sanitizer_win.cpp
33.2 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
//===-- sanitizer_win.cpp -------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file is shared between AddressSanitizer and ThreadSanitizer
// run-time libraries and implements windows-specific functions from
// sanitizer_libc.h.
//===----------------------------------------------------------------------===//
#include "sanitizer_platform.h"
#if SANITIZER_WINDOWS
#define WIN32_LEAN_AND_MEAN
#define NOGDI
#include <windows.h>
#include <io.h>
#include <psapi.h>
#include <stdlib.h>
#include "sanitizer_common.h"
#include "sanitizer_file.h"
#include "sanitizer_libc.h"
#include "sanitizer_mutex.h"
#include "sanitizer_placement_new.h"
#include "sanitizer_win_defs.h"
#if defined(PSAPI_VERSION) && PSAPI_VERSION == 1
#pragma comment(lib, "psapi")
#endif
#if SANITIZER_WIN_TRACE
#include <traceloggingprovider.h>
// Windows trace logging provider init
#pragma comment(lib, "advapi32.lib")
TRACELOGGING_DECLARE_PROVIDER(g_asan_provider);
// GUID must be the same in utils/AddressSanitizerLoggingProvider.wprp
TRACELOGGING_DEFINE_PROVIDER(g_asan_provider, "AddressSanitizerLoggingProvider",
(0x6c6c766d, 0x3846, 0x4e6a, 0xa4, 0xfb, 0x5b,
0x53, 0x0b, 0xd0, 0xf3, 0xfa));
#else
#define TraceLoggingUnregister(x)
#endif
// A macro to tell the compiler that this part of the code cannot be reached,
// if the compiler supports this feature. Since we're using this in
// code that is called when terminating the process, the expansion of the
// macro should not terminate the process to avoid infinite recursion.
#if defined(__clang__)
# define BUILTIN_UNREACHABLE() __builtin_unreachable()
#elif defined(__GNUC__) && \
(__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 5))
# define BUILTIN_UNREACHABLE() __builtin_unreachable()
#elif defined(_MSC_VER)
# define BUILTIN_UNREACHABLE() __assume(0)
#else
# define BUILTIN_UNREACHABLE()
#endif
namespace __sanitizer {
#include "sanitizer_syscall_generic.inc"
// --------------------- sanitizer_common.h
uptr GetPageSize() {
SYSTEM_INFO si;
GetSystemInfo(&si);
return si.dwPageSize;
}
uptr GetMmapGranularity() {
SYSTEM_INFO si;
GetSystemInfo(&si);
return si.dwAllocationGranularity;
}
uptr GetMaxUserVirtualAddress() {
SYSTEM_INFO si;
GetSystemInfo(&si);
return (uptr)si.lpMaximumApplicationAddress;
}
uptr GetMaxVirtualAddress() {
return GetMaxUserVirtualAddress();
}
bool FileExists(const char *filename) {
return ::GetFileAttributesA(filename) != INVALID_FILE_ATTRIBUTES;
}
uptr internal_getpid() {
return GetProcessId(GetCurrentProcess());
}
// In contrast to POSIX, on Windows GetCurrentThreadId()
// returns a system-unique identifier.
tid_t GetTid() {
return GetCurrentThreadId();
}
uptr GetThreadSelf() {
return GetTid();
}
#if !SANITIZER_GO
void GetThreadStackTopAndBottom(bool at_initialization, uptr *stack_top,
uptr *stack_bottom) {
CHECK(stack_top);
CHECK(stack_bottom);
MEMORY_BASIC_INFORMATION mbi;
CHECK_NE(VirtualQuery(&mbi /* on stack */, &mbi, sizeof(mbi)), 0);
// FIXME: is it possible for the stack to not be a single allocation?
// Are these values what ASan expects to get (reserved, not committed;
// including stack guard page) ?
*stack_top = (uptr)mbi.BaseAddress + mbi.RegionSize;
*stack_bottom = (uptr)mbi.AllocationBase;
}
#endif // #if !SANITIZER_GO
void *MmapOrDie(uptr size, const char *mem_type, bool raw_report) {
void *rv = VirtualAlloc(0, size, MEM_RESERVE | MEM_COMMIT, PAGE_READWRITE);
if (rv == 0)
ReportMmapFailureAndDie(size, mem_type, "allocate",
GetLastError(), raw_report);
return rv;
}
void UnmapOrDie(void *addr, uptr size) {
if (!size || !addr)
return;
MEMORY_BASIC_INFORMATION mbi;
CHECK(VirtualQuery(addr, &mbi, sizeof(mbi)));
// MEM_RELEASE can only be used to unmap whole regions previously mapped with
// VirtualAlloc. So we first try MEM_RELEASE since it is better, and if that
// fails try MEM_DECOMMIT.
