ARMLowOverheadLoops.cpp 38.1 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058
//===-- ARMLowOverheadLoops.cpp - CodeGen Low-overhead Loops ---*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
/// \file
/// Finalize v8.1-m low-overhead loops by converting the associated pseudo
/// instructions into machine operations.
/// The expectation is that the loop contains three pseudo instructions:
/// - t2*LoopStart - placed in the preheader or pre-preheader. The do-loop
///   form should be in the preheader, whereas the while form should be in the
///   preheaders only predecessor.
/// - t2LoopDec - placed within in the loop body.
/// - t2LoopEnd - the loop latch terminator.
///
/// In addition to this, we also look for the presence of the VCTP instruction,
/// which determines whether we can generated the tail-predicated low-overhead
/// loop form.
///
/// Assumptions and Dependencies:
/// Low-overhead loops are constructed and executed using a setup instruction:
/// DLS, WLS, DLSTP or WLSTP and an instruction that loops back: LE or LETP.
/// WLS(TP) and LE(TP) are branching instructions with a (large) limited range
/// but fixed polarity: WLS can only branch forwards and LE can only branch
/// backwards. These restrictions mean that this pass is dependent upon block
/// layout and block sizes, which is why it's the last pass to run. The same is
/// true for ConstantIslands, but this pass does not increase the size of the
/// basic blocks, nor does it change the CFG. Instructions are mainly removed
/// during the transform and pseudo instructions are replaced by real ones. In
/// some cases, when we have to revert to a 'normal' loop, we have to introduce
/// multiple instructions for a single pseudo (see RevertWhile and
/// RevertLoopEnd). To handle this situation, t2WhileLoopStart and t2LoopEnd
/// are defined to be as large as this maximum sequence of replacement
/// instructions.
///
//===----------------------------------------------------------------------===//

#include "ARM.h"
#include "ARMBaseInstrInfo.h"
#include "ARMBaseRegisterInfo.h"
#include "ARMBasicBlockInfo.h"
#include "ARMSubtarget.h"
#include "Thumb2InstrInfo.h"
#include "llvm/ADT/SetOperations.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/CodeGen/MachineLoopUtils.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/ReachingDefAnalysis.h"
#include "llvm/MC/MCInstrDesc.h"

using namespace llvm;

#define DEBUG_TYPE "arm-low-overhead-loops"
#define ARM_LOW_OVERHEAD_LOOPS_NAME "ARM Low Overhead Loops pass"

namespace {

  struct PredicatedMI {
    MachineInstr *MI = nullptr;
    SetVector<MachineInstr*> Predicates;

  public:
    PredicatedMI(MachineInstr *I, SetVector<MachineInstr*> &Preds) :
    MI(I) {
      Predicates.insert(Preds.begin(), Preds.end());
    }
  };

  // Represent a VPT block, a list of instructions that begins with a VPST and
  // has a maximum of four proceeding instructions. All instructions within the
  // block are predicated upon the vpr and we allow instructions to define the
  // vpr within in the block too.
  class VPTBlock {
    std::unique_ptr<PredicatedMI> VPST;
    PredicatedMI *Divergent = nullptr;
    SmallVector<PredicatedMI, 4> Insts;

  public:
    VPTBlock(MachineInstr *MI, SetVector<MachineInstr*> &Preds) {
      VPST = std::make_unique<PredicatedMI>(MI, Preds);
    }

    void addInst(MachineInstr *MI, SetVector<MachineInstr*> &Preds) {
      LLVM_DEBUG(dbgs() << "ARM Loops: Adding predicated MI: " << *MI);
      if (!Divergent && !set_difference(Preds, VPST->Predicates).empty()) {
        Divergent = &Insts.back();
        LLVM_DEBUG(dbgs() << " - has divergent predicate: " << *Divergent->MI);
      }
      Insts.emplace_back(MI, Preds);
      assert(Insts.size() <= 4 && "Too many instructions in VPT block!");
    }

    // Have we found an instruction within the block which defines the vpr? If
    // so, not all the instructions in the block will have the same predicate.
    bool HasNonUniformPredicate() const {
      return Divergent != nullptr;
    }

    // Is the given instruction part of the predicate set controlling the entry
    // to the block.
    bool IsPredicatedOn(MachineInstr *MI) const {
      return VPST->Predicates.count(MI);
    }

    // Is the given instruction the only predicate which controls the entry to
    // the block.
    bool IsOnlyPredicatedOn(MachineInstr *MI) const {
      return IsPredicatedOn(MI) && VPST->Predicates.size() == 1;
    }

    unsigned size() const { return Insts.size(); }
    SmallVectorImpl<PredicatedMI> &getInsts() { return Insts; }
    MachineInstr *getVPST() const { return VPST->MI; }
    PredicatedMI *getDivergent() const { return Divergent; }
  };

  struct LowOverheadLoop {

    MachineLoop *ML = nullptr;
    MachineFunction *MF = nullptr;
    MachineInstr *InsertPt = nullptr;
    MachineInstr *Start = nullptr;
    MachineInstr *Dec = nullptr;
    MachineInstr *End = nullptr;
    MachineInstr *VCTP = nullptr;
    VPTBlock *CurrentBlock = nullptr;
    SetVector<MachineInstr*> CurrentPredicate;
    SmallVector<VPTBlock, 4> VPTBlocks;
    bool Revert = false;
    bool CannotTailPredicate = false;

    LowOverheadLoop(MachineLoop *ML) : ML(ML) {
      MF = ML->getHeader()->getParent();
    }

