EHStreamer.cpp 25.3 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654
//===- CodeGen/AsmPrinter/EHStreamer.cpp - Exception Directive Streamer ---===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains support for writing exception info into assembly files.
//
//===----------------------------------------------------------------------===//

#include "EHStreamer.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Twine.h"
#include "llvm/ADT/iterator_range.h"
#include "llvm/BinaryFormat/Dwarf.h"
#include "llvm/CodeGen/AsmPrinter.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Function.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCStreamer.h"
#include "llvm/MC/MCSymbol.h"
#include "llvm/MC/MCTargetOptions.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/LEB128.h"
#include "llvm/Target/TargetLoweringObjectFile.h"
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <vector>

using namespace llvm;

EHStreamer::EHStreamer(AsmPrinter *A) : Asm(A), MMI(Asm->MMI) {}

EHStreamer::~EHStreamer() = default;

/// How many leading type ids two landing pads have in common.
unsigned EHStreamer::sharedTypeIDs(const LandingPadInfo *L,
                                   const LandingPadInfo *R) {
  const std::vector<int> &LIds = L->TypeIds, &RIds = R->TypeIds;
  unsigned LSize = LIds.size(), RSize = RIds.size();
  unsigned MinSize = LSize < RSize ? LSize : RSize;
  unsigned Count = 0;

  for (; Count != MinSize; ++Count)
    if (LIds[Count] != RIds[Count])
      return Count;

  return Count;
}

/// Compute the actions table and gather the first action index for each landing
/// pad site.
void EHStreamer::computeActionsTable(
    const SmallVectorImpl<const LandingPadInfo *> &LandingPads,
    SmallVectorImpl<ActionEntry> &Actions,
    SmallVectorImpl<unsigned> &FirstActions) {
  // The action table follows the call-site table in the LSDA. The individual
  // records are of two types:
  //
  //   * Catch clause
  //   * Exception specification
  //
  // The two record kinds have the same format, with only small differences.
  // They are distinguished by the "switch value" field: Catch clauses
  // (TypeInfos) have strictly positive switch values, and exception
  // specifications (FilterIds) have strictly negative switch values. Value 0
  // indicates a catch-all clause.
  //
  // Negative type IDs index into FilterIds. Positive type IDs index into
  // TypeInfos.  The value written for a positive type ID is just the type ID
  // itself.  For a negative type ID, however, the value written is the
  // (negative) byte offset of the corresponding FilterIds entry.  The byte
  // offset is usually equal to the type ID (because the FilterIds entries are
  // written using a variable width encoding, which outputs one byte per entry
  // as long as the value written is not too large) but can differ.  This kind
  // of complication does not occur for positive type IDs because type infos are
  // output using a fixed width encoding.  FilterOffsets[i] holds the byte
  // offset corresponding to FilterIds[i].

  const std::vector<unsigned> &FilterIds = Asm->MF->getFilterIds();
  SmallVector<int, 16> FilterOffsets;
  FilterOffsets.reserve(FilterIds.size());
  int Offset = -1;

  for (std::vector<unsigned>::const_iterator
         I = FilterIds.begin(), E = FilterIds.end(); I != E; ++I) {
    FilterOffsets.push_back(Offset);
    Offset -= getULEB128Size(*I);
  }

  FirstActions.reserve(LandingPads.size());

  int FirstAction = 0;
  unsigned SizeActions = 0; // Total size of all action entries for a function
  const LandingPadInfo *PrevLPI = nullptr;

  for (SmallVectorImpl<const LandingPadInfo *>::const_iterator
         I = LandingPads.begin(), E = LandingPads.end(); I != E; ++I) {
    const LandingPadInfo *LPI = *I;
    const std::vector<int> &TypeIds = LPI->TypeIds;
    unsigned NumShared = PrevLPI ? sharedTypeIDs(LPI, PrevLPI) : 0;
    unsigned SizeSiteActions = 0; // Total size of all entries for a landingpad

    if (NumShared < TypeIds.size()) {
      // Size of one action entry (typeid + next action)
      unsigned SizeActionEntry = 0;
      unsigned PrevAction = (unsigned)-1;

      if (NumShared) {
        unsigned SizePrevIds = PrevLPI->TypeIds.size();
        assert(Actions.size());
        PrevAction = Actions.size() - 1;
        SizeActionEntry = getSLEB128Size(Actions[PrevAction].NextAction) +
                          getSLEB128Size(Actions[PrevAction].ValueForTypeID);

        for (unsigned j = NumShared; j != SizePrevIds; ++j) {
          assert(PrevAction != (unsigned)-1 && "PrevAction is invalid!");
          SizeActionEntry -= getSLEB128Size(Actions[PrevAction].ValueForTypeID);
          SizeActionEntry += -Actions[PrevAction].NextAction;
          PrevAction = Actions[PrevAction].Previous;
        }
      }

