sanitizer_common.h 30.3 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987
//===-- sanitizer_common.h --------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file is shared between run-time libraries of sanitizers.
//
// It declares common functions and classes that are used in both runtimes.
// Implementation of some functions are provided in sanitizer_common, while
// others must be defined by run-time library itself.
//===----------------------------------------------------------------------===//
#ifndef SANITIZER_COMMON_H
#define SANITIZER_COMMON_H

#include "sanitizer_flags.h"
#include "sanitizer_interface_internal.h"
#include "sanitizer_internal_defs.h"
#include "sanitizer_libc.h"
#include "sanitizer_list.h"
#include "sanitizer_mutex.h"

#if defined(_MSC_VER) && !defined(__clang__)
extern "C" void _ReadWriteBarrier();
#pragma intrinsic(_ReadWriteBarrier)
#endif

namespace __sanitizer {

struct AddressInfo;
struct BufferedStackTrace;
struct SignalContext;
struct StackTrace;

// Constants.
const uptr kWordSize = SANITIZER_WORDSIZE / 8;
const uptr kWordSizeInBits = 8 * kWordSize;

const uptr kCacheLineSize = SANITIZER_CACHE_LINE_SIZE;

const uptr kMaxPathLength = 4096;

const uptr kMaxThreadStackSize = 1 << 30;  // 1Gb

static const uptr kErrorMessageBufferSize = 1 << 16;

// Denotes fake PC values that come from JIT/JAVA/etc.
// For such PC values __tsan_symbolize_external_ex() will be called.
const u64 kExternalPCBit = 1ULL << 60;

extern const char *SanitizerToolName;  // Can be changed by the tool.

extern atomic_uint32_t current_verbosity;
INLINE void SetVerbosity(int verbosity) {
  atomic_store(&current_verbosity, verbosity, memory_order_relaxed);
}
INLINE int Verbosity() {
  return atomic_load(&current_verbosity, memory_order_relaxed);
}

#if SANITIZER_ANDROID
INLINE uptr GetPageSize() {
// Android post-M sysconf(_SC_PAGESIZE) crashes if called from .preinit_array.
  return 4096;
}
INLINE uptr GetPageSizeCached() {
  return 4096;
}
#else
uptr GetPageSize();
extern uptr PageSizeCached;
INLINE uptr GetPageSizeCached() {
  if (!PageSizeCached)
    PageSizeCached = GetPageSize();
  return PageSizeCached;
}
#endif
uptr GetMmapGranularity();
uptr GetMaxVirtualAddress();
uptr GetMaxUserVirtualAddress();
// Threads
tid_t GetTid();
int TgKill(pid_t pid, tid_t tid, int sig);
uptr GetThreadSelf();
void GetThreadStackTopAndBottom(bool at_initialization, uptr *stack_top,
                                uptr *stack_bottom);
void GetThreadStackAndTls(bool main, uptr *stk_addr, uptr *stk_size,
                          uptr *tls_addr, uptr *tls_size);

// Memory management
void *MmapOrDie(uptr size, const char *mem_type, bool raw_report = false);
INLINE void *MmapOrDieQuietly(uptr size, const char *mem_type) {
  return MmapOrDie(size, mem_type, /*raw_report*/ true);
}
void UnmapOrDie(void *addr, uptr size);
// Behaves just like MmapOrDie, but tolerates out of memory condition, in that
// case returns nullptr.
void *MmapOrDieOnFatalError(uptr size, const char *mem_type);
bool MmapFixedNoReserve(uptr fixed_addr, uptr size, const char *name = nullptr)
     WARN_UNUSED_RESULT;
bool MmapFixedSuperNoReserve(uptr fixed_addr, uptr size,
                             const char *name = nullptr) WARN_UNUSED_RESULT;
void *MmapNoReserveOrDie(uptr size, const char *mem_type);
void *MmapFixedOrDie(uptr fixed_addr, uptr size, const char *name = nullptr);
// Behaves just like MmapFixedOrDie, but tolerates out of memory condition, in
// that case returns nullptr.
void *MmapFixedOrDieOnFatalError(uptr fixed_addr, uptr size,
                                 const char *name = nullptr);
void *MmapFixedNoAccess(uptr fixed_addr, uptr size, const char *name = nullptr);
void *MmapNoAccess(uptr size);
// Map aligned chunk of address space; size and alignment are powers of two.
// Dies on all but out of memory errors, in the latter case returns nullptr.
void *MmapAlignedOrDieOnFatalError(uptr size, uptr alignment,
                                   const char *mem_type);
// Disallow access to a memory range.  Use MmapFixedNoAccess to allocate an
// unaccessible memory.
bool MprotectNoAccess(uptr addr, uptr size);
bool MprotectReadOnly(uptr addr, uptr size);

void MprotectMallocZones(void *addr, int prot);