    // If this is an MVE instruction, check that we know how to use tail
    // predication with it. Record VPT blocks and return whether the
    // instruction is valid for tail predication.
    bool ValidateMVEInst(MachineInstr *MI);

    void AnalyseMVEInst(MachineInstr *MI) {
      CannotTailPredicate = !ValidateMVEInst(MI);
    }

    bool IsTailPredicationLegal() const {
      // For now, let's keep things really simple and only support a single
      // block for tail predication.
      return !Revert && FoundAllComponents() && VCTP &&
             !CannotTailPredicate && ML->getNumBlocks() == 1;
    }

    bool ValidateTailPredicate(MachineInstr *StartInsertPt,
                               ReachingDefAnalysis *RDA,
                               MachineLoopInfo *MLI);

    // Is it safe to define LR with DLS/WLS?
    // LR can be defined if it is the operand to start, because it's the same
    // value, or if it's going to be equivalent to the operand to Start.
    MachineInstr *IsSafeToDefineLR(ReachingDefAnalysis *RDA);

    // Check the branch targets are within range and we satisfy our
    // restrictions.
    void CheckLegality(ARMBasicBlockUtils *BBUtils, ReachingDefAnalysis *RDA,
                       MachineLoopInfo *MLI);

    bool FoundAllComponents() const {
      return Start && Dec && End;
    }

    SmallVectorImpl<VPTBlock> &getVPTBlocks() { return VPTBlocks; }

    // Return the loop iteration count, or the number of elements if we're tail
    // predicating.
    MachineOperand &getCount() {
      return IsTailPredicationLegal() ?
        VCTP->getOperand(1) : Start->getOperand(0);
    }

    unsigned getStartOpcode() const {
      bool IsDo = Start->getOpcode() == ARM::t2DoLoopStart;
      if (!IsTailPredicationLegal())
        return IsDo ? ARM::t2DLS : ARM::t2WLS;

      return VCTPOpcodeToLSTP(VCTP->getOpcode(), IsDo);
    }

    void dump() const {
      if (Start) dbgs() << "ARM Loops: Found Loop Start: " << *Start;
      if (Dec) dbgs() << "ARM Loops: Found Loop Dec: " << *Dec;
      if (End) dbgs() << "ARM Loops: Found Loop End: " << *End;
      if (VCTP) dbgs() << "ARM Loops: Found VCTP: " << *VCTP;
      if (!FoundAllComponents())
        dbgs() << "ARM Loops: Not a low-overhead loop.\n";
      else if (!(Start && Dec && End))
        dbgs() << "ARM Loops: Failed to find all loop components.\n";
    }
  };

  class ARMLowOverheadLoops : public MachineFunctionPass {
    MachineFunction           *MF = nullptr;
    MachineLoopInfo           *MLI = nullptr;
    ReachingDefAnalysis       *RDA = nullptr;
    const ARMBaseInstrInfo    *TII = nullptr;
    MachineRegisterInfo       *MRI = nullptr;
    const TargetRegisterInfo  *TRI = nullptr;
    std::unique_ptr<ARMBasicBlockUtils> BBUtils = nullptr;

  public:
    static char ID;

    ARMLowOverheadLoops() : MachineFunctionPass(ID) { }

    void getAnalysisUsage(AnalysisUsage &AU) const override {
      AU.setPreservesCFG();
      AU.addRequired<MachineLoopInfo>();
      AU.addRequired<ReachingDefAnalysis>();
      MachineFunctionPass::getAnalysisUsage(AU);
    }

    bool runOnMachineFunction(MachineFunction &MF) override;

    MachineFunctionProperties getRequiredProperties() const override {
      return MachineFunctionProperties().set(
          MachineFunctionProperties::Property::NoVRegs).set(
          MachineFunctionProperties::Property::TracksLiveness);
    }

    StringRef getPassName() const override {
      return ARM_LOW_OVERHEAD_LOOPS_NAME;
    }

  private:
    bool ProcessLoop(MachineLoop *ML);

    bool RevertNonLoops();

    void RevertWhile(MachineInstr *MI) const;

    bool RevertLoopDec(MachineInstr *MI, bool AllowFlags = false) const;

    void RevertLoopEnd(MachineInstr *MI, bool SkipCmp = false) const;

    void RemoveLoopUpdate(LowOverheadLoop &LoLoop);

    void ConvertVPTBlocks(LowOverheadLoop &LoLoop);

    MachineInstr *ExpandLoopStart(LowOverheadLoop &LoLoop);

    void Expand(LowOverheadLoop &LoLoop);

  };
}

char ARMLowOverheadLoops::ID = 0;

INITIALIZE_PASS(ARMLowOverheadLoops, DEBUG_TYPE, ARM_LOW_OVERHEAD_LOOPS_NAME,
                false, false)

MachineInstr *LowOverheadLoop::IsSafeToDefineLR(ReachingDefAnalysis *RDA) {
  // We can define LR because LR already contains the same value.
  if (Start->getOperand(0).getReg() == ARM::LR)
    return Start;

  unsigned CountReg = Start->getOperand(0).getReg();
  auto IsMoveLR = [&CountReg](MachineInstr *MI) {
    return MI->getOpcode() == ARM::tMOVr &&
           MI->getOperand(0).getReg() == ARM::LR &&
           MI->getOperand(1).getReg() == CountReg &&
           MI->getOperand(2).getImm() == ARMCC::AL;
   };

  MachineBasicBlock *MBB = Start->getParent();

  // Find an insertion point:
  // - Is there a (mov lr, Count) before Start? If so, and nothing else writes
  //   to Count before Start, we can insert at that mov.
  if (auto *LRDef = RDA->getReachingMIDef(Start, ARM::LR))
    if (IsMoveLR(LRDef) && RDA->hasSameReachingDef(Start, LRDef, CountReg))
      return LRDef;