      // Compute the actions.
      for (unsigned J = NumShared, M = TypeIds.size(); J != M; ++J) {
        int TypeID = TypeIds[J];
        assert(-1 - TypeID < (int)FilterOffsets.size() && "Unknown filter id!");
        int ValueForTypeID =
            isFilterEHSelector(TypeID) ? FilterOffsets[-1 - TypeID] : TypeID;
        unsigned SizeTypeID = getSLEB128Size(ValueForTypeID);

        int NextAction = SizeActionEntry ? -(SizeActionEntry + SizeTypeID) : 0;
        SizeActionEntry = SizeTypeID + getSLEB128Size(NextAction);
        SizeSiteActions += SizeActionEntry;

        ActionEntry Action = { ValueForTypeID, NextAction, PrevAction };
        Actions.push_back(Action);
        PrevAction = Actions.size() - 1;
      }

      // Record the first action of the landing pad site.
      FirstAction = SizeActions + SizeSiteActions - SizeActionEntry + 1;
    } // else identical - re-use previous FirstAction

    // Information used when creating the call-site table. The action record
    // field of the call site record is the offset of the first associated
    // action record, relative to the start of the actions table. This value is
    // biased by 1 (1 indicating the start of the actions table), and 0
    // indicates that there are no actions.
    FirstActions.push_back(FirstAction);

    // Compute this sites contribution to size.
    SizeActions += SizeSiteActions;

    PrevLPI = LPI;
  }
}

/// Return `true' if this is a call to a function marked `nounwind'. Return
/// `false' otherwise.
bool EHStreamer::callToNoUnwindFunction(const MachineInstr *MI) {
  assert(MI->isCall() && "This should be a call instruction!");

  bool MarkedNoUnwind = false;
  bool SawFunc = false;

  for (unsigned I = 0, E = MI->getNumOperands(); I != E; ++I) {
    const MachineOperand &MO = MI->getOperand(I);

    if (!MO.isGlobal()) continue;

    const Function *F = dyn_cast<Function>(MO.getGlobal());
    if (!F) continue;

    if (SawFunc) {
      // Be conservative. If we have more than one function operand for this
      // call, then we can't make the assumption that it's the callee and
      // not a parameter to the call.
      //
      // FIXME: Determine if there's a way to say that `F' is the callee or
      // parameter.
      MarkedNoUnwind = false;
      break;
    }

    MarkedNoUnwind = F->doesNotThrow();
    SawFunc = true;
  }

  return MarkedNoUnwind;
}

void EHStreamer::computePadMap(
    const SmallVectorImpl<const LandingPadInfo *> &LandingPads,
    RangeMapType &PadMap) {
  // Invokes and nounwind calls have entries in PadMap (due to being bracketed
  // by try-range labels when lowered).  Ordinary calls do not, so appropriate
  // try-ranges for them need be deduced so we can put them in the LSDA.
  for (unsigned i = 0, N = LandingPads.size(); i != N; ++i) {
    const LandingPadInfo *LandingPad = LandingPads[i];
    for (unsigned j = 0, E = LandingPad->BeginLabels.size(); j != E; ++j) {
      MCSymbol *BeginLabel = LandingPad->BeginLabels[j];
      assert(!PadMap.count(BeginLabel) && "Duplicate landing pad labels!");
      PadRange P = { i, j };
      PadMap[BeginLabel] = P;
    }
  }
}

/// Compute the call-site table.  The entry for an invoke has a try-range
/// containing the call, a non-zero landing pad, and an appropriate action.  The
/// entry for an ordinary call has a try-range containing the call and zero for
/// the landing pad and the action.  Calls marked 'nounwind' have no entry and
/// must not be contained in the try-range of any entry - they form gaps in the
/// table.  Entries must be ordered by try-range address.
void EHStreamer::
computeCallSiteTable(SmallVectorImpl<CallSiteEntry> &CallSites,
                     const SmallVectorImpl<const LandingPadInfo *> &LandingPads,
                     const SmallVectorImpl<unsigned> &FirstActions) {
  RangeMapType PadMap;
  computePadMap(LandingPads, PadMap);

