FuzzerLoop.cpp 28.3 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866
//===- FuzzerLoop.cpp - Fuzzer's main loop --------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
// Fuzzer's main loop.
//===----------------------------------------------------------------------===//

#include "FuzzerCorpus.h"
#include "FuzzerIO.h"
#include "FuzzerInternal.h"
#include "FuzzerMutate.h"
#include "FuzzerRandom.h"
#include "FuzzerTracePC.h"
#include <algorithm>
#include <cstring>
#include <memory>
#include <mutex>
#include <set>

#if defined(__has_include)
#if __has_include(<sanitizer / lsan_interface.h>)
#include <sanitizer/lsan_interface.h>
#endif
#endif

#define NO_SANITIZE_MEMORY
#if defined(__has_feature)
#if __has_feature(memory_sanitizer)
#undef NO_SANITIZE_MEMORY
#define NO_SANITIZE_MEMORY __attribute__((no_sanitize_memory))
#endif
#endif

namespace fuzzer {
static const size_t kMaxUnitSizeToPrint = 256;

thread_local bool Fuzzer::IsMyThread;

bool RunningUserCallback = false;

// Only one Fuzzer per process.
static Fuzzer *F;

// Leak detection is expensive, so we first check if there were more mallocs
// than frees (using the sanitizer malloc hooks) and only then try to call lsan.
struct MallocFreeTracer {
  void Start(int TraceLevel) {
    this->TraceLevel = TraceLevel;
    if (TraceLevel)
      Printf("MallocFreeTracer: START\n");
    Mallocs = 0;
    Frees = 0;
  }
  // Returns true if there were more mallocs than frees.
  bool Stop() {
    if (TraceLevel)
      Printf("MallocFreeTracer: STOP %zd %zd (%s)\n", Mallocs.load(),
             Frees.load(), Mallocs == Frees ? "same" : "DIFFERENT");
    bool Result = Mallocs > Frees;
    Mallocs = 0;
    Frees = 0;
    TraceLevel = 0;
    return Result;
  }
  std::atomic<size_t> Mallocs;
  std::atomic<size_t> Frees;
  int TraceLevel = 0;

  std::recursive_mutex TraceMutex;
  bool TraceDisabled = false;
};

static MallocFreeTracer AllocTracer;

// Locks printing and avoids nested hooks triggered from mallocs/frees in
// sanitizer.
class TraceLock {
public:
  TraceLock() : Lock(AllocTracer.TraceMutex) {
    AllocTracer.TraceDisabled = !AllocTracer.TraceDisabled;
  }
  ~TraceLock() { AllocTracer.TraceDisabled = !AllocTracer.TraceDisabled; }

  bool IsDisabled() const {
    // This is already inverted value.
    return !AllocTracer.TraceDisabled;
  }

private:
  std::lock_guard<std::recursive_mutex> Lock;
};

ATTRIBUTE_NO_SANITIZE_MEMORY
void MallocHook(const volatile void *ptr, size_t size) {
  size_t N = AllocTracer.Mallocs++;
  F->HandleMalloc(size);
  if (int TraceLevel = AllocTracer.TraceLevel) {
    TraceLock Lock;
    if (Lock.IsDisabled())
      return;
    Printf("MALLOC[%zd] %p %zd\n", N, ptr, size);
    if (TraceLevel >= 2 && EF)
      PrintStackTrace();
  }
}

ATTRIBUTE_NO_SANITIZE_MEMORY
void FreeHook(const volatile void *ptr) {
  size_t N = AllocTracer.Frees++;
  if (int TraceLevel = AllocTracer.TraceLevel) {
    TraceLock Lock;
    if (Lock.IsDisabled())
      return;
    Printf("FREE[%zd]   %p\n", N, ptr);
    if (TraceLevel >= 2 && EF)
      PrintStackTrace();
  }
}

// Crash on a single malloc that exceeds the rss limit.
void Fuzzer::HandleMalloc(size_t Size) {
  if (!Options.MallocLimitMb || (Size >> 20) < (size_t)Options.MallocLimitMb)
    return;
  Printf("==%d== ERROR: libFuzzer: out-of-memory (malloc(%zd))\n", GetPid(),
         Size);
  Printf("   To change the out-of-memory limit use -rss_limit_mb=<N>\n\n");
  PrintStackTrace();
  DumpCurrentUnit("oom-");
  Printf("SUMMARY: libFuzzer: out-of-memory\n");
  PrintFinalStats();
  _Exit(Options.OOMExitCode); // Stop right now.
}

