym);
}

void ARMAsmPrinter::EmitXXStructor(const DataLayout &DL, const Constant *CV) {
  uint64_t Size = getDataLayout().getTypeAllocSize(CV->getType());
  assert(Size && "C++ constructor pointer had zero size!");

  const GlobalValue *GV = dyn_cast<GlobalValue>(CV->stripPointerCasts());
  assert(GV && "C++ constructor pointer was not a GlobalValue!");

  const MCExpr *E = MCSymbolRefExpr::create(GetARMGVSymbol(GV,
                                                           ARMII::MO_NO_FLAG),
                                            (Subtarget->isTargetELF()
                                             ? MCSymbolRefExpr::VK_ARM_TARGET1
                                             : MCSymbolRefExpr::VK_None),
                                            OutContext);

  OutStreamer->EmitValue(E, Size);
}

void ARMAsmPrinter::EmitGlobalVariable(const GlobalVariable *GV) {
  if (PromotedGlobals.count(GV))
    // The global was promoted into a constant pool. It should not be emitted.
    return;
  AsmPrinter::EmitGlobalVariable(GV);
}

/// runOnMachineFunction - This uses the EmitInstruction()
/// method to print assembly for each instruction.
///
bool ARMAsmPrinter::runOnMachineFunction(MachineFunction &MF) {
  AFI = MF.getInfo<ARMFunctionInfo>();
  MCP = MF.getConstantPool();
  Subtarget = &MF.getSubtarget<ARMSubtarget>();

  SetupMachineFunction(MF);
  const Function &F = MF.getFunction();
  const TargetMachine& TM = MF.getTarget();

  // Collect all globals that had their storage promoted to a constant pool.
  // Functions are emitted before variables, so this accumulates promoted
  // globals from all functions in PromotedGlobals.
  for (auto *GV : AFI->getGlobalsPromotedToConstantPool())
    PromotedGlobals.insert(GV);

  // Calculate this function's optimization goal.
  unsigned OptimizationGoal;
  if (F.hasOptNone())
    // For best debugging illusion, speed and small size sacrificed
    OptimizationGoal = 6;
  else if (F.hasMinSize())
    // Aggressively for small size, speed and debug illusion sacrificed
    OptimizationGoal = 4;
  else if (F.hasOptSize())
    // For small size, but speed and debugging illusion preserved
    OptimizationGoal = 3;
  else if (TM.getOptLevel() == CodeGenOpt::Aggressive)
    // Aggressively for speed, small size and debug illusion sacrificed
    OptimizationGoal = 2;
  else if (TM.getOptLevel() > CodeGenOpt::None)
    // For speed, but small size and good debug illusion preserved
    OptimizationGoal = 1;
  else // TM.getOptLevel() == CodeGenOpt::None
    // For good debugging, but speed and small size preserved
    OptimizationGoal = 5;

  // Combine a new optimization goal with existing ones.
  if (OptimizationGoals == -1) // uninitialized goals
    OptimizationGoals = OptimizationGoal;
  else if (OptimizationGoals != (int)OptimizationGoal) // conflicting goals
    OptimizationGoals = 0;

  if (Subtarget->isTargetCOFF()) {
    bool Internal = F.hasInternalLinkage();
    COFF::SymbolStorageClass Scl = Internal ? COFF::IMAGE_SYM_CLASS_STATIC
                                            : COFF::IMAGE_SYM_CLASS_EXTERNAL;
    int Type = COFF::IMAGE_SYM_DTYPE_FUNCTION << COFF::SCT_COMPLEX_TYPE_SHIFT;

    OutStreamer->BeginCOFFSymbolDef(CurrentFnSym);
    OutStreamer->EmitCOFFSymbolStorageClass(Scl);
    OutStreamer->EmitCOFFSymbolType(Type);
    OutStreamer->EndCOFFSymbolDef();
  }

  // Emit the rest of the function body.
  EmitFunctionBody();

  // Emit the XRay table for this function.
  emitXRayTable();

  // If we need V4T thumb mode Register Indirect Jump pads, emit them.
  // These are created per function, rather than per TU, since it's
  // relatively easy to exceed the thumb branch range within a TU.
  if (! ThumbIndirectPads.empty()) {
    OutStreamer->EmitAssemblerFlag(MCAF_Code16);
    EmitAlignment(Align(2));
    for (std::pair<unsigned, MCSymbol *> &TIP : ThumbIndirectPads) {
      OutStreamer->EmitLabel(TIP.second);
      EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tBX)
        .addReg(TIP.first)
        // Add predicate operands.
        .addImm(ARMCC::AL)
        .addReg(0));
    }
    ThumbIndirectPads.clear();
  }

  // We didn't modify anything.
  return false;
}

void ARMAsmPrinter::PrintSymbolOperand(const MachineOperand &MO,
                                       raw_ostream &O) {
  assert(MO.isGlobal() && "caller should check MO.isGlobal");
  unsigned TF = MO.getTargetFlags();
  if (TF & ARMII::MO_LO16)
    O << ":lower16:";
  else if (TF & ARMII::MO_HI16)
    O << ":upper16:";
  GetARMGVSymbol(MO.getGlobal(), TF)->print(O, MAI);
  printOffset(MO.getOffset(), O);
}

void ARMAsmPrinter::printOperand(const MachineInstr *MI, int OpNum,
                                 raw_ostream &O) {
  const MachineOperand &MO = MI->getOperand(OpNum);

  switch (MO.getType()) {
  default: llvm_unreachable("<unknown operand type>");
  case MachineOperand::MO_Register: {
    Register Reg = MO.getReg();
    assert(Register::isPhysicalRegister(Reg));
    assert(!MO.getSubReg() && "Subregs should be eliminated!");
    if(ARM::GPRPairRegClass.contains(Reg)) {
      const MachineFunction &MF = *MI->getParent()->getParent();
      const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
      Reg = TRI->getSubReg(Reg, ARM::gsub_0);
    }
    O << ARMInstPrinter::getRegisterName(Reg);
    break;
  }
  case MachineOperand::MO_Immediate: {
    O << '#';
    unsigned TF = MO.getTargetFlags();
    if (TF == ARMII::MO_LO16)
      O << ":lower16:";
    else if (TF == ARMII::MO_HI16)
      O << ":upper16:";
    O << MO.getImm();
    break;
  }
  case MachineOperand::MO_MachineBasicBlock:
    MO.getMBB()->getSymbol()->print(O, MAI);
    return;
  case MachineOperand::MO_GlobalAddress: {
    PrintSymbolOperand(MO, O);
    break;
  }
  case MachineOperand::MO_ConstantPoolIndex:
    if (Subtarget->genExecuteOnly())
      llvm_unreachable("execute-only should not generate constant pools");
    GetCPISymbol(MO.getIndex())->print(O, MAI);
    break;
  }
}

MCSymbol *ARMAsmPrinter::GetCPISymbol(unsigned CPID) const {
  // The AsmPrinter::GetCPISymbol superclass method tries to use CPID as
  // indexes in MachineConstantPool, which isn't in sync with indexes used here.
  const DataLayout &DL = getDataLayout();
  return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) +
                                      "CPI" + Twine(getFunctionNumber()) + "_" +
                                      Twine(CPID));
}

//===--------------------------------------------------------------------===//

MCSymbol *ARMAsmPrinter::
GetARMJTIPICJumpTableLabel(unsigned uid) const {
  const DataLayout &DL = getDataLayout();
  SmallString<60> Name;
  raw_svector_ostream(Name) << DL.getPrivateGlobalPrefix() << "JTI"
                            << getFunctionNumber() << '_' << uid;
  return OutContext.getOrCreateSymbol(Name);
}

bool ARMAsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNum,
                                    const char *ExtraCode, raw_ostream &O) {
  // Does this asm operand have a single letter operand modifier?
  if (ExtraCode && ExtraCode[0]) {
    if (ExtraCode[1] != 0) return true; // Unknown modifier.

    switch (ExtraCode[0]) {
    default:
      // See if this is a generic print operand
      return AsmPrinter::PrintAsmOperand(MI, OpNum, ExtraCode, O);
    case 'P': // Print a VFP double precision register.
    case 'q': // Print a NEON quad precision register.
      printOperand(MI, OpNum, O);
      return false;
    case 'y': // Print a VFP single precision register as indexed double.
      if (MI->getOperand(OpNum).isReg()) {
        Register Reg = MI->getOperand(OpNum).getReg();
        const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
        // Find the 'd' register that has this 's' register as a sub-register,
        // and determine the lane number.
        for (MCSuperRegIterator SR(Reg, TRI); SR.isValid(); ++SR) {
          if (!ARM::DPRRegClass.contains(*SR))
            continue;
          bool Lane0 = TRI->getSubReg(*SR, ARM::ssub_0) == Reg;
          O << ARMInstPrinter::getRegisterName(*SR) << (Lane0 ? "[0]" : "[1]");
          return false;
        }
      }
      return true;
    case 'B': // Bitwise inverse of integer or symbol without a preceding #.
      if (!MI->getOperand(OpNum).isImm())
        return true;
      O << ~(MI->getOperand(OpNum).getImm());
      return false;
    case 'L': // The low 16 bits of an immediate constant.
      if (!MI->getOperand(OpNum).isImm())
        return true;
      O << (MI->getOperand(OpNum).getImm() & 0xffff);
      return false;
    case 'M': { // A register range suitable for LDM/STM.
      if (!MI->getOperand(OpNum).isReg())
        return true;
      const MachineOperand &MO = MI->getOperand(OpNum);
      Register RegBegin = MO.getReg();
      // This takes advantage of the 2 operand-ness of ldm/stm and that we've
      // already got the operands in registers that are operands to the
      // inline asm statement.
      O << "{";
      if (ARM::GPRPairRegClass.contains(RegBegin)) {
        const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
        Register Reg0 = TRI->getSubReg(RegBegin, ARM::gsub_0);
        O << ARMInstPrinter::getRegisterName(Reg0) << ", ";
        RegBegin = TRI->getSubReg(RegBegin, ARM::gsub_1);
      }
      O << ARMInstPrinter::getRegisterName(RegBegin);

      // FIXME: The register allocator not only may not have given us the
      // registers in sequence, but may not be in ascending registers. This
      // will require changes in the register allocator that'll need to be
      // propagated down here if the operands change.
      unsigned RegOps = OpNum + 1;
      while (MI->getOperand(RegOps).isReg()) {
        O << ", "
          << ARMInstPrinter::getRegisterName(MI->getOperand(RegOps).getReg());
        RegOps++;
      }