  // - Is there a (mov lr, Count) after Start? If so, and nothing else writes
  //   to Count after Start, we can insert at that mov.
  if (auto *LRDef = RDA->getLocalLiveOutMIDef(MBB, ARM::LR))
    if (IsMoveLR(LRDef) && RDA->hasSameReachingDef(Start, LRDef, CountReg))
      return LRDef;

  // We've found no suitable LR def and Start doesn't use LR directly. Can we
  // just define LR anyway?
  if (!RDA->isRegUsedAfter(Start, ARM::LR))
    return Start;

  return nullptr;
}

// Can we safely move 'From' to just before 'To'? To satisfy this, 'From' must
// not define a register that is used by any instructions, after and including,
// 'To'. These instructions also must not redefine any of Froms operands.
template<typename Iterator>
static bool IsSafeToMove(MachineInstr *From, MachineInstr *To, ReachingDefAnalysis *RDA) {
  SmallSet<int, 2> Defs;
  // First check that From would compute the same value if moved.
  for (auto &MO : From->operands()) {
    if (!MO.isReg() || MO.isUndef() || !MO.getReg())
      continue;
    if (MO.isDef())
      Defs.insert(MO.getReg());
    else if (!RDA->hasSameReachingDef(From, To, MO.getReg()))
      return false;
  }

  // Now walk checking that the rest of the instructions will compute the same
  // value.
  for (auto I = ++Iterator(From), E = Iterator(To); I != E; ++I) {
    for (auto &MO : I->operands())
      if (MO.isReg() && MO.getReg() && MO.isUse() && Defs.count(MO.getReg()))
        return false;
  }
  return true;
}

bool LowOverheadLoop::ValidateTailPredicate(MachineInstr *StartInsertPt,
    ReachingDefAnalysis *RDA, MachineLoopInfo *MLI) {
  assert(VCTP && "VCTP instruction expected but is not set");
  // All predication within the loop should be based on vctp. If the block
  // isn't predicated on entry, check whether the vctp is within the block
  // and that all other instructions are then predicated on it.
  for (auto &Block : VPTBlocks) {
    if (Block.IsPredicatedOn(VCTP))
      continue;
    if (!Block.HasNonUniformPredicate() || !isVCTP(Block.getDivergent()->MI)) {
      LLVM_DEBUG(dbgs() << "ARM Loops: Found unsupported diverging predicate: "
                 << *Block.getDivergent()->MI);
      return false;
    }
    SmallVectorImpl<PredicatedMI> &Insts = Block.getInsts();
    for (auto &PredMI : Insts) {
      if (PredMI.Predicates.count(VCTP) || isVCTP(PredMI.MI))
        continue;
      LLVM_DEBUG(dbgs() << "ARM Loops: Can't convert: " << *PredMI.MI
                        << " - which is predicated on:\n";
                        for (auto *MI : PredMI.Predicates)
                          dbgs() << "   - " << *MI;
                 );
      return false;
    }
  }

  // For tail predication, we need to provide the number of elements, instead
  // of the iteration count, to the loop start instruction. The number of
  // elements is provided to the vctp instruction, so we need to check that
  // we can use this register at InsertPt.
  Register NumElements = VCTP->getOperand(1).getReg();

  // If the register is defined within loop, then we can't perform TP.
  // TODO: Check whether this is just a mov of a register that would be
  // available.
  if (RDA->getReachingDef(VCTP, NumElements) >= 0) {
    LLVM_DEBUG(dbgs() << "ARM Loops: VCTP operand is defined in the loop.\n");
    return false;
  }

  // The element count register maybe defined after InsertPt, in which case we
  // need to try to move either InsertPt or the def so that the [w|d]lstp can
  // use the value.
  MachineBasicBlock *InsertBB = InsertPt->getParent();
  if (!RDA->isReachingDefLiveOut(InsertPt, NumElements)) {
    if (auto *ElemDef = RDA->getLocalLiveOutMIDef(InsertBB, NumElements)) {
      if (IsSafeToMove<MachineBasicBlock::reverse_iterator>(ElemDef, InsertPt, RDA)) {
        ElemDef->removeFromParent();
        InsertBB->insert(MachineBasicBlock::iterator(InsertPt), ElemDef);
        LLVM_DEBUG(dbgs() << "ARM Loops: Moved element count def: "
                   << *ElemDef);
      } else if (IsSafeToMove<MachineBasicBlock::iterator>(InsertPt, ElemDef, RDA)) {
        InsertPt->removeFromParent();
        InsertBB->insertAfter(MachineBasicBlock::iterator(ElemDef), InsertPt);
        LLVM_DEBUG(dbgs() << "ARM Loops: Moved start past: " << *ElemDef);
      } else {
        LLVM_DEBUG(dbgs() << "ARM Loops: Unable to move element count to loop "
                   << "start instruction.\n");
        return false;
      }
    }
  }

  // Especially in the case of while loops, InsertBB may not be the
  // preheader, so we need to check that the register isn't redefined
  // before entering the loop.
  auto CannotProvideElements = [&RDA](MachineBasicBlock *MBB,
                                      Register NumElements) {
    // NumElements is redefined in this block.
    if (RDA->getReachingDef(&MBB->back(), NumElements) >= 0)
      return true;

    // Don't continue searching up through multiple predecessors.
    if (MBB->pred_size() > 1)
      return true;

    return false;
  };