if (VirtualFree(addr, 0, MEM_RELEASE) == 0) {
if (VirtualFree(addr, size, MEM_DECOMMIT) == 0) {
Report("ERROR: %s failed to "
"deallocate 0x%zx (%zd) bytes at address %p (error code: %d)\n",
SanitizerToolName, size, size, addr, GetLastError());
CHECK("unable to unmap" && 0);
}
}
}
static void *ReturnNullptrOnOOMOrDie(uptr size, const char *mem_type,
const char *mmap_type) {
error_t last_error = GetLastError();
if (last_error == ERROR_NOT_ENOUGH_MEMORY)
return nullptr;
ReportMmapFailureAndDie(size, mem_type, mmap_type, last_error);
}
void *MmapOrDieOnFatalError(uptr size, const char *mem_type) {
void *rv = VirtualAlloc(0, size, MEM_RESERVE | MEM_COMMIT, PAGE_READWRITE);
if (rv == 0)
return ReturnNullptrOnOOMOrDie(size, mem_type, "allocate");
return rv;
}
// We want to map a chunk of address space aligned to 'alignment'.
void *MmapAlignedOrDieOnFatalError(uptr size, uptr alignment,
const char *mem_type) {
CHECK(IsPowerOfTwo(size));
CHECK(IsPowerOfTwo(alignment));
// Windows will align our allocations to at least 64K.
alignment = Max(alignment, GetMmapGranularity());
uptr mapped_addr =
(uptr)VirtualAlloc(0, size, MEM_RESERVE | MEM_COMMIT, PAGE_READWRITE);
if (!mapped_addr)
return ReturnNullptrOnOOMOrDie(size, mem_type, "allocate aligned");
// If we got it right on the first try, return. Otherwise, unmap it and go to
// the slow path.
if (IsAligned(mapped_addr, alignment))
return (void*)mapped_addr;
if (VirtualFree((void *)mapped_addr, 0, MEM_RELEASE) == 0)
ReportMmapFailureAndDie(size, mem_type, "deallocate", GetLastError());
// If we didn't get an aligned address, overallocate, find an aligned address,
// unmap, and try to allocate at that aligned address.
int retries = 0;
const int kMaxRetries = 10;
for (; retries < kMaxRetries &&
(mapped_addr == 0 || !IsAligned(mapped_addr, alignment));
retries++) {
// Overallocate size + alignment bytes.
mapped_addr =
(uptr)VirtualAlloc(0, size + alignment, MEM_RESERVE, PAGE_NOACCESS);
if (!mapped_addr)
return ReturnNullptrOnOOMOrDie(size, mem_type, "allocate aligned");
// Find the aligned address.
uptr aligned_addr = RoundUpTo(mapped_addr, alignment);
// Free the overallocation.
if (VirtualFree((void *)mapped_addr, 0, MEM_RELEASE) == 0)
ReportMmapFailureAndDie(size, mem_type, "deallocate", GetLastError());
// Attempt to allocate exactly the number of bytes we need at the aligned
// address. This may fail for a number of reasons, in which case we continue
// the loop.
mapped_addr = (uptr)VirtualAlloc((void *)aligned_addr, size,
MEM_RESERVE | MEM_COMMIT, PAGE_READWRITE);
}
// Fail if we can't make this work quickly.
if (retries == kMaxRetries && mapped_addr == 0)
return ReturnNullptrOnOOMOrDie(size, mem_type, "allocate aligned");
return (void *)mapped_addr;
}
bool MmapFixedNoReserve(uptr fixed_addr, uptr size, const char *name) {
// FIXME: is this really "NoReserve"? On Win32 this does not matter much,
// but on Win64 it does.
(void)name; // unsupported
#if !SANITIZER_GO && SANITIZER_WINDOWS64
// On asan/Windows64, use MEM_COMMIT would result in error
// 1455:ERROR_COMMITMENT_LIMIT.
// Asan uses exception handler to commit page on demand.
void *p = VirtualAlloc((LPVOID)fixed_addr, size, MEM_RESERVE, PAGE_READWRITE);
#else
void *p = VirtualAlloc((LPVOID)fixed_addr, size, MEM_RESERVE | MEM_COMMIT,
PAGE_READWRITE);
#endif
if (p == 0) {
Report("ERROR: %s failed to "
"allocate %p (%zd) bytes at %p (error code: %d)\n",
SanitizerToolName, size, size, fixed_addr, GetLastError());
return false;
}
return true;
}
bool MmapFixedSuperNoReserve(uptr fixed_addr, uptr size, const char *name) {
// FIXME: Windows support large pages too. Might be worth checking
return MmapFixedNoReserve(fixed_addr, size, name);
}
// Memory space mapped by 'MmapFixedOrDie' must have been reserved by
// 'MmapFixedNoAccess'.
void *MmapFixedOrDie(uptr fixed_addr, uptr size, const char *name) {
void *p = VirtualAlloc((LPVOID)fixed_addr, size,
MEM_COMMIT, PAGE_READWRITE);
if (p == 0) {
char mem_type[30];
internal_snprintf(mem_type, sizeof(mem_type), "memory at address 0x%zx",
fixed_addr);
ReportMmapFailureAndDie(size, mem_type, "allocate", GetLastError());
}
return p;
}
// Uses fixed_addr for now.