Fuzzer::Fuzzer(UserCallback CB, InputCorpus &Corpus, MutationDispatcher &MD,
               FuzzingOptions Options)
    : CB(CB), Corpus(Corpus), MD(MD), Options(Options) {
  if (EF->__sanitizer_set_death_callback)
    EF->__sanitizer_set_death_callback(StaticDeathCallback);
  assert(!F);
  F = this;
  TPC.ResetMaps();
  IsMyThread = true;
  if (Options.DetectLeaks && EF->__sanitizer_install_malloc_and_free_hooks)
    EF->__sanitizer_install_malloc_and_free_hooks(MallocHook, FreeHook);
  TPC.SetUseCounters(Options.UseCounters);
  TPC.SetUseValueProfileMask(Options.UseValueProfile);

  if (Options.Verbosity)
    TPC.PrintModuleInfo();
  if (!Options.OutputCorpus.empty() && Options.ReloadIntervalSec)
    EpochOfLastReadOfOutputCorpus = GetEpoch(Options.OutputCorpus);
  MaxInputLen = MaxMutationLen = Options.MaxLen;
  TmpMaxMutationLen = 0;  // Will be set once we load the corpus.
  AllocateCurrentUnitData();
  CurrentUnitSize = 0;
  memset(BaseSha1, 0, sizeof(BaseSha1));
}

Fuzzer::~Fuzzer() {}

void Fuzzer::AllocateCurrentUnitData() {
  if (CurrentUnitData || MaxInputLen == 0)
    return;
  CurrentUnitData = new uint8_t[MaxInputLen];
}

void Fuzzer::StaticDeathCallback() {
  assert(F);
  F->DeathCallback();
}

void Fuzzer::DumpCurrentUnit(const char *Prefix) {
  if (!CurrentUnitData)
    return; // Happens when running individual inputs.
  ScopedDisableMsanInterceptorChecks S;
  MD.PrintMutationSequence();
  Printf("; base unit: %s\n", Sha1ToString(BaseSha1).c_str());
  size_t UnitSize = CurrentUnitSize;
  if (UnitSize <= kMaxUnitSizeToPrint) {
    PrintHexArray(CurrentUnitData, UnitSize, "\n");
    PrintASCII(CurrentUnitData, UnitSize, "\n");
  }
  WriteUnitToFileWithPrefix({CurrentUnitData, CurrentUnitData + UnitSize},
                            Prefix);
}

NO_SANITIZE_MEMORY
void Fuzzer::DeathCallback() {
  DumpCurrentUnit("crash-");
  PrintFinalStats();
}

void Fuzzer::StaticAlarmCallback() {
  assert(F);
  F->AlarmCallback();
}

void Fuzzer::StaticCrashSignalCallback() {
  assert(F);
  F->CrashCallback();
}

void Fuzzer::StaticExitCallback() {
  assert(F);
  F->ExitCallback();
}

void Fuzzer::StaticInterruptCallback() {
  assert(F);
  F->InterruptCallback();
}

void Fuzzer::StaticGracefulExitCallback() {
  assert(F);
  F->GracefulExitRequested = true;
  Printf("INFO: signal received, trying to exit gracefully\n");
}

void Fuzzer::StaticFileSizeExceedCallback() {
  Printf("==%lu== ERROR: libFuzzer: file size exceeded\n", GetPid());
  exit(1);
}

void Fuzzer::CrashCallback() {
  if (EF->__sanitizer_acquire_crash_state &&
      !EF->__sanitizer_acquire_crash_state())
    return;
  Printf("==%lu== ERROR: libFuzzer: deadly signal\n", GetPid());
  PrintStackTrace();
  Printf("NOTE: libFuzzer has rudimentary signal handlers.\n"
         "      Combine libFuzzer with AddressSanitizer or similar for better "
         "crash reports.\n");
  Printf("SUMMARY: libFuzzer: deadly signal\n");
  DumpCurrentUnit("crash-");
  PrintFinalStats();
  _Exit(Options.ErrorExitCode); // Stop right now.
}

void Fuzzer::ExitCallback() {
  if (!RunningUserCallback)
    return; // This exit did not come from the user callback
  if (EF->__sanitizer_acquire_crash_state &&
      !EF->__sanitizer_acquire_crash_state())
    return;
  Printf("==%lu== ERROR: libFuzzer: fuzz target exited\n", GetPid());
  PrintStackTrace();
  Printf("SUMMARY: libFuzzer: fuzz target exited\n");
  DumpCurrentUnit("crash-");
  PrintFinalStats();
  _Exit(Options.ErrorExitCode);
}

