sanitizer_fuchsia.cpp 16.5 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527
//===-- sanitizer_fuchsia.cpp ---------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file is shared between AddressSanitizer and other sanitizer
// run-time libraries and implements Fuchsia-specific functions from
// sanitizer_common.h.
//===----------------------------------------------------------------------===//

#include "sanitizer_fuchsia.h"
#if SANITIZER_FUCHSIA

#include "sanitizer_common.h"
#include "sanitizer_libc.h"
#include "sanitizer_mutex.h"

#include <limits.h>
#include <pthread.h>
#include <stdlib.h>
#include <unistd.h>
#include <zircon/errors.h>
#include <zircon/process.h>
#include <zircon/syscalls.h>

namespace __sanitizer {

void NORETURN internal__exit(int exitcode) { _zx_process_exit(exitcode); }

uptr internal_sched_yield() {
  zx_status_t status = _zx_nanosleep(0);
  CHECK_EQ(status, ZX_OK);
  return 0;  // Why doesn't this return void?
}

static void internal_nanosleep(zx_time_t ns) {
  zx_status_t status = _zx_nanosleep(_zx_deadline_after(ns));
  CHECK_EQ(status, ZX_OK);
}

unsigned int internal_sleep(unsigned int seconds) {
  internal_nanosleep(ZX_SEC(seconds));
  return 0;
}

u64 NanoTime() {
  zx_time_t time;
  zx_status_t status = _zx_clock_get(ZX_CLOCK_UTC, &time);
  CHECK_EQ(status, ZX_OK);
  return time;
}

u64 MonotonicNanoTime() { return _zx_clock_get_monotonic(); }

uptr internal_getpid() {
  zx_info_handle_basic_t info;
  zx_status_t status =
      _zx_object_get_info(_zx_process_self(), ZX_INFO_HANDLE_BASIC, &info,
                          sizeof(info), NULL, NULL);
  CHECK_EQ(status, ZX_OK);
  uptr pid = static_cast<uptr>(info.koid);
  CHECK_EQ(pid, info.koid);
  return pid;
}

uptr GetThreadSelf() { return reinterpret_cast<uptr>(thrd_current()); }

tid_t GetTid() { return GetThreadSelf(); }

void Abort() { abort(); }

int Atexit(void (*function)(void)) { return atexit(function); }

void SleepForSeconds(int seconds) { internal_sleep(seconds); }

void SleepForMillis(int millis) { internal_nanosleep(ZX_MSEC(millis)); }

void GetThreadStackTopAndBottom(bool, uptr *stack_top, uptr *stack_bottom) {
  pthread_attr_t attr;
  CHECK_EQ(pthread_getattr_np(pthread_self(), &attr), 0);
  void *base;
  size_t size;
  CHECK_EQ(pthread_attr_getstack(&attr, &base, &size), 0);
  CHECK_EQ(pthread_attr_destroy(&attr), 0);

  *stack_bottom = reinterpret_cast<uptr>(base);
  *stack_top = *stack_bottom + size;
}

void InitializePlatformEarly() {}
void MaybeReexec() {}
void CheckASLR() {}
void CheckMPROTECT() {}
void PlatformPrepareForSandboxing(__sanitizer_sandbox_arguments *args) {}
void DisableCoreDumperIfNecessary() {}
void InstallDeadlySignalHandlers(SignalHandlerType handler) {}
void SetAlternateSignalStack() {}
void UnsetAlternateSignalStack() {}
void InitTlsSize() {}

void PrintModuleMap() {}

bool SignalContext::IsStackOverflow() const { return false; }
void SignalContext::DumpAllRegisters(void *context) { UNIMPLEMENTED(); }
const char *SignalContext::Describe() const { UNIMPLEMENTED(); }

enum MutexState : int { MtxUnlocked = 0, MtxLocked = 1, MtxSleeping = 2 };