// Will use offset instead once we've implemented this function for real.
uptr ReservedAddressRange::Map(uptr fixed_addr, uptr size, const char *name) {
return reinterpret_cast<uptr>(MmapFixedOrDieOnFatalError(fixed_addr, size));
}
uptr ReservedAddressRange::MapOrDie(uptr fixed_addr, uptr size,
const char *name) {
return reinterpret_cast<uptr>(MmapFixedOrDie(fixed_addr, size));
}
void ReservedAddressRange::Unmap(uptr addr, uptr size) {
// Only unmap if it covers the entire range.
CHECK((addr == reinterpret_cast<uptr>(base_)) && (size == size_));
// We unmap the whole range, just null out the base.
base_ = nullptr;
size_ = 0;
UnmapOrDie(reinterpret_cast<void*>(addr), size);
}
void *MmapFixedOrDieOnFatalError(uptr fixed_addr, uptr size, const char *name) {
void *p = VirtualAlloc((LPVOID)fixed_addr, size,
MEM_COMMIT, PAGE_READWRITE);
if (p == 0) {
char mem_type[30];
internal_snprintf(mem_type, sizeof(mem_type), "memory at address 0x%zx",
fixed_addr);
return ReturnNullptrOnOOMOrDie(size, mem_type, "allocate");
}
return p;
}
void *MmapNoReserveOrDie(uptr size, const char *mem_type) {
// FIXME: make this really NoReserve?
return MmapOrDie(size, mem_type);
}
uptr ReservedAddressRange::Init(uptr size, const char *name, uptr fixed_addr) {
base_ = fixed_addr ? MmapFixedNoAccess(fixed_addr, size) : MmapNoAccess(size);
size_ = size;
name_ = name;
(void)os_handle_; // unsupported
return reinterpret_cast<uptr>(base_);
}
void *MmapFixedNoAccess(uptr fixed_addr, uptr size, const char *name) {
(void)name; // unsupported
void *res = VirtualAlloc((LPVOID)fixed_addr, size,
MEM_RESERVE, PAGE_NOACCESS);
if (res == 0)
Report("WARNING: %s failed to "
"mprotect %p (%zd) bytes at %p (error code: %d)\n",
SanitizerToolName, size, size, fixed_addr, GetLastError());
return res;
}
void *MmapNoAccess(uptr size) {
void *res = VirtualAlloc(nullptr, size, MEM_RESERVE, PAGE_NOACCESS);
if (res == 0)
Report("WARNING: %s failed to "
"mprotect %p (%zd) bytes (error code: %d)\n",
SanitizerToolName, size, size, GetLastError());
return res;
}
bool MprotectNoAccess(uptr addr, uptr size) {
DWORD old_protection;
return VirtualProtect((LPVOID)addr, size, PAGE_NOACCESS, &old_protection);
}
void ReleaseMemoryPagesToOS(uptr beg, uptr end) {
// This is almost useless on 32-bits.
// FIXME: add madvise-analog when we move to 64-bits.
}
void SetShadowRegionHugePageMode(uptr addr, uptr size) {
// FIXME: probably similar to ReleaseMemoryToOS.
}
bool DontDumpShadowMemory(uptr addr, uptr length) {
// This is almost useless on 32-bits.
// FIXME: add madvise-analog when we move to 64-bits.
return true;
}
uptr FindAvailableMemoryRange(uptr size, uptr alignment, uptr left_padding,
uptr *largest_gap_found,
uptr *max_occupied_addr) {
uptr address = 0;
while (true) {
MEMORY_BASIC_INFORMATION info;
if (!::VirtualQuery((void*)address, &info, sizeof(info)))
return 0;
if (info.State == MEM_FREE) {
uptr shadow_address = RoundUpTo((uptr)info.BaseAddress + left_padding,
alignment);
if (shadow_address + size < (uptr)info.BaseAddress + info.RegionSize)
return shadow_address;
}
// Move to the next region.
address = (uptr)info.BaseAddress + info.RegionSize;
}
return 0;
}
bool MemoryRangeIsAvailable(uptr range_start, uptr range_end) {
MEMORY_BASIC_INFORMATION mbi;
CHECK(VirtualQuery((void *)range_start, &mbi, sizeof(mbi)));
return mbi.Protect == PAGE_NOACCESS &&
(uptr)mbi.BaseAddress + mbi.RegionSize >= range_end;
}
void *MapFileToMemory(const char *file_name, uptr *buff_size) {
UNIMPLEMENTED();
}
void *MapWritableFileToMemory(void *addr, uptr size, fd_t fd, OFF_T offset) {
UNIMPLEMENTED();
}
static const int kMaxEnvNameLength = 128;
static const DWORD kMaxEnvValueLength = 32767;
namespace {
struct EnvVariable {
char name[kMaxEnvNameLength];
char value[kMaxEnvValueLength];
};
} // namespace
static const int kEnvVariables = 5;
static EnvVariable env_vars[kEnvVariables];
static int num_env_vars;
const char *GetEnv(const char *name) {
// Note: this implementation caches the values of the environment variables
// and limits their quantity.
