icmp-abs-nabs.ll 11.9 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420
; NOTE: Assertions have been autogenerated by utils/update_test_checks.py
; RUN: opt < %s -instsimplify -S | FileCheck %s

; This is canonical form for this IR.

define i1 @abs_nsw_is_positive(i32 %x) {
; CHECK-LABEL: @abs_nsw_is_positive(
; CHECK-NEXT:    ret i1 true
;
  %cmp = icmp slt i32 %x, 0
  %negx = sub nsw i32 0, %x
  %abs = select i1 %cmp, i32 %negx, i32 %x
  %r = icmp sgt i32 %abs, -1
  ret i1 %r
}

; Test non-canonical predicate and non-canonical form of abs().

define i1 @abs_nsw_is_positive_sge(i32 %x) {
; CHECK-LABEL: @abs_nsw_is_positive_sge(
; CHECK-NEXT:    ret i1 true
;
  %cmp = icmp slt i32 %x, 1
  %negx = sub nsw i32 0, %x
  %abs = select i1 %cmp, i32 %negx, i32 %x
  %r = icmp sge i32 %abs, 0
  ret i1 %r
}

; This is a range-based analysis. Any negative constant works.

define i1 @abs_nsw_is_positive_reduced_range(i32 %x) {
; CHECK-LABEL: @abs_nsw_is_positive_reduced_range(
; CHECK-NEXT:    ret i1 true
;
  %cmp = icmp slt i32 %x, 0
  %negx = sub nsw i32 0, %x
  %abs = select i1 %cmp, i32 %negx, i32 %x
  %r = icmp sgt i32 %abs, -42
  ret i1 %r
}

; Negative test - we need 'nsw' in the abs().

define i1 @abs_is_positive_reduced_range(i32 %x) {
; CHECK-LABEL: @abs_is_positive_reduced_range(
; CHECK-NEXT:    [[CMP:%.*]] = icmp slt i32 [[X:%.*]], 0
; CHECK-NEXT:    [[NEGX:%.*]] = sub i32 0, [[X]]
; CHECK-NEXT:    [[ABS:%.*]] = select i1 [[CMP]], i32 [[NEGX]], i32 [[X]]
; CHECK-NEXT:    [[R:%.*]] = icmp sgt i32 [[ABS]], 42
; CHECK-NEXT:    ret i1 [[R]]
;
  %cmp = icmp slt i32 %x, 0
  %negx = sub i32 0, %x
  %abs = select i1 %cmp, i32 %negx, i32 %x
  %r = icmp sgt i32 %abs, 42
  ret i1 %r
}

; Negative test - range intersection is not subset.

define i1 @abs_nsw_is_positive_wrong_range(i32 %x) {
; CHECK-LABEL: @abs_nsw_is_positive_wrong_range(
; CHECK-NEXT:    [[CMP:%.*]] = icmp slt i32 [[X:%.*]], 0
; CHECK-NEXT:    [[NEGX:%.*]] = sub nsw i32 0, [[X]]
; CHECK-NEXT:    [[ABS:%.*]] = select i1 [[CMP]], i32 [[NEGX]], i32 [[X]]
; CHECK-NEXT:    [[R:%.*]] = icmp sgt i32 [[ABS]], 0
; CHECK-NEXT:    ret i1 [[R]]
;
  %cmp = icmp slt i32 %x, 0
  %negx = sub nsw i32 0, %x
  %abs = select i1 %cmp, i32 %negx, i32 %x
  %r = icmp sgt i32 %abs, 0
  ret i1 %r
}

; This is canonical form for this IR.

define i1 @abs_nsw_is_not_negative(i32 %x) {
; CHECK-LABEL: @abs_nsw_is_not_negative(
; CHECK-NEXT:    ret i1 false
;
  %cmp = icmp slt i32 %x, 0
  %negx = sub nsw i32 0, %x
  %abs = select i1 %cmp, i32 %negx, i32 %x
  %r = icmp slt i32 %abs, 0
  ret i1 %r
}