BlockingMutex::BlockingMutex() {
  // NOTE!  It's important that this use internal_memset, because plain
  // memset might be intercepted (e.g., actually be __asan_memset).
  // Defining this so the compiler initializes each field, e.g.:
  //   BlockingMutex::BlockingMutex() : BlockingMutex(LINKER_INITIALIZED) {}
  // might result in the compiler generating a call to memset, which would
  // have the same problem.
  internal_memset(this, 0, sizeof(*this));
}

void BlockingMutex::Lock() {
  CHECK_EQ(owner_, 0);
  atomic_uint32_t *m = reinterpret_cast<atomic_uint32_t *>(&opaque_storage_);
  if (atomic_exchange(m, MtxLocked, memory_order_acquire) == MtxUnlocked)
    return;
  while (atomic_exchange(m, MtxSleeping, memory_order_acquire) != MtxUnlocked) {
    zx_status_t status =
        _zx_futex_wait(reinterpret_cast<zx_futex_t *>(m), MtxSleeping,
                       ZX_HANDLE_INVALID, ZX_TIME_INFINITE);
    if (status != ZX_ERR_BAD_STATE)  // Normal race.
      CHECK_EQ(status, ZX_OK);
  }
}

void BlockingMutex::Unlock() {
  atomic_uint32_t *m = reinterpret_cast<atomic_uint32_t *>(&opaque_storage_);
  u32 v = atomic_exchange(m, MtxUnlocked, memory_order_release);
  CHECK_NE(v, MtxUnlocked);
  if (v == MtxSleeping) {
    zx_status_t status = _zx_futex_wake(reinterpret_cast<zx_futex_t *>(m), 1);
    CHECK_EQ(status, ZX_OK);
  }
}

void BlockingMutex::CheckLocked() {
  atomic_uint32_t *m = reinterpret_cast<atomic_uint32_t *>(&opaque_storage_);
  CHECK_NE(MtxUnlocked, atomic_load(m, memory_order_relaxed));
}

uptr GetPageSize() { return PAGE_SIZE; }

uptr GetMmapGranularity() { return PAGE_SIZE; }

sanitizer_shadow_bounds_t ShadowBounds;

uptr GetMaxUserVirtualAddress() {
  ShadowBounds = __sanitizer_shadow_bounds();
  return ShadowBounds.memory_limit - 1;
}

uptr GetMaxVirtualAddress() { return GetMaxUserVirtualAddress(); }

static void *DoAnonymousMmapOrDie(uptr size, const char *mem_type,
                                  bool raw_report, bool die_for_nomem) {
  size = RoundUpTo(size, PAGE_SIZE);

  zx_handle_t vmo;
  zx_status_t status = _zx_vmo_create(size, 0, &vmo);
  if (status != ZX_OK) {
    if (status != ZX_ERR_NO_MEMORY || die_for_nomem)
      ReportMmapFailureAndDie(size, mem_type, "zx_vmo_create", status,
                              raw_report);
    return nullptr;
  }
  _zx_object_set_property(vmo, ZX_PROP_NAME, mem_type,
                          internal_strlen(mem_type));

  // TODO(mcgrathr): Maybe allocate a VMAR for all sanitizer heap and use that?
  uintptr_t addr;
  status =
      _zx_vmar_map(_zx_vmar_root_self(), ZX_VM_PERM_READ | ZX_VM_PERM_WRITE, 0,
                   vmo, 0, size, &addr);
  _zx_handle_close(vmo);

  if (status != ZX_OK) {
    if (status != ZX_ERR_NO_MEMORY || die_for_nomem)
      ReportMmapFailureAndDie(size, mem_type, "zx_vmar_map", status,
                              raw_report);
    return nullptr;
  }

  IncreaseTotalMmap(size);

  return reinterpret_cast<void *>(addr);
}

void *MmapOrDie(uptr size, const char *mem_type, bool raw_report) {
  return DoAnonymousMmapOrDie(size, mem_type, raw_report, true);
}

void *MmapNoReserveOrDie(uptr size, const char *mem_type) {
  return MmapOrDie(size, mem_type);
}

void *MmapOrDieOnFatalError(uptr size, const char *mem_type) {
  return DoAnonymousMmapOrDie(size, mem_type, false, false);
}