  // The end label of the previous invoke or nounwind try-range.
  MCSymbol *LastLabel = nullptr;

  // Whether there is a potentially throwing instruction (currently this means
  // an ordinary call) between the end of the previous try-range and now.
  bool SawPotentiallyThrowing = false;

  // Whether the last CallSite entry was for an invoke.
  bool PreviousIsInvoke = false;

  bool IsSJLJ = Asm->MAI->getExceptionHandlingType() == ExceptionHandling::SjLj;

  // Visit all instructions in order of address.
  for (const auto &MBB : *Asm->MF) {
    for (const auto &MI : MBB) {
      if (!MI.isEHLabel()) {
        if (MI.isCall())
          SawPotentiallyThrowing |= !callToNoUnwindFunction(&MI);
        continue;
      }

      // End of the previous try-range?
      MCSymbol *BeginLabel = MI.getOperand(0).getMCSymbol();
      if (BeginLabel == LastLabel)
        SawPotentiallyThrowing = false;

      // Beginning of a new try-range?
      RangeMapType::const_iterator L = PadMap.find(BeginLabel);
      if (L == PadMap.end())
        // Nope, it was just some random label.
        continue;

      const PadRange &P = L->second;
      const LandingPadInfo *LandingPad = LandingPads[P.PadIndex];
      assert(BeginLabel == LandingPad->BeginLabels[P.RangeIndex] &&
             "Inconsistent landing pad map!");

      // For Dwarf exception handling (SjLj handling doesn't use this). If some
      // instruction between the previous try-range and this one may throw,
      // create a call-site entry with no landing pad for the region between the
      // try-ranges.
      if (SawPotentiallyThrowing && Asm->MAI->usesCFIForEH()) {
        CallSiteEntry Site = { LastLabel, BeginLabel, nullptr, 0 };
        CallSites.push_back(Site);
        PreviousIsInvoke = false;
      }

      LastLabel = LandingPad->EndLabels[P.RangeIndex];
      assert(BeginLabel && LastLabel && "Invalid landing pad!");

      if (!LandingPad->LandingPadLabel) {
        // Create a gap.
        PreviousIsInvoke = false;
      } else {
        // This try-range is for an invoke.
        CallSiteEntry Site = {
          BeginLabel,
          LastLabel,
          LandingPad,
          FirstActions[P.PadIndex]
        };

        // Try to merge with the previous call-site. SJLJ doesn't do this
        if (PreviousIsInvoke && !IsSJLJ) {
          CallSiteEntry &Prev = CallSites.back();
          if (Site.LPad == Prev.LPad && Site.Action == Prev.Action) {
            // Extend the range of the previous entry.
            Prev.EndLabel = Site.EndLabel;
            continue;
          }
        }

        // Otherwise, create a new call-site.
        if (!IsSJLJ)
          CallSites.push_back(Site);
        else {
          // SjLj EH must maintain the call sites in the order assigned
          // to them by the SjLjPrepare pass.
          unsigned SiteNo = Asm->MF->getCallSiteBeginLabel(BeginLabel);
          if (CallSites.size() < SiteNo)
            CallSites.resize(SiteNo);
          CallSites[SiteNo - 1] = Site;
        }
        PreviousIsInvoke = true;
      }
    }
  }

  // If some instruction between the previous try-range and the end of the
  // function may throw, create a call-site entry with no landing pad for the
  // region following the try-range.
  if (SawPotentiallyThrowing && !IsSJLJ) {
    CallSiteEntry Site = { LastLabel, nullptr, nullptr, 0 };
    CallSites.push_back(Site);
  }
}

/// Emit landing pads and actions.
///
/// The general organization of the table is complex, but the basic concepts are
/// easy.  First there is a header which describes the location and organization
/// of the three components that follow.
///
///  1. The landing pad site information describes the range of code covered by
///     the try.  In our case it's an accumulation of the ranges covered by the
///     invokes in the try.  There is also a reference to the landing pad that
///     handles the exception once processed.  Finally an index into the actions
///     table.
///  2. The action table, in our case, is composed of pairs of type IDs and next
///     action offset.  Starting with the action index from the landing pad
///     site, each type ID is checked for a match to the current exception.  If
///     it matches then the exception and type id are passed on to the landing
///     pad.  Otherwise the next action is looked up.  This chain is terminated
///     with a next action of zero.  If no type id is found then the frame is
///     unwound and handling continues.
///  3. Type ID table contains references to all the C++ typeinfo for all
///     catches in the function.  This tables is reverse indexed base 1.
///
/// Returns the starting symbol of an exception table.
MCSymbol *EHStreamer::emitExceptionTable() {
  const MachineFunction *MF = Asm->MF;
  const std::vector<const GlobalValue *> &TypeInfos = MF->getTypeInfos();
  const std::vector<unsigned> &FilterIds = MF->getFilterIds();
  const std::vector<LandingPadInfo> &PadInfos = MF->getLandingPads();