  // First, find the block that looks like the preheader.
  MachineBasicBlock *MBB = MLI->findLoopPreheader(ML, true);
  if (!MBB) {
    LLVM_DEBUG(dbgs() << "ARM Loops: Didn't find preheader.\n");
    return false;
  }

  // Then search backwards for a def, until we get to InsertBB.
  while (MBB != InsertBB) {
    if (CannotProvideElements(MBB, NumElements)) {
      LLVM_DEBUG(dbgs() << "ARM Loops: Unable to provide element count.\n");
      return false;
    }
    MBB = *MBB->pred_begin();
  }

  LLVM_DEBUG(dbgs() << "ARM Loops: Will use tail predication.\n");
  return true;
}

void LowOverheadLoop::CheckLegality(ARMBasicBlockUtils *BBUtils,
                                    ReachingDefAnalysis *RDA,
                                    MachineLoopInfo *MLI) {
  if (Revert)
    return;

  if (!End->getOperand(1).isMBB())
    report_fatal_error("Expected LoopEnd to target basic block");

  // TODO Maybe there's cases where the target doesn't have to be the header,
  // but for now be safe and revert.
  if (End->getOperand(1).getMBB() != ML->getHeader()) {
    LLVM_DEBUG(dbgs() << "ARM Loops: LoopEnd is not targetting header.\n");
    Revert = true;
    return;
  }

  // The WLS and LE instructions have 12-bits for the label offset. WLS
  // requires a positive offset, while LE uses negative.
  if (BBUtils->getOffsetOf(End) < BBUtils->getOffsetOf(ML->getHeader()) ||
      !BBUtils->isBBInRange(End, ML->getHeader(), 4094)) {
    LLVM_DEBUG(dbgs() << "ARM Loops: LE offset is out-of-range\n");
    Revert = true;
    return;
  }

  if (Start->getOpcode() == ARM::t2WhileLoopStart &&
      (BBUtils->getOffsetOf(Start) >
       BBUtils->getOffsetOf(Start->getOperand(1).getMBB()) ||
       !BBUtils->isBBInRange(Start, Start->getOperand(1).getMBB(), 4094))) {
    LLVM_DEBUG(dbgs() << "ARM Loops: WLS offset is out-of-range!\n");
    Revert = true;
    return;
  }

  InsertPt = Revert ? nullptr : IsSafeToDefineLR(RDA);
  if (!InsertPt) {
    LLVM_DEBUG(dbgs() << "ARM Loops: Unable to find safe insertion point.\n");
    Revert = true;
    return;
  } else
    LLVM_DEBUG(dbgs() << "ARM Loops: Start insertion point: " << *InsertPt);

  if (!IsTailPredicationLegal()) {
    LLVM_DEBUG(if (!VCTP)
                 dbgs() << "ARM Loops: Didn't find a VCTP instruction.\n";
               dbgs() << "ARM Loops: Tail-predication is not valid.\n");
    return;
  }

  assert(ML->getBlocks().size() == 1 &&
         "Shouldn't be processing a loop with more than one block");
  CannotTailPredicate = !ValidateTailPredicate(InsertPt, RDA, MLI);
  LLVM_DEBUG(if (CannotTailPredicate)
             dbgs() << "ARM Loops: Couldn't validate tail predicate.\n");
}

bool LowOverheadLoop::ValidateMVEInst(MachineInstr* MI) {
  if (CannotTailPredicate)
    return false;

  // Only support a single vctp.
  if (isVCTP(MI) && VCTP)
    return false;

  // Start a new vpt block when we discover a vpt.
  if (MI->getOpcode() == ARM::MVE_VPST) {
    VPTBlocks.emplace_back(MI, CurrentPredicate);
    CurrentBlock = &VPTBlocks.back();
    return true;
  } else if (isVCTP(MI))
    VCTP = MI;
  else if (MI->getOpcode() == ARM::MVE_VPSEL ||
           MI->getOpcode() == ARM::MVE_VPNOT)
    return false;

  // TODO: Allow VPSEL and VPNOT, we currently cannot because:
  // 1) It will use the VPR as a predicate operand, but doesn't have to be
  //    instead a VPT block, which means we can assert while building up
  //    the VPT block because we don't find another VPST to being a new
  //    one.
  // 2) VPSEL still requires a VPR operand even after tail predicating,
  //    which means we can't remove it unless there is another
  //    instruction, such as vcmp, that can provide the VPR def.

  bool IsUse = false;
  bool IsDef = false;
  const MCInstrDesc &MCID = MI->getDesc();
  for (int i = MI->getNumOperands() - 1; i >= 0; --i) {
    const MachineOperand &MO = MI->getOperand(i);
    if (!MO.isReg() || MO.getReg() != ARM::VPR)
      continue;

    if (MO.isDef()) {
      CurrentPredicate.insert(MI);
      IsDef = true;
    } else if (ARM::isVpred(MCID.OpInfo[i].OperandType)) {
      CurrentBlock->addInst(MI, CurrentPredicate);
      IsUse = true;
    } else {
      LLVM_DEBUG(dbgs() << "ARM Loops: Found instruction using vpr: " << *MI);
      return false;
    }
  }

  // If we find a vpr def that is not already predicated on the vctp, we've
  // got disjoint predicates that may not be equivalent when we do the
  // conversion.
  if (IsDef && !IsUse && VCTP && !isVCTP(MI)) {
    LLVM_DEBUG(dbgs() << "ARM Loops: Found disjoint vpr def: " << *MI);
    return false;
  }

  uint64_t Flags = MCID.TSFlags;
  if ((Flags & ARMII::DomainMask) != ARMII::DomainMVE)
    return true;