// Find an available address space.
uptr FindAvailableMemoryRange(uptr size, uptr alignment, uptr left_padding,
                              uptr *largest_gap_found, uptr *max_occupied_addr);

// Used to check if we can map shadow memory to a fixed location.
bool MemoryRangeIsAvailable(uptr range_start, uptr range_end);
// Releases memory pages entirely within the [beg, end] address range. Noop if
// the provided range does not contain at least one entire page.
void ReleaseMemoryPagesToOS(uptr beg, uptr end);
void IncreaseTotalMmap(uptr size);
void DecreaseTotalMmap(uptr size);
uptr GetRSS();
void SetShadowRegionHugePageMode(uptr addr, uptr length);
bool DontDumpShadowMemory(uptr addr, uptr length);
// Check if the built VMA size matches the runtime one.
void CheckVMASize();
void RunMallocHooks(const void *ptr, uptr size);
void RunFreeHooks(const void *ptr);

class ReservedAddressRange {
 public:
  uptr Init(uptr size, const char *name = nullptr, uptr fixed_addr = 0);
  uptr Map(uptr fixed_addr, uptr size, const char *name = nullptr);
  uptr MapOrDie(uptr fixed_addr, uptr size, const char *name = nullptr);
  void Unmap(uptr addr, uptr size);
  void *base() const { return base_; }
  uptr size() const { return size_; }

 private:
  void* base_;
  uptr size_;
  const char* name_;
  uptr os_handle_;
};

typedef void (*fill_profile_f)(uptr start, uptr rss, bool file,
                               /*out*/uptr *stats, uptr stats_size);

// Parse the contents of /proc/self/smaps and generate a memory profile.
// |cb| is a tool-specific callback that fills the |stats| array containing
// |stats_size| elements.
void GetMemoryProfile(fill_profile_f cb, uptr *stats, uptr stats_size);

// Simple low-level (mmap-based) allocator for internal use. Doesn't have
// constructor, so all instances of LowLevelAllocator should be
// linker initialized.
class LowLevelAllocator {
 public:
  // Requires an external lock.
  void *Allocate(uptr size);
 private:
  char *allocated_end_;
  char *allocated_current_;
};
// Set the min alignment of LowLevelAllocator to at least alignment.
void SetLowLevelAllocateMinAlignment(uptr alignment);
typedef void (*LowLevelAllocateCallback)(uptr ptr, uptr size);
// Allows to register tool-specific callbacks for LowLevelAllocator.
// Passing NULL removes the callback.
void SetLowLevelAllocateCallback(LowLevelAllocateCallback callback);

// IO
void CatastrophicErrorWrite(const char *buffer, uptr length);
void RawWrite(const char *buffer);
bool ColorizeReports();
void RemoveANSIEscapeSequencesFromString(char *buffer);
void Printf(const char *format, ...);
void Report(const char *format, ...);
void SetPrintfAndReportCallback(void (*callback)(const char *));
#define VReport(level, ...)                                              \
  do {                                                                   \
    if ((uptr)Verbosity() >= (level)) Report(__VA_ARGS__); \
  } while (0)
#define VPrintf(level, ...)                                              \
  do {                                                                   \
    if ((uptr)Verbosity() >= (level)) Printf(__VA_ARGS__); \
  } while (0)

// Lock sanitizer error reporting and protects against nested errors.
class ScopedErrorReportLock {
 public:
  ScopedErrorReportLock();
  ~ScopedErrorReportLock();

  static void CheckLocked();
};

extern uptr stoptheworld_tracer_pid;
extern uptr stoptheworld_tracer_ppid;

bool IsAccessibleMemoryRange(uptr beg, uptr size);

// Error report formatting.
const char *StripPathPrefix(const char *filepath,
                            const char *strip_file_prefix);
// Strip the directories from the module name.
const char *StripModuleName(const char *module);

