MappedBlockStream.cpp 16.4 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421
//===- MappedBlockStream.cpp - Reads stream data from an MSF file ---------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "llvm/DebugInfo/MSF/MappedBlockStream.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/DebugInfo/MSF/MSFCommon.h"
#include "llvm/Support/BinaryStreamWriter.h"
#include "llvm/Support/Endian.h"
#include "llvm/Support/Error.h"
#include "llvm/Support/MathExtras.h"
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <cstring>
#include <utility>
#include <vector>

using namespace llvm;
using namespace llvm::msf;

namespace {

template <typename Base> class MappedBlockStreamImpl : public Base {
public:
  template <typename... Args>
  MappedBlockStreamImpl(Args &&... Params)
      : Base(std::forward<Args>(Params)...) {}
};

} // end anonymous namespace

using Interval = std::pair<uint32_t, uint32_t>;

static Interval intersect(const Interval &I1, const Interval &I2) {
  return std::make_pair(std::max(I1.first, I2.first),
                        std::min(I1.second, I2.second));
}

MappedBlockStream::MappedBlockStream(uint32_t BlockSize,
                                     const MSFStreamLayout &Layout,
                                     BinaryStreamRef MsfData,
                                     BumpPtrAllocator &Allocator)
    : BlockSize(BlockSize), StreamLayout(Layout), MsfData(MsfData),
      Allocator(Allocator) {}

std::unique_ptr<MappedBlockStream> MappedBlockStream::createStream(
    uint32_t BlockSize, const MSFStreamLayout &Layout, BinaryStreamRef MsfData,
    BumpPtrAllocator &Allocator) {
  return std::make_unique<MappedBlockStreamImpl<MappedBlockStream>>(
      BlockSize, Layout, MsfData, Allocator);
}

std::unique_ptr<MappedBlockStream> MappedBlockStream::createIndexedStream(
    const MSFLayout &Layout, BinaryStreamRef MsfData, uint32_t StreamIndex,
    BumpPtrAllocator &Allocator) {
  assert(StreamIndex < Layout.StreamMap.size() && "Invalid stream index");
  MSFStreamLayout SL;
  SL.Blocks = Layout.StreamMap[StreamIndex];
  SL.Length = Layout.StreamSizes[StreamIndex];
  return std::make_unique<MappedBlockStreamImpl<MappedBlockStream>>(
      Layout.SB->BlockSize, SL, MsfData, Allocator);
}

std::unique_ptr<MappedBlockStream>
MappedBlockStream::createDirectoryStream(const MSFLayout &Layout,
                                         BinaryStreamRef MsfData,
                                         BumpPtrAllocator &Allocator) {
  MSFStreamLayout SL;
  SL.Blocks = Layout.DirectoryBlocks;
  SL.Length = Layout.SB->NumDirectoryBytes;
  return createStream(Layout.SB->BlockSize, SL, MsfData, Allocator);
}

std::unique_ptr<MappedBlockStream>
MappedBlockStream::createFpmStream(const MSFLayout &Layout,
                                   BinaryStreamRef MsfData,
                                   BumpPtrAllocator &Allocator) {
  MSFStreamLayout SL(getFpmStreamLayout(Layout));
  return createStream(Layout.SB->BlockSize, SL, MsfData, Allocator);
}

Error MappedBlockStream::readBytes(uint32_t Offset, uint32_t Size,
                                   ArrayRef<uint8_t> &Buffer) {
  // Make sure we aren't trying to read beyond the end of the stream.
  if (auto EC = checkOffsetForRead(Offset, Size))
    return EC;

  if (tryReadContiguously(Offset, Size, Buffer))
    return Error::success();

  auto CacheIter = CacheMap.find(Offset);
  if (CacheIter != CacheMap.end()) {
    // Try to find an alloc that was large enough for this request.
    for (auto &Entry : CacheIter->second) {
      if (Entry.size() >= Size) {
        Buffer = Entry.slice(0, Size);
        return Error::success();
      }
    }
  }

  // We couldn't find a buffer that started at the correct offset (the most
  // common scenario).  Try to see if there is a buffer that starts at some
  // other offset but overlaps the desired range.
  for (auto &CacheItem : CacheMap) {
    Interval RequestExtent = std::make_pair(Offset, Offset + Size);

    // We already checked this one on the fast path above.
    if (CacheItem.first == Offset)
      continue;
    // If the initial extent of the cached item is beyond the ending extent
    // of the request, there is no overlap.
    if (CacheItem.first >= Offset + Size)
      continue;