void Fuzzer::MaybeExitGracefully() {
  if (!F->GracefulExitRequested) return;
  Printf("==%lu== INFO: libFuzzer: exiting as requested\n", GetPid());
  RmDirRecursive(TempPath(".dir"));
  F->PrintFinalStats();
  _Exit(0);
}

void Fuzzer::InterruptCallback() {
  Printf("==%lu== libFuzzer: run interrupted; exiting\n", GetPid());
  PrintFinalStats();
  ScopedDisableMsanInterceptorChecks S; // RmDirRecursive may call opendir().
  RmDirRecursive(TempPath(".dir"));
  // Stop right now, don't perform any at-exit actions.
  _Exit(Options.InterruptExitCode);
}

NO_SANITIZE_MEMORY
void Fuzzer::AlarmCallback() {
  assert(Options.UnitTimeoutSec > 0);
  // In Windows and Fuchsia, Alarm callback is executed by a different thread.
  // NetBSD's current behavior needs this change too.
#if !LIBFUZZER_WINDOWS && !LIBFUZZER_NETBSD && !LIBFUZZER_FUCHSIA
  if (!InFuzzingThread())
    return;
#endif
  if (!RunningUserCallback)
    return; // We have not started running units yet.
  size_t Seconds =
      duration_cast<seconds>(system_clock::now() - UnitStartTime).count();
  if (Seconds == 0)
    return;
  if (Options.Verbosity >= 2)
    Printf("AlarmCallback %zd\n", Seconds);
  if (Seconds >= (size_t)Options.UnitTimeoutSec) {
    if (EF->__sanitizer_acquire_crash_state &&
        !EF->__sanitizer_acquire_crash_state())
      return;
    Printf("ALARM: working on the last Unit for %zd seconds\n", Seconds);
    Printf("       and the timeout value is %d (use -timeout=N to change)\n",
           Options.UnitTimeoutSec);
    DumpCurrentUnit("timeout-");
    Printf("==%lu== ERROR: libFuzzer: timeout after %d seconds\n", GetPid(),
           Seconds);
    PrintStackTrace();
    Printf("SUMMARY: libFuzzer: timeout\n");
    PrintFinalStats();
    _Exit(Options.TimeoutExitCode); // Stop right now.
  }
}

void Fuzzer::RssLimitCallback() {
  if (EF->__sanitizer_acquire_crash_state &&
      !EF->__sanitizer_acquire_crash_state())
    return;
  Printf(
      "==%lu== ERROR: libFuzzer: out-of-memory (used: %zdMb; limit: %zdMb)\n",
      GetPid(), GetPeakRSSMb(), Options.RssLimitMb);
  Printf("   To change the out-of-memory limit use -rss_limit_mb=<N>\n\n");
  PrintMemoryProfile();
  DumpCurrentUnit("oom-");
  Printf("SUMMARY: libFuzzer: out-of-memory\n");
  PrintFinalStats();
  _Exit(Options.OOMExitCode); // Stop right now.
}

void Fuzzer::PrintStats(const char *Where, const char *End, size_t Units,
                        size_t Features) {
  size_t ExecPerSec = execPerSec();
  if (!Options.Verbosity)
    return;
  Printf("#%zd\t%s", TotalNumberOfRuns, Where);
  if (size_t N = TPC.GetTotalPCCoverage())
    Printf(" cov: %zd", N);
  if (size_t N = Features ? Features : Corpus.NumFeatures())
    Printf(" ft: %zd", N);
  if (!Corpus.empty()) {
    Printf(" corp: %zd", Corpus.NumActiveUnits());
    if (size_t N = Corpus.SizeInBytes()) {
      if (N < (1 << 14))
        Printf("/%zdb", N);
      else if (N < (1 << 24))
        Printf("/%zdKb", N >> 10);
      else
        Printf("/%zdMb", N >> 20);
    }
    if (size_t FF = Corpus.NumInputsThatTouchFocusFunction())
      Printf(" focus: %zd", FF);
  }
  if (TmpMaxMutationLen)
    Printf(" lim: %zd", TmpMaxMutationLen);
  if (Units)
    Printf(" units: %zd", Units);