; Test non-canonical predicate and non-canonical form of abs().

define i1 @abs_nsw_is_not_negative_sle(i32 %x) {
; CHECK-LABEL: @abs_nsw_is_not_negative_sle(
; CHECK-NEXT:    ret i1 false
;
  %cmp = icmp slt i32 %x, 1
  %negx = sub nsw i32 0, %x
  %abs = select i1 %cmp, i32 %negx, i32 %x
  %r = icmp sle i32 %abs, -1
  ret i1 %r
}

; This is a range-based analysis. Any negative constant works.

define i1 @abs_nsw_is_not_negative_reduced_range(i32 %x) {
; CHECK-LABEL: @abs_nsw_is_not_negative_reduced_range(
; CHECK-NEXT:    ret i1 false
;
  %cmp = icmp slt i32 %x, 0
  %negx = sub nsw i32 0, %x
  %abs = select i1 %cmp, i32 %negx, i32 %x
  %r = icmp slt i32 %abs, -24
  ret i1 %r
}

; Negative test - we need 'nsw' in the abs().

define i1 @abs_is_not_negative_reduced_range(i32 %x) {
; CHECK-LABEL: @abs_is_not_negative_reduced_range(
; CHECK-NEXT:    [[CMP:%.*]] = icmp slt i32 [[X:%.*]], 0
; CHECK-NEXT:    [[NEGX:%.*]] = sub i32 0, [[X]]
; CHECK-NEXT:    [[ABS:%.*]] = select i1 [[CMP]], i32 [[NEGX]], i32 [[X]]
; CHECK-NEXT:    [[R:%.*]] = icmp slt i32 [[ABS]], 42
; CHECK-NEXT:    ret i1 [[R]]
;
  %cmp = icmp slt i32 %x, 0
  %negx = sub i32 0, %x
  %abs = select i1 %cmp, i32 %negx, i32 %x
  %r = icmp slt i32 %abs, 42
  ret i1 %r
}

; Negative test - range intersection is not empty.

define i1 @abs_nsw_is_not_negative_wrong_range(i32 %x) {
; CHECK-LABEL: @abs_nsw_is_not_negative_wrong_range(
; CHECK-NEXT:    [[CMP:%.*]] = icmp slt i32 [[X:%.*]], 0
; CHECK-NEXT:    [[NEGX:%.*]] = sub nsw i32 0, [[X]]
; CHECK-NEXT:    [[ABS:%.*]] = select i1 [[CMP]], i32 [[NEGX]], i32 [[X]]
; CHECK-NEXT:    [[R:%.*]] = icmp sle i32 [[ABS]], 0
; CHECK-NEXT:    ret i1 [[R]]
;
  %cmp = icmp slt i32 %x, 0
  %negx = sub nsw i32 0, %x
  %abs = select i1 %cmp, i32 %negx, i32 %x
  %r = icmp sle i32 %abs, 0
  ret i1 %r
}

; Even if we don't have nsw, the range is still limited in the unsigned domain.
define i1 @abs_positive_or_signed_min(i32 %x) {
; CHECK-LABEL: @abs_positive_or_signed_min(
; CHECK-NEXT:    ret i1 true
;
  %cmp = icmp slt i32 %x, 0
  %negx = sub i32 0, %x
  %abs = select i1 %cmp, i32 %negx, i32 %x
  %r = icmp ult i32 %abs, 2147483649
  ret i1 %r
}

define i1 @abs_positive_or_signed_min_reduced_range(i32 %x) {
; CHECK-LABEL: @abs_positive_or_signed_min_reduced_range(
; CHECK-NEXT:    [[CMP:%.*]] = icmp slt i32 [[X:%.*]], 0
; CHECK-NEXT:    [[NEGX:%.*]] = sub i32 0, [[X]]
; CHECK-NEXT:    [[ABS:%.*]] = select i1 [[CMP]], i32 [[NEGX]], i32 [[X]]
; CHECK-NEXT:    [[R:%.*]] = icmp ult i32 [[ABS]], -2147483648
; CHECK-NEXT:    ret i1 [[R]]
;
  %cmp = icmp slt i32 %x, 0
  %negx = sub i32 0, %x
  %abs = select i1 %cmp, i32 %negx, i32 %x
  %r = icmp ult i32 %abs, 2147483648
  ret i1 %r
}