  // If we find an instruction that has been marked as not valid for tail
  // predication, only allow the instruction if it's contained within a valid
  // VPT block.
  if ((Flags & ARMII::ValidForTailPredication) == 0 && !IsUse) {
    LLVM_DEBUG(dbgs() << "ARM Loops: Can't tail predicate: " << *MI);
    return false;
  }

  return true;
}

bool ARMLowOverheadLoops::runOnMachineFunction(MachineFunction &mf) {
  const ARMSubtarget &ST = static_cast<const ARMSubtarget&>(mf.getSubtarget());
  if (!ST.hasLOB())
    return false;

  MF = &mf;
  LLVM_DEBUG(dbgs() << "ARM Loops on " << MF->getName() << " ------------- \n");

  MLI = &getAnalysis<MachineLoopInfo>();
  RDA = &getAnalysis<ReachingDefAnalysis>();
  MF->getProperties().set(MachineFunctionProperties::Property::TracksLiveness);
  MRI = &MF->getRegInfo();
  TII = static_cast<const ARMBaseInstrInfo*>(ST.getInstrInfo());
  TRI = ST.getRegisterInfo();
  BBUtils = std::unique_ptr<ARMBasicBlockUtils>(new ARMBasicBlockUtils(*MF));
  BBUtils->computeAllBlockSizes();
  BBUtils->adjustBBOffsetsAfter(&MF->front());

  bool Changed = false;
  for (auto ML : *MLI) {
    if (!ML->getParentLoop())
      Changed |= ProcessLoop(ML);
  }
  Changed |= RevertNonLoops();
  return Changed;
}

bool ARMLowOverheadLoops::ProcessLoop(MachineLoop *ML) {

  bool Changed = false;

  // Process inner loops first.
  for (auto I = ML->begin(), E = ML->end(); I != E; ++I)
    Changed |= ProcessLoop(*I);

  LLVM_DEBUG(dbgs() << "ARM Loops: Processing loop containing:\n";
             if (auto *Preheader = ML->getLoopPreheader())
               dbgs() << " - " << Preheader->getName() << "\n";
             else if (auto *Preheader = MLI->findLoopPreheader(ML))
               dbgs() << " - " << Preheader->getName() << "\n";
             for (auto *MBB : ML->getBlocks())
               dbgs() << " - " << MBB->getName() << "\n";
            );

  // Search the given block for a loop start instruction. If one isn't found,
  // and there's only one predecessor block, search that one too.
  std::function<MachineInstr*(MachineBasicBlock*)> SearchForStart =
    [&SearchForStart](MachineBasicBlock *MBB) -> MachineInstr* {
    for (auto &MI : *MBB) {
      if (isLoopStart(MI))
        return &MI;
    }
    if (MBB->pred_size() == 1)
      return SearchForStart(*MBB->pred_begin());
    return nullptr;
  };

  LowOverheadLoop LoLoop(ML);
  // Search the preheader for the start intrinsic.
  // FIXME: I don't see why we shouldn't be supporting multiple predecessors
  // with potentially multiple set.loop.iterations, so we need to enable this.
  if (auto *Preheader = ML->getLoopPreheader())
    LoLoop.Start = SearchForStart(Preheader);
  else if (auto *Preheader = MLI->findLoopPreheader(ML, true))
    LoLoop.Start = SearchForStart(Preheader);
  else
    return false;

  // Find the low-overhead loop components and decide whether or not to fall
  // back to a normal loop. Also look for a vctp instructions and decide
  // whether we can convert that predicate using tail predication.
  for (auto *MBB : reverse(ML->getBlocks())) {
    for (auto &MI : *MBB) {
      if (MI.getOpcode() == ARM::t2LoopDec)
        LoLoop.Dec = &MI;
      else if (MI.getOpcode() == ARM::t2LoopEnd)
        LoLoop.End = &MI;
      else if (isLoopStart(MI))
        LoLoop.Start = &MI;
      else if (MI.getDesc().isCall()) {
        // TODO: Though the call will require LE to execute again, does this
        // mean we should revert? Always executing LE hopefully should be
        // faster than performing a sub,cmp,br or even subs,br.
        LoLoop.Revert = true;
        LLVM_DEBUG(dbgs() << "ARM Loops: Found call.\n");
      } else {
        // Record VPR defs and build up their corresponding vpt blocks.
        // Check we know how to tail predicate any mve instructions.
        LoLoop.AnalyseMVEInst(&MI);
      }

      // We need to ensure that LR is not used or defined inbetween LoopDec and
      // LoopEnd.
      if (!LoLoop.Dec || LoLoop.End || LoLoop.Revert)
        continue;

      // If we find that LR has been written or read between LoopDec and
      // LoopEnd, expect that the decremented value is being used else where.
      // Because this value isn't actually going to be produced until the
      // latch, by LE, we would need to generate a real sub. The value is also
      // likely to be copied/reloaded for use of LoopEnd - in which in case
      // we'd need to perform an add because it gets subtracted again by LE!
      // The other option is to then generate the other form of LE which doesn't
      // perform the sub.
      for (auto &MO : MI.operands()) {
        if (MI.getOpcode() != ARM::t2LoopDec && MO.isReg() &&
            MO.getReg() == ARM::LR) {
          LLVM_DEBUG(dbgs() << "ARM Loops: Found LR Use/Def: " << MI);
          LoLoop.Revert = true;
          break;
        }
      }
    }
  }

  LLVM_DEBUG(LoLoop.dump());
  if (!LoLoop.FoundAllComponents()) {
    LLVM_DEBUG(dbgs() << "ARM Loops: Didn't find loop start, update, end\n");
    return false;
  }