  // Sort the landing pads in order of their type ids.  This is used to fold
  // duplicate actions.
  SmallVector<const LandingPadInfo *, 64> LandingPads;
  LandingPads.reserve(PadInfos.size());

  for (unsigned i = 0, N = PadInfos.size(); i != N; ++i)
    LandingPads.push_back(&PadInfos[i]);

  // Order landing pads lexicographically by type id.
  llvm::sort(LandingPads, [](const LandingPadInfo *L, const LandingPadInfo *R) {
    return L->TypeIds < R->TypeIds;
  });

  // Compute the actions table and gather the first action index for each
  // landing pad site.
  SmallVector<ActionEntry, 32> Actions;
  SmallVector<unsigned, 64> FirstActions;
  computeActionsTable(LandingPads, Actions, FirstActions);

  // Compute the call-site table.
  SmallVector<CallSiteEntry, 64> CallSites;
  computeCallSiteTable(CallSites, LandingPads, FirstActions);

  bool IsSJLJ = Asm->MAI->getExceptionHandlingType() == ExceptionHandling::SjLj;
  bool IsWasm = Asm->MAI->getExceptionHandlingType() == ExceptionHandling::Wasm;
  unsigned CallSiteEncoding =
      IsSJLJ ? static_cast<unsigned>(dwarf::DW_EH_PE_udata4) :
               Asm->getObjFileLowering().getCallSiteEncoding();
  bool HaveTTData = !TypeInfos.empty() || !FilterIds.empty();

  // Type infos.
  MCSection *LSDASection = Asm->getObjFileLowering().getLSDASection();
  unsigned TTypeEncoding;

  if (!HaveTTData) {
    // If there is no TypeInfo, then we just explicitly say that we're omitting
    // that bit.
    TTypeEncoding = dwarf::DW_EH_PE_omit;
  } else {
    // Okay, we have actual filters or typeinfos to emit.  As such, we need to
    // pick a type encoding for them.  We're about to emit a list of pointers to
    // typeinfo objects at the end of the LSDA.  However, unless we're in static
    // mode, this reference will require a relocation by the dynamic linker.
    //
    // Because of this, we have a couple of options:
    //
    //   1) If we are in -static mode, we can always use an absolute reference
    //      from the LSDA, because the static linker will resolve it.
    //
    //   2) Otherwise, if the LSDA section is writable, we can output the direct
    //      reference to the typeinfo and allow the dynamic linker to relocate
    //      it.  Since it is in a writable section, the dynamic linker won't
    //      have a problem.
    //
    //   3) Finally, if we're in PIC mode and the LDSA section isn't writable,
    //      we need to use some form of indirection.  For example, on Darwin,
    //      we can output a statically-relocatable reference to a dyld stub. The
    //      offset to the stub is constant, but the contents are in a section
    //      that is updated by the dynamic linker.  This is easy enough, but we
    //      need to tell the personality function of the unwinder to indirect
    //      through the dyld stub.
    //
    // FIXME: When (3) is actually implemented, we'll have to emit the stubs
    // somewhere.  This predicate should be moved to a shared location that is
    // in target-independent code.
    //
    TTypeEncoding = Asm->getObjFileLowering().getTTypeEncoding();
  }

  // Begin the exception table.
  // Sometimes we want not to emit the data into separate section (e.g. ARM
  // EHABI). In this case LSDASection will be NULL.
  if (LSDASection)
    Asm->OutStreamer->SwitchSection(LSDASection);
  Asm->EmitAlignment(Align(4));

  // Emit the LSDA.
  MCSymbol *GCCETSym =
    Asm->OutContext.getOrCreateSymbol(Twine("GCC_except_table")+
                                      Twine(Asm->getFunctionNumber()));
  Asm->OutStreamer->EmitLabel(GCCETSym);
  Asm->OutStreamer->EmitLabel(Asm->getCurExceptionSym());

  // Emit the LSDA header.
  Asm->EmitEncodingByte(dwarf::DW_EH_PE_omit, "@LPStart");
  Asm->EmitEncodingByte(TTypeEncoding, "@TType");