// OS
uptr ReadBinaryName(/*out*/char *buf, uptr buf_len);
uptr ReadBinaryNameCached(/*out*/char *buf, uptr buf_len);
uptr ReadLongProcessName(/*out*/ char *buf, uptr buf_len);
const char *GetProcessName();
void UpdateProcessName();
void CacheBinaryName();
void DisableCoreDumperIfNecessary();
void DumpProcessMap();
void PrintModuleMap();
const char *GetEnv(const char *name);
bool SetEnv(const char *name, const char *value);

u32 GetUid();
void ReExec();
void CheckASLR();
void CheckMPROTECT();
char **GetArgv();
char **GetEnviron();
void PrintCmdline();
bool StackSizeIsUnlimited();
void SetStackSizeLimitInBytes(uptr limit);
bool AddressSpaceIsUnlimited();
void SetAddressSpaceUnlimited();
void AdjustStackSize(void *attr);
void PlatformPrepareForSandboxing(__sanitizer_sandbox_arguments *args);
void SetSandboxingCallback(void (*f)());

void InitializeCoverage(bool enabled, const char *coverage_dir);

void InitTlsSize();
uptr GetTlsSize();

// Other
void SleepForSeconds(int seconds);
void SleepForMillis(int millis);
u64 NanoTime();
u64 MonotonicNanoTime();
int Atexit(void (*function)(void));
bool TemplateMatch(const char *templ, const char *str);

// Exit
void NORETURN Abort();
void NORETURN Die();
void NORETURN
CheckFailed(const char *file, int line, const char *cond, u64 v1, u64 v2);
void NORETURN ReportMmapFailureAndDie(uptr size, const char *mem_type,
                                      const char *mmap_type, error_t err,
                                      bool raw_report = false);

// Specific tools may override behavior of "Die" and "CheckFailed" functions
// to do tool-specific job.
typedef void (*DieCallbackType)(void);

// It's possible to add several callbacks that would be run when "Die" is
// called. The callbacks will be run in the opposite order. The tools are
// strongly recommended to setup all callbacks during initialization, when there
// is only a single thread.
bool AddDieCallback(DieCallbackType callback);
bool RemoveDieCallback(DieCallbackType callback);

void SetUserDieCallback(DieCallbackType callback);

typedef void (*CheckFailedCallbackType)(const char *, int, const char *,
                                       u64, u64);
void SetCheckFailedCallback(CheckFailedCallbackType callback);

// Callback will be called if soft_rss_limit_mb is given and the limit is
// exceeded (exceeded==true) or if rss went down below the limit
// (exceeded==false).
// The callback should be registered once at the tool init time.
void SetSoftRssLimitExceededCallback(void (*Callback)(bool exceeded));

// Functions related to signal handling.
typedef void (*SignalHandlerType)(int, void *, void *);
HandleSignalMode GetHandleSignalMode(int signum);
void InstallDeadlySignalHandlers(SignalHandlerType handler);

// Signal reporting.
// Each sanitizer uses slightly different implementation of stack unwinding.
typedef void (*UnwindSignalStackCallbackType)(const SignalContext &sig,
                                              const void *callback_context,
                                              BufferedStackTrace *stack);
// Print deadly signal report and die.
void HandleDeadlySignal(void *siginfo, void *context, u32 tid,
                        UnwindSignalStackCallbackType unwind,
                        const void *unwind_context);

// Part of HandleDeadlySignal, exposed for asan.
void StartReportDeadlySignal();
// Part of HandleDeadlySignal, exposed for asan.
void ReportDeadlySignal(const SignalContext &sig, u32 tid,
                        UnwindSignalStackCallbackType unwind,
                        const void *unwind_context);

// Alternative signal stack (POSIX-only).
void SetAlternateSignalStack();
void UnsetAlternateSignalStack();

// We don't want a summary too long.
const int kMaxSummaryLength = 1024;
// Construct a one-line string:
//   SUMMARY: SanitizerToolName: error_message
// and pass it to __sanitizer_report_error_summary.
// If alt_tool_name is provided, it's used in place of SanitizerToolName.
void ReportErrorSummary(const char *error_message,
                        const char *alt_tool_name = nullptr);
// Same as above, but construct error_message as:
//   error_type file:line[:column][ function]
void ReportErrorSummary(const char *error_type, const AddressInfo &info,
                        const char *alt_tool_name = nullptr);
// Same as above, but obtains AddressInfo by symbolizing top stack trace frame.
void ReportErrorSummary(const char *error_type, const StackTrace *trace,
                        const char *alt_tool_name = nullptr);

void ReportMmapWriteExec(int prot);