    // We really only have to check the last item in the list, since we append
    // in order of increasing length.
    if (CacheItem.second.empty())
      continue;

    auto CachedAlloc = CacheItem.second.back();
    // If the initial extent of the request is beyond the ending extent of
    // the cached item, there is no overlap.
    Interval CachedExtent =
        std::make_pair(CacheItem.first, CacheItem.first + CachedAlloc.size());
    if (RequestExtent.first >= CachedExtent.first + CachedExtent.second)
      continue;

    Interval Intersection = intersect(CachedExtent, RequestExtent);
    // Only use this if the entire request extent is contained in the cached
    // extent.
    if (Intersection != RequestExtent)
      continue;

    uint32_t CacheRangeOffset =
        AbsoluteDifference(CachedExtent.first, Intersection.first);
    Buffer = CachedAlloc.slice(CacheRangeOffset, Size);
    return Error::success();
  }

  // Otherwise allocate a large enough buffer in the pool, memcpy the data
  // into it, and return an ArrayRef to that.  Do not touch existing pool
  // allocations, as existing clients may be holding a pointer which must
  // not be invalidated.
  uint8_t *WriteBuffer = static_cast<uint8_t *>(Allocator.Allocate(Size, 8));
  if (auto EC = readBytes(Offset, MutableArrayRef<uint8_t>(WriteBuffer, Size)))
    return EC;

  if (CacheIter != CacheMap.end()) {
    CacheIter->second.emplace_back(WriteBuffer, Size);
  } else {
    std::vector<CacheEntry> List;
    List.emplace_back(WriteBuffer, Size);
    CacheMap.insert(std::make_pair(Offset, List));
  }
  Buffer = ArrayRef<uint8_t>(WriteBuffer, Size);
  return Error::success();
}

Error MappedBlockStream::readLongestContiguousChunk(uint32_t Offset,
                                                    ArrayRef<uint8_t> &Buffer) {
  // Make sure we aren't trying to read beyond the end of the stream.
  if (auto EC = checkOffsetForRead(Offset, 1))
    return EC;

  uint32_t First = Offset / BlockSize;
  uint32_t Last = First;

  while (Last < getNumBlocks() - 1) {
    if (StreamLayout.Blocks[Last] != StreamLayout.Blocks[Last + 1] - 1)
      break;
    ++Last;
  }

  uint32_t OffsetInFirstBlock = Offset % BlockSize;
  uint32_t BytesFromFirstBlock = BlockSize - OffsetInFirstBlock;
  uint32_t BlockSpan = Last - First + 1;
  uint32_t ByteSpan = BytesFromFirstBlock + (BlockSpan - 1) * BlockSize;

  ArrayRef<uint8_t> BlockData;
  uint32_t MsfOffset = blockToOffset(StreamLayout.Blocks[First], BlockSize);
  if (auto EC = MsfData.readBytes(MsfOffset, BlockSize, BlockData))
    return EC;

  BlockData = BlockData.drop_front(OffsetInFirstBlock);
  Buffer = ArrayRef<uint8_t>(BlockData.data(), ByteSpan);
  return Error::success();
}

uint32_t MappedBlockStream::getLength() { return StreamLayout.Length; }

bool MappedBlockStream::tryReadContiguously(uint32_t Offset, uint32_t Size,
                                            ArrayRef<uint8_t> &Buffer) {
  if (Size == 0) {
    Buffer = ArrayRef<uint8_t>();
    return true;
  }
  // Attempt to fulfill the request with a reference directly into the stream.
  // This can work even if the request crosses a block boundary, provided that
  // all subsequent blocks are contiguous.  For example, a 10k read with a 4k
  // block size can be filled with a reference if, from the starting offset,
  // 3 blocks in a row are contiguous.
  uint32_t BlockNum = Offset / BlockSize;
  uint32_t OffsetInBlock = Offset % BlockSize;
  uint32_t BytesFromFirstBlock = std::min(Size, BlockSize - OffsetInBlock);
  uint32_t NumAdditionalBlocks =
      alignTo(Size - BytesFromFirstBlock, BlockSize) / BlockSize;

  uint32_t RequiredContiguousBlocks = NumAdditionalBlocks + 1;
  uint32_t E = StreamLayout.Blocks[BlockNum];
  for (uint32_t I = 0; I < RequiredContiguousBlocks; ++I, ++E) {
    if (StreamLayout.Blocks[I + BlockNum] != E)
      return false;
  }