  MCSymbol *TTBaseLabel = nullptr;
  if (HaveTTData) {
    // N.B.: There is a dependency loop between the size of the TTBase uleb128
    // here and the amount of padding before the aligned type table. The
    // assembler must sometimes pad this uleb128 or insert extra padding before
    // the type table. See PR35809 or GNU as bug 4029.
    MCSymbol *TTBaseRefLabel = Asm->createTempSymbol("ttbaseref");
    TTBaseLabel = Asm->createTempSymbol("ttbase");
    Asm->EmitLabelDifferenceAsULEB128(TTBaseLabel, TTBaseRefLabel);
    Asm->OutStreamer->EmitLabel(TTBaseRefLabel);
  }

  bool VerboseAsm = Asm->OutStreamer->isVerboseAsm();

  // Emit the landing pad call site table.
  MCSymbol *CstBeginLabel = Asm->createTempSymbol("cst_begin");
  MCSymbol *CstEndLabel = Asm->createTempSymbol("cst_end");
  Asm->EmitEncodingByte(CallSiteEncoding, "Call site");
  Asm->EmitLabelDifferenceAsULEB128(CstEndLabel, CstBeginLabel);
  Asm->OutStreamer->EmitLabel(CstBeginLabel);

  // SjLj / Wasm Exception handling
  if (IsSJLJ || IsWasm) {
    unsigned idx = 0;
    for (SmallVectorImpl<CallSiteEntry>::const_iterator
         I = CallSites.begin(), E = CallSites.end(); I != E; ++I, ++idx) {
      const CallSiteEntry &S = *I;

      // Index of the call site entry.
      if (VerboseAsm) {
        Asm->OutStreamer->AddComment(">> Call Site " + Twine(idx) + " <<");
        Asm->OutStreamer->AddComment("  On exception at call site "+Twine(idx));
      }
      Asm->EmitULEB128(idx);

      // Offset of the first associated action record, relative to the start of
      // the action table. This value is biased by 1 (1 indicates the start of
      // the action table), and 0 indicates that there are no actions.
      if (VerboseAsm) {
        if (S.Action == 0)
          Asm->OutStreamer->AddComment("  Action: cleanup");
        else
          Asm->OutStreamer->AddComment("  Action: " +
                                       Twine((S.Action - 1) / 2 + 1));
      }
      Asm->EmitULEB128(S.Action);
    }
  } else {
    // Itanium LSDA exception handling

    // The call-site table is a list of all call sites that may throw an
    // exception (including C++ 'throw' statements) in the procedure
    // fragment. It immediately follows the LSDA header. Each entry indicates,
    // for a given call, the first corresponding action record and corresponding
    // landing pad.
    //
    // The table begins with the number of bytes, stored as an LEB128
    // compressed, unsigned integer. The records immediately follow the record
    // count. They are sorted in increasing call-site address. Each record
    // indicates:
    //
    //   * The position of the call-site.
    //   * The position of the landing pad.
    //   * The first action record for that call site.
    //
    // A missing entry in the call-site table indicates that a call is not
    // supposed to throw.

    unsigned Entry = 0;
    for (SmallVectorImpl<CallSiteEntry>::const_iterator
         I = CallSites.begin(), E = CallSites.end(); I != E; ++I) {
      const CallSiteEntry &S = *I;

      MCSymbol *EHFuncBeginSym = Asm->getFunctionBegin();

      MCSymbol *BeginLabel = S.BeginLabel;
      if (!BeginLabel)
        BeginLabel = EHFuncBeginSym;
      MCSymbol *EndLabel = S.EndLabel;
      if (!EndLabel)
        EndLabel = Asm->getFunctionEnd();

      // Offset of the call site relative to the start of the procedure.
      if (VerboseAsm)
        Asm->OutStreamer->AddComment(">> Call Site " + Twine(++Entry) + " <<");
      Asm->EmitCallSiteOffset(BeginLabel, EHFuncBeginSym, CallSiteEncoding);
      if (VerboseAsm)
        Asm->OutStreamer->AddComment(Twine("  Call between ") +
                                     BeginLabel->getName() + " and " +
                                     EndLabel->getName());
      Asm->EmitCallSiteOffset(EndLabel, BeginLabel, CallSiteEncoding);