// Math
#if SANITIZER_WINDOWS && !defined(__clang__) && !defined(__GNUC__)
extern "C" {
unsigned char _BitScanForward(unsigned long *index, unsigned long mask);
unsigned char _BitScanReverse(unsigned long *index, unsigned long mask);
#if defined(_WIN64)
unsigned char _BitScanForward64(unsigned long *index, unsigned __int64 mask);
unsigned char _BitScanReverse64(unsigned long *index, unsigned __int64 mask);
#endif
}
#endif

INLINE uptr MostSignificantSetBitIndex(uptr x) {
  CHECK_NE(x, 0U);
  unsigned long up;
#if !SANITIZER_WINDOWS || defined(__clang__) || defined(__GNUC__)
# ifdef _WIN64
  up = SANITIZER_WORDSIZE - 1 - __builtin_clzll(x);
# else
  up = SANITIZER_WORDSIZE - 1 - __builtin_clzl(x);
# endif
#elif defined(_WIN64)
  _BitScanReverse64(&up, x);
#else
  _BitScanReverse(&up, x);
#endif
  return up;
}

INLINE uptr LeastSignificantSetBitIndex(uptr x) {
  CHECK_NE(x, 0U);
  unsigned long up;
#if !SANITIZER_WINDOWS || defined(__clang__) || defined(__GNUC__)
# ifdef _WIN64
  up = __builtin_ctzll(x);
# else
  up = __builtin_ctzl(x);
# endif
#elif defined(_WIN64)
  _BitScanForward64(&up, x);
#else
  _BitScanForward(&up, x);
#endif
  return up;
}

INLINE bool IsPowerOfTwo(uptr x) {
  return (x & (x - 1)) == 0;
}

INLINE uptr RoundUpToPowerOfTwo(uptr size) {
  CHECK(size);
  if (IsPowerOfTwo(size)) return size;

  uptr up = MostSignificantSetBitIndex(size);
  CHECK_LT(size, (1ULL << (up + 1)));
  CHECK_GT(size, (1ULL << up));
  return 1ULL << (up + 1);
}

INLINE uptr RoundUpTo(uptr size, uptr boundary) {
  RAW_CHECK(IsPowerOfTwo(boundary));
  return (size + boundary - 1) & ~(boundary - 1);
}

INLINE uptr RoundDownTo(uptr x, uptr boundary) {
  return x & ~(boundary - 1);
}

INLINE bool IsAligned(uptr a, uptr alignment) {
  return (a & (alignment - 1)) == 0;
}

INLINE uptr Log2(uptr x) {
  CHECK(IsPowerOfTwo(x));
  return LeastSignificantSetBitIndex(x);
}

// Don't use std::min, std::max or std::swap, to minimize dependency
// on libstdc++.
template<class T> T Min(T a, T b) { return a < b ? a : b; }
template<class T> T Max(T a, T b) { return a > b ? a : b; }
template<class T> void Swap(T& a, T& b) {
  T tmp = a;
  a = b;
  b = tmp;
}

// Char handling
INLINE bool IsSpace(int c) {
  return (c == ' ') || (c == '\n') || (c == '\t') ||
         (c == '\f') || (c == '\r') || (c == '\v');
}
INLINE bool IsDigit(int c) {
  return (c >= '0') && (c <= '9');
}
INLINE int ToLower(int c) {
  return (c >= 'A' && c <= 'Z') ? (c + 'a' - 'A') : c;
}