for (int i = 0; i < num_env_vars; i++) {
if (0 == internal_strcmp(name, env_vars[i].name))
return env_vars[i].value;
}
CHECK_LT(num_env_vars, kEnvVariables);
DWORD rv = GetEnvironmentVariableA(name, env_vars[num_env_vars].value,
kMaxEnvValueLength);
if (rv > 0 && rv < kMaxEnvValueLength) {
CHECK_LT(internal_strlen(name), kMaxEnvNameLength);
internal_strncpy(env_vars[num_env_vars].name, name, kMaxEnvNameLength);
num_env_vars++;
return env_vars[num_env_vars - 1].value;
}
return 0;
}
const char *GetPwd() {
UNIMPLEMENTED();
}
u32 GetUid() {
UNIMPLEMENTED();
}
namespace {
struct ModuleInfo {
const char *filepath;
uptr base_address;
uptr end_address;
};
#if !SANITIZER_GO
int CompareModulesBase(const void *pl, const void *pr) {
const ModuleInfo *l = (const ModuleInfo *)pl, *r = (const ModuleInfo *)pr;
if (l->base_address < r->base_address)
return -1;
return l->base_address > r->base_address;
}
#endif
} // namespace
#if !SANITIZER_GO
void DumpProcessMap() {
Report("Dumping process modules:\n");
ListOfModules modules;
modules.init();
uptr num_modules = modules.size();
InternalMmapVector<ModuleInfo> module_infos(num_modules);
for (size_t i = 0; i < num_modules; ++i) {
module_infos[i].filepath = modules[i].full_name();
module_infos[i].base_address = modules[i].ranges().front()->beg;
module_infos[i].end_address = modules[i].ranges().back()->end;
}
qsort(module_infos.data(), num_modules, sizeof(ModuleInfo),
CompareModulesBase);
for (size_t i = 0; i < num_modules; ++i) {
const ModuleInfo &mi = module_infos[i];
if (mi.end_address != 0) {
Printf("\t%p-%p %s\n", mi.base_address, mi.end_address,
mi.filepath[0] ? mi.filepath : "[no name]");
} else if (mi.filepath[0]) {
Printf("\t??\?-??? %s\n", mi.filepath);
} else {
Printf("\t???\n");
}
}
}
#endif
void PrintModuleMap() { }
void DisableCoreDumperIfNecessary() {
// Do nothing.
}
void ReExec() {
UNIMPLEMENTED();
}
void PlatformPrepareForSandboxing(__sanitizer_sandbox_arguments *args) {}
bool StackSizeIsUnlimited() {
UNIMPLEMENTED();
}
void SetStackSizeLimitInBytes(uptr limit) {
UNIMPLEMENTED();
}
bool AddressSpaceIsUnlimited() {
UNIMPLEMENTED();
}
void SetAddressSpaceUnlimited() {
UNIMPLEMENTED();
}
bool IsPathSeparator(const char c) {
return c == '\\' || c == '/';
}
static bool IsAlpha(char c) {
c = ToLower(c);
return c >= 'a' && c <= 'z';
}
bool IsAbsolutePath(const char *path) {
return path != nullptr && IsAlpha(path[0]) && path[1] == ':' &&
IsPathSeparator(path[2]);
}
void SleepForSeconds(int seconds) {
Sleep(seconds * 1000);
}
void SleepForMillis(int millis) {
Sleep(millis);
}
u64 NanoTime() {
static LARGE_INTEGER frequency = {};
LARGE_INTEGER counter;
if (UNLIKELY(frequency.QuadPart == 0)) {
QueryPerformanceFrequency(&frequency);
CHECK_NE(frequency.QuadPart, 0);
}
QueryPerformanceCounter(&counter);
counter.QuadPart *= 1000ULL * 1000000ULL;
counter.QuadPart /= frequency.QuadPart;
return counter.QuadPart;
}
u64 MonotonicNanoTime() { return NanoTime(); }
void Abort() {
internal__exit(3);
}
#if !SANITIZER_GO
// Read the file to extract the ImageBase field from the PE header. If ASLR is
// disabled and this virtual address is available, the loader will typically
// load the image at this address. Therefore, we call it the preferred base. Any
// addresses in the DWARF typically assume that the object has been loaded at
// this address.
static uptr GetPreferredBase(const char *modname) {
fd_t fd = OpenFile(modname, RdOnly, nullptr);
if (fd == kInvalidFd)
return 0;
FileCloser closer(fd);
// Read just the DOS header.