  Printf(" exec/s: %zd", ExecPerSec);
  Printf(" rss: %zdMb", GetPeakRSSMb());
  Printf("%s", End);
}

void Fuzzer::PrintFinalStats() {
  if (Options.PrintCoverage)
    TPC.PrintCoverage();
  if (Options.PrintCorpusStats)
    Corpus.PrintStats();
  if (!Options.PrintFinalStats)
    return;
  size_t ExecPerSec = execPerSec();
  Printf("stat::number_of_executed_units: %zd\n", TotalNumberOfRuns);
  Printf("stat::average_exec_per_sec:     %zd\n", ExecPerSec);
  Printf("stat::new_units_added:          %zd\n", NumberOfNewUnitsAdded);
  Printf("stat::slowest_unit_time_sec:    %zd\n", TimeOfLongestUnitInSeconds);
  Printf("stat::peak_rss_mb:              %zd\n", GetPeakRSSMb());
}

void Fuzzer::SetMaxInputLen(size_t MaxInputLen) {
  assert(this->MaxInputLen == 0); // Can only reset MaxInputLen from 0 to non-0.
  assert(MaxInputLen);
  this->MaxInputLen = MaxInputLen;
  this->MaxMutationLen = MaxInputLen;
  AllocateCurrentUnitData();
  Printf("INFO: -max_len is not provided; "
         "libFuzzer will not generate inputs larger than %zd bytes\n",
         MaxInputLen);
}

void Fuzzer::SetMaxMutationLen(size_t MaxMutationLen) {
  assert(MaxMutationLen && MaxMutationLen <= MaxInputLen);
  this->MaxMutationLen = MaxMutationLen;
}

void Fuzzer::CheckExitOnSrcPosOrItem() {
  if (!Options.ExitOnSrcPos.empty()) {
    static auto *PCsSet = new Set<uintptr_t>;
    auto HandlePC = [&](const TracePC::PCTableEntry *TE) {
      if (!PCsSet->insert(TE->PC).second)
        return;
      std::string Descr = DescribePC("%F %L", TE->PC + 1);
      if (Descr.find(Options.ExitOnSrcPos) != std::string::npos) {
        Printf("INFO: found line matching '%s', exiting.\n",
               Options.ExitOnSrcPos.c_str());
        _Exit(0);
      }
    };
    TPC.ForEachObservedPC(HandlePC);
  }
  if (!Options.ExitOnItem.empty()) {
    if (Corpus.HasUnit(Options.ExitOnItem)) {
      Printf("INFO: found item with checksum '%s', exiting.\n",
             Options.ExitOnItem.c_str());
      _Exit(0);
    }
  }
}

void Fuzzer::RereadOutputCorpus(size_t MaxSize) {
  if (Options.OutputCorpus.empty() || !Options.ReloadIntervalSec)
    return;
  Vector<Unit> AdditionalCorpus;
  ReadDirToVectorOfUnits(Options.OutputCorpus.c_str(), &AdditionalCorpus,
                         &EpochOfLastReadOfOutputCorpus, MaxSize,
                         /*ExitOnError*/ false);
  if (Options.Verbosity >= 2)
    Printf("Reload: read %zd new units.\n", AdditionalCorpus.size());
  bool Reloaded = false;
  for (auto &U : AdditionalCorpus) {
    if (U.size() > MaxSize)
      U.resize(MaxSize);
    if (!Corpus.HasUnit(U)) {
      if (RunOne(U.data(), U.size())) {
        CheckExitOnSrcPosOrItem();
        Reloaded = true;
      }
    }
  }
  if (Reloaded)
    PrintStats("RELOAD");
}

void Fuzzer::PrintPulseAndReportSlowInput(const uint8_t *Data, size_t Size) {
  auto TimeOfUnit =
      duration_cast<seconds>(UnitStopTime - UnitStartTime).count();
  if (!(TotalNumberOfRuns & (TotalNumberOfRuns - 1)) &&
      secondsSinceProcessStartUp() >= 2)
    PrintStats("pulse ");
  if (TimeOfUnit > TimeOfLongestUnitInSeconds * 1.1 &&
      TimeOfUnit >= Options.ReportSlowUnits) {
    TimeOfLongestUnitInSeconds = TimeOfUnit;
    Printf("Slowest unit: %zd s:\n", TimeOfLongestUnitInSeconds);
    WriteUnitToFileWithPrefix({Data, Data + Size}, "slow-unit-");
  }
}

static void WriteFeatureSetToFile(const std::string &FeaturesDir,
                                  const std::string &FileName,
                                  const Vector<uint32_t> &FeatureSet) {
  if (FeaturesDir.empty() || FeatureSet.empty()) return;
  WriteToFile(reinterpret_cast<const uint8_t *>(FeatureSet.data()),
              FeatureSet.size() * sizeof(FeatureSet[0]),
              DirPlusFile(FeaturesDir, FileName));
}

static void RenameFeatureSetFile(const std::string &FeaturesDir,
                                 const std::string &OldFile,
                                 const std::string &NewFile) {
  if (FeaturesDir.empty()) return;
  RenameFile(DirPlusFile(FeaturesDir, OldFile),
             DirPlusFile(FeaturesDir, NewFile));
}

bool Fuzzer::RunOne(const uint8_t *Data, size_t Size, bool MayDeleteFile,
                    InputInfo *II, bool *FoundUniqFeatures) {
  if (!Size)
    return false;