// A low-level vector based on mmap. May incur a significant memory overhead for
// small vectors.
// WARNING: The current implementation supports only POD types.
template<typename T>
class InternalMmapVectorNoCtor {
 public:
  void Initialize(uptr initial_capacity) {
    capacity_bytes_ = 0;
    size_ = 0;
    data_ = 0;
    reserve(initial_capacity);
  }
  void Destroy() { UnmapOrDie(data_, capacity_bytes_); }
  T &operator[](uptr i) {
    CHECK_LT(i, size_);
    return data_[i];
  }
  const T &operator[](uptr i) const {
    CHECK_LT(i, size_);
    return data_[i];
  }
  void push_back(const T &element) {
    CHECK_LE(size_, capacity());
    if (size_ == capacity()) {
      uptr new_capacity = RoundUpToPowerOfTwo(size_ + 1);
      Realloc(new_capacity);
    }
    internal_memcpy(&data_[size_++], &element, sizeof(T));
  }
  T &back() {
    CHECK_GT(size_, 0);
    return data_[size_ - 1];
  }
  void pop_back() {
    CHECK_GT(size_, 0);
    size_--;
  }
  uptr size() const {
    return size_;
  }
  const T *data() const {
    return data_;
  }
  T *data() {
    return data_;
  }
  uptr capacity() const { return capacity_bytes_ / sizeof(T); }
  void reserve(uptr new_size) {
    // Never downsize internal buffer.
    if (new_size > capacity())
      Realloc(new_size);
  }
  void resize(uptr new_size) {
    if (new_size > size_) {
      reserve(new_size);
      internal_memset(&data_[size_], 0, sizeof(T) * (new_size - size_));
    }
    size_ = new_size;
  }

  void clear() { size_ = 0; }
  bool empty() const { return size() == 0; }

  const T *begin() const {
    return data();
  }
  T *begin() {
    return data();
  }
  const T *end() const {
    return data() + size();
  }
  T *end() {
    return data() + size();
  }

  void swap(InternalMmapVectorNoCtor &other) {
    Swap(data_, other.data_);
    Swap(capacity_bytes_, other.capacity_bytes_);
    Swap(size_, other.size_);
  }

 private:
  void Realloc(uptr new_capacity) {
    CHECK_GT(new_capacity, 0);
    CHECK_LE(size_, new_capacity);
    uptr new_capacity_bytes =
        RoundUpTo(new_capacity * sizeof(T), GetPageSizeCached());
    T *new_data = (T *)MmapOrDie(new_capacity_bytes, "InternalMmapVector");
    internal_memcpy(new_data, data_, size_ * sizeof(T));
    UnmapOrDie(data_, capacity_bytes_);
    data_ = new_data;
    capacity_bytes_ = new_capacity_bytes;
  }

  T *data_;
  uptr capacity_bytes_;
  uptr size_;
};

template <typename T>
bool operator==(const InternalMmapVectorNoCtor<T> &lhs,
                const InternalMmapVectorNoCtor<T> &rhs) {
  if (lhs.size() != rhs.size()) return false;
  return internal_memcmp(lhs.data(), rhs.data(), lhs.size() * sizeof(T)) == 0;
}

template <typename T>
bool operator!=(const InternalMmapVectorNoCtor<T> &lhs,
                const InternalMmapVectorNoCtor<T> &rhs) {
  return !(lhs == rhs);
}

template<typename T>
class InternalMmapVector : public InternalMmapVectorNoCtor<T> {
 public:
  InternalMmapVector() { InternalMmapVectorNoCtor<T>::Initialize(0); }
  explicit InternalMmapVector(uptr cnt) {
    InternalMmapVectorNoCtor<T>::Initialize(cnt);
    this->resize(cnt);
  }
  ~InternalMmapVector() { InternalMmapVectorNoCtor<T>::Destroy(); }
  // Disallow copies and moves.
  InternalMmapVector(const InternalMmapVector &) = delete;
  InternalMmapVector &operator=(const InternalMmapVector &) = delete;
  InternalMmapVector(InternalMmapVector &&) = delete;
  InternalMmapVector &operator=(InternalMmapVector &&) = delete;
};

class InternalScopedString : public InternalMmapVector<char> {
 public:
  explicit InternalScopedString(uptr max_length)
      : InternalMmapVector<char>(max_length), length_(0) {
    (*this)[0] = '\0';
  }
  uptr length() { return length_; }
  void clear() {
    (*this)[0] = '\0';
    length_ = 0;
  }
  void append(const char *format, ...);

 private:
  uptr length_;
};

template <class T>
struct CompareLess {
  bool operator()(const T &a, const T &b) const { return a < b; }
};