  LoLoop.CheckLegality(BBUtils.get(), RDA, MLI);
  Expand(LoLoop);
  return true;
}

// WhileLoopStart holds the exit block, so produce a cmp lr, 0 and then a
// beq that branches to the exit branch.
// TODO: We could also try to generate a cbz if the value in LR is also in
// another low register.
void ARMLowOverheadLoops::RevertWhile(MachineInstr *MI) const {
  LLVM_DEBUG(dbgs() << "ARM Loops: Reverting to cmp: " << *MI);
  MachineBasicBlock *MBB = MI->getParent();
  MachineInstrBuilder MIB = BuildMI(*MBB, MI, MI->getDebugLoc(),
                                    TII->get(ARM::t2CMPri));
  MIB.add(MI->getOperand(0));
  MIB.addImm(0);
  MIB.addImm(ARMCC::AL);
  MIB.addReg(ARM::NoRegister);

  MachineBasicBlock *DestBB = MI->getOperand(1).getMBB();
  unsigned BrOpc = BBUtils->isBBInRange(MI, DestBB, 254) ?
    ARM::tBcc : ARM::t2Bcc;

  MIB = BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(BrOpc));
  MIB.add(MI->getOperand(1));   // branch target
  MIB.addImm(ARMCC::EQ);        // condition code
  MIB.addReg(ARM::CPSR);
  MI->eraseFromParent();
}

bool ARMLowOverheadLoops::RevertLoopDec(MachineInstr *MI,
                                        bool SetFlags) const {
  LLVM_DEBUG(dbgs() << "ARM Loops: Reverting to sub: " << *MI);
  MachineBasicBlock *MBB = MI->getParent();

  // If nothing defines CPSR between LoopDec and LoopEnd, use a t2SUBS.
  if (SetFlags &&
      (RDA->isRegUsedAfter(MI, ARM::CPSR) ||
       !RDA->hasSameReachingDef(MI, &MBB->back(), ARM::CPSR)))
      SetFlags = false;

  MachineInstrBuilder MIB = BuildMI(*MBB, MI, MI->getDebugLoc(),
                                    TII->get(ARM::t2SUBri));
  MIB.addDef(ARM::LR);
  MIB.add(MI->getOperand(1));
  MIB.add(MI->getOperand(2));
  MIB.addImm(ARMCC::AL);
  MIB.addReg(0);

  if (SetFlags) {
    MIB.addReg(ARM::CPSR);
    MIB->getOperand(5).setIsDef(true);
  } else
    MIB.addReg(0);

  MI->eraseFromParent();
  return SetFlags;
}

// Generate a subs, or sub and cmp, and a branch instead of an LE.
void ARMLowOverheadLoops::RevertLoopEnd(MachineInstr *MI, bool SkipCmp) const {
  LLVM_DEBUG(dbgs() << "ARM Loops: Reverting to cmp, br: " << *MI);

  MachineBasicBlock *MBB = MI->getParent();
  // Create cmp
  if (!SkipCmp) {
    MachineInstrBuilder MIB = BuildMI(*MBB, MI, MI->getDebugLoc(),
                                      TII->get(ARM::t2CMPri));
    MIB.addReg(ARM::LR);
    MIB.addImm(0);
    MIB.addImm(ARMCC::AL);
    MIB.addReg(ARM::NoRegister);
  }

  MachineBasicBlock *DestBB = MI->getOperand(1).getMBB();
  unsigned BrOpc = BBUtils->isBBInRange(MI, DestBB, 254) ?
    ARM::tBcc : ARM::t2Bcc;

  // Create bne
  MachineInstrBuilder MIB =
    BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(BrOpc));
  MIB.add(MI->getOperand(1));   // branch target
  MIB.addImm(ARMCC::NE);        // condition code
  MIB.addReg(ARM::CPSR);
  MI->eraseFromParent();
}

MachineInstr* ARMLowOverheadLoops::ExpandLoopStart(LowOverheadLoop &LoLoop) {
  MachineInstr *InsertPt = LoLoop.InsertPt;
  MachineInstr *Start = LoLoop.Start;
  MachineBasicBlock *MBB = InsertPt->getParent();
  bool IsDo = Start->getOpcode() == ARM::t2DoLoopStart;
  unsigned Opc = LoLoop.getStartOpcode();
  MachineOperand &Count = LoLoop.getCount();

  MachineInstrBuilder MIB =
    BuildMI(*MBB, InsertPt, InsertPt->getDebugLoc(), TII->get(Opc));

  MIB.addDef(ARM::LR);
  MIB.add(Count);
  if (!IsDo)
    MIB.add(Start->getOperand(1));

  // When using tail-predication, try to delete the dead code that was used to
  // calculate the number of loop iterations.
  if (LoLoop.IsTailPredicationLegal()) {
    SmallVector<MachineInstr*, 4> Killed;
    SmallVector<MachineInstr*, 4> Dead;
    if (auto *Def = RDA->getReachingMIDef(Start,
                                          Start->getOperand(0).getReg())) {
      Killed.push_back(Def);

      while (!Killed.empty()) {
        MachineInstr *Def = Killed.back();
        Killed.pop_back();
        Dead.push_back(Def);
        for (auto &MO : Def->operands()) {
          if (!MO.isReg() || !MO.isKill())
            continue;

          MachineInstr *Kill = RDA->getReachingMIDef(Def, MO.getReg());
          if (Kill && RDA->getNumUses(Kill, MO.getReg()) == 1)
            Killed.push_back(Kill);
        }
      }
      for (auto *MI : Dead)
        MI->eraseFromParent();
    }
  }