uptr ReservedAddressRange::Init(uptr init_size, const char *name,
                                uptr fixed_addr) {
  init_size = RoundUpTo(init_size, PAGE_SIZE);
  DCHECK_EQ(os_handle_, ZX_HANDLE_INVALID);
  uintptr_t base;
  zx_handle_t vmar;
  zx_status_t status =
      _zx_vmar_allocate(
          _zx_vmar_root_self(),
          ZX_VM_CAN_MAP_READ | ZX_VM_CAN_MAP_WRITE | ZX_VM_CAN_MAP_SPECIFIC,
          0, init_size, &vmar, &base);
  if (status != ZX_OK)
    ReportMmapFailureAndDie(init_size, name, "zx_vmar_allocate", status);
  base_ = reinterpret_cast<void *>(base);
  size_ = init_size;
  name_ = name;
  os_handle_ = vmar;

  return reinterpret_cast<uptr>(base_);
}

static uptr DoMmapFixedOrDie(zx_handle_t vmar, uptr fixed_addr, uptr map_size,
                             void *base, const char *name, bool die_for_nomem) {
  uptr offset = fixed_addr - reinterpret_cast<uptr>(base);
  map_size = RoundUpTo(map_size, PAGE_SIZE);
  zx_handle_t vmo;
  zx_status_t status = _zx_vmo_create(map_size, 0, &vmo);
  if (status != ZX_OK) {
    if (status != ZX_ERR_NO_MEMORY || die_for_nomem)
      ReportMmapFailureAndDie(map_size, name, "zx_vmo_create", status);
    return 0;
  }
  _zx_object_set_property(vmo, ZX_PROP_NAME, name, internal_strlen(name));
  DCHECK_GE(base + size_, map_size + offset);
  uintptr_t addr;

  status =
      _zx_vmar_map(vmar, ZX_VM_PERM_READ | ZX_VM_PERM_WRITE | ZX_VM_SPECIFIC,
                   offset, vmo, 0, map_size, &addr);
  _zx_handle_close(vmo);
  if (status != ZX_OK) {
    if (status != ZX_ERR_NO_MEMORY || die_for_nomem) {
      ReportMmapFailureAndDie(map_size, name, "zx_vmar_map", status);
    }
    return 0;
  }
  IncreaseTotalMmap(map_size);
  return addr;
}

uptr ReservedAddressRange::Map(uptr fixed_addr, uptr map_size,
                               const char *name) {
  return DoMmapFixedOrDie(os_handle_, fixed_addr, map_size, base_,
                          name_, false);
}

uptr ReservedAddressRange::MapOrDie(uptr fixed_addr, uptr map_size,
                                    const char *name) {
  return DoMmapFixedOrDie(os_handle_, fixed_addr, map_size, base_,
                          name_, true);
}

void UnmapOrDieVmar(void *addr, uptr size, zx_handle_t target_vmar) {
  if (!addr || !size) return;
  size = RoundUpTo(size, PAGE_SIZE);

  zx_status_t status =
      _zx_vmar_unmap(target_vmar, reinterpret_cast<uintptr_t>(addr), size);
  if (status != ZX_OK) {
    Report("ERROR: %s failed to deallocate 0x%zx (%zd) bytes at address %p\n",
           SanitizerToolName, size, size, addr);
    CHECK("unable to unmap" && 0);
  }

  DecreaseTotalMmap(size);
}

void ReservedAddressRange::Unmap(uptr addr, uptr size) {
  CHECK_LE(size, size_);
  const zx_handle_t vmar = static_cast<zx_handle_t>(os_handle_);
  if (addr == reinterpret_cast<uptr>(base_)) {
    if (size == size_) {
      // Destroying the vmar effectively unmaps the whole mapping.
      _zx_vmar_destroy(vmar);
      _zx_handle_close(vmar);
      os_handle_ = static_cast<uptr>(ZX_HANDLE_INVALID);
      DecreaseTotalMmap(size);
      return;
    }
  } else {
    CHECK_EQ(addr + size, reinterpret_cast<uptr>(base_) + size_);
  }
  // Partial unmapping does not affect the fact that the initial range is still
  // reserved, and the resulting unmapped memory can't be reused.
  UnmapOrDieVmar(reinterpret_cast<void *>(addr), size, vmar);
}