// HeapSort for arrays and InternalMmapVector.
template <class T, class Compare = CompareLess<T>>
void Sort(T *v, uptr size, Compare comp = {}) {
  if (size < 2)
    return;
  // Stage 1: insert elements to the heap.
  for (uptr i = 1; i < size; i++) {
    uptr j, p;
    for (j = i; j > 0; j = p) {
      p = (j - 1) / 2;
      if (comp(v[p], v[j]))
        Swap(v[j], v[p]);
      else
        break;
    }
  }
  // Stage 2: swap largest element with the last one,
  // and sink the new top.
  for (uptr i = size - 1; i > 0; i--) {
    Swap(v[0], v[i]);
    uptr j, max_ind;
    for (j = 0; j < i; j = max_ind) {
      uptr left = 2 * j + 1;
      uptr right = 2 * j + 2;
      max_ind = j;
      if (left < i && comp(v[max_ind], v[left]))
        max_ind = left;
      if (right < i && comp(v[max_ind], v[right]))
        max_ind = right;
      if (max_ind != j)
        Swap(v[j], v[max_ind]);
      else
        break;
    }
  }
}

// Works like std::lower_bound: finds the first element that is not less
// than the val.
template <class Container, class Value, class Compare>
uptr InternalLowerBound(const Container &v, uptr first, uptr last,
                        const Value &val, Compare comp) {
  while (last > first) {
    uptr mid = (first + last) / 2;
    if (comp(v[mid], val))
      first = mid + 1;
    else
      last = mid;
  }
  return first;
}

enum ModuleArch {
  kModuleArchUnknown,
  kModuleArchI386,
  kModuleArchX86_64,
  kModuleArchX86_64H,
  kModuleArchARMV6,
  kModuleArchARMV7,
  kModuleArchARMV7S,
  kModuleArchARMV7K,
  kModuleArchARM64
};

// Opens the file 'file_name" and reads up to 'max_len' bytes.
// The resulting buffer is mmaped and stored in '*buff'.
// Returns true if file was successfully opened and read.
bool ReadFileToVector(const char *file_name,
                      InternalMmapVectorNoCtor<char> *buff,
                      uptr max_len = 1 << 26, error_t *errno_p = nullptr);

// Opens the file 'file_name" and reads up to 'max_len' bytes.
// This function is less I/O efficient than ReadFileToVector as it may reread
// file multiple times to avoid mmap during read attempts. It's used to read
// procmap, so short reads with mmap in between can produce inconsistent result.
// The resulting buffer is mmaped and stored in '*buff'.
// The size of the mmaped region is stored in '*buff_size'.
// The total number of read bytes is stored in '*read_len'.
// Returns true if file was successfully opened and read.
bool ReadFileToBuffer(const char *file_name, char **buff, uptr *buff_size,
                      uptr *read_len, uptr max_len = 1 << 26,
                      error_t *errno_p = nullptr);

// When adding a new architecture, don't forget to also update
// script/asan_symbolize.py and sanitizer_symbolizer_libcdep.cpp.
inline const char *ModuleArchToString(ModuleArch arch) {
  switch (arch) {
    case kModuleArchUnknown:
      return "";
    case kModuleArchI386:
      return "i386";
    case kModuleArchX86_64:
      return "x86_64";
    case kModuleArchX86_64H:
      return "x86_64h";
    case kModuleArchARMV6:
      return "armv6";
    case kModuleArchARMV7:
      return "armv7";
    case kModuleArchARMV7S:
      return "armv7s";
    case kModuleArchARMV7K:
      return "armv7k";
    case kModuleArchARM64:
      return "arm64";
  }
  CHECK(0 && "Invalid module arch");
  return "";
}

const uptr kModuleUUIDSize = 16;
const uptr kMaxSegName = 16;

// Represents a binary loaded into virtual memory (e.g. this can be an
// executable or a shared object).
class LoadedModule {
 public:
  LoadedModule()
      : full_name_(nullptr),
        base_address_(0),
        max_executable_address_(0),
        arch_(kModuleArchUnknown),
        instrumented_(false) {
    internal_memset(uuid_, 0, kModuleUUIDSize);
    ranges_.clear();
  }
  void set(const char *module_name, uptr base_address);
  void set(const char *module_name, uptr base_address, ModuleArch arch,
           u8 uuid[kModuleUUIDSize], bool instrumented);
  void clear();
  void addAddressRange(uptr beg, uptr end, bool executable, bool writable,
                       const char *name = nullptr);
  bool containsAddress(uptr address) const;

  const char *full_name() const { return full_name_; }
  uptr base_address() const { return base_address_; }
  uptr max_executable_address() const { return max_executable_address_; }
  ModuleArch arch() const { return arch_; }
  const u8 *uuid() const { return uuid_; }
  bool instrumented() const { return instrumented_; }

  struct AddressRange {
    AddressRange *next;
    uptr beg;
    uptr end;
    bool executable;
    bool writable;
    char name[kMaxSegName];