      O << "}";

      return false;
    }
    case 'R': // The most significant register of a pair.
    case 'Q': { // The least significant register of a pair.
      if (OpNum == 0)
        return true;
      const MachineOperand &FlagsOP = MI->getOperand(OpNum - 1);
      if (!FlagsOP.isImm())
        return true;
      unsigned Flags = FlagsOP.getImm();

      // This operand may not be the one that actually provides the register. If
      // it's tied to a previous one then we should refer instead to that one
      // for registers and their classes.
      unsigned TiedIdx;
      if (InlineAsm::isUseOperandTiedToDef(Flags, TiedIdx)) {
        for (OpNum = InlineAsm::MIOp_FirstOperand; TiedIdx; --TiedIdx) {
          unsigned OpFlags = MI->getOperand(OpNum).getImm();
          OpNum += InlineAsm::getNumOperandRegisters(OpFlags) + 1;
        }
        Flags = MI->getOperand(OpNum).getImm();

        // Later code expects OpNum to be pointing at the register rather than
        // the flags.
        OpNum += 1;
      }

      unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags);
      unsigned RC;
      bool FirstHalf;
      const ARMBaseTargetMachine &ATM =
        static_cast<const ARMBaseTargetMachine &>(TM);

      // 'Q' should correspond to the low order register and 'R' to the high
      // order register.  Whether this corresponds to the upper or lower half
      // depends on the endianess mode.
      if (ExtraCode[0] == 'Q')
        FirstHalf = ATM.isLittleEndian();
      else
        // ExtraCode[0] == 'R'.
        FirstHalf = !ATM.isLittleEndian();
      const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
      if (InlineAsm::hasRegClassConstraint(Flags, RC) &&
          ARM::GPRPairRegClass.hasSubClassEq(TRI->getRegClass(RC))) {
        if (NumVals != 1)
          return true;
        const MachineOperand &MO = MI->getOperand(OpNum);
        if (!MO.isReg())
          return true;
        const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
        Register Reg =
            TRI->getSubReg(MO.getReg(), FirstHalf ? ARM::gsub_0 : ARM::gsub_1);
        O << ARMInstPrinter::getRegisterName(Reg);
        return false;
      }
      if (NumVals != 2)
        return true;
      unsigned RegOp = FirstHalf ? OpNum : OpNum + 1;
      if (RegOp >= MI->getNumOperands())
        return true;
      const MachineOperand &MO = MI->getOperand(RegOp);
      if (!MO.isReg())
        return true;
      Register Reg = MO.getReg();
      O << ARMInstPrinter::getRegisterName(Reg);
      return false;
    }

    case 'e': // The low doubleword register of a NEON quad register.
    case 'f': { // The high doubleword register of a NEON quad register.
      if (!MI->getOperand(OpNum).isReg())
        return true;
      Register Reg = MI->getOperand(OpNum).getReg();
      if (!ARM::QPRRegClass.contains(Reg))
        return true;
      const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
      Register SubReg =
          TRI->getSubReg(Reg, ExtraCode[0] == 'e' ? ARM::dsub_0 : ARM::dsub_1);
      O << ARMInstPrinter::getRegisterName(SubReg);
      return false;
    }

    // This modifier is not yet supported.
    case 'h': // A range of VFP/NEON registers suitable for VLD1/VST1.
      return true;
    case 'H': { // The highest-numbered register of a pair.
      const MachineOperand &MO = MI->getOperand(OpNum);
      if (!MO.isReg())
        return true;
      const MachineFunction &MF = *MI->getParent()->getParent();
      const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
      Register Reg = MO.getReg();
      if(!ARM::GPRPairRegClass.contains(Reg))
        return false;
      Reg = TRI->getSubReg(Reg, ARM::gsub_1);
      O << ARMInstPrinter::getRegisterName(Reg);
      return false;
    }
    }
  }

  printOperand(MI, OpNum, O);
  return false;
}

bool ARMAsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI,
                                          unsigned OpNum, const char *ExtraCode,
                                          raw_ostream &O) {
  // Does this asm operand have a single letter operand modifier?
  if (ExtraCode && ExtraCode[0]) {
    if (ExtraCode[1] != 0) return true; // Unknown modifier.

    switch (ExtraCode[0]) {
      case 'A': // A memory operand for a VLD1/VST1 instruction.
      default: return true;  // Unknown modifier.
      case 'm': // The base register of a memory operand.
        if (!MI->getOperand(OpNum).isReg())
          return true;
        O << ARMInstPrinter::getRegisterName(MI->getOperand(OpNum).getReg());
        return false;
    }
  }

  const MachineOperand &MO = MI->getOperand(OpNum);
  assert(MO.isReg() && "unexpected inline asm memory operand");
  O << "[" << ARMInstPrinter::getRegisterName(MO.getReg()) << "]";
  return false;
}

static bool isThumb(const MCSubtargetInfo& STI) {
  return STI.getFeatureBits()[ARM::ModeThumb];
}

void ARMAsmPrinter::emitInlineAsmEnd(const MCSubtargetInfo &StartInfo,
                                     const MCSubtargetInfo *EndInfo) const {
  // If either end mode is unknown (EndInfo == NULL) or different than
  // the start mode, then restore the start mode.
  const bool WasThumb = isThumb(StartInfo);
  if (!EndInfo || WasThumb != isThumb(*EndInfo)) {
    OutStreamer->EmitAssemblerFlag(WasThumb ? MCAF_Code16 : MCAF_Code32);
  }
}

void ARMAsmPrinter::EmitStartOfAsmFile(Module &M) {
  const Triple &TT = TM.getTargetTriple();
  // Use unified assembler syntax.
  OutStreamer->EmitAssemblerFlag(MCAF_SyntaxUnified);

  // Emit ARM Build Attributes
  if (TT.isOSBinFormatELF())
    emitAttributes();

  // Use the triple's architecture and subarchitecture to determine
  // if we're thumb for the purposes of the top level code16 assembler
  // flag.
  if (!M.getModuleInlineAsm().empty() && TT.isThumb())
    OutStreamer->EmitAssemblerFlag(MCAF_Code16);
}

static void
emitNonLazySymbolPointer(MCStreamer &OutStreamer, MCSymbol *StubLabel,
                         MachineModuleInfoImpl::StubValueTy &MCSym) {
  // L_foo$stub:
  OutStreamer.EmitLabel(StubLabel);
  //   .indirect_symbol _foo
  OutStreamer.EmitSymbolAttribute(MCSym.getPointer(), MCSA_IndirectSymbol);

  if (MCSym.getInt())
    // External to current translation unit.
    OutStreamer.EmitIntValue(0, 4/*size*/);
  else
    // Internal to current translation unit.
    //
    // When we place the LSDA into the TEXT section, the type info
    // pointers need to be indirect and pc-rel. We accomplish this by
    // using NLPs; however, sometimes the types are local to the file.
    // We need to fill in the value for the NLP in those cases.
    OutStreamer.EmitValue(
        MCSymbolRefExpr::create(MCSym.getPointer(), OutStreamer.getContext()),
        4 /*size*/);
}


void ARMAsmPrinter::EmitEndOfAsmFile(Module &M) {
  const Triple &TT = TM.getTargetTriple();
  if (TT.isOSBinFormatMachO()) {
    // All darwin targets use mach-o.
    const TargetLoweringObjectFileMachO &TLOFMacho =
      static_cast<const TargetLoweringObjectFileMachO &>(getObjFileLowering());
    MachineModuleInfoMachO &MMIMacho =
      MMI->getObjFileInfo<MachineModuleInfoMachO>();

    // Output non-lazy-pointers for external and common global variables.
    MachineModuleInfoMachO::SymbolListTy Stubs = MMIMacho.GetGVStubList();

    if (!Stubs.empty()) {
      // Switch with ".non_lazy_symbol_pointer" directive.
      OutStreamer->SwitchSection(TLOFMacho.getNonLazySymbolPointerSection());
      EmitAlignment(Align(4));

      for (auto &Stub : Stubs)
        emitNonLazySymbolPointer(*OutStreamer, Stub.first, Stub.second);

      Stubs.clear();
      OutStreamer->AddBlankLine();
    }

    Stubs = MMIMacho.GetThreadLocalGVStubList();
    if (!Stubs.empty()) {
      // Switch with ".non_lazy_symbol_pointer" directive.
      OutStreamer->SwitchSection(TLOFMacho.getThreadLocalPointerSection());
      EmitAlignment(Align(4));

      for (auto &Stub : Stubs)
        emitNonLazySymbolPointer(*OutStreamer, Stub.first, Stub.second);

      Stubs.clear();
      OutStreamer->AddBlankLine();
    }

    // Funny Darwin hack: This flag tells the linker that no global symbols
    // contain code that falls through to other global symbols (e.g. the obvious
    // implementation of multiple entry points).  If this doesn't occur, the
    // linker can safely perform dead code stripping.  Since LLVM never
    // generates code that does this, it is always safe to set.
    OutStreamer->EmitAssemblerFlag(MCAF_SubsectionsViaSymbols);
  }

  // The last attribute to be emitted is ABI_optimization_goals
  MCTargetStreamer &TS = *OutStreamer->getTargetStreamer();
  ARMTargetStreamer &ATS = static_cast<ARMTargetStreamer &>(TS);

  if (OptimizationGoals > 0 &&
      (Subtarget->isTargetAEABI() || Subtarget->isTargetGNUAEABI() ||
       Subtarget->isTargetMuslAEABI()))
    ATS.emitAttribute(ARMBuildAttrs::ABI_optimization_goals, OptimizationGoals);
  OptimizationGoals = -1;

  ATS.finishAttributeSection();
}

//===----------------------------------------------------------------------===//
// Helper routines for EmitStartOfAsmFile() and EmitEndOfAsmFile()
// FIXME:
// The following seem like one-off assembler flags, but they actually need
// to appear in the .ARM.attributes section in ELF.
// Instead of subclassing the MCELFStreamer, we do the work here.