IMAGE_DOS_HEADER dos_header;
uptr bytes_read;
if (!ReadFromFile(fd, &dos_header, sizeof(dos_header), &bytes_read) ||
bytes_read != sizeof(dos_header))
return 0;
// The file should start with the right signature.
if (dos_header.e_magic != IMAGE_DOS_SIGNATURE)
return 0;
// The layout at e_lfanew is:
// "PE\0\0"
// IMAGE_FILE_HEADER
// IMAGE_OPTIONAL_HEADER
// Seek to e_lfanew and read all that data.
char buf[4 + sizeof(IMAGE_FILE_HEADER) + sizeof(IMAGE_OPTIONAL_HEADER)];
if (::SetFilePointer(fd, dos_header.e_lfanew, nullptr, FILE_BEGIN) ==
INVALID_SET_FILE_POINTER)
return 0;
if (!ReadFromFile(fd, &buf[0], sizeof(buf), &bytes_read) ||
bytes_read != sizeof(buf))
return 0;
// Check for "PE\0\0" before the PE header.
char *pe_sig = &buf[0];
if (internal_memcmp(pe_sig, "PE\0\0", 4) != 0)
return 0;
// Skip over IMAGE_FILE_HEADER. We could do more validation here if we wanted.
IMAGE_OPTIONAL_HEADER *pe_header =
(IMAGE_OPTIONAL_HEADER *)(pe_sig + 4 + sizeof(IMAGE_FILE_HEADER));
// Check for more magic in the PE header.
if (pe_header->Magic != IMAGE_NT_OPTIONAL_HDR_MAGIC)
return 0;
// Finally, return the ImageBase.
return (uptr)pe_header->ImageBase;
}
void ListOfModules::init() {
clearOrInit();
HANDLE cur_process = GetCurrentProcess();
// Query the list of modules. Start by assuming there are no more than 256
// modules and retry if that's not sufficient.
HMODULE *hmodules = 0;
uptr modules_buffer_size = sizeof(HMODULE) * 256;
DWORD bytes_required;
while (!hmodules) {
hmodules = (HMODULE *)MmapOrDie(modules_buffer_size, __FUNCTION__);
CHECK(EnumProcessModules(cur_process, hmodules, modules_buffer_size,
&bytes_required));
if (bytes_required > modules_buffer_size) {
// Either there turned out to be more than 256 hmodules, or new hmodules
// could have loaded since the last try. Retry.
UnmapOrDie(hmodules, modules_buffer_size);
hmodules = 0;
modules_buffer_size = bytes_required;
}
}
// |num_modules| is the number of modules actually present,
size_t num_modules = bytes_required / sizeof(HMODULE);
for (size_t i = 0; i < num_modules; ++i) {
HMODULE handle = hmodules[i];
MODULEINFO mi;
if (!GetModuleInformation(cur_process, handle, &mi, sizeof(mi)))
continue;
// Get the UTF-16 path and convert to UTF-8.
wchar_t modname_utf16[kMaxPathLength];
int modname_utf16_len =
GetModuleFileNameW(handle, modname_utf16, kMaxPathLength);
if (modname_utf16_len == 0)
modname_utf16[0] = '\0';
char module_name[kMaxPathLength];
int module_name_len =
::WideCharToMultiByte(CP_UTF8, 0, modname_utf16, modname_utf16_len + 1,
&module_name[0], kMaxPathLength, NULL, NULL);
module_name[module_name_len] = '\0';
uptr base_address = (uptr)mi.lpBaseOfDll;
uptr end_address = (uptr)mi.lpBaseOfDll + mi.SizeOfImage;
// Adjust the base address of the module so that we get a VA instead of an
// RVA when computing the module offset. This helps llvm-symbolizer find the
// right DWARF CU. In the common case that the image is loaded at it's
// preferred address, we will now print normal virtual addresses.
uptr preferred_base = GetPreferredBase(&module_name[0]);
uptr adjusted_base = base_address - preferred_base;
LoadedModule cur_module;
cur_module.set(module_name, adjusted_base);
// We add the whole module as one single address range.
cur_module.addAddressRange(base_address, end_address, /*executable*/ true,
/*writable*/ true);
modules_.push_back(cur_module);
}
UnmapOrDie(hmodules, modules_buffer_size);
}
void ListOfModules::fallbackInit() { clear(); }
// We can't use atexit() directly at __asan_init time as the CRT is not fully
// initialized at this point. Place the functions into a vector and use
// atexit() as soon as it is ready for use (i.e. after .CRT$XIC initializers).