// This should never be called.
void *MmapFixedNoAccess(uptr fixed_addr, uptr size, const char *name) {
  UNIMPLEMENTED();
}

void *MmapAlignedOrDieOnFatalError(uptr size, uptr alignment,
                                   const char *mem_type) {
  CHECK_GE(size, PAGE_SIZE);
  CHECK(IsPowerOfTwo(size));
  CHECK(IsPowerOfTwo(alignment));

  zx_handle_t vmo;
  zx_status_t status = _zx_vmo_create(size, 0, &vmo);
  if (status != ZX_OK) {
    if (status != ZX_ERR_NO_MEMORY)
      ReportMmapFailureAndDie(size, mem_type, "zx_vmo_create", status, false);
    return nullptr;
  }
  _zx_object_set_property(vmo, ZX_PROP_NAME, mem_type,
                          internal_strlen(mem_type));

  // TODO(mcgrathr): Maybe allocate a VMAR for all sanitizer heap and use that?

  // Map a larger size to get a chunk of address space big enough that
  // it surely contains an aligned region of the requested size.  Then
  // overwrite the aligned middle portion with a mapping from the
  // beginning of the VMO, and unmap the excess before and after.
  size_t map_size = size + alignment;
  uintptr_t addr;
  status =
      _zx_vmar_map(_zx_vmar_root_self(), ZX_VM_PERM_READ | ZX_VM_PERM_WRITE, 0,
                   vmo, 0, map_size, &addr);
  if (status == ZX_OK) {
    uintptr_t map_addr = addr;
    uintptr_t map_end = map_addr + map_size;
    addr = RoundUpTo(map_addr, alignment);
    uintptr_t end = addr + size;
    if (addr != map_addr) {
      zx_info_vmar_t info;
      status = _zx_object_get_info(_zx_vmar_root_self(), ZX_INFO_VMAR, &info,
                                   sizeof(info), NULL, NULL);
      if (status == ZX_OK) {
        uintptr_t new_addr;
        status = _zx_vmar_map(
            _zx_vmar_root_self(),
            ZX_VM_PERM_READ | ZX_VM_PERM_WRITE | ZX_VM_SPECIFIC_OVERWRITE,
            addr - info.base, vmo, 0, size, &new_addr);
        if (status == ZX_OK) CHECK_EQ(new_addr, addr);
      }
    }
    if (status == ZX_OK && addr != map_addr)
      status = _zx_vmar_unmap(_zx_vmar_root_self(), map_addr, addr - map_addr);
    if (status == ZX_OK && end != map_end)
      status = _zx_vmar_unmap(_zx_vmar_root_self(), end, map_end - end);
  }
  _zx_handle_close(vmo);

  if (status != ZX_OK) {
    if (status != ZX_ERR_NO_MEMORY)
      ReportMmapFailureAndDie(size, mem_type, "zx_vmar_map", status, false);
    return nullptr;
  }

  IncreaseTotalMmap(size);

  return reinterpret_cast<void *>(addr);
}

void UnmapOrDie(void *addr, uptr size) {
  UnmapOrDieVmar(addr, size, _zx_vmar_root_self());
}

// This is used on the shadow mapping, which cannot be changed.
// Zircon doesn't have anything like MADV_DONTNEED.
void ReleaseMemoryPagesToOS(uptr beg, uptr end) {}

void DumpProcessMap() {
  // TODO(mcgrathr): write it
  return;
}

bool IsAccessibleMemoryRange(uptr beg, uptr size) {
  // TODO(mcgrathr): Figure out a better way.
  zx_handle_t vmo;
  zx_status_t status = _zx_vmo_create(size, 0, &vmo);
  if (status == ZX_OK) {
    status = _zx_vmo_write(vmo, reinterpret_cast<const void *>(beg), 0, size);
    _zx_handle_close(vmo);
  }
  return status == ZX_OK;
}