// Returns true if all functions have the same function attribute value.
// It also returns true when the module has no functions.
static bool checkFunctionsAttributeConsistency(const Module &M, StringRef Attr,
                                               StringRef Value) {
  return !any_of(M, [&](const Function &F) {
    return F.getFnAttribute(Attr).getValueAsString() != Value;
  });
}

void ARMAsmPrinter::emitAttributes() {
  MCTargetStreamer &TS = *OutStreamer->getTargetStreamer();
  ARMTargetStreamer &ATS = static_cast<ARMTargetStreamer &>(TS);

  ATS.emitTextAttribute(ARMBuildAttrs::conformance, "2.09");

  ATS.switchVendor("aeabi");

  // Compute ARM ELF Attributes based on the default subtarget that
  // we'd have constructed. The existing ARM behavior isn't LTO clean
  // anyhow.
  // FIXME: For ifunc related functions we could iterate over and look
  // for a feature string that doesn't match the default one.
  const Triple &TT = TM.getTargetTriple();
  StringRef CPU = TM.getTargetCPU();
  StringRef FS = TM.getTargetFeatureString();
  std::string ArchFS = ARM_MC::ParseARMTriple(TT, CPU);
  if (!FS.empty()) {
    if (!ArchFS.empty())
      ArchFS = (Twine(ArchFS) + "," + FS).str();
    else
      ArchFS = FS;
  }
  const ARMBaseTargetMachine &ATM =
      static_cast<const ARMBaseTargetMachine &>(TM);
  const ARMSubtarget STI(TT, CPU, ArchFS, ATM, ATM.isLittleEndian());

  // Emit build attributes for the available hardware.
  ATS.emitTargetAttributes(STI);

  // RW data addressing.
  if (isPositionIndependent()) {
    ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_RW_data,
                      ARMBuildAttrs::AddressRWPCRel);
  } else if (STI.isRWPI()) {
    // RWPI specific attributes.
    ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_RW_data,
                      ARMBuildAttrs::AddressRWSBRel);
  }

  // RO data addressing.
  if (isPositionIndependent() || STI.isROPI()) {
    ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_RO_data,
                      ARMBuildAttrs::AddressROPCRel);
  }

  // GOT use.
  if (isPositionIndependent()) {
    ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_GOT_use,
                      ARMBuildAttrs::AddressGOT);
  } else {
    ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_GOT_use,
                      ARMBuildAttrs::AddressDirect);
  }

  // Set FP Denormals.
  if (checkFunctionsAttributeConsistency(*MMI->getModule(),
                                         "denormal-fp-math",
                                         "preserve-sign") ||
      TM.Options.FPDenormalMode == FPDenormal::PreserveSign)
    ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal,
                      ARMBuildAttrs::PreserveFPSign);
  else if (checkFunctionsAttributeConsistency(*MMI->getModule(),
                                              "denormal-fp-math",
                                              "positive-zero") ||
           TM.Options.FPDenormalMode == FPDenormal::PositiveZero)
    ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal,
                      ARMBuildAttrs::PositiveZero);
  else if (!TM.Options.UnsafeFPMath)
    ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal,
                      ARMBuildAttrs::IEEEDenormals);
  else {
    if (!STI.hasVFP2Base()) {
      // When the target doesn't have an FPU (by design or
      // intention), the assumptions made on the software support
      // mirror that of the equivalent hardware support *if it
      // existed*. For v7 and better we indicate that denormals are
      // flushed preserving sign, and for V6 we indicate that
      // denormals are flushed to positive zero.
      if (STI.hasV7Ops())
        ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal,
                          ARMBuildAttrs::PreserveFPSign);
    } else if (STI.hasVFP3Base()) {
      // In VFPv4, VFPv4U, VFPv3, or VFPv3U, it is preserved. That is,
      // the sign bit of the zero matches the sign bit of the input or
      // result that is being flushed to zero.
      ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal,
                        ARMBuildAttrs::PreserveFPSign);
    }
    // For VFPv2 implementations it is implementation defined as
    // to whether denormals are flushed to positive zero or to
    // whatever the sign of zero is (ARM v7AR ARM 2.7.5). Historically
    // LLVM has chosen to flush this to positive zero (most likely for
    // GCC compatibility), so that's the chosen value here (the
    // absence of its emission implies zero).
  }

  // Set FP exceptions and rounding
  if (checkFunctionsAttributeConsistency(*MMI->getModule(),
                                         "no-trapping-math", "true") ||
      TM.Options.NoTrappingFPMath)
    ATS.emitAttribute(ARMBuildAttrs::ABI_FP_exceptions,
                      ARMBuildAttrs::Not_Allowed);
  else if (!TM.Options.UnsafeFPMath) {
    ATS.emitAttribute(ARMBuildAttrs::ABI_FP_exceptions, ARMBuildAttrs::Allowed);

    // If the user has permitted this code to choose the IEEE 754
    // rounding at run-time, emit the rounding attribute.
    if (TM.Options.HonorSignDependentRoundingFPMathOption)
      ATS.emitAttribute(ARMBuildAttrs::ABI_FP_rounding, ARMBuildAttrs::Allowed);
  }

  // TM.Options.NoInfsFPMath && TM.Options.NoNaNsFPMath is the
  // equivalent of GCC's -ffinite-math-only flag.
  if (TM.Options.NoInfsFPMath && TM.Options.NoNaNsFPMath)
    ATS.emitAttribute(ARMBuildAttrs::ABI_FP_number_model,
                      ARMBuildAttrs::Allowed);
  else
    ATS.emitAttribute(ARMBuildAttrs::ABI_FP_number_model,
                      ARMBuildAttrs::AllowIEEE754);

  // FIXME: add more flags to ARMBuildAttributes.h
  // 8-bytes alignment stuff.
  ATS.emitAttribute(ARMBuildAttrs::ABI_align_needed, 1);
  ATS.emitAttribute(ARMBuildAttrs::ABI_align_preserved, 1);

  // Hard float.  Use both S and D registers and conform to AAPCS-VFP.
  if (STI.isAAPCS_ABI() && TM.Options.FloatABIType == FloatABI::Hard)
    ATS.emitAttribute(ARMBuildAttrs::ABI_VFP_args, ARMBuildAttrs::HardFPAAPCS);

  // FIXME: To support emitting this build attribute as GCC does, the
  // -mfp16-format option and associated plumbing must be
  // supported. For now the __fp16 type is exposed by default, so this
  // attribute should be emitted with value 1.
  ATS.emitAttribute(ARMBuildAttrs::ABI_FP_16bit_format,
                    ARMBuildAttrs::FP16FormatIEEE);

  if (MMI) {
    if (const Module *SourceModule = MMI->getModule()) {
      // ABI_PCS_wchar_t to indicate wchar_t width
      // FIXME: There is no way to emit value 0 (wchar_t prohibited).
      if (auto WCharWidthValue = mdconst::extract_or_null<ConstantInt>(
              SourceModule->getModuleFlag("wchar_size"))) {
        int WCharWidth = WCharWidthValue->getZExtValue();
        assert((WCharWidth == 2 || WCharWidth == 4) &&
               "wchar_t width must be 2 or 4 bytes");
        ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_wchar_t, WCharWidth);
      }

      // ABI_enum_size to indicate enum width
      // FIXME: There is no way to emit value 0 (enums prohibited) or value 3
      //        (all enums contain a value needing 32 bits to encode).
      if (auto EnumWidthValue = mdconst::extract_or_null<ConstantInt>(
              SourceModule->getModuleFlag("min_enum_size"))) {
        int EnumWidth = EnumWidthValue->getZExtValue();
        assert((EnumWidth == 1 || EnumWidth == 4) &&
               "Minimum enum width must be 1 or 4 bytes");
        int EnumBuildAttr = EnumWidth == 1 ? 1 : 2;
        ATS.emitAttribute(ARMBuildAttrs::ABI_enum_size, EnumBuildAttr);
      }
    }
  }

  // We currently do not support using R9 as the TLS pointer.
  if (STI.isRWPI())
    ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_R9_use,
                      ARMBuildAttrs::R9IsSB);
  else if (STI.isR9Reserved())
    ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_R9_use,
                      ARMBuildAttrs::R9Reserved);
  else
    ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_R9_use,
                      ARMBuildAttrs::R9IsGPR);
}

//===----------------------------------------------------------------------===//

static MCSymbol *getBFLabel(StringRef Prefix, unsigned FunctionNumber,
                             unsigned LabelId, MCContext &Ctx) {

  MCSymbol *Label = Ctx.getOrCreateSymbol(Twine(Prefix)
                       + "BF" + Twine(FunctionNumber) + "_" + Twine(LabelId));
  return Label;
}

static MCSymbol *getPICLabel(StringRef Prefix, unsigned FunctionNumber,
                             unsigned LabelId, MCContext &Ctx) {

  MCSymbol *Label = Ctx.getOrCreateSymbol(Twine(Prefix)
                       + "PC" + Twine(FunctionNumber) + "_" + Twine(LabelId));
  return Label;
}

static MCSymbolRefExpr::VariantKind
getModifierVariantKind(ARMCP::ARMCPModifier Modifier) {
  switch (Modifier) {
  case ARMCP::no_modifier:
    return MCSymbolRefExpr::VK_None;
  case ARMCP::TLSGD:
    return MCSymbolRefExpr::VK_TLSGD;
  case ARMCP::TPOFF:
    return MCSymbolRefExpr::VK_TPOFF;
  case ARMCP::GOTTPOFF:
    return MCSymbolRefExpr::VK_GOTTPOFF;
  case ARMCP::SBREL:
    return MCSymbolRefExpr::VK_ARM_SBREL;
  case ARMCP::GOT_PREL:
    return MCSymbolRefExpr::VK_ARM_GOT_PREL;
  case ARMCP::SECREL:
    return MCSymbolRefExpr::VK_SECREL;
  }
  llvm_unreachable("Invalid ARMCPModifier!");
}

MCSymbol *ARMAsmPrinter::GetARMGVSymbol(const GlobalValue *GV,
                                        unsigned char TargetFlags) {
  if (Subtarget->isTargetMachO()) {
    bool IsIndirect =
        (TargetFlags & ARMII::MO_NONLAZY) && Subtarget->isGVIndirectSymbol(GV);

    if (!IsIndirect)
      return getSymbol(GV);

    // FIXME: Remove this when Darwin transition to @GOT like syntax.
    MCSymbol *MCSym = getSymbolWithGlobalValueBase(GV, "$non_lazy_ptr");
    MachineModuleInfoMachO &MMIMachO =
      MMI->getObjFileInfo<MachineModuleInfoMachO>();
    MachineModuleInfoImpl::StubValueTy &StubSym =
        GV->isThreadLocal() ? MMIMachO.getThreadLocalGVStubEntry(MCSym)
                            : MMIMachO.getGVStubEntry(MCSym);

    if (!StubSym.getPointer())
      StubSym = MachineModuleInfoImpl::StubValueTy(getSymbol(GV),
                                                   !GV->hasInternalLinkage());
    return MCSym;
  } else if (Subtarget->isTargetCOFF()) {
    assert(Subtarget->isTargetWindows() &&
           "Windows is the only supported COFF target");

    bool IsIndirect =
        (TargetFlags & (ARMII::MO_DLLIMPORT | ARMII::MO_COFFSTUB));
    if (!IsIndirect)
      return getSymbol(GV);