InternalMmapVectorNoCtor<void (*)(void)> atexit_functions;
int Atexit(void (*function)(void)) {
atexit_functions.push_back(function);
return 0;
}
static int RunAtexit() {
TraceLoggingUnregister(g_asan_provider);
int ret = 0;
for (uptr i = 0; i < atexit_functions.size(); ++i) {
ret |= atexit(atexit_functions[i]);
}
return ret;
}
#pragma section(".CRT$XID", long, read)
__declspec(allocate(".CRT$XID")) int (*__run_atexit)() = RunAtexit;
#endif
// ------------------ sanitizer_libc.h
fd_t OpenFile(const char *filename, FileAccessMode mode, error_t *last_error) {
// FIXME: Use the wide variants to handle Unicode filenames.
fd_t res;
if (mode == RdOnly) {
res = CreateFileA(filename, GENERIC_READ,
FILE_SHARE_READ | FILE_SHARE_WRITE | FILE_SHARE_DELETE,
nullptr, OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, nullptr);
} else if (mode == WrOnly) {
res = CreateFileA(filename, GENERIC_WRITE, 0, nullptr, CREATE_ALWAYS,
FILE_ATTRIBUTE_NORMAL, nullptr);
} else {
UNIMPLEMENTED();
}
CHECK(res != kStdoutFd || kStdoutFd == kInvalidFd);
CHECK(res != kStderrFd || kStderrFd == kInvalidFd);
if (res == kInvalidFd && last_error)
*last_error = GetLastError();
return res;
}
void CloseFile(fd_t fd) {
CloseHandle(fd);
}
bool ReadFromFile(fd_t fd, void *buff, uptr buff_size, uptr *bytes_read,
error_t *error_p) {
CHECK(fd != kInvalidFd);
// bytes_read can't be passed directly to ReadFile:
// uptr is unsigned long long on 64-bit Windows.
unsigned long num_read_long;
bool success = ::ReadFile(fd, buff, buff_size, &num_read_long, nullptr);
if (!success && error_p)
*error_p = GetLastError();
if (bytes_read)
*bytes_read = num_read_long;
return success;
}
bool SupportsColoredOutput(fd_t fd) {
// FIXME: support colored output.
return false;
}
bool WriteToFile(fd_t fd, const void *buff, uptr buff_size, uptr *bytes_written,
error_t *error_p) {
CHECK(fd != kInvalidFd);
// Handle null optional parameters.
error_t dummy_error;
error_p = error_p ? error_p : &dummy_error;
uptr dummy_bytes_written;
bytes_written = bytes_written ? bytes_written : &dummy_bytes_written;
// Initialize output parameters in case we fail.
*error_p = 0;
*bytes_written = 0;
// Map the conventional Unix fds 1 and 2 to Windows handles. They might be
// closed, in which case this will fail.
if (fd == kStdoutFd || fd == kStderrFd) {
fd = GetStdHandle(fd == kStdoutFd ? STD_OUTPUT_HANDLE : STD_ERROR_HANDLE);
if (fd == 0) {
*error_p = ERROR_INVALID_HANDLE;
return false;
}
}
DWORD bytes_written_32;
if (!WriteFile(fd, buff, buff_size, &bytes_written_32, 0)) {
*error_p = GetLastError();
return false;
} else {
*bytes_written = bytes_written_32;
return true;
}
}
uptr internal_sched_yield() {
Sleep(0);
return 0;
}
void internal__exit(int exitcode) {
TraceLoggingUnregister(g_asan_provider);
// ExitProcess runs some finalizers, so use TerminateProcess to avoid that.
// The debugger doesn't stop on TerminateProcess like it does on ExitProcess,
// so add our own breakpoint here.
if (::IsDebuggerPresent())
__debugbreak();
TerminateProcess(GetCurrentProcess(), exitcode);
BUILTIN_UNREACHABLE();
}
uptr internal_ftruncate(fd_t fd, uptr size) {
UNIMPLEMENTED();
}
uptr GetRSS() {
PROCESS_MEMORY_COUNTERS counters;
if (!GetProcessMemoryInfo(GetCurrentProcess(), &counters, sizeof(counters)))
return 0;
return counters.WorkingSetSize;
}
void *internal_start_thread(void (*func)(void *arg), void *arg) { return 0; }
void internal_join_thread(void *th) { }
// ---------------------- BlockingMutex ---------------- {{{1
BlockingMutex::BlockingMutex() {
CHECK(sizeof(SRWLOCK) <= sizeof(opaque_storage_));
internal_memset(this, 0, sizeof(*this));
}
void BlockingMutex::Lock() {
AcquireSRWLockExclusive((PSRWLOCK)opaque_storage_);
CHECK_EQ(owner_, 0);
owner_ = GetThreadSelf();
}
void BlockingMutex::Unlock() {
CheckLocked();
owner_ = 0;
ReleaseSRWLockExclusive((PSRWLOCK)opaque_storage_);
}
void BlockingMutex::CheckLocked() {
CHECK_EQ(owner_, GetThreadSelf());
}
uptr GetTlsSize() {
return 0;
}
void InitTlsSize() {
}
void GetThreadStackAndTls(bool main, uptr *stk_addr, uptr *stk_size,
uptr *tls_addr, uptr *tls_size) {
#if SANITIZER_GO
*stk_addr = 0;
*stk_size = 0;
*tls_addr = 0;
*tls_size = 0;
#else
uptr stack_top, stack_bottom;
GetThreadStackTopAndBottom(main, &stack_top, &stack_bottom);
*stk_addr = stack_bottom;
*stk_size = stack_top - stack_bottom;
*tls_addr = 0;
*tls_size = 0;
#endif
}
void ReportFile::Write(const char *buffer, uptr length) {
SpinMutexLock l(mu);
ReopenIfNecessary();
if (!WriteToFile(fd, buffer, length)) {
// stderr may be closed, but we may be able to print to the debugger
// instead. This is the case when launching a program from Visual Studio,
// and the following routine should write to its console.
