ARMSelectionDAGInfo.cpp
9.16 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
//===-- ARMSelectionDAGInfo.cpp - ARM SelectionDAG Info -------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the ARMSelectionDAGInfo class.
//
//===----------------------------------------------------------------------===//
#include "ARMTargetMachine.h"
#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/IR/DerivedTypes.h"
using namespace llvm;
#define DEBUG_TYPE "arm-selectiondag-info"
// Emit, if possible, a specialized version of the given Libcall. Typically this
// means selecting the appropriately aligned version, but we also convert memset
// of 0 into memclr.
SDValue ARMSelectionDAGInfo::EmitSpecializedLibcall(
SelectionDAG &DAG, const SDLoc &dl, SDValue Chain, SDValue Dst, SDValue Src,
SDValue Size, unsigned Align, RTLIB::Libcall LC) const {
const ARMSubtarget &Subtarget =
DAG.getMachineFunction().getSubtarget<ARMSubtarget>();
const ARMTargetLowering *TLI = Subtarget.getTargetLowering();
// Only use a specialized AEABI function if the default version of this
// Libcall is an AEABI function.
if (std::strncmp(TLI->getLibcallName(LC), "__aeabi", 7) != 0)
return SDValue();
// Translate RTLIB::Libcall to AEABILibcall. We only do this in order to be
// able to translate memset to memclr and use the value to index the function
// name array.
enum {
AEABI_MEMCPY = 0,
AEABI_MEMMOVE,
AEABI_MEMSET,
AEABI_MEMCLR
} AEABILibcall;
switch (LC) {
case RTLIB::MEMCPY:
AEABILibcall = AEABI_MEMCPY;
break;
case RTLIB::MEMMOVE:
AEABILibcall = AEABI_MEMMOVE;
break;
case RTLIB::MEMSET:
AEABILibcall = AEABI_MEMSET;
if (ConstantSDNode *ConstantSrc = dyn_cast<ConstantSDNode>(Src))
if (ConstantSrc->getZExtValue() == 0)
AEABILibcall = AEABI_MEMCLR;
break;
default:
return SDValue();
}
// Choose the most-aligned libcall variant that we can
enum {
ALIGN1 = 0,
ALIGN4,
ALIGN8
} AlignVariant;
if ((Align & 7) == 0)
AlignVariant = ALIGN8;
else if ((Align & 3) == 0)
AlignVariant = ALIGN4;
else
AlignVariant = ALIGN1;
TargetLowering::ArgListTy Args;
TargetLowering::ArgListEntry Entry;
Entry.Ty = DAG.getDataLayout().getIntPtrType(*DAG.getContext());
Entry.Node = Dst;
Args.push_back(Entry);
if (AEABILibcall == AEABI_MEMCLR) {
Entry.Node = Size;
Args.push_back(Entry);
} else if (AEABILibcall == AEABI_MEMSET) {
// Adjust parameters for memset, EABI uses format (ptr, size, value),
// GNU library uses (ptr, value, size)
// See RTABI section 4.3.4
Entry.Node = Size;
Args.push_back(Entry);
// Extend or truncate the argument to be an i32 value for the call.
if (Src.getValueType().bitsGT(MVT::i32))
Src = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Src);
else if (Src.getValueType().bitsLT(MVT::i32))
Src = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Src);
Entry.Node = Src;
Entry.Ty = Type::getInt32Ty(*DAG.getContext());
Entry.IsSExt = false;
Args.push_back(Entry);
} else {
Entry.Node = Src;
Args.push_back(Entry);
Entry.Node = Size;
Args.push_back(Entry);
}
char const *FunctionNames[4][3] = {
{ "__aeabi_memcpy", "__aeabi_memcpy4", "__aeabi_memcpy8" },
{ "__aeabi_memmove", "__aeabi_memmove4", "__aeabi_memmove8" },
{ "__aeabi_memset", "__aeabi_memset4", "__aeabi_memset8" },
{ "__aeabi_memclr", "__aeabi_memclr4", "__aeabi_memclr8" }
};
TargetLowering::CallLoweringInfo CLI(DAG);
CLI.setDebugLoc(dl)
.setChain(Chain)
.setLibCallee(
TLI->getLibcallCallingConv(LC), Type::getVoidTy(*DAG.getContext()),
DAG.getExternalSymbol(FunctionNames[AEABILibcall][AlignVariant],
TLI->getPointerTy(DAG.getDataLayout())),
std::move(Args))
.setDiscardResult();
std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
return CallResult.second;
}
SDValue ARMSelectionDAGInfo::EmitTargetCodeForMemcpy(
SelectionDAG &DAG, const SDLoc &dl, SDValue Chain, SDValue Dst, SDValue Src,
SDValue Size, unsigned Align, bool isVolatile, bool AlwaysInline,
MachinePointerInfo DstPtrInfo, MachinePointerInfo SrcPtrInfo) const {
const ARMSubtarget &Subtarget =
DAG.getMachineFunction().getSubtarget<ARMSubtarget>();
// Do repeated 4-byte loads and stores. To be improved.
// This requires 4-byte alignment.
if ((Align & 3) != 0)
return SDValue();
// This requires the copy size to be a constant, preferably
// within a subtarget-specific limit.
ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
if (!ConstantSize)
return EmitSpecializedLibcall(DAG, dl, Chain, Dst, Src, Size, Align,
RTLIB::MEMCPY);
uint64_t SizeVal = ConstantSize->getZExtValue();
if (!AlwaysInline && SizeVal > Subtarget.getMaxInlineSizeThreshold())
return EmitSpecializedLibcall(DAG, dl, Chain, Dst, Src, Size, Align,
RTLIB::MEMCPY);
unsigned BytesLeft = SizeVal & 3;
unsigned NumMemOps = SizeVal >> 2;
unsigned EmittedNumMemOps = 0;
EVT VT = MVT::i32;
unsigned VTSize = 4;
unsigned i = 0;
// Emit a maximum of 4 loads in Thumb1 since we have fewer registers
const unsigned MaxLoadsInLDM = Subtarget.isThumb1Only() ? 4 : 6;
SDValue TFOps[6];
SDValue Loads[6];
uint64_t SrcOff = 0, DstOff = 0;
// FIXME: We should invent a VMEMCPY pseudo-instruction that lowers to
// VLDM/VSTM and make this code emit it when appropriate. This would reduce
// pressure on the general purpose registers. However this seems harder to map
// onto the register allocator's view of the world.
// The number of MEMCPY pseudo-instructions to emit. We use up to
// MaxLoadsInLDM registers per mcopy, which will get lowered into ldm/stm
// later on. This is a lower bound on the number of MEMCPY operations we must
// emit.
unsigned NumMEMCPYs = (NumMemOps + MaxLoadsInLDM - 1) / MaxLoadsInLDM;
// Code size optimisation: do not inline memcpy if expansion results in
// more instructions than the libary call.
if (NumMEMCPYs > 1 && Subtarget.hasMinSize()) {
return SDValue();
}
SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other, MVT::Glue);
for (unsigned I = 0; I != NumMEMCPYs; ++I) {
// Evenly distribute registers among MEMCPY operations to reduce register
// pressure.
unsigned NextEmittedNumMemOps = NumMemOps * (I + 1) / NumMEMCPYs;
unsigned NumRegs = NextEmittedNumMemOps - EmittedNumMemOps;
Dst = DAG.getNode(ARMISD::MEMCPY, dl, VTs, Chain, Dst, Src,
DAG.getConstant(NumRegs, dl, MVT::i32));
Src = Dst.getValue(1);
Chain = Dst.getValue(2);
DstPtrInfo = DstPtrInfo.getWithOffset(NumRegs * VTSize);
SrcPtrInfo = SrcPtrInfo.getWithOffset(NumRegs * VTSize);
EmittedNumMemOps = NextEmittedNumMemOps;
}
if (BytesLeft == 0)
return Chain;
// Issue loads / stores for the trailing (1 - 3) bytes.
auto getRemainingValueType = [](unsigned BytesLeft) {
return (BytesLeft >= 2) ? MVT::i16 : MVT::i8;
};
auto getRemainingSize = [](unsigned BytesLeft) {
return (BytesLeft >= 2) ? 2 : 1;
};
unsigned BytesLeftSave = BytesLeft;
i = 0;
while (BytesLeft) {
VT = getRemainingValueType(BytesLeft);
VTSize = getRemainingSize(BytesLeft);
Loads[i] = DAG.getLoad(VT, dl, Chain,
DAG.getNode(ISD::ADD, dl, MVT::i32, Src,
DAG.getConstant(SrcOff, dl, MVT::i32)),
SrcPtrInfo.getWithOffset(SrcOff));
TFOps[i] = Loads[i].getValue(1);
++i;
SrcOff += VTSize;
BytesLeft -= VTSize;
}
Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
makeArrayRef(TFOps, i));
i = 0;
BytesLeft = BytesLeftSave;
while (BytesLeft) {
VT = getRemainingValueType(BytesLeft);
VTSize = getRemainingSize(BytesLeft);
TFOps[i] = DAG.getStore(Chain, dl, Loads[i],
DAG.getNode(ISD::ADD, dl, MVT::i32, Dst,
DAG.getConstant(DstOff, dl, MVT::i32)),
DstPtrInfo.getWithOffset(DstOff));
++i;
DstOff += VTSize;
BytesLeft -= VTSize;
}
return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
makeArrayRef(TFOps, i));
}
SDValue ARMSelectionDAGInfo::EmitTargetCodeForMemmove(
SelectionDAG &DAG, const SDLoc &dl, SDValue Chain, SDValue Dst, SDValue Src,
SDValue Size, unsigned Align, bool isVolatile,
MachinePointerInfo DstPtrInfo, MachinePointerInfo SrcPtrInfo) const {
return EmitSpecializedLibcall(DAG, dl, Chain, Dst, Src, Size, Align,
RTLIB::MEMMOVE);
}
SDValue ARMSelectionDAGInfo::EmitTargetCodeForMemset(
SelectionDAG &DAG, const SDLoc &dl, SDValue Chain, SDValue Dst, SDValue Src,
SDValue Size, unsigned Align, bool isVolatile,
MachinePointerInfo DstPtrInfo) const {
return EmitSpecializedLibcall(DAG, dl, Chain, Dst, Src, Size, Align,
RTLIB::MEMSET);
}