    SmallString<128> Name;
    if (TargetFlags & ARMII::MO_DLLIMPORT)
      Name = "__imp_";
    else if (TargetFlags & ARMII::MO_COFFSTUB)
      Name = ".refptr.";
    getNameWithPrefix(Name, GV);

    MCSymbol *MCSym = OutContext.getOrCreateSymbol(Name);

    if (TargetFlags & ARMII::MO_COFFSTUB) {
      MachineModuleInfoCOFF &MMICOFF =
          MMI->getObjFileInfo<MachineModuleInfoCOFF>();
      MachineModuleInfoImpl::StubValueTy &StubSym =
          MMICOFF.getGVStubEntry(MCSym);

      if (!StubSym.getPointer())
        StubSym = MachineModuleInfoImpl::StubValueTy(getSymbol(GV), true);
    }

    return MCSym;
  } else if (Subtarget->isTargetELF()) {
    return getSymbol(GV);
  }
  llvm_unreachable("unexpected target");
}

void ARMAsmPrinter::
EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) {
  const DataLayout &DL = getDataLayout();
  int Size = DL.getTypeAllocSize(MCPV->getType());

  ARMConstantPoolValue *ACPV = static_cast<ARMConstantPoolValue*>(MCPV);

  if (ACPV->isPromotedGlobal()) {
    // This constant pool entry is actually a global whose storage has been
    // promoted into the constant pool. This global may be referenced still
    // by debug information, and due to the way AsmPrinter is set up, the debug
    // info is immutable by the time we decide to promote globals to constant
    // pools. Because of this, we need to ensure we emit a symbol for the global
    // with private linkage (the default) so debug info can refer to it.
    //
    // However, if this global is promoted into several functions we must ensure
    // we don't try and emit duplicate symbols!
    auto *ACPC = cast<ARMConstantPoolConstant>(ACPV);
    for (const auto *GV : ACPC->promotedGlobals()) {
      if (!EmittedPromotedGlobalLabels.count(GV)) {
        MCSymbol *GVSym = getSymbol(GV);
        OutStreamer->EmitLabel(GVSym);
        EmittedPromotedGlobalLabels.insert(GV);
      }
    }
    return EmitGlobalConstant(DL, ACPC->getPromotedGlobalInit());
  }

  MCSymbol *MCSym;
  if (ACPV->isLSDA()) {
    MCSym = getCurExceptionSym();
  } else if (ACPV->isBlockAddress()) {
    const BlockAddress *BA =
      cast<ARMConstantPoolConstant>(ACPV)->getBlockAddress();
    MCSym = GetBlockAddressSymbol(BA);
  } else if (ACPV->isGlobalValue()) {
    const GlobalValue *GV = cast<ARMConstantPoolConstant>(ACPV)->getGV();

    // On Darwin, const-pool entries may get the "FOO$non_lazy_ptr" mangling, so
    // flag the global as MO_NONLAZY.
    unsigned char TF = Subtarget->isTargetMachO() ? ARMII::MO_NONLAZY : 0;
    MCSym = GetARMGVSymbol(GV, TF);
  } else if (ACPV->isMachineBasicBlock()) {
    const MachineBasicBlock *MBB = cast<ARMConstantPoolMBB>(ACPV)->getMBB();
    MCSym = MBB->getSymbol();
  } else {
    assert(ACPV->isExtSymbol() && "unrecognized constant pool value");
    auto Sym = cast<ARMConstantPoolSymbol>(ACPV)->getSymbol();
    MCSym = GetExternalSymbolSymbol(Sym);
  }

  // Create an MCSymbol for the reference.
  const MCExpr *Expr =
    MCSymbolRefExpr::create(MCSym, getModifierVariantKind(ACPV->getModifier()),
                            OutContext);

  if (ACPV->getPCAdjustment()) {
    MCSymbol *PCLabel =
        getPICLabel(DL.getPrivateGlobalPrefix(), getFunctionNumber(),
                    ACPV->getLabelId(), OutContext);
    const MCExpr *PCRelExpr = MCSymbolRefExpr::create(PCLabel, OutContext);
    PCRelExpr =
      MCBinaryExpr::createAdd(PCRelExpr,
                              MCConstantExpr::create(ACPV->getPCAdjustment(),
                                                     OutContext),
                              OutContext);
    if (ACPV->mustAddCurrentAddress()) {
      // We want "(<expr> - .)", but MC doesn't have a concept of the '.'
      // label, so just emit a local label end reference that instead.
      MCSymbol *DotSym = OutContext.createTempSymbol();
      OutStreamer->EmitLabel(DotSym);
      const MCExpr *DotExpr = MCSymbolRefExpr::create(DotSym, OutContext);
      PCRelExpr = MCBinaryExpr::createSub(PCRelExpr, DotExpr, OutContext);
    }
    Expr = MCBinaryExpr::createSub(Expr, PCRelExpr, OutContext);
  }
  OutStreamer->EmitValue(Expr, Size);
}

void ARMAsmPrinter::EmitJumpTableAddrs(const MachineInstr *MI) {
  const MachineOperand &MO1 = MI->getOperand(1);
  unsigned JTI = MO1.getIndex();

  // Make sure the Thumb jump table is 4-byte aligned. This will be a nop for
  // ARM mode tables.
  EmitAlignment(Align(4));

  // Emit a label for the jump table.
  MCSymbol *JTISymbol = GetARMJTIPICJumpTableLabel(JTI);
  OutStreamer->EmitLabel(JTISymbol);

  // Mark the jump table as data-in-code.
  OutStreamer->EmitDataRegion(MCDR_DataRegionJT32);

  // Emit each entry of the table.
  const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
  const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
  const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;

  for (MachineBasicBlock *MBB : JTBBs) {
    // Construct an MCExpr for the entry. We want a value of the form:
    // (BasicBlockAddr - TableBeginAddr)
    //
    // For example, a table with entries jumping to basic blocks BB0 and BB1
    // would look like:
    // LJTI_0_0:
    //    .word (LBB0 - LJTI_0_0)
    //    .word (LBB1 - LJTI_0_0)
    const MCExpr *Expr = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext);

    if (isPositionIndependent() || Subtarget->isROPI())
      Expr = MCBinaryExpr::createSub(Expr, MCSymbolRefExpr::create(JTISymbol,
                                                                   OutContext),
                                     OutContext);
    // If we're generating a table of Thumb addresses in static relocation
    // model, we need to add one to keep interworking correctly.
    else if (AFI->isThumbFunction())
      Expr = MCBinaryExpr::createAdd(Expr, MCConstantExpr::create(1,OutContext),
                                     OutContext);
    OutStreamer->EmitValue(Expr, 4);
  }
  // Mark the end of jump table data-in-code region.
  OutStreamer->EmitDataRegion(MCDR_DataRegionEnd);
}

void ARMAsmPrinter::EmitJumpTableInsts(const MachineInstr *MI) {
  const MachineOperand &MO1 = MI->getOperand(1);
  unsigned JTI = MO1.getIndex();

  // Make sure the Thumb jump table is 4-byte aligned. This will be a nop for
  // ARM mode tables.
  EmitAlignment(Align(4));

  // Emit a label for the jump table.
  MCSymbol *JTISymbol = GetARMJTIPICJumpTableLabel(JTI);
  OutStreamer->EmitLabel(JTISymbol);

  // Emit each entry of the table.
  const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
  const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
  const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;

  for (MachineBasicBlock *MBB : JTBBs) {
    const MCExpr *MBBSymbolExpr = MCSymbolRefExpr::create(MBB->getSymbol(),
                                                          OutContext);
    // If this isn't a TBB or TBH, the entries are direct branch instructions.
    EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::t2B)
        .addExpr(MBBSymbolExpr)
        .addImm(ARMCC::AL)
        .addReg(0));
  }
}

void ARMAsmPrinter::EmitJumpTableTBInst(const MachineInstr *MI,
                                        unsigned OffsetWidth) {
  assert((OffsetWidth == 1 || OffsetWidth == 2) && "invalid tbb/tbh width");
  const MachineOperand &MO1 = MI->getOperand(1);
  unsigned JTI = MO1.getIndex();

  if (Subtarget->isThumb1Only())
    EmitAlignment(Align(4));

  MCSymbol *JTISymbol = GetARMJTIPICJumpTableLabel(JTI);
  OutStreamer->EmitLabel(JTISymbol);

  // Emit each entry of the table.
  const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
  const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
  const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;

  // Mark the jump table as data-in-code.
  OutStreamer->EmitDataRegion(OffsetWidth == 1 ? MCDR_DataRegionJT8
                                               : MCDR_DataRegionJT16);

  for (auto MBB : JTBBs) {
    const MCExpr *MBBSymbolExpr = MCSymbolRefExpr::create(MBB->getSymbol(),
                                                          OutContext);
    // Otherwise it's an offset from the dispatch instruction. Construct an
    // MCExpr for the entry. We want a value of the form:
    // (BasicBlockAddr - TBBInstAddr + 4) / 2
    //
    // For example, a TBB table with entries jumping to basic blocks BB0 and BB1
    // would look like:
    // LJTI_0_0:
    //    .byte (LBB0 - (LCPI0_0 + 4)) / 2
    //    .byte (LBB1 - (LCPI0_0 + 4)) / 2
    // where LCPI0_0 is a label defined just before the TBB instruction using
    // this table.
    MCSymbol *TBInstPC = GetCPISymbol(MI->getOperand(0).getImm());
    const MCExpr *Expr = MCBinaryExpr::createAdd(
        MCSymbolRefExpr::create(TBInstPC, OutContext),
        MCConstantExpr::create(4, OutContext), OutContext);
    Expr = MCBinaryExpr::createSub(MBBSymbolExpr, Expr, OutContext);
    Expr = MCBinaryExpr::createDiv(Expr, MCConstantExpr::create(2, OutContext),
                                   OutContext);
    OutStreamer->EmitValue(Expr, OffsetWidth);
  }
  // Mark the end of jump table data-in-code region. 32-bit offsets use
  // actual branch instructions here, so we don't mark those as a data-region
  // at all.
  OutStreamer->EmitDataRegion(MCDR_DataRegionEnd);