OutputDebugStringA(buffer);
}
}
void SetAlternateSignalStack() {
// FIXME: Decide what to do on Windows.
}
void UnsetAlternateSignalStack() {
// FIXME: Decide what to do on Windows.
}
void InstallDeadlySignalHandlers(SignalHandlerType handler) {
(void)handler;
// FIXME: Decide what to do on Windows.
}
HandleSignalMode GetHandleSignalMode(int signum) {
// FIXME: Decide what to do on Windows.
return kHandleSignalNo;
}
// Check based on flags if we should handle this exception.
bool IsHandledDeadlyException(DWORD exceptionCode) {
switch (exceptionCode) {
case EXCEPTION_ACCESS_VIOLATION:
case EXCEPTION_ARRAY_BOUNDS_EXCEEDED:
case EXCEPTION_STACK_OVERFLOW:
case EXCEPTION_DATATYPE_MISALIGNMENT:
case EXCEPTION_IN_PAGE_ERROR:
return common_flags()->handle_segv;
case EXCEPTION_ILLEGAL_INSTRUCTION:
case EXCEPTION_PRIV_INSTRUCTION:
case EXCEPTION_BREAKPOINT:
return common_flags()->handle_sigill;
case EXCEPTION_FLT_DENORMAL_OPERAND:
case EXCEPTION_FLT_DIVIDE_BY_ZERO:
case EXCEPTION_FLT_INEXACT_RESULT:
case EXCEPTION_FLT_INVALID_OPERATION:
case EXCEPTION_FLT_OVERFLOW:
case EXCEPTION_FLT_STACK_CHECK:
case EXCEPTION_FLT_UNDERFLOW:
case EXCEPTION_INT_DIVIDE_BY_ZERO:
case EXCEPTION_INT_OVERFLOW:
return common_flags()->handle_sigfpe;
}
return false;
}
bool IsAccessibleMemoryRange(uptr beg, uptr size) {
SYSTEM_INFO si;
GetNativeSystemInfo(&si);
uptr page_size = si.dwPageSize;
uptr page_mask = ~(page_size - 1);
for (uptr page = beg & page_mask, end = (beg + size - 1) & page_mask;
page <= end;) {
MEMORY_BASIC_INFORMATION info;
if (VirtualQuery((LPCVOID)page, &info, sizeof(info)) != sizeof(info))
return false;
if (info.Protect == 0 || info.Protect == PAGE_NOACCESS ||
info.Protect == PAGE_EXECUTE)
return false;
if (info.RegionSize == 0)
return false;
page += info.RegionSize;
}
return true;
}
bool SignalContext::IsStackOverflow() const {
return (DWORD)GetType() == EXCEPTION_STACK_OVERFLOW;
}
void SignalContext::InitPcSpBp() {
EXCEPTION_RECORD *exception_record = (EXCEPTION_RECORD *)siginfo;
CONTEXT *context_record = (CONTEXT *)context;
pc = (uptr)exception_record->ExceptionAddress;
#ifdef _WIN64
bp = (uptr)context_record->Rbp;
sp = (uptr)context_record->Rsp;
#else
bp = (uptr)context_record->Ebp;
sp = (uptr)context_record->Esp;
#endif
}
uptr SignalContext::GetAddress() const {
EXCEPTION_RECORD *exception_record = (EXCEPTION_RECORD *)siginfo;
return exception_record->ExceptionInformation[1];
}
bool SignalContext::IsMemoryAccess() const {
return GetWriteFlag() != SignalContext::UNKNOWN;
}
bool SignalContext::IsTrueFaultingAddress() const {
// FIXME: Provide real implementation for this. See Linux and Mac variants.
return IsMemoryAccess();
}
SignalContext::WriteFlag SignalContext::GetWriteFlag() const {
EXCEPTION_RECORD *exception_record = (EXCEPTION_RECORD *)siginfo;
// The contents of this array are documented at
// https://msdn.microsoft.com/en-us/library/windows/desktop/aa363082(v=vs.85).aspx
// The first element indicates read as 0, write as 1, or execute as 8. The
// second element is the faulting address.
switch (exception_record->ExceptionInformation[0]) {
case 0:
return SignalContext::READ;
case 1:
return SignalContext::WRITE;
case 8:
return SignalContext::UNKNOWN;
}
return SignalContext::UNKNOWN;
}
void SignalContext::DumpAllRegisters(void *context) {
// FIXME: Implement this.