  ExecuteCallback(Data, Size);

  UniqFeatureSetTmp.clear();
  size_t FoundUniqFeaturesOfII = 0;
  size_t NumUpdatesBefore = Corpus.NumFeatureUpdates();
  TPC.CollectFeatures([&](size_t Feature) {
    if (Corpus.AddFeature(Feature, Size, Options.Shrink))
      UniqFeatureSetTmp.push_back(Feature);
    if (Options.ReduceInputs && II)
      if (std::binary_search(II->UniqFeatureSet.begin(),
                             II->UniqFeatureSet.end(), Feature))
        FoundUniqFeaturesOfII++;
  });
  if (FoundUniqFeatures)
    *FoundUniqFeatures = FoundUniqFeaturesOfII;
  PrintPulseAndReportSlowInput(Data, Size);
  size_t NumNewFeatures = Corpus.NumFeatureUpdates() - NumUpdatesBefore;
  if (NumNewFeatures) {
    TPC.UpdateObservedPCs();
    auto NewII = Corpus.AddToCorpus({Data, Data + Size}, NumNewFeatures,
                                    MayDeleteFile, TPC.ObservedFocusFunction(),
                                    UniqFeatureSetTmp, DFT, II);
    WriteFeatureSetToFile(Options.FeaturesDir, Sha1ToString(NewII->Sha1),
                          NewII->UniqFeatureSet);
    return true;
  }
  if (II && FoundUniqFeaturesOfII &&
      II->DataFlowTraceForFocusFunction.empty() &&
      FoundUniqFeaturesOfII == II->UniqFeatureSet.size() &&
      II->U.size() > Size) {
    auto OldFeaturesFile = Sha1ToString(II->Sha1);
    Corpus.Replace(II, {Data, Data + Size});
    RenameFeatureSetFile(Options.FeaturesDir, OldFeaturesFile,
                         Sha1ToString(II->Sha1));
    return true;
  }
  return false;
}

size_t Fuzzer::GetCurrentUnitInFuzzingThead(const uint8_t **Data) const {
  assert(InFuzzingThread());
  *Data = CurrentUnitData;
  return CurrentUnitSize;
}

void Fuzzer::CrashOnOverwrittenData() {
  Printf("==%d== ERROR: libFuzzer: fuzz target overwrites its const input\n",
         GetPid());
  PrintStackTrace();
  Printf("SUMMARY: libFuzzer: overwrites-const-input\n");
  DumpCurrentUnit("crash-");
  PrintFinalStats();
  _Exit(Options.ErrorExitCode); // Stop right now.
}

// Compare two arrays, but not all bytes if the arrays are large.
static bool LooseMemeq(const uint8_t *A, const uint8_t *B, size_t Size) {
  const size_t Limit = 64;
  if (Size <= 64)
    return !memcmp(A, B, Size);
  // Compare first and last Limit/2 bytes.
  return !memcmp(A, B, Limit / 2) &&
         !memcmp(A + Size - Limit / 2, B + Size - Limit / 2, Limit / 2);
}

void Fuzzer::ExecuteCallback(const uint8_t *Data, size_t Size) {
  TPC.RecordInitialStack();
  TotalNumberOfRuns++;
  assert(InFuzzingThread());
  // We copy the contents of Unit into a separate heap buffer
  // so that we reliably find buffer overflows in it.
  uint8_t *DataCopy = new uint8_t[Size];
  memcpy(DataCopy, Data, Size);
  if (EF->__msan_unpoison)
    EF->__msan_unpoison(DataCopy, Size);
  if (EF->__msan_unpoison_param)
    EF->__msan_unpoison_param(2);
  if (CurrentUnitData && CurrentUnitData != Data)
    memcpy(CurrentUnitData, Data, Size);
  CurrentUnitSize = Size;
  {
    ScopedEnableMsanInterceptorChecks S;
    AllocTracer.Start(Options.TraceMalloc);
    UnitStartTime = system_clock::now();
    TPC.ResetMaps();
    RunningUserCallback = true;
    int Res = CB(DataCopy, Size);
    RunningUserCallback = false;
    UnitStopTime = system_clock::now();
    (void)Res;
    assert(Res == 0);
    HasMoreMallocsThanFrees = AllocTracer.Stop();
  }
  if (!LooseMemeq(DataCopy, Data, Size))
    CrashOnOverwrittenData();
  CurrentUnitSize = 0;
  delete[] DataCopy;
}