  // Make sure the next instruction is 2-byte aligned.
  EmitAlignment(Align(2));
}

void ARMAsmPrinter::EmitUnwindingInstruction(const MachineInstr *MI) {
  assert(MI->getFlag(MachineInstr::FrameSetup) &&
      "Only instruction which are involved into frame setup code are allowed");

  MCTargetStreamer &TS = *OutStreamer->getTargetStreamer();
  ARMTargetStreamer &ATS = static_cast<ARMTargetStreamer &>(TS);
  const MachineFunction &MF = *MI->getParent()->getParent();
  const TargetRegisterInfo *TargetRegInfo =
    MF.getSubtarget().getRegisterInfo();
  const MachineRegisterInfo &MachineRegInfo = MF.getRegInfo();

  Register FramePtr = TargetRegInfo->getFrameRegister(MF);
  unsigned Opc = MI->getOpcode();
  unsigned SrcReg, DstReg;

  if (Opc == ARM::tPUSH || Opc == ARM::tLDRpci) {
    // Two special cases:
    // 1) tPUSH does not have src/dst regs.
    // 2) for Thumb1 code we sometimes materialize the constant via constpool
    // load. Yes, this is pretty fragile, but for now I don't see better
    // way... :(
    SrcReg = DstReg = ARM::SP;
  } else {
    SrcReg = MI->getOperand(1).getReg();
    DstReg = MI->getOperand(0).getReg();
  }

  // Try to figure out the unwinding opcode out of src / dst regs.
  if (MI->mayStore()) {
    // Register saves.
    assert(DstReg == ARM::SP &&
           "Only stack pointer as a destination reg is supported");

    SmallVector<unsigned, 4> RegList;
    // Skip src & dst reg, and pred ops.
    unsigned StartOp = 2 + 2;
    // Use all the operands.
    unsigned NumOffset = 0;
    // Amount of SP adjustment folded into a push.
    unsigned Pad = 0;

    switch (Opc) {
    default:
      MI->print(errs());
      llvm_unreachable("Unsupported opcode for unwinding information");
    case ARM::tPUSH:
      // Special case here: no src & dst reg, but two extra imp ops.
      StartOp = 2; NumOffset = 2;
      LLVM_FALLTHROUGH;
    case ARM::STMDB_UPD:
    case ARM::t2STMDB_UPD:
    case ARM::VSTMDDB_UPD:
      assert(SrcReg == ARM::SP &&
             "Only stack pointer as a source reg is supported");
      for (unsigned i = StartOp, NumOps = MI->getNumOperands() - NumOffset;
           i != NumOps; ++i) {
        const MachineOperand &MO = MI->getOperand(i);
        // Actually, there should never be any impdef stuff here. Skip it
        // temporary to workaround PR11902.
        if (MO.isImplicit())
          continue;
        // Registers, pushed as a part of folding an SP update into the
        // push instruction are marked as undef and should not be
        // restored when unwinding, because the function can modify the
        // corresponding stack slots.
        if (MO.isUndef()) {
          assert(RegList.empty() &&
                 "Pad registers must come before restored ones");
          unsigned Width =
            TargetRegInfo->getRegSizeInBits(MO.getReg(), MachineRegInfo) / 8;
          Pad += Width;
          continue;
        }
        // Check for registers that are remapped (for a Thumb1 prologue that
        // saves high registers).
        Register Reg = MO.getReg();
        if (unsigned RemappedReg = AFI->EHPrologueRemappedRegs.lookup(Reg))
          Reg = RemappedReg;
        RegList.push_back(Reg);
      }
      break;
    case ARM::STR_PRE_IMM:
    case ARM::STR_PRE_REG:
    case ARM::t2STR_PRE:
      assert(MI->getOperand(2).getReg() == ARM::SP &&
             "Only stack pointer as a source reg is supported");
      RegList.push_back(SrcReg);
      break;
    }
    if (MAI->getExceptionHandlingType() == ExceptionHandling::ARM) {
      ATS.emitRegSave(RegList, Opc == ARM::VSTMDDB_UPD);
      // Account for the SP adjustment, folded into the push.
      if (Pad)
        ATS.emitPad(Pad);
    }
  } else {
    // Changes of stack / frame pointer.
    if (SrcReg == ARM::SP) {
      int64_t Offset = 0;
      switch (Opc) {
      default:
        MI->print(errs());
        llvm_unreachable("Unsupported opcode for unwinding information");
      case ARM::MOVr:
      case ARM::tMOVr:
        Offset = 0;
        break;
      case ARM::ADDri:
      case ARM::t2ADDri:
      case ARM::t2ADDri12:
      case ARM::t2ADDspImm:
      case ARM::t2ADDspImm12:
        Offset = -MI->getOperand(2).getImm();
        break;
      case ARM::SUBri:
      case ARM::t2SUBri:
      case ARM::t2SUBri12:
      case ARM::t2SUBspImm:
      case ARM::t2SUBspImm12:
        Offset = MI->getOperand(2).getImm();
        break;
      case ARM::tSUBspi:
        Offset = MI->getOperand(2).getImm()*4;
        break;
      case ARM::tADDspi:
      case ARM::tADDrSPi:
        Offset = -MI->getOperand(2).getImm()*4;
        break;
      case ARM::tLDRpci: {
        // Grab the constpool index and check, whether it corresponds to
        // original or cloned constpool entry.
        unsigned CPI = MI->getOperand(1).getIndex();
        const MachineConstantPool *MCP = MF.getConstantPool();
        if (CPI >= MCP->getConstants().size())
          CPI = AFI->getOriginalCPIdx(CPI);
        assert(CPI != -1U && "Invalid constpool index");

        // Derive the actual offset.
        const MachineConstantPoolEntry &CPE = MCP->getConstants()[CPI];
        assert(!CPE.isMachineConstantPoolEntry() && "Invalid constpool entry");
        // FIXME: Check for user, it should be "add" instruction!
        Offset = -cast<ConstantInt>(CPE.Val.ConstVal)->getSExtValue();
        break;
      }
      }

      if (MAI->getExceptionHandlingType() == ExceptionHandling::ARM) {
        if (DstReg == FramePtr && FramePtr != ARM::SP)
          // Set-up of the frame pointer. Positive values correspond to "add"
          // instruction.
          ATS.emitSetFP(FramePtr, ARM::SP, -Offset);
        else if (DstReg == ARM::SP) {
          // Change of SP by an offset. Positive values correspond to "sub"
          // instruction.
          ATS.emitPad(Offset);
        } else {
          // Move of SP to a register.  Positive values correspond to an "add"
          // instruction.
          ATS.emitMovSP(DstReg, -Offset);
        }
      }
    } else if (DstReg == ARM::SP) {
      MI->print(errs());
      llvm_unreachable("Unsupported opcode for unwinding information");
    } else if (Opc == ARM::tMOVr) {
      // If a Thumb1 function spills r8-r11, we copy the values to low
      // registers before pushing them. Record the copy so we can emit the
      // correct ".save" later.
      AFI->EHPrologueRemappedRegs[DstReg] = SrcReg;
    } else {
      MI->print(errs());
      llvm_unreachable("Unsupported opcode for unwinding information");
    }
  }
}

// Simple pseudo-instructions have their lowering (with expansion to real
// instructions) auto-generated.
#include "ARMGenMCPseudoLowering.inc"

void ARMAsmPrinter::EmitInstruction(const MachineInstr *MI) {
  const DataLayout &DL = getDataLayout();
  MCTargetStreamer &TS = *OutStreamer->getTargetStreamer();
  ARMTargetStreamer &ATS = static_cast<ARMTargetStreamer &>(TS);

  const MachineFunction &MF = *MI->getParent()->getParent();
  const ARMSubtarget &STI = MF.getSubtarget<ARMSubtarget>();
  unsigned FramePtr = STI.useR7AsFramePointer() ? ARM::R7 : ARM::R11;

  // If we just ended a constant pool, mark it as such.
  if (InConstantPool && MI->getOpcode() != ARM::CONSTPOOL_ENTRY) {
    OutStreamer->EmitDataRegion(MCDR_DataRegionEnd);
    InConstantPool = false;
  }

  // Emit unwinding stuff for frame-related instructions
  if (Subtarget->isTargetEHABICompatible() &&
       MI->getFlag(MachineInstr::FrameSetup))
    EmitUnwindingInstruction(MI);

  // Do any auto-generated pseudo lowerings.
  if (emitPseudoExpansionLowering(*OutStreamer, MI))
    return;

  assert(!convertAddSubFlagsOpcode(MI->getOpcode()) &&
         "Pseudo flag setting opcode should be expanded early");

  // Check for manual lowerings.
  unsigned Opc = MI->getOpcode();
  switch (Opc) {
  case ARM::t2MOVi32imm: llvm_unreachable("Should be lowered by thumb2it pass");
  case ARM::DBG_VALUE: llvm_unreachable("Should be handled by generic printing");
  case ARM::LEApcrel:
  case ARM::tLEApcrel:
  case ARM::t2LEApcrel: {
    // FIXME: Need to also handle globals and externals
    MCSymbol *CPISymbol = GetCPISymbol(MI->getOperand(1).getIndex());
    EmitToStreamer(*OutStreamer, MCInstBuilder(MI->getOpcode() ==
                                               ARM::t2LEApcrel ? ARM::t2ADR
                  : (MI->getOpcode() == ARM::tLEApcrel ? ARM::tADR
                     : ARM::ADR))
      .addReg(MI->getOperand(0).getReg())
      .addExpr(MCSymbolRefExpr::create(CPISymbol, OutContext))
      // Add predicate operands.
      .addImm(MI->getOperand(2).getImm())
      .addReg(MI->getOperand(3).getReg()));
    return;
  }
  case ARM::LEApcrelJT:
  case ARM::tLEApcrelJT:
  case ARM::t2LEApcrelJT: {
    MCSymbol *JTIPICSymbol =
      GetARMJTIPICJumpTableLabel(MI->getOperand(1).getIndex());
    EmitToStreamer(*OutStreamer, MCInstBuilder(MI->getOpcode() ==
                                               ARM::t2LEApcrelJT ? ARM::t2ADR
                  : (MI->getOpcode() == ARM::tLEApcrelJT ? ARM::tADR
                     : ARM::ADR))
      .addReg(MI->getOperand(0).getReg())
      .addExpr(MCSymbolRefExpr::create(JTIPICSymbol, OutContext))
      // Add predicate operands.
      .addImm(MI->getOperand(2).getImm())
      .addReg(MI->getOperand(3).getReg()));
    return;
  }
  // Darwin call instructions are just normal call instructions with different
  // clobber semantics (they clobber R9).
  case ARM::BX_CALL: {
    EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVr)
      .addReg(ARM::LR)
      .addReg(ARM::PC)
      // Add predicate operands.
      .addImm(ARMCC::AL)
      .addReg(0)
      // Add 's' bit operand (always reg0 for this)
      .addReg(0));

    assert(Subtarget->hasV4TOps());
    EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::BX)
      .addReg(MI->getOperand(0).getReg()));
    return;
  }
  case ARM::tBX_CALL: {
    if (Subtarget->hasV5TOps())
      llvm_unreachable("Expected BLX to be selected for v5t+");

    // On ARM v4t, when doing a call from thumb mode, we need to ensure
    // that the saved lr has its LSB set correctly (the arch doesn't
    // have blx).
    // So here we generate a bl to a small jump pad that does bx rN.
    // The jump pads are emitted after the function body.