    AddressRange(uptr beg, uptr end, bool executable, bool writable,
                 const char *name)
        : next(nullptr),
          beg(beg),
          end(end),
          executable(executable),
          writable(writable) {
      internal_strncpy(this->name, (name ? name : ""), ARRAY_SIZE(this->name));
    }
  };

  const IntrusiveList<AddressRange> &ranges() const { return ranges_; }

 private:
  char *full_name_;  // Owned.
  uptr base_address_;
  uptr max_executable_address_;
  ModuleArch arch_;
  u8 uuid_[kModuleUUIDSize];
  bool instrumented_;
  IntrusiveList<AddressRange> ranges_;
};

// List of LoadedModules. OS-dependent implementation is responsible for
// filling this information.
class ListOfModules {
 public:
  ListOfModules() : initialized(false) {}
  ~ListOfModules() { clear(); }
  void init();
  void fallbackInit();  // Uses fallback init if available, otherwise clears
  const LoadedModule *begin() const { return modules_.begin(); }
  LoadedModule *begin() { return modules_.begin(); }
  const LoadedModule *end() const { return modules_.end(); }
  LoadedModule *end() { return modules_.end(); }
  uptr size() const { return modules_.size(); }
  const LoadedModule &operator[](uptr i) const {
    CHECK_LT(i, modules_.size());
    return modules_[i];
  }

 private:
  void clear() {
    for (auto &module : modules_) module.clear();
    modules_.clear();
  }
  void clearOrInit() {
    initialized ? clear() : modules_.Initialize(kInitialCapacity);
    initialized = true;
  }

  InternalMmapVectorNoCtor<LoadedModule> modules_;
  // We rarely have more than 16K loaded modules.
  static const uptr kInitialCapacity = 1 << 14;
  bool initialized;
};

// Callback type for iterating over a set of memory ranges.
typedef void (*RangeIteratorCallback)(uptr begin, uptr end, void *arg);

enum AndroidApiLevel {
  ANDROID_NOT_ANDROID = 0,
  ANDROID_KITKAT = 19,
  ANDROID_LOLLIPOP_MR1 = 22,
  ANDROID_POST_LOLLIPOP = 23
};

void WriteToSyslog(const char *buffer);

#if defined(SANITIZER_WINDOWS) && defined(_MSC_VER) && !defined(__clang__)
#define SANITIZER_WIN_TRACE 1
#else
#define SANITIZER_WIN_TRACE 0
#endif

#if SANITIZER_MAC || SANITIZER_WIN_TRACE
void LogFullErrorReport(const char *buffer);
#else
INLINE void LogFullErrorReport(const char *buffer) {}
#endif

#if SANITIZER_LINUX || SANITIZER_MAC
void WriteOneLineToSyslog(const char *s);
void LogMessageOnPrintf(const char *str);
#else
INLINE void WriteOneLineToSyslog(const char *s) {}
INLINE void LogMessageOnPrintf(const char *str) {}
#endif

#if SANITIZER_LINUX || SANITIZER_WIN_TRACE
// Initialize Android logging. Any writes before this are silently lost.
void AndroidLogInit();
void SetAbortMessage(const char *);
#else
INLINE void AndroidLogInit() {}
// FIXME: MacOS implementation could use CRSetCrashLogMessage.
INLINE void SetAbortMessage(const char *) {}
#endif

#if SANITIZER_ANDROID
void SanitizerInitializeUnwinder();
AndroidApiLevel AndroidGetApiLevel();
#else
INLINE void AndroidLogWrite(const char *buffer_unused) {}
INLINE void SanitizerInitializeUnwinder() {}
INLINE AndroidApiLevel AndroidGetApiLevel() { return ANDROID_NOT_ANDROID; }
#endif