  // Read out the entire block where the requested offset starts.  Then drop
  // bytes from the beginning so that the actual starting byte lines up with
  // the requested starting byte.  Then, since we know this is a contiguous
  // cross-block span, explicitly resize the ArrayRef to cover the entire
  // request length.
  ArrayRef<uint8_t> BlockData;
  uint32_t FirstBlockAddr = StreamLayout.Blocks[BlockNum];
  uint32_t MsfOffset = blockToOffset(FirstBlockAddr, BlockSize);
  if (auto EC = MsfData.readBytes(MsfOffset, BlockSize, BlockData)) {
    consumeError(std::move(EC));
    return false;
  }
  BlockData = BlockData.drop_front(OffsetInBlock);
  Buffer = ArrayRef<uint8_t>(BlockData.data(), Size);
  return true;
}

Error MappedBlockStream::readBytes(uint32_t Offset,
                                   MutableArrayRef<uint8_t> Buffer) {
  uint32_t BlockNum = Offset / BlockSize;
  uint32_t OffsetInBlock = Offset % BlockSize;

  // Make sure we aren't trying to read beyond the end of the stream.
  if (auto EC = checkOffsetForRead(Offset, Buffer.size()))
    return EC;

  uint32_t BytesLeft = Buffer.size();
  uint32_t BytesWritten = 0;
  uint8_t *WriteBuffer = Buffer.data();
  while (BytesLeft > 0) {
    uint32_t StreamBlockAddr = StreamLayout.Blocks[BlockNum];

    ArrayRef<uint8_t> BlockData;
    uint32_t Offset = blockToOffset(StreamBlockAddr, BlockSize);
    if (auto EC = MsfData.readBytes(Offset, BlockSize, BlockData))
      return EC;

    const uint8_t *ChunkStart = BlockData.data() + OffsetInBlock;
    uint32_t BytesInChunk = std::min(BytesLeft, BlockSize - OffsetInBlock);
    ::memcpy(WriteBuffer + BytesWritten, ChunkStart, BytesInChunk);

    BytesWritten += BytesInChunk;
    BytesLeft -= BytesInChunk;
    ++BlockNum;
    OffsetInBlock = 0;
  }

  return Error::success();
}

void MappedBlockStream::invalidateCache() { CacheMap.shrink_and_clear(); }

void MappedBlockStream::fixCacheAfterWrite(uint32_t Offset,
                                           ArrayRef<uint8_t> Data) const {
  // If this write overlapped a read which previously came from the pool,
  // someone may still be holding a pointer to that alloc which is now invalid.
  // Compute the overlapping range and update the cache entry, so any
  // outstanding buffers are automatically updated.
  for (const auto &MapEntry : CacheMap) {
    // If the end of the written extent precedes the beginning of the cached
    // extent, ignore this map entry.
    if (Offset + Data.size() < MapEntry.first)
      continue;
    for (const auto &Alloc : MapEntry.second) {
      // If the end of the cached extent precedes the beginning of the written
      // extent, ignore this alloc.
      if (MapEntry.first + Alloc.size() < Offset)
        continue;

      // If we get here, they are guaranteed to overlap.
      Interval WriteInterval = std::make_pair(Offset, Offset + Data.size());
      Interval CachedInterval =
          std::make_pair(MapEntry.first, MapEntry.first + Alloc.size());
      // If they overlap, we need to write the new data into the overlapping
      // range.
      auto Intersection = intersect(WriteInterval, CachedInterval);
      assert(Intersection.first <= Intersection.second);

      uint32_t Length = Intersection.second - Intersection.first;
      uint32_t SrcOffset =
          AbsoluteDifference(WriteInterval.first, Intersection.first);
      uint32_t DestOffset =
          AbsoluteDifference(CachedInterval.first, Intersection.first);
      ::memcpy(Alloc.data() + DestOffset, Data.data() + SrcOffset, Length);
    }
  }
}

WritableMappedBlockStream::WritableMappedBlockStream(
    uint32_t BlockSize, const MSFStreamLayout &Layout,
    WritableBinaryStreamRef MsfData, BumpPtrAllocator &Allocator)
    : ReadInterface(BlockSize, Layout, MsfData, Allocator),
      WriteInterface(MsfData) {}

std::unique_ptr<WritableMappedBlockStream>
WritableMappedBlockStream::createStream(uint32_t BlockSize,
                                        const MSFStreamLayout &Layout,
                                        WritableBinaryStreamRef MsfData,
                                        BumpPtrAllocator &Allocator) {
  return std::make_unique<MappedBlockStreamImpl<WritableMappedBlockStream>>(
      BlockSize, Layout, MsfData, Allocator);
}