    Register TReg = MI->getOperand(0).getReg();
    MCSymbol *TRegSym = nullptr;
    for (std::pair<unsigned, MCSymbol *> &TIP : ThumbIndirectPads) {
      if (TIP.first == TReg) {
        TRegSym = TIP.second;
        break;
      }
    }

    if (!TRegSym) {
      TRegSym = OutContext.createTempSymbol();
      ThumbIndirectPads.push_back(std::make_pair(TReg, TRegSym));
    }

    // Create a link-saving branch to the Reg Indirect Jump Pad.
    EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tBL)
        // Predicate comes first here.
        .addImm(ARMCC::AL).addReg(0)
        .addExpr(MCSymbolRefExpr::create(TRegSym, OutContext)));
    return;
  }
  case ARM::BMOVPCRX_CALL: {
    EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVr)
      .addReg(ARM::LR)
      .addReg(ARM::PC)
      // Add predicate operands.
      .addImm(ARMCC::AL)
      .addReg(0)
      // Add 's' bit operand (always reg0 for this)
      .addReg(0));

    EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVr)
      .addReg(ARM::PC)
      .addReg(MI->getOperand(0).getReg())
      // Add predicate operands.
      .addImm(ARMCC::AL)
      .addReg(0)
      // Add 's' bit operand (always reg0 for this)
      .addReg(0));
    return;
  }
  case ARM::BMOVPCB_CALL: {
    EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVr)
      .addReg(ARM::LR)
      .addReg(ARM::PC)
      // Add predicate operands.
      .addImm(ARMCC::AL)
      .addReg(0)
      // Add 's' bit operand (always reg0 for this)
      .addReg(0));

    const MachineOperand &Op = MI->getOperand(0);
    const GlobalValue *GV = Op.getGlobal();
    const unsigned TF = Op.getTargetFlags();
    MCSymbol *GVSym = GetARMGVSymbol(GV, TF);
    const MCExpr *GVSymExpr = MCSymbolRefExpr::create(GVSym, OutContext);
    EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::Bcc)
      .addExpr(GVSymExpr)
      // Add predicate operands.
      .addImm(ARMCC::AL)
      .addReg(0));
    return;
  }
  case ARM::MOVi16_ga_pcrel:
  case ARM::t2MOVi16_ga_pcrel: {
    MCInst TmpInst;
    TmpInst.setOpcode(Opc == ARM::MOVi16_ga_pcrel? ARM::MOVi16 : ARM::t2MOVi16);
    TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg()));

    unsigned TF = MI->getOperand(1).getTargetFlags();
    const GlobalValue *GV = MI->getOperand(1).getGlobal();
    MCSymbol *GVSym = GetARMGVSymbol(GV, TF);
    const MCExpr *GVSymExpr = MCSymbolRefExpr::create(GVSym, OutContext);

    MCSymbol *LabelSym =
        getPICLabel(DL.getPrivateGlobalPrefix(), getFunctionNumber(),
                    MI->getOperand(2).getImm(), OutContext);
    const MCExpr *LabelSymExpr= MCSymbolRefExpr::create(LabelSym, OutContext);
    unsigned PCAdj = (Opc == ARM::MOVi16_ga_pcrel) ? 8 : 4;
    const MCExpr *PCRelExpr =
      ARMMCExpr::createLower16(MCBinaryExpr::createSub(GVSymExpr,
                                      MCBinaryExpr::createAdd(LabelSymExpr,
                                      MCConstantExpr::create(PCAdj, OutContext),
                                      OutContext), OutContext), OutContext);
      TmpInst.addOperand(MCOperand::createExpr(PCRelExpr));

    // Add predicate operands.
    TmpInst.addOperand(MCOperand::createImm(ARMCC::AL));
    TmpInst.addOperand(MCOperand::createReg(0));
    // Add 's' bit operand (always reg0 for this)
    TmpInst.addOperand(MCOperand::createReg(0));
    EmitToStreamer(*OutStreamer, TmpInst);
    return;
  }
  case ARM::MOVTi16_ga_pcrel:
  case ARM::t2MOVTi16_ga_pcrel: {
    MCInst TmpInst;
    TmpInst.setOpcode(Opc == ARM::MOVTi16_ga_pcrel
                      ? ARM::MOVTi16 : ARM::t2MOVTi16);
    TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg()));
    TmpInst.addOperand(MCOperand::createReg(MI->getOperand(1).getReg()));

    unsigned TF = MI->getOperand(2).getTargetFlags();
    const GlobalValue *GV = MI->getOperand(2).getGlobal();
    MCSymbol *GVSym = GetARMGVSymbol(GV, TF);
    const MCExpr *GVSymExpr = MCSymbolRefExpr::create(GVSym, OutContext);

    MCSymbol *LabelSym =
        getPICLabel(DL.getPrivateGlobalPrefix(), getFunctionNumber(),
                    MI->getOperand(3).getImm(), OutContext);
    const MCExpr *LabelSymExpr= MCSymbolRefExpr::create(LabelSym, OutContext);
    unsigned PCAdj = (Opc == ARM::MOVTi16_ga_pcrel) ? 8 : 4;
    const MCExpr *PCRelExpr =
        ARMMCExpr::createUpper16(MCBinaryExpr::createSub(GVSymExpr,
                                   MCBinaryExpr::createAdd(LabelSymExpr,
                                      MCConstantExpr::create(PCAdj, OutContext),
                                          OutContext), OutContext), OutContext);
      TmpInst.addOperand(MCOperand::createExpr(PCRelExpr));
    // Add predicate operands.
    TmpInst.addOperand(MCOperand::createImm(ARMCC::AL));
    TmpInst.addOperand(MCOperand::createReg(0));
    // Add 's' bit operand (always reg0 for this)
    TmpInst.addOperand(MCOperand::createReg(0));
    EmitToStreamer(*OutStreamer, TmpInst);
    return;
  }
  case ARM::t2BFi:
  case ARM::t2BFic:
  case ARM::t2BFLi:
  case ARM::t2BFr:
  case ARM::t2BFLr: {
    // This is a Branch Future instruction.

    const MCExpr *BranchLabel = MCSymbolRefExpr::create(
        getBFLabel(DL.getPrivateGlobalPrefix(), getFunctionNumber(),
                   MI->getOperand(0).getIndex(), OutContext),
        OutContext);

    auto MCInst = MCInstBuilder(Opc).addExpr(BranchLabel);
    if (MI->getOperand(1).isReg()) {
      // For BFr/BFLr
      MCInst.addReg(MI->getOperand(1).getReg());
    } else {
      // For BFi/BFLi/BFic
      const MCExpr *BranchTarget;
      if (MI->getOperand(1).isMBB())
        BranchTarget = MCSymbolRefExpr::create(
            MI->getOperand(1).getMBB()->getSymbol(), OutContext);
      else if (MI->getOperand(1).isGlobal()) {
        const GlobalValue *GV = MI->getOperand(1).getGlobal();
        BranchTarget = MCSymbolRefExpr::create(
            GetARMGVSymbol(GV, MI->getOperand(1).getTargetFlags()), OutContext);
      } else if (MI->getOperand(1).isSymbol()) {
        BranchTarget = MCSymbolRefExpr::create(
            GetExternalSymbolSymbol(MI->getOperand(1).getSymbolName()),
            OutContext);
      } else
        llvm_unreachable("Unhandled operand kind in Branch Future instruction");

      MCInst.addExpr(BranchTarget);
    }

      if (Opc == ARM::t2BFic) {
        const MCExpr *ElseLabel = MCSymbolRefExpr::create(
            getBFLabel(DL.getPrivateGlobalPrefix(), getFunctionNumber(),
                       MI->getOperand(2).getIndex(), OutContext),
            OutContext);
        MCInst.addExpr(ElseLabel);
        MCInst.addImm(MI->getOperand(3).getImm());
      } else {
        MCInst.addImm(MI->getOperand(2).getImm())
            .addReg(MI->getOperand(3).getReg());
      }

    EmitToStreamer(*OutStreamer, MCInst);
    return;
  }
  case ARM::t2BF_LabelPseudo: {
    // This is a pseudo op for a label used by a branch future instruction

    // Emit the label.
    OutStreamer->EmitLabel(getBFLabel(DL.getPrivateGlobalPrefix(),
                                       getFunctionNumber(),
                                       MI->getOperand(0).getIndex(), OutContext));
    return;
  }
  case ARM::tPICADD: {
    // This is a pseudo op for a label + instruction sequence, which looks like:
    // LPC0:
    //     add r0, pc
    // This adds the address of LPC0 to r0.

    // Emit the label.
    OutStreamer->EmitLabel(getPICLabel(DL.getPrivateGlobalPrefix(),
                                       getFunctionNumber(),
                                       MI->getOperand(2).getImm(), OutContext));

    // Form and emit the add.
    EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tADDhirr)
      .addReg(MI->getOperand(0).getReg())
      .addReg(MI->getOperand(0).getReg())
      .addReg(ARM::PC)
      // Add predicate operands.
      .addImm(ARMCC::AL)
      .addReg(0));
    return;
  }
  case ARM::PICADD: {
    // This is a pseudo op for a label + instruction sequence, which looks like:
    // LPC0:
    //     add r0, pc, r0
    // This adds the address of LPC0 to r0.