std::string Fuzzer::WriteToOutputCorpus(const Unit &U) {
  if (Options.OnlyASCII)
    assert(IsASCII(U));
  if (Options.OutputCorpus.empty())
    return "";
  std::string Path = DirPlusFile(Options.OutputCorpus, Hash(U));
  WriteToFile(U, Path);
  if (Options.Verbosity >= 2)
    Printf("Written %zd bytes to %s\n", U.size(), Path.c_str());
  return Path;
}

void Fuzzer::WriteUnitToFileWithPrefix(const Unit &U, const char *Prefix) {
  if (!Options.SaveArtifacts)
    return;
  std::string Path = Options.ArtifactPrefix + Prefix + Hash(U);
  if (!Options.ExactArtifactPath.empty())
    Path = Options.ExactArtifactPath; // Overrides ArtifactPrefix.
  WriteToFile(U, Path);
  Printf("artifact_prefix='%s'; Test unit written to %s\n",
         Options.ArtifactPrefix.c_str(), Path.c_str());
  if (U.size() <= kMaxUnitSizeToPrint)
    Printf("Base64: %s\n", Base64(U).c_str());
}

void Fuzzer::PrintStatusForNewUnit(const Unit &U, const char *Text) {
  if (!Options.PrintNEW)
    return;
  PrintStats(Text, "");
  if (Options.Verbosity) {
    Printf(" L: %zd/%zd ", U.size(), Corpus.MaxInputSize());
    MD.PrintMutationSequence();
    Printf("\n");
  }
}

void Fuzzer::ReportNewCoverage(InputInfo *II, const Unit &U) {
  II->NumSuccessfullMutations++;
  MD.RecordSuccessfulMutationSequence();
  PrintStatusForNewUnit(U, II->Reduced ? "REDUCE" : "NEW   ");
  WriteToOutputCorpus(U);
  NumberOfNewUnitsAdded++;
  CheckExitOnSrcPosOrItem(); // Check only after the unit is saved to corpus.
  LastCorpusUpdateRun = TotalNumberOfRuns;
}

// Tries detecting a memory leak on the particular input that we have just
// executed before calling this function.
void Fuzzer::TryDetectingAMemoryLeak(const uint8_t *Data, size_t Size,
                                     bool DuringInitialCorpusExecution) {
  if (!HasMoreMallocsThanFrees)
    return; // mallocs==frees, a leak is unlikely.
  if (!Options.DetectLeaks)
    return;
  if (!DuringInitialCorpusExecution &&
      TotalNumberOfRuns >= Options.MaxNumberOfRuns)
    return;
  if (!&(EF->__lsan_enable) || !&(EF->__lsan_disable) ||
      !(EF->__lsan_do_recoverable_leak_check))
    return; // No lsan.
  // Run the target once again, but with lsan disabled so that if there is
  // a real leak we do not report it twice.
  EF->__lsan_disable();
  ExecuteCallback(Data, Size);
  EF->__lsan_enable();
  if (!HasMoreMallocsThanFrees)
    return; // a leak is unlikely.
  if (NumberOfLeakDetectionAttempts++ > 1000) {
    Options.DetectLeaks = false;
    Printf("INFO: libFuzzer disabled leak detection after every mutation.\n"
           "      Most likely the target function accumulates allocated\n"
           "      memory in a global state w/o actually leaking it.\n"
           "      You may try running this binary with -trace_malloc=[12]"
           "      to get a trace of mallocs and frees.\n"
           "      If LeakSanitizer is enabled in this process it will still\n"
           "      run on the process shutdown.\n");
    return;
  }
  // Now perform the actual lsan pass. This is expensive and we must ensure
  // we don't call it too often.
  if (EF->__lsan_do_recoverable_leak_check()) { // Leak is found, report it.
    if (DuringInitialCorpusExecution)
      Printf("\nINFO: a leak has been found in the initial corpus.\n\n");
    Printf("INFO: to ignore leaks on libFuzzer side use -detect_leaks=0.\n\n");
    CurrentUnitSize = Size;
    DumpCurrentUnit("leak-");
    PrintFinalStats();
    _Exit(Options.ErrorExitCode); // not exit() to disable lsan further on.
  }
}