std::unique_ptr<WritableMappedBlockStream>
WritableMappedBlockStream::createIndexedStream(const MSFLayout &Layout,
                                               WritableBinaryStreamRef MsfData,
                                               uint32_t StreamIndex,
                                               BumpPtrAllocator &Allocator) {
  assert(StreamIndex < Layout.StreamMap.size() && "Invalid stream index");
  MSFStreamLayout SL;
  SL.Blocks = Layout.StreamMap[StreamIndex];
  SL.Length = Layout.StreamSizes[StreamIndex];
  return createStream(Layout.SB->BlockSize, SL, MsfData, Allocator);
}

std::unique_ptr<WritableMappedBlockStream>
WritableMappedBlockStream::createDirectoryStream(
    const MSFLayout &Layout, WritableBinaryStreamRef MsfData,
    BumpPtrAllocator &Allocator) {
  MSFStreamLayout SL;
  SL.Blocks = Layout.DirectoryBlocks;
  SL.Length = Layout.SB->NumDirectoryBytes;
  return createStream(Layout.SB->BlockSize, SL, MsfData, Allocator);
}

std::unique_ptr<WritableMappedBlockStream>
WritableMappedBlockStream::createFpmStream(const MSFLayout &Layout,
                                           WritableBinaryStreamRef MsfData,
                                           BumpPtrAllocator &Allocator,
                                           bool AltFpm) {
  // We only want to give the user a stream containing the bytes of the FPM that
  // are actually valid, but we want to initialize all of the bytes, even those
  // that come from reserved FPM blocks where the entire block is unused.  To do
  // this, we first create the full layout, which gives us a stream with all
  // bytes and all blocks, and initialize everything to 0xFF (all blocks in the
  // file are unused).  Then we create the minimal layout (which contains only a
  // subset of the bytes previously initialized), and return that to the user.
  MSFStreamLayout MinLayout(getFpmStreamLayout(Layout, false, AltFpm));

  MSFStreamLayout FullLayout(getFpmStreamLayout(Layout, true, AltFpm));
  auto Result =
      createStream(Layout.SB->BlockSize, FullLayout, MsfData, Allocator);
  if (!Result)
    return Result;
  std::vector<uint8_t> InitData(Layout.SB->BlockSize, 0xFF);
  BinaryStreamWriter Initializer(*Result);
  while (Initializer.bytesRemaining() > 0)
    cantFail(Initializer.writeBytes(InitData));
  return createStream(Layout.SB->BlockSize, MinLayout, MsfData, Allocator);
}

Error WritableMappedBlockStream::readBytes(uint32_t Offset, uint32_t Size,
                                           ArrayRef<uint8_t> &Buffer) {
  return ReadInterface.readBytes(Offset, Size, Buffer);
}

Error WritableMappedBlockStream::readLongestContiguousChunk(
    uint32_t Offset, ArrayRef<uint8_t> &Buffer) {
  return ReadInterface.readLongestContiguousChunk(Offset, Buffer);
}

uint32_t WritableMappedBlockStream::getLength() {
  return ReadInterface.getLength();
}

Error WritableMappedBlockStream::writeBytes(uint32_t Offset,
                                            ArrayRef<uint8_t> Buffer) {
  // Make sure we aren't trying to write beyond the end of the stream.
  if (auto EC = checkOffsetForWrite(Offset, Buffer.size()))
    return EC;

  uint32_t BlockNum = Offset / getBlockSize();
  uint32_t OffsetInBlock = Offset % getBlockSize();

  uint32_t BytesLeft = Buffer.size();
  uint32_t BytesWritten = 0;
  while (BytesLeft > 0) {
    uint32_t StreamBlockAddr = getStreamLayout().Blocks[BlockNum];
    uint32_t BytesToWriteInChunk =
        std::min(BytesLeft, getBlockSize() - OffsetInBlock);

    const uint8_t *Chunk = Buffer.data() + BytesWritten;
    ArrayRef<uint8_t> ChunkData(Chunk, BytesToWriteInChunk);
    uint32_t MsfOffset = blockToOffset(StreamBlockAddr, getBlockSize());
    MsfOffset += OffsetInBlock;
    if (auto EC = WriteInterface.writeBytes(MsfOffset, ChunkData))
      return EC;

    BytesLeft -= BytesToWriteInChunk;
    BytesWritten += BytesToWriteInChunk;
    ++BlockNum;
    OffsetInBlock = 0;
  }

  ReadInterface.fixCacheAfterWrite(Offset, Buffer);

  return Error::success();
}

Error WritableMappedBlockStream::commit() { return WriteInterface.commit(); }