// FIXME implement on this platform.
void GetMemoryProfile(fill_profile_f cb, uptr *stats, uptr stats_size) {}

bool ReadFileToBuffer(const char *file_name, char **buff, uptr *buff_size,
                      uptr *read_len, uptr max_len, error_t *errno_p) {
  zx_handle_t vmo;
  zx_status_t status = __sanitizer_get_configuration(file_name, &vmo);
  if (status == ZX_OK) {
    uint64_t vmo_size;
    status = _zx_vmo_get_size(vmo, &vmo_size);
    if (status == ZX_OK) {
      if (vmo_size < max_len) max_len = vmo_size;
      size_t map_size = RoundUpTo(max_len, PAGE_SIZE);
      uintptr_t addr;
      status = _zx_vmar_map(_zx_vmar_root_self(), ZX_VM_PERM_READ, 0, vmo, 0,
                            map_size, &addr);
      if (status == ZX_OK) {
        *buff = reinterpret_cast<char *>(addr);
        *buff_size = map_size;
        *read_len = max_len;
      }
    }
    _zx_handle_close(vmo);
  }
  if (status != ZX_OK && errno_p) *errno_p = status;
  return status == ZX_OK;
}

void RawWrite(const char *buffer) {
  constexpr size_t size = 128;
  static _Thread_local char line[size];
  static _Thread_local size_t lastLineEnd = 0;
  static _Thread_local size_t cur = 0;

  while (*buffer) {
    if (cur >= size) {
      if (lastLineEnd == 0)
        lastLineEnd = size;
      __sanitizer_log_write(line, lastLineEnd);
      internal_memmove(line, line + lastLineEnd, cur - lastLineEnd);
      cur = cur - lastLineEnd;
      lastLineEnd = 0;
    }
    if (*buffer == '\n')
      lastLineEnd = cur + 1;
    line[cur++] = *buffer++;
  }
  // Flush all complete lines before returning.
  if (lastLineEnd != 0) {
    __sanitizer_log_write(line, lastLineEnd);
    internal_memmove(line, line + lastLineEnd, cur - lastLineEnd);
    cur = cur - lastLineEnd;
    lastLineEnd = 0;
  }
}

void CatastrophicErrorWrite(const char *buffer, uptr length) {
  __sanitizer_log_write(buffer, length);
}

char **StoredArgv;
char **StoredEnviron;

char **GetArgv() { return StoredArgv; }
char **GetEnviron() { return StoredEnviron; }

const char *GetEnv(const char *name) {
  if (StoredEnviron) {
    uptr NameLen = internal_strlen(name);
    for (char **Env = StoredEnviron; *Env != 0; Env++) {
      if (internal_strncmp(*Env, name, NameLen) == 0 && (*Env)[NameLen] == '=')
        return (*Env) + NameLen + 1;
    }
  }
  return nullptr;
}

uptr ReadBinaryName(/*out*/ char *buf, uptr buf_len) {
  const char *argv0 = "<UNKNOWN>";
  if (StoredArgv && StoredArgv[0]) {
    argv0 = StoredArgv[0];
  }
  internal_strncpy(buf, argv0, buf_len);
  return internal_strlen(buf);
}

uptr ReadLongProcessName(/*out*/ char *buf, uptr buf_len) {
  return ReadBinaryName(buf, buf_len);
}

uptr MainThreadStackBase, MainThreadStackSize;

bool GetRandom(void *buffer, uptr length, bool blocking) {
  CHECK_LE(length, ZX_CPRNG_DRAW_MAX_LEN);
  _zx_cprng_draw(buffer, length);
  return true;
}

u32 GetNumberOfCPUs() {
  return zx_system_get_num_cpus();
}

uptr GetRSS() { UNIMPLEMENTED(); }

}  // namespace __sanitizer

using namespace __sanitizer;

extern "C" {
void __sanitizer_startup_hook(int argc, char **argv, char **envp,
                              void *stack_base, size_t stack_size) {
  __sanitizer::StoredArgv = argv;
  __sanitizer::StoredEnviron = envp;
  __sanitizer::MainThreadStackBase = reinterpret_cast<uintptr_t>(stack_base);
  __sanitizer::MainThreadStackSize = stack_size;
}

void __sanitizer_set_report_path(const char *path) {
  // Handle the initialization code in each sanitizer, but no other calls.
  // This setting is never consulted on Fuchsia.
  DCHECK_EQ(path, common_flags()->log_path);
}

void __sanitizer_set_report_fd(void *fd) {
  UNREACHABLE("not available on Fuchsia");
}
}  // extern "C"

#endif  // SANITIZER_FUCHSIA