void Fuzzer::MutateAndTestOne() {
  MD.StartMutationSequence();

  auto &II = Corpus.ChooseUnitToMutate(MD.GetRand());
  if (Options.DoCrossOver)
    MD.SetCrossOverWith(&Corpus.ChooseUnitToMutate(MD.GetRand()).U);
  const auto &U = II.U;
  memcpy(BaseSha1, II.Sha1, sizeof(BaseSha1));
  assert(CurrentUnitData);
  size_t Size = U.size();
  assert(Size <= MaxInputLen && "Oversized Unit");
  memcpy(CurrentUnitData, U.data(), Size);

  assert(MaxMutationLen > 0);

  size_t CurrentMaxMutationLen =
      Min(MaxMutationLen, Max(U.size(), TmpMaxMutationLen));
  assert(CurrentMaxMutationLen > 0);

  for (int i = 0; i < Options.MutateDepth; i++) {
    if (TotalNumberOfRuns >= Options.MaxNumberOfRuns)
      break;
    MaybeExitGracefully();
    size_t NewSize = 0;
    if (II.HasFocusFunction && !II.DataFlowTraceForFocusFunction.empty() &&
        Size <= CurrentMaxMutationLen)
      NewSize = MD.MutateWithMask(CurrentUnitData, Size, Size,
                                  II.DataFlowTraceForFocusFunction);

    // If MutateWithMask either failed or wasn't called, call default Mutate.
    if (!NewSize)
      NewSize = MD.Mutate(CurrentUnitData, Size, CurrentMaxMutationLen);
    assert(NewSize > 0 && "Mutator returned empty unit");
    assert(NewSize <= CurrentMaxMutationLen && "Mutator return oversized unit");
    Size = NewSize;
    II.NumExecutedMutations++;

    bool FoundUniqFeatures = false;
    bool NewCov = RunOne(CurrentUnitData, Size, /*MayDeleteFile=*/true, &II,
                         &FoundUniqFeatures);
    TryDetectingAMemoryLeak(CurrentUnitData, Size,
                            /*DuringInitialCorpusExecution*/ false);
    if (NewCov) {
      ReportNewCoverage(&II, {CurrentUnitData, CurrentUnitData + Size});
      break;  // We will mutate this input more in the next rounds.
    }
    if (Options.ReduceDepth && !FoundUniqFeatures)
      break;
  }
}

void Fuzzer::PurgeAllocator() {
  if (Options.PurgeAllocatorIntervalSec < 0 || !EF->__sanitizer_purge_allocator)
    return;
  if (duration_cast<seconds>(system_clock::now() -
                             LastAllocatorPurgeAttemptTime)
          .count() < Options.PurgeAllocatorIntervalSec)
    return;

  if (Options.RssLimitMb <= 0 ||
      GetPeakRSSMb() > static_cast<size_t>(Options.RssLimitMb) / 2)
    EF->__sanitizer_purge_allocator();

  LastAllocatorPurgeAttemptTime = system_clock::now();
}

void Fuzzer::ReadAndExecuteSeedCorpora(Vector<SizedFile> &CorporaFiles) {
  const size_t kMaxSaneLen = 1 << 20;
  const size_t kMinDefaultLen = 4096;
  size_t MaxSize = 0;
  size_t MinSize = -1;
  size_t TotalSize = 0;
  for (auto &File : CorporaFiles) {
    MaxSize = Max(File.Size, MaxSize);
    MinSize = Min(File.Size, MinSize);
    TotalSize += File.Size;
  }
  if (Options.MaxLen == 0)
    SetMaxInputLen(std::min(std::max(kMinDefaultLen, MaxSize), kMaxSaneLen));
  assert(MaxInputLen > 0);

  // Test the callback with empty input and never try it again.
  uint8_t dummy = 0;
  ExecuteCallback(&dummy, 0);

  if (CorporaFiles.empty()) {
    Printf("INFO: A corpus is not provided, starting from an empty corpus\n");
    Unit U({'\n'}); // Valid ASCII input.
    RunOne(U.data(), U.size());
  } else {
    Printf("INFO: seed corpus: files: %zd min: %zdb max: %zdb total: %zdb"
           " rss: %zdMb\n",
           CorporaFiles.size(), MinSize, MaxSize, TotalSize, GetPeakRSSMb());
    if (Options.ShuffleAtStartUp)
      std::shuffle(CorporaFiles.begin(), CorporaFiles.end(), MD.GetRand());

    if (Options.PreferSmall) {
      std::stable_sort(CorporaFiles.begin(), CorporaFiles.end());
      assert(CorporaFiles.front().Size <= CorporaFiles.back().Size);
    }