  // If we're inserting at a mov lr, then remove it as it's redundant.
  if (InsertPt != Start)
    InsertPt->eraseFromParent();
  Start->eraseFromParent();
  LLVM_DEBUG(dbgs() << "ARM Loops: Inserted start: " << *MIB);
  return &*MIB;
}

// Goal is to optimise and clean-up these loops:
//
//   vector.body:
//     renamable $vpr = MVE_VCTP32 renamable $r3, 0, $noreg
//     renamable $r3, dead $cpsr = tSUBi8 killed renamable $r3(tied-def 0), 4
//     ..
//     $lr = MVE_DLSTP_32 renamable $r3
//
// The SUB is the old update of the loop iteration count expression, which
// is no longer needed. This sub is removed when the element count, which is in
// r3 in this example, is defined by an instruction in the loop, and it has
// no uses.
//
void ARMLowOverheadLoops::RemoveLoopUpdate(LowOverheadLoop &LoLoop) {
  Register ElemCount = LoLoop.VCTP->getOperand(1).getReg();
  MachineInstr *LastInstrInBlock = &LoLoop.VCTP->getParent()->back();

  LLVM_DEBUG(dbgs() << "ARM Loops: Trying to remove loop update stmt\n");

  if (LoLoop.ML->getNumBlocks() != 1) {
    LLVM_DEBUG(dbgs() << "ARM Loops: Single block loop expected\n");
    return;
  }

  LLVM_DEBUG(dbgs() << "ARM Loops: Analyzing elemcount in operand: ";
             LoLoop.VCTP->getOperand(1).dump());

  // Find the definition we are interested in removing, if there is one.
  MachineInstr *Def = RDA->getReachingMIDef(LastInstrInBlock, ElemCount);
  if (!Def) {
    LLVM_DEBUG(dbgs() << "ARM Loops: Can't find a def, nothing to do.\n");
    return;
  }

  // Bail if we define CPSR and it is not dead
  if (!Def->registerDefIsDead(ARM::CPSR, TRI)) {
    LLVM_DEBUG(dbgs() << "ARM Loops: CPSR is not dead\n");
    return;
  }

  // Bail if elemcount is used in exit blocks, i.e. if it is live-in.
  if (isRegLiveInExitBlocks(LoLoop.ML, ElemCount)) {
    LLVM_DEBUG(dbgs() << "ARM Loops: Elemcount is live-out, can't remove stmt\n");
    return;
  }

  // Bail if there are uses after this Def in the block.
  SmallVector<MachineInstr*, 4> Uses;
  RDA->getReachingLocalUses(Def, ElemCount, Uses);
  if (Uses.size()) {
    LLVM_DEBUG(dbgs() << "ARM Loops: Local uses in block, can't remove stmt\n");
    return;
  }

  Uses.clear();
  RDA->getAllInstWithUseBefore(Def, ElemCount, Uses);

  // Remove Def if there are no uses, or if the only use is the VCTP
  // instruction.
  if (!Uses.size() || (Uses.size() == 1 && Uses[0] == LoLoop.VCTP)) {
    LLVM_DEBUG(dbgs() << "ARM Loops: Removing loop update instruction: ";
               Def->dump());
    Def->eraseFromParent();
    return;
  }

  LLVM_DEBUG(dbgs() << "ARM Loops: Can't remove loop update, it's used by:\n";
             for (auto U : Uses) U->dump());
}

void ARMLowOverheadLoops::ConvertVPTBlocks(LowOverheadLoop &LoLoop) {
  auto RemovePredicate = [](MachineInstr *MI) {
    LLVM_DEBUG(dbgs() << "ARM Loops: Removing predicate from: " << *MI);
    if (int PIdx = llvm::findFirstVPTPredOperandIdx(*MI)) {
      assert(MI->getOperand(PIdx).getImm() == ARMVCC::Then &&
             "Expected Then predicate!");
      MI->getOperand(PIdx).setImm(ARMVCC::None);
      MI->getOperand(PIdx+1).setReg(0);
    } else
      llvm_unreachable("trying to unpredicate a non-predicated instruction");
  };

  // There are a few scenarios which we have to fix up:
  // 1) A VPT block with is only predicated by the vctp and has no internal vpr
  //    defs.
  // 2) A VPT block which is only predicated by the vctp but has an internal
  //    vpr def.
  // 3) A VPT block which is predicated upon the vctp as well as another vpr
  //    def.
  // 4) A VPT block which is not predicated upon a vctp, but contains it and
  //    all instructions within the block are predicated upon in.

  for (auto &Block : LoLoop.getVPTBlocks()) {
    SmallVectorImpl<PredicatedMI> &Insts = Block.getInsts();
    if (Block.HasNonUniformPredicate()) {
      PredicatedMI *Divergent = Block.getDivergent();
      if (isVCTP(Divergent->MI)) {
        // The vctp will be removed, so the size of the vpt block needs to be
        // modified.
        uint64_t Size = getARMVPTBlockMask(Block.size() - 1);
        Block.getVPST()->getOperand(0).setImm(Size);
        LLVM_DEBUG(dbgs() << "ARM Loops: Modified VPT block mask.\n");
      } else if (Block.IsOnlyPredicatedOn(LoLoop.VCTP)) {
        // The VPT block has a non-uniform predicate but it's entry is guarded
        // only by a vctp, which means we:
        // - Need to remove the original vpst.
        // - Then need to unpredicate any following instructions, until
        //   we come across the divergent vpr def.
        // - Insert a new vpst to predicate the instruction(s) that following
        //   the divergent vpr def.
        // TODO: We could be producing more VPT blocks than necessary and could
        // fold the newly created one into a proceeding one.
        for (auto I = ++MachineBasicBlock::iterator(Block.getVPST()),
             E = ++MachineBasicBlock::iterator(Divergent->MI); I != E; ++I)
          RemovePredicate(&*I);