    // Emit the label.
    OutStreamer->EmitLabel(getPICLabel(DL.getPrivateGlobalPrefix(),
                                       getFunctionNumber(),
                                       MI->getOperand(2).getImm(), OutContext));

    // Form and emit the add.
    EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::ADDrr)
      .addReg(MI->getOperand(0).getReg())
      .addReg(ARM::PC)
      .addReg(MI->getOperand(1).getReg())
      // Add predicate operands.
      .addImm(MI->getOperand(3).getImm())
      .addReg(MI->getOperand(4).getReg())
      // Add 's' bit operand (always reg0 for this)
      .addReg(0));
    return;
  }
  case ARM::PICSTR:
  case ARM::PICSTRB:
  case ARM::PICSTRH:
  case ARM::PICLDR:
  case ARM::PICLDRB:
  case ARM::PICLDRH:
  case ARM::PICLDRSB:
  case ARM::PICLDRSH: {
    // This is a pseudo op for a label + instruction sequence, which looks like:
    // LPC0:
    //     OP r0, [pc, r0]
    // The LCP0 label is referenced by a constant pool entry in order to get
    // a PC-relative address at the ldr instruction.

    // Emit the label.
    OutStreamer->EmitLabel(getPICLabel(DL.getPrivateGlobalPrefix(),
                                       getFunctionNumber(),
                                       MI->getOperand(2).getImm(), OutContext));

    // Form and emit the load
    unsigned Opcode;
    switch (MI->getOpcode()) {
    default:
      llvm_unreachable("Unexpected opcode!");
    case ARM::PICSTR:   Opcode = ARM::STRrs; break;
    case ARM::PICSTRB:  Opcode = ARM::STRBrs; break;
    case ARM::PICSTRH:  Opcode = ARM::STRH; break;
    case ARM::PICLDR:   Opcode = ARM::LDRrs; break;
    case ARM::PICLDRB:  Opcode = ARM::LDRBrs; break;
    case ARM::PICLDRH:  Opcode = ARM::LDRH; break;
    case ARM::PICLDRSB: Opcode = ARM::LDRSB; break;
    case ARM::PICLDRSH: Opcode = ARM::LDRSH; break;
    }
    EmitToStreamer(*OutStreamer, MCInstBuilder(Opcode)
      .addReg(MI->getOperand(0).getReg())
      .addReg(ARM::PC)
      .addReg(MI->getOperand(1).getReg())
      .addImm(0)
      // Add predicate operands.
      .addImm(MI->getOperand(3).getImm())
      .addReg(MI->getOperand(4).getReg()));

    return;
  }
  case ARM::CONSTPOOL_ENTRY: {
    if (Subtarget->genExecuteOnly())
      llvm_unreachable("execute-only should not generate constant pools");

    /// CONSTPOOL_ENTRY - This instruction represents a floating constant pool
    /// in the function.  The first operand is the ID# for this instruction, the
    /// second is the index into the MachineConstantPool that this is, the third
    /// is the size in bytes of this constant pool entry.
    /// The required alignment is specified on the basic block holding this MI.
    unsigned LabelId = (unsigned)MI->getOperand(0).getImm();
    unsigned CPIdx   = (unsigned)MI->getOperand(1).getIndex();

    // If this is the first entry of the pool, mark it.
    if (!InConstantPool) {
      OutStreamer->EmitDataRegion(MCDR_DataRegion);
      InConstantPool = true;
    }

    OutStreamer->EmitLabel(GetCPISymbol(LabelId));

    const MachineConstantPoolEntry &MCPE = MCP->getConstants()[CPIdx];
    if (MCPE.isMachineConstantPoolEntry())
      EmitMachineConstantPoolValue(MCPE.Val.MachineCPVal);
    else
      EmitGlobalConstant(DL, MCPE.Val.ConstVal);
    return;
  }
  case ARM::JUMPTABLE_ADDRS:
    EmitJumpTableAddrs(MI);
    return;
  case ARM::JUMPTABLE_INSTS:
    EmitJumpTableInsts(MI);
    return;
  case ARM::JUMPTABLE_TBB:
  case ARM::JUMPTABLE_TBH:
    EmitJumpTableTBInst(MI, MI->getOpcode() == ARM::JUMPTABLE_TBB ? 1 : 2);
    return;
  case ARM::t2BR_JT: {
    EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVr)
      .addReg(ARM::PC)
      .addReg(MI->getOperand(0).getReg())
      // Add predicate operands.
      .addImm(ARMCC::AL)
      .addReg(0));
    return;
  }
  case ARM::t2TBB_JT:
  case ARM::t2TBH_JT: {
    unsigned Opc = MI->getOpcode() == ARM::t2TBB_JT ? ARM::t2TBB : ARM::t2TBH;
    // Lower and emit the PC label, then the instruction itself.
    OutStreamer->EmitLabel(GetCPISymbol(MI->getOperand(3).getImm()));
    EmitToStreamer(*OutStreamer, MCInstBuilder(Opc)
                                     .addReg(MI->getOperand(0).getReg())
                                     .addReg(MI->getOperand(1).getReg())
                                     // Add predicate operands.
                                     .addImm(ARMCC::AL)
                                     .addReg(0));
    return;
  }
  case ARM::tTBB_JT:
  case ARM::tTBH_JT: {

    bool Is8Bit = MI->getOpcode() == ARM::tTBB_JT;
    Register Base = MI->getOperand(0).getReg();
    Register Idx = MI->getOperand(1).getReg();
    assert(MI->getOperand(1).isKill() && "We need the index register as scratch!");

    // Multiply up idx if necessary.
    if (!Is8Bit)
      EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLSLri)
                                       .addReg(Idx)
                                       .addReg(ARM::CPSR)
                                       .addReg(Idx)
                                       .addImm(1)
                                       // Add predicate operands.
                                       .addImm(ARMCC::AL)
                                       .addReg(0));

    if (Base == ARM::PC) {
      // TBB [base, idx] =
      //    ADDS idx, idx, base
      //    LDRB idx, [idx, #4] ; or LDRH if TBH
      //    LSLS idx, #1
      //    ADDS pc, pc, idx

      // When using PC as the base, it's important that there is no padding
      // between the last ADDS and the start of the jump table. The jump table
      // is 4-byte aligned, so we ensure we're 4 byte aligned here too.
      //
      // FIXME: Ideally we could vary the LDRB index based on the padding
      // between the sequence and jump table, however that relies on MCExprs
      // for load indexes which are currently not supported.
      OutStreamer->EmitCodeAlignment(4);
      EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tADDhirr)
                                       .addReg(Idx)
                                       .addReg(Idx)
                                       .addReg(Base)
                                       // Add predicate operands.
                                       .addImm(ARMCC::AL)
                                       .addReg(0));

      unsigned Opc = Is8Bit ? ARM::tLDRBi : ARM::tLDRHi;
      EmitToStreamer(*OutStreamer, MCInstBuilder(Opc)
                                       .addReg(Idx)
                                       .addReg(Idx)
                                       .addImm(Is8Bit ? 4 : 2)
                                       // Add predicate operands.
                                       .addImm(ARMCC::AL)
                                       .addReg(0));
    } else {
      // TBB [base, idx] =
      //    LDRB idx, [base, idx] ; or LDRH if TBH
      //    LSLS idx, #1
      //    ADDS pc, pc, idx

      unsigned Opc = Is8Bit ? ARM::tLDRBr : ARM::tLDRHr;
      EmitToStreamer(*OutStreamer, MCInstBuilder(Opc)
                                       .addReg(Idx)
                                       .addReg(Base)
                                       .addReg(Idx)
                                       // Add predicate operands.
                                       .addImm(ARMCC::AL)
                                       .addReg(0));
    }

    EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLSLri)
                                     .addReg(Idx)
                                     .addReg(ARM::CPSR)
                                     .addReg(Idx)
                                     .addImm(1)
                                     // Add predicate operands.
                                     .addImm(ARMCC::AL)
                                     .addReg(0));

    OutStreamer->EmitLabel(GetCPISymbol(MI->getOperand(3).getImm()));
    EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tADDhirr)
                                     .addReg(ARM::PC)
                                     .addReg(ARM::PC)
                                     .addReg(Idx)
                                     // Add predicate operands.
                                     .addImm(ARMCC::AL)
                                     .addReg(0));
    return;
  }
  case ARM::tBR_JTr:
  case ARM::BR_JTr: {
    // mov pc, target
    MCInst TmpInst;
    unsigned Opc = MI->getOpcode() == ARM::BR_JTr ?
      ARM::MOVr : ARM::tMOVr;
    TmpInst.setOpcode(Opc);
    TmpInst.addOperand(MCOperand::createReg(ARM::PC));
    TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg()));
    // Add predicate operands.
    TmpInst.addOperand(MCOperand::createImm(ARMCC::AL));
    TmpInst.addOperand(MCOperand::createReg(0));
    // Add 's' bit operand (always reg0 for this)
    if (Opc == ARM::MOVr)
      TmpInst.addOperand(MCOperand::createReg(0));
    EmitToStreamer(*OutStreamer, TmpInst);
    return;
  }
  case ARM::BR_JTm_i12: {
    // ldr pc, target
    MCInst TmpInst;
    TmpInst.setOpcode(ARM::LDRi12);
    TmpInst.addOperand(MCOperand::createReg(ARM::PC));
    TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg()));
    TmpInst.addOperand(MCOperand::createImm(MI->getOperand(2).getImm()));
    // Add predicate operands.
    TmpInst.addOperand(MCOperand::createImm(ARMCC::AL));
    TmpInst.addOperand(MCOperand::createReg(0));
    EmitToStreamer(*OutStreamer, TmpInst);
    return;
  }
  case ARM::BR_JTm_rs: {
    // ldr pc, target
    MCInst TmpInst;
    TmpInst.setOpcode(ARM::LDRrs);
    TmpInst.addOperand(MCOperand::createReg(ARM::PC));
    TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg()));
    TmpInst.addOperand(MCOperand::createReg(MI->getOperand(1).getReg()));
    TmpInst.addOperand(MCOperand::createImm(MI->getOperand(2).getImm()));
    // Add predicate operands.
    TmpInst.addOperand(MCOperand::createImm(ARMCC::AL));
    TmpInst.addOperand(MCOperand::createReg(0));
    EmitToStreamer(*OutStreamer, TmpInst);
    return;
  }
  case ARM::BR_JTadd: {
    // add pc, target, idx
    EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::ADDrr)
      .addReg(ARM::PC)
      .addReg(MI->getOperand(0).getReg())
      .addReg(MI->getOperand(1).getReg())
      // Add predicate operands.
      .addImm(ARMCC::AL)
      .addReg(0)
      // Add 's' bit operand (always reg0 for this)
      .addReg(0));
    return;
  }
  case ARM::SPACE:
    OutStreamer->EmitZeros(MI->getOperand(1).getImm());
    return;
  case ARM::TRAP: {
    // Non-Darwin binutils don't yet support the "trap" mnemonic.
    // FIXME: Remove this special case when they do.
    if (!Subtarget->isTargetMachO()) {
      uint32_t Val = 0xe7ffdefeUL;
      OutStreamer->AddComment("trap");
      ATS.emitInst(Val);
      return;
    }
    break;
  }
  case ARM::TRAPNaCl: {
    uint32_t Val = 0xe7fedef0UL;
    OutStreamer->AddComment("trap");
    ATS.emitInst(Val);
    return;
  }
  case ARM::tTRAP: {
    // Non-Darwin binutils don't yet support the "trap" mnemonic.
    // FIXME: Remove this special case when they do.
    if (!Subtarget->isTargetMachO()) {
      uint16_t Val = 0xdefe;
      OutStreamer->AddComment("trap");
      ATS.emitInst(Val, 'n');
      return;
    }
    break;
  }
  case ARM::t2Int_eh_sjlj_setjmp:
  case ARM::t2Int_eh_sjlj_setjmp_nofp:
  case ARM::tInt_eh_sjlj_setjmp: {
    // Two incoming args: GPR:$src, GPR:$val
    // mov $val, pc
    // adds $val, #7
    // str $val, [$src, #4]
    // movs r0, #0
    // b LSJLJEH
    // movs r0, #1
    // LSJLJEH:
    Register SrcReg = MI->getOperand(0).getReg();
    Register ValReg = MI->getOperand(1).getReg();
    MCSymbol *Label = OutContext.createTempSymbol("SJLJEH", false, true);
    OutStreamer->AddComment("eh_setjmp begin");
    EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVr)
      .addReg(ValReg)
      .addReg(ARM::PC)
      // Predicate.
      .addImm(ARMCC::AL)
      .addReg(0));

    EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tADDi3)
      .addReg(ValReg)
      // 's' bit operand
      .addReg(ARM::CPSR)
      .addReg(ValReg)
      .addImm(7)
      // Predicate.
      .addImm(ARMCC::AL)
      .addReg(0));

    EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tSTRi)
      .addReg(ValReg)
      .addReg(SrcReg)
      // The offset immediate is #4. The operand value is scaled by 4 for the
      // tSTR instruction.
      .addImm(1)
      // Predicate.
      .addImm(ARMCC::AL)
      .addReg(0));

    EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVi8)
      .addReg(ARM::R0)
      .addReg(ARM::CPSR)
      .addImm(0)
      // Predicate.
      .addImm(ARMCC::AL)
      .addReg(0));

    const MCExpr *SymbolExpr = MCSymbolRefExpr::create(Label, OutContext);
    EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tB)
      .addExpr(SymbolExpr)
      .addImm(ARMCC::AL)
      .addReg(0));

    OutStreamer->AddComment("eh_setjmp end");
    EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVi8)
      .addReg(ARM::R0)
      .addReg(ARM::CPSR)
      .addImm(1)
      // Predicate.
      .addImm(ARMCC::AL)
      .addReg(0));

    OutStreamer->EmitLabel(Label);
    return;
  }

  case ARM::Int_eh_sjlj_setjmp_nofp:
  case ARM::Int_eh_sjlj_setjmp: {
    // Two incoming args: GPR:$src, GPR:$val
    // add $val, pc, #8
    // str $val, [$src, #+4]
    // mov r0, #0
    // add pc, pc, #0
    // mov r0, #1
    Register SrcReg = MI->getOperand(0).getReg();
    Register ValReg = MI->getOperand(1).getReg();

    OutStreamer->AddComment("eh_setjmp begin");
    EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::ADDri)
      .addReg(ValReg)
      .addReg(ARM::PC)
      .addImm(8)
      // Predicate.
      .addImm(ARMCC::AL)
      .addReg(0)
      // 's' bit operand (always reg0 for this).
      .addReg(0));

    EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::STRi12)
      .addReg(ValReg)
      .addReg(SrcReg)
      .addImm(4)
      // Predicate.
      .addImm(ARMCC::AL)
      .addReg(0));

    EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVi)
      .addReg(ARM::R0)
      .addImm(0)
      // Predicate.
      .addImm(ARMCC::AL)
      .addReg(0)
      // 's' bit operand (always reg0 for this).
      .addReg(0));

    EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::ADDri)
      .addReg(ARM::PC)
      .addReg(ARM::PC)
      .addImm(0)
      // Predicate.
      .addImm(ARMCC::AL)
      .addReg(0)
      // 's' bit operand (always reg0 for this).
      .addReg(0));

    OutStreamer->AddComment("eh_setjmp end");
    EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVi)
      .addReg(ARM::R0)
      .addImm(1)
      // Predicate.
      .addImm(ARMCC::AL)
      .addReg(0)
      // 's' bit operand (always reg0 for this).
      .addReg(0));
    return;
  }
  case ARM::Int_eh_sjlj_longjmp: {
    // ldr sp, [$src, #8]
    // ldr $scratch, [$src, #4]
    // ldr r7, [$src]
    // bx $scratch
    Register SrcReg = MI->getOperand(0).getReg();
    Register ScratchReg = MI->getOperand(1).getReg();
    EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::LDRi12)
      .addReg(ARM::SP)
      .addReg(SrcReg)
      .addImm(8)
      // Predicate.
      .addImm(ARMCC::AL)
      .addReg(0));

    EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::LDRi12)
      .addReg(ScratchReg)
      .addReg(SrcReg)
      .addImm(4)
      // Predicate.
      .addImm(ARMCC::AL)
      .addReg(0));

    if (STI.isTargetDarwin() || STI.isTargetWindows()) {
      // These platforms always use the same frame register
      EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::LDRi12)
        .addReg(FramePtr)
        .addReg(SrcReg)
        .addImm(0)
        // Predicate.
        .addImm(ARMCC::AL)
        .addReg(0));
    } else {
      // If the calling code might use either R7 or R11 as
      // frame pointer register, restore it into both.
      EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::LDRi12)
        .addReg(ARM::R7)
        .addReg(SrcReg)
        .addImm(0)
        // Predicate.
        .addImm(ARMCC::AL)
        .addReg(0));
      EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::LDRi12)
        .addReg(ARM::R11)
        .addReg(SrcReg)
        .addImm(0)
        // Predicate.
        .addImm(ARMCC::AL)
        .addReg(0));
    }

    assert(Subtarget->hasV4TOps());
    EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::BX)
      .addReg(ScratchReg)
      // Predicate.
      .addImm(ARMCC::AL)
      .addReg(0));
    return;
  }
  case ARM::tInt_eh_sjlj_longjmp: {
    // ldr $scratch, [$src, #8]
    // mov sp, $scratch
    // ldr $scratch, [$src, #4]
    // ldr r7, [$src]
    // bx $scratch
    Register SrcReg = MI->getOperand(0).getReg();
    Register ScratchReg = MI->getOperand(1).getReg();

    EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLDRi)
      .addReg(ScratchReg)
      .addReg(SrcReg)
      // The offset immediate is #8. The operand value is scaled by 4 for the
      // tLDR instruction.
      .addImm(2)
      // Predicate.
      .addImm(ARMCC::AL)
      .addReg(0));

    EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVr)
      .addReg(ARM::SP)
      .addReg(ScratchReg)
      // Predicate.
      .addImm(ARMCC::AL)
      .addReg(0));

    EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLDRi)
      .addReg(ScratchReg)
      .addReg(SrcReg)
      .addImm(1)
      // Predicate.
      .addImm(ARMCC::AL)
      .addReg(0));

    if (STI.isTargetDarwin() || STI.isTargetWindows()) {
      // These platforms always use the same frame register
      EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLDRi)
        .addReg(FramePtr)
        .addReg(SrcReg)
        .addImm(0)
        // Predicate.
        .addImm(ARMCC::AL)
        .addReg(0));
    } else {
      // If the calling code might use either R7 or R11 as
      // frame pointer register, restore it into both.
      EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLDRi)
        .addReg(ARM::R7)
        .addReg(SrcReg)
        .addImm(0)
        // Predicate.
        .addImm(ARMCC::AL)
        .addReg(0));
      EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLDRi)
        .addReg(ARM::R11)
        .addReg(SrcReg)
        .addImm(0)
        // Predicate.
        .addImm(ARMCC::AL)
        .addReg(0));
    }

    EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tBX)
      .addReg(ScratchReg)
      // Predicate.
      .addImm(ARMCC::AL)
      .addReg(0));
    return;
  }
  case ARM::tInt_WIN_eh_sjlj_longjmp: {
    // ldr.w r11, [$src, #0]
    // ldr.w  sp, [$src, #8]
    // ldr.w  pc, [$src, #4]

    Register SrcReg = MI->getOperand(0).getReg();

    EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::t2LDRi12)
                                     .addReg(ARM::R11)
                                     .addReg(SrcReg)
                                     .addImm(0)
                                     // Predicate
                                     .addImm(ARMCC::AL)
                                     .addReg(0));
    EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::t2LDRi12)
                                     .addReg(ARM::SP)
                                     .addReg(SrcReg)
                                     .addImm(8)
                                     // Predicate
                                     .addImm(ARMCC::AL)
                                     .addReg(0));
    EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::t2LDRi12)
                                     .addReg(ARM::PC)
                                     .addReg(SrcReg)
                                     .addImm(4)
                                     // Predicate
                                     .addImm(ARMCC::AL)
                                     .addReg(0));
    return;
  }
  case ARM::PATCHABLE_FUNCTION_ENTER:
    LowerPATCHABLE_FUNCTION_ENTER(*MI);
    return;
  case ARM::PATCHABLE_FUNCTION_EXIT:
    LowerPATCHABLE_FUNCTION_EXIT(*MI);
    return;
  case ARM::PATCHABLE_TAIL_CALL:
    LowerPATCHABLE_TAIL_CALL(*MI);
    return;
  }

  MCInst TmpInst;
  LowerARMMachineInstrToMCInst(MI, TmpInst, *this);

  EmitToStreamer(*OutStreamer, TmpInst);
}

//===----------------------------------------------------------------------===//
// Target Registry Stuff
//===----------------------------------------------------------------------===//

// Force static initialization.
extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeARMAsmPrinter() {
  RegisterAsmPrinter<ARMAsmPrinter> X(getTheARMLETarget());
  RegisterAsmPrinter<ARMAsmPrinter> Y(getTheARMBETarget());
  RegisterAsmPrinter<ARMAsmPrinter> A(getTheThumbLETarget());
  RegisterAsmPrinter<ARMAsmPrinter> B(getTheThumbBETarget());
}