    // Load and execute inputs one by one.
    for (auto &SF : CorporaFiles) {
      auto U = FileToVector(SF.File, MaxInputLen, /*ExitOnError=*/false);
      assert(U.size() <= MaxInputLen);
      RunOne(U.data(), U.size());
      CheckExitOnSrcPosOrItem();
      TryDetectingAMemoryLeak(U.data(), U.size(),
                              /*DuringInitialCorpusExecution*/ true);
    }
  }

  PrintStats("INITED");
  if (!Options.FocusFunction.empty())
    Printf("INFO: %zd/%zd inputs touch the focus function\n",
           Corpus.NumInputsThatTouchFocusFunction(), Corpus.size());
  if (!Options.DataFlowTrace.empty())
    Printf("INFO: %zd/%zd inputs have the Data Flow Trace\n",
           Corpus.NumInputsWithDataFlowTrace(), Corpus.size());

  if (Corpus.empty() && Options.MaxNumberOfRuns) {
    Printf("ERROR: no interesting inputs were found. "
           "Is the code instrumented for coverage? Exiting.\n");
    exit(1);
  }
}

void Fuzzer::Loop(Vector<SizedFile> &CorporaFiles) {
  auto FocusFunctionOrAuto = Options.FocusFunction;
  DFT.Init(Options.DataFlowTrace, &FocusFunctionOrAuto, CorporaFiles,
           MD.GetRand());
  TPC.SetFocusFunction(FocusFunctionOrAuto);
  ReadAndExecuteSeedCorpora(CorporaFiles);
  DFT.Clear();  // No need for DFT any more.
  TPC.SetPrintNewPCs(Options.PrintNewCovPcs);
  TPC.SetPrintNewFuncs(Options.PrintNewCovFuncs);
  system_clock::time_point LastCorpusReload = system_clock::now();

  TmpMaxMutationLen =
      Min(MaxMutationLen, Max(size_t(4), Corpus.MaxInputSize()));

  while (true) {
    auto Now = system_clock::now();
    if (!Options.StopFile.empty() &&
        !FileToVector(Options.StopFile, 1, false).empty())
      break;
    if (duration_cast<seconds>(Now - LastCorpusReload).count() >=
        Options.ReloadIntervalSec) {
      RereadOutputCorpus(MaxInputLen);
      LastCorpusReload = system_clock::now();
    }
    if (TotalNumberOfRuns >= Options.MaxNumberOfRuns)
      break;
    if (TimedOut())
      break;

    // Update TmpMaxMutationLen
    if (Options.LenControl) {
      if (TmpMaxMutationLen < MaxMutationLen &&
          TotalNumberOfRuns - LastCorpusUpdateRun >
              Options.LenControl * Log(TmpMaxMutationLen)) {
        TmpMaxMutationLen =
            Min(MaxMutationLen, TmpMaxMutationLen + Log(TmpMaxMutationLen));
        LastCorpusUpdateRun = TotalNumberOfRuns;
      }
    } else {
      TmpMaxMutationLen = MaxMutationLen;
    }

    // Perform several mutations and runs.
    MutateAndTestOne();

    PurgeAllocator();
  }

  PrintStats("DONE  ", "\n");
  MD.PrintRecommendedDictionary();
}

void Fuzzer::MinimizeCrashLoop(const Unit &U) {
  if (U.size() <= 1)
    return;
  while (!TimedOut() && TotalNumberOfRuns < Options.MaxNumberOfRuns) {
    MD.StartMutationSequence();
    memcpy(CurrentUnitData, U.data(), U.size());
    for (int i = 0; i < Options.MutateDepth; i++) {
      size_t NewSize = MD.Mutate(CurrentUnitData, U.size(), MaxMutationLen);
      assert(NewSize > 0 && NewSize <= MaxMutationLen);
      ExecuteCallback(CurrentUnitData, NewSize);
      PrintPulseAndReportSlowInput(CurrentUnitData, NewSize);
      TryDetectingAMemoryLeak(CurrentUnitData, NewSize,
                              /*DuringInitialCorpusExecution*/ false);
    }
  }
}

} // namespace fuzzer

extern "C" {

ATTRIBUTE_INTERFACE size_t
LLVMFuzzerMutate(uint8_t *Data, size_t Size, size_t MaxSize) {
  assert(fuzzer::F);
  return fuzzer::F->GetMD().DefaultMutate(Data, Size, MaxSize);
}

} // extern "C"