        unsigned Size = 0;
        auto E = MachineBasicBlock::reverse_iterator(Divergent->MI);
        auto I = MachineBasicBlock::reverse_iterator(Insts.back().MI);
        MachineInstr *InsertAt = nullptr;
        while (I != E) {
          InsertAt = &*I;
          ++Size;
          ++I;
        }
        MachineInstrBuilder MIB = BuildMI(*InsertAt->getParent(), InsertAt,
                                          InsertAt->getDebugLoc(),
                                          TII->get(ARM::MVE_VPST));
        MIB.addImm(getARMVPTBlockMask(Size));
        LLVM_DEBUG(dbgs() << "ARM Loops: Removing VPST: " << *Block.getVPST());
        LLVM_DEBUG(dbgs() << "ARM Loops: Created VPST: " << *MIB);
        Block.getVPST()->eraseFromParent();
      }
    } else if (Block.IsOnlyPredicatedOn(LoLoop.VCTP)) {
      // A vpt block which is only predicated upon vctp and has no internal vpr
      // defs:
      // - Remove vpst.
      // - Unpredicate the remaining instructions.
      LLVM_DEBUG(dbgs() << "ARM Loops: Removing VPST: " << *Block.getVPST());
      Block.getVPST()->eraseFromParent();
      for (auto &PredMI : Insts)
        RemovePredicate(PredMI.MI);
    }
  }

  LLVM_DEBUG(dbgs() << "ARM Loops: Removing VCTP: " << *LoLoop.VCTP);
  LoLoop.VCTP->eraseFromParent();
}

void ARMLowOverheadLoops::Expand(LowOverheadLoop &LoLoop) {

  // Combine the LoopDec and LoopEnd instructions into LE(TP).
  auto ExpandLoopEnd = [this](LowOverheadLoop &LoLoop) {
    MachineInstr *End = LoLoop.End;
    MachineBasicBlock *MBB = End->getParent();
    unsigned Opc = LoLoop.IsTailPredicationLegal() ?
      ARM::MVE_LETP : ARM::t2LEUpdate;
    MachineInstrBuilder MIB = BuildMI(*MBB, End, End->getDebugLoc(),
                                      TII->get(Opc));
    MIB.addDef(ARM::LR);
    MIB.add(End->getOperand(0));
    MIB.add(End->getOperand(1));
    LLVM_DEBUG(dbgs() << "ARM Loops: Inserted LE: " << *MIB);

    LoLoop.End->eraseFromParent();
    LoLoop.Dec->eraseFromParent();
    return &*MIB;
  };

  // TODO: We should be able to automatically remove these branches before we
  // get here - probably by teaching analyzeBranch about the pseudo
  // instructions.
  // If there is an unconditional branch, after I, that just branches to the
  // next block, remove it.
  auto RemoveDeadBranch = [](MachineInstr *I) {
    MachineBasicBlock *BB = I->getParent();
    MachineInstr *Terminator = &BB->instr_back();
    if (Terminator->isUnconditionalBranch() && I != Terminator) {
      MachineBasicBlock *Succ = Terminator->getOperand(0).getMBB();
      if (BB->isLayoutSuccessor(Succ)) {
        LLVM_DEBUG(dbgs() << "ARM Loops: Removing branch: " << *Terminator);
        Terminator->eraseFromParent();
      }
    }
  };

  if (LoLoop.Revert) {
    if (LoLoop.Start->getOpcode() == ARM::t2WhileLoopStart)
      RevertWhile(LoLoop.Start);
    else
      LoLoop.Start->eraseFromParent();
    bool FlagsAlreadySet = RevertLoopDec(LoLoop.Dec, true);
    RevertLoopEnd(LoLoop.End, FlagsAlreadySet);
  } else {
    LoLoop.Start = ExpandLoopStart(LoLoop);
    RemoveDeadBranch(LoLoop.Start);
    LoLoop.End = ExpandLoopEnd(LoLoop);
    RemoveDeadBranch(LoLoop.End);
    if (LoLoop.IsTailPredicationLegal()) {
      RemoveLoopUpdate(LoLoop);
      ConvertVPTBlocks(LoLoop);
    }
  }
}

bool ARMLowOverheadLoops::RevertNonLoops() {
  LLVM_DEBUG(dbgs() << "ARM Loops: Reverting any remaining pseudos...\n");
  bool Changed = false;

  for (auto &MBB : *MF) {
    SmallVector<MachineInstr*, 4> Starts;
    SmallVector<MachineInstr*, 4> Decs;
    SmallVector<MachineInstr*, 4> Ends;

    for (auto &I : MBB) {
      if (isLoopStart(I))
        Starts.push_back(&I);
      else if (I.getOpcode() == ARM::t2LoopDec)
        Decs.push_back(&I);
      else if (I.getOpcode() == ARM::t2LoopEnd)
        Ends.push_back(&I);
    }

    if (Starts.empty() && Decs.empty() && Ends.empty())
      continue;

    Changed = true;

    for (auto *Start : Starts) {
      if (Start->getOpcode() == ARM::t2WhileLoopStart)
        RevertWhile(Start);
      else
        Start->eraseFromParent();
    }
    for (auto *Dec : Decs)
      RevertLoopDec(Dec);

    for (auto *End : Ends)
      RevertLoopEnd(End);
  }
  return Changed;
}

FunctionPass *llvm::createARMLowOverheadLoopsPass() {
  return new ARMLowOverheadLoops();
}