      // Offset of the landing pad relative to the start of the procedure.
      if (!S.LPad) {
        if (VerboseAsm)
          Asm->OutStreamer->AddComment("    has no landing pad");
        Asm->EmitCallSiteValue(0, CallSiteEncoding);
      } else {
        if (VerboseAsm)
          Asm->OutStreamer->AddComment(Twine("    jumps to ") +
                                       S.LPad->LandingPadLabel->getName());
        Asm->EmitCallSiteOffset(S.LPad->LandingPadLabel, EHFuncBeginSym,
                                CallSiteEncoding);
      }

      // Offset of the first associated action record, relative to the start of
      // the action table. This value is biased by 1 (1 indicates the start of
      // the action table), and 0 indicates that there are no actions.
      if (VerboseAsm) {
        if (S.Action == 0)
          Asm->OutStreamer->AddComment("  On action: cleanup");
        else
          Asm->OutStreamer->AddComment("  On action: " +
                                       Twine((S.Action - 1) / 2 + 1));
      }
      Asm->EmitULEB128(S.Action);
    }
  }
  Asm->OutStreamer->EmitLabel(CstEndLabel);

  // Emit the Action Table.
  int Entry = 0;
  for (SmallVectorImpl<ActionEntry>::const_iterator
         I = Actions.begin(), E = Actions.end(); I != E; ++I) {
    const ActionEntry &Action = *I;

    if (VerboseAsm) {
      // Emit comments that decode the action table.
      Asm->OutStreamer->AddComment(">> Action Record " + Twine(++Entry) + " <<");
    }

    // Type Filter
    //
    //   Used by the runtime to match the type of the thrown exception to the
    //   type of the catch clauses or the types in the exception specification.
    if (VerboseAsm) {
      if (Action.ValueForTypeID > 0)
        Asm->OutStreamer->AddComment("  Catch TypeInfo " +
                                     Twine(Action.ValueForTypeID));
      else if (Action.ValueForTypeID < 0)
        Asm->OutStreamer->AddComment("  Filter TypeInfo " +
                                     Twine(Action.ValueForTypeID));
      else
        Asm->OutStreamer->AddComment("  Cleanup");
    }
    Asm->EmitSLEB128(Action.ValueForTypeID);

    // Action Record
    //
    //   Self-relative signed displacement in bytes of the next action record,
    //   or 0 if there is no next action record.
    if (VerboseAsm) {
      if (Action.NextAction == 0) {
        Asm->OutStreamer->AddComment("  No further actions");
      } else {
        unsigned NextAction = Entry + (Action.NextAction + 1) / 2;
        Asm->OutStreamer->AddComment("  Continue to action "+Twine(NextAction));
      }
    }
    Asm->EmitSLEB128(Action.NextAction);
  }

  if (HaveTTData) {
    Asm->EmitAlignment(Align(4));
    emitTypeInfos(TTypeEncoding, TTBaseLabel);
  }

  Asm->EmitAlignment(Align(4));
  return GCCETSym;
}

void EHStreamer::emitTypeInfos(unsigned TTypeEncoding, MCSymbol *TTBaseLabel) {
  const MachineFunction *MF = Asm->MF;
  const std::vector<const GlobalValue *> &TypeInfos = MF->getTypeInfos();
  const std::vector<unsigned> &FilterIds = MF->getFilterIds();

  bool VerboseAsm = Asm->OutStreamer->isVerboseAsm();

  int Entry = 0;
  // Emit the Catch TypeInfos.
  if (VerboseAsm && !TypeInfos.empty()) {
    Asm->OutStreamer->AddComment(">> Catch TypeInfos <<");
    Asm->OutStreamer->AddBlankLine();
    Entry = TypeInfos.size();
  }

  for (const GlobalValue *GV : make_range(TypeInfos.rbegin(),
                                          TypeInfos.rend())) {
    if (VerboseAsm)
      Asm->OutStreamer->AddComment("TypeInfo " + Twine(Entry--));
    Asm->EmitTTypeReference(GV, TTypeEncoding);
  }

  Asm->OutStreamer->EmitLabel(TTBaseLabel);

  // Emit the Exception Specifications.
  if (VerboseAsm && !FilterIds.empty()) {
    Asm->OutStreamer->AddComment(">> Filter TypeInfos <<");
    Asm->OutStreamer->AddBlankLine();
    Entry = 0;
  }
  for (std::vector<unsigned>::const_iterator
         I = FilterIds.begin(), E = FilterIds.end(); I < E; ++I) {
    unsigned TypeID = *I;
    if (VerboseAsm) {
      --Entry;
      if (isFilterEHSelector(TypeID))
        Asm->OutStreamer->AddComment("FilterInfo " + Twine(Entry));
    }

    Asm->EmitULEB128(TypeID);
  }
}