INLINE uptr GetPthreadDestructorIterations() {
#if SANITIZER_ANDROID
  return (AndroidGetApiLevel() == ANDROID_LOLLIPOP_MR1) ? 8 : 4;
#elif SANITIZER_POSIX
  return 4;
#else
// Unused on Windows.
  return 0;
#endif
}

void *internal_start_thread(void(*func)(void*), void *arg);
void internal_join_thread(void *th);
void MaybeStartBackgroudThread();

// Make the compiler think that something is going on there.
// Use this inside a loop that looks like memset/memcpy/etc to prevent the
// compiler from recognising it and turning it into an actual call to
// memset/memcpy/etc.
static inline void SanitizerBreakOptimization(void *arg) {
#if defined(_MSC_VER) && !defined(__clang__)
  _ReadWriteBarrier();
#else
  __asm__ __volatile__("" : : "r" (arg) : "memory");
#endif
}

struct SignalContext {
  void *siginfo;
  void *context;
  uptr addr;
  uptr pc;
  uptr sp;
  uptr bp;
  bool is_memory_access;
  enum WriteFlag { UNKNOWN, READ, WRITE } write_flag;

  // In some cases the kernel cannot provide the true faulting address; `addr`
  // will be zero then.  This field allows to distinguish between these cases
  // and dereferences of null.
  bool is_true_faulting_addr;

  // VS2013 doesn't implement unrestricted unions, so we need a trivial default
  // constructor
  SignalContext() = default;

  // Creates signal context in a platform-specific manner.
  // SignalContext is going to keep pointers to siginfo and context without
  // owning them.
  SignalContext(void *siginfo, void *context)
      : siginfo(siginfo),
        context(context),
        addr(GetAddress()),
        is_memory_access(IsMemoryAccess()),
        write_flag(GetWriteFlag()),
        is_true_faulting_addr(IsTrueFaultingAddress()) {
    InitPcSpBp();
  }

  static void DumpAllRegisters(void *context);

  // Type of signal e.g. SIGSEGV or EXCEPTION_ACCESS_VIOLATION.
  int GetType() const;

  // String description of the signal.
  const char *Describe() const;

  // Returns true if signal is stack overflow.
  bool IsStackOverflow() const;

 private:
  // Platform specific initialization.
  void InitPcSpBp();
  uptr GetAddress() const;
  WriteFlag GetWriteFlag() const;
  bool IsMemoryAccess() const;
  bool IsTrueFaultingAddress() const;
};

void InitializePlatformEarly();
void MaybeReexec();

template <typename Fn>
class RunOnDestruction {
 public:
  explicit RunOnDestruction(Fn fn) : fn_(fn) {}
  ~RunOnDestruction() { fn_(); }

 private:
  Fn fn_;
};

// A simple scope guard. Usage:
// auto cleanup = at_scope_exit([]{ do_cleanup; });
template <typename Fn>
RunOnDestruction<Fn> at_scope_exit(Fn fn) {
  return RunOnDestruction<Fn>(fn);
}

// Linux on 64-bit s390 had a nasty bug that crashes the whole machine
// if a process uses virtual memory over 4TB (as many sanitizers like
// to do).  This function will abort the process if running on a kernel
// that looks vulnerable.
#if SANITIZER_LINUX && SANITIZER_S390_64
void AvoidCVE_2016_2143();
#else
INLINE void AvoidCVE_2016_2143() {}
#endif

struct StackDepotStats {
  uptr n_uniq_ids;
  uptr allocated;
};

// The default value for allocator_release_to_os_interval_ms common flag to
// indicate that sanitizer allocator should not attempt to release memory to OS.
const s32 kReleaseToOSIntervalNever = -1;

void CheckNoDeepBind(const char *filename, int flag);

// Returns the requested amount of random data (up to 256 bytes) that can then
// be used to seed a PRNG. Defaults to blocking like the underlying syscall.
bool GetRandom(void *buffer, uptr length, bool blocking = true);

// Returns the number of logical processors on the system.
u32 GetNumberOfCPUs();
extern u32 NumberOfCPUsCached;
INLINE u32 GetNumberOfCPUsCached() {
  if (!NumberOfCPUsCached)
    NumberOfCPUsCached = GetNumberOfCPUs();
  return NumberOfCPUsCached;
}

}  // namespace __sanitizer

inline void *operator new(__sanitizer::operator_new_size_type size,
                          __sanitizer::LowLevelAllocator &alloc) {  // NOLINT
  return alloc.Allocate(size);
}

#endif  // SANITIZER_COMMON_H