}
int SignalContext::GetType() const {
return static_cast<const EXCEPTION_RECORD *>(siginfo)->ExceptionCode;
}
const char *SignalContext::Describe() const {
unsigned code = GetType();
// Get the string description of the exception if this is a known deadly
// exception.
switch (code) {
case EXCEPTION_ACCESS_VIOLATION:
return "access-violation";
case EXCEPTION_ARRAY_BOUNDS_EXCEEDED:
return "array-bounds-exceeded";
case EXCEPTION_STACK_OVERFLOW:
return "stack-overflow";
case EXCEPTION_DATATYPE_MISALIGNMENT:
return "datatype-misalignment";
case EXCEPTION_IN_PAGE_ERROR:
return "in-page-error";
case EXCEPTION_ILLEGAL_INSTRUCTION:
return "illegal-instruction";
case EXCEPTION_PRIV_INSTRUCTION:
return "priv-instruction";
case EXCEPTION_BREAKPOINT:
return "breakpoint";
case EXCEPTION_FLT_DENORMAL_OPERAND:
return "flt-denormal-operand";
case EXCEPTION_FLT_DIVIDE_BY_ZERO:
return "flt-divide-by-zero";
case EXCEPTION_FLT_INEXACT_RESULT:
return "flt-inexact-result";
case EXCEPTION_FLT_INVALID_OPERATION:
return "flt-invalid-operation";
case EXCEPTION_FLT_OVERFLOW:
return "flt-overflow";
case EXCEPTION_FLT_STACK_CHECK:
return "flt-stack-check";
case EXCEPTION_FLT_UNDERFLOW:
return "flt-underflow";
case EXCEPTION_INT_DIVIDE_BY_ZERO:
return "int-divide-by-zero";
case EXCEPTION_INT_OVERFLOW:
return "int-overflow";
}
return "unknown exception";
}
uptr ReadBinaryName(/*out*/char *buf, uptr buf_len) {
// FIXME: Actually implement this function.
CHECK_GT(buf_len, 0);
buf[0] = 0;
return 0;
}
uptr ReadLongProcessName(/*out*/char *buf, uptr buf_len) {
return ReadBinaryName(buf, buf_len);
}
void CheckVMASize() {
// Do nothing.
}
void InitializePlatformEarly() {
// Do nothing.
}
void MaybeReexec() {
// No need to re-exec on Windows.
}
void CheckASLR() {
// Do nothing
}
void CheckMPROTECT() {
// Do nothing
}
char **GetArgv() {
// FIXME: Actually implement this function.
return 0;
}
char **GetEnviron() {
// FIXME: Actually implement this function.
return 0;
}
pid_t StartSubprocess(const char *program, const char *const argv[],
fd_t stdin_fd, fd_t stdout_fd, fd_t stderr_fd) {
// FIXME: implement on this platform
// Should be implemented based on
// SymbolizerProcess::StarAtSymbolizerSubprocess
// from lib/sanitizer_common/sanitizer_symbolizer_win.cpp.
return -1;
}
bool IsProcessRunning(pid_t pid) {
// FIXME: implement on this platform.
return false;
}
int WaitForProcess(pid_t pid) { return -1; }
// FIXME implement on this platform.
void GetMemoryProfile(fill_profile_f cb, uptr *stats, uptr stats_size) { }
void CheckNoDeepBind(const char *filename, int flag) {
// Do nothing.
}
// FIXME: implement on this platform.
bool GetRandom(void *buffer, uptr length, bool blocking) {
UNIMPLEMENTED();
}
u32 GetNumberOfCPUs() {
SYSTEM_INFO sysinfo = {};
GetNativeSystemInfo(&sysinfo);
return sysinfo.dwNumberOfProcessors;
}
#if SANITIZER_WIN_TRACE
// TODO(mcgov): Rename this project-wide to PlatformLogInit
void AndroidLogInit(void) {
HRESULT hr = TraceLoggingRegister(g_asan_provider);
if (!SUCCEEDED(hr))
return;
}
void SetAbortMessage(const char *) {}
void LogFullErrorReport(const char *buffer) {
if (common_flags()->log_to_syslog) {
InternalMmapVector<wchar_t> filename;
DWORD filename_length = 0;
do {
filename.resize(filename.size() + 0x100);
filename_length =
GetModuleFileNameW(NULL, filename.begin(), filename.size());
} while (filename_length >= filename.size());
TraceLoggingWrite(g_asan_provider, "AsanReportEvent",
TraceLoggingValue(filename.begin(), "ExecutableName"),
TraceLoggingValue(buffer, "AsanReportContents"));
}
}
#endif // SANITIZER_WIN_TRACE
} // namespace __sanitizer
#endif // _WIN32