; This is canonical form for this IR. For nabs(), we don't require 'nsw'

define i1 @nabs_is_negative_or_0(i32 %x) {
; CHECK-LABEL: @nabs_is_negative_or_0(
; CHECK-NEXT:    ret i1 true
;
  %cmp = icmp slt i32 %x, 0
  %negx = sub i32 0, %x
  %nabs = select i1 %cmp, i32 %x, i32 %negx
  %r = icmp slt i32 %nabs, 1
  ret i1 %r
}

; Test non-canonical predicate and non-canonical form of nabs().

define i1 @nabs_is_negative_or_0_sle(i32 %x) {
; CHECK-LABEL: @nabs_is_negative_or_0_sle(
; CHECK-NEXT:    ret i1 true
;
  %cmp = icmp slt i32 %x, 1
  %negx = sub i32 0, %x
  %nabs = select i1 %cmp, i32 %x, i32 %negx
  %r = icmp sle i32 %nabs, 0
  ret i1 %r
}

; This is a range-based analysis. Any positive constant works.

define i1 @nabs_is_negative_or_0_reduced_range(i32 %x) {
; CHECK-LABEL: @nabs_is_negative_or_0_reduced_range(
; CHECK-NEXT:    ret i1 true
;
  %cmp = icmp slt i32 %x, 1
  %negx = sub i32 0, %x
  %nabs = select i1 %cmp, i32 %x, i32 %negx
  %r = icmp slt i32 %nabs, 421
  ret i1 %r
}

; Negative test - range intersection is not subset.

define i1 @nabs_is_negative_or_0_wrong_range(i32 %x) {
; CHECK-LABEL: @nabs_is_negative_or_0_wrong_range(
; CHECK-NEXT:    [[CMP:%.*]] = icmp slt i32 [[X:%.*]], 1
; CHECK-NEXT:    [[NEGX:%.*]] = sub i32 0, [[X]]
; CHECK-NEXT:    [[NABS:%.*]] = select i1 [[CMP]], i32 [[X]], i32 [[NEGX]]
; CHECK-NEXT:    [[R:%.*]] = icmp slt i32 [[NABS]], 0
; CHECK-NEXT:    ret i1 [[R]]
;
  %cmp = icmp slt i32 %x, 1
  %negx = sub i32 0, %x
  %nabs = select i1 %cmp, i32 %x, i32 %negx
  %r = icmp slt i32 %nabs, 0
  ret i1 %r
}

; This is canonical form for this IR. For nabs(), we don't require 'nsw'

define i1 @nabs_is_not_over_0(i32 %x) {
; CHECK-LABEL: @nabs_is_not_over_0(
; CHECK-NEXT:    ret i1 false
;
  %cmp = icmp slt i32 %x, 0
  %negx = sub i32 0, %x
  %nabs = select i1 %cmp, i32 %x, i32 %negx
  %r = icmp sgt i32 %nabs, 0
  ret i1 %r
}

; Test non-canonical predicate and non-canonical form of nabs().

define i1 @nabs_is_not_over_0_sle(i32 %x) {
; CHECK-LABEL: @nabs_is_not_over_0_sle(
; CHECK-NEXT:    ret i1 false
;
  %cmp = icmp slt i32 %x, 1
  %negx = sub i32 0, %x
  %nabs = select i1 %cmp, i32 %x, i32 %negx
  %r = icmp sge i32 %nabs, 1
  ret i1 %r
}

; This is a range-based analysis. Any positive constant works.

define i1 @nabs_is_not_over_0_reduced_range(i32 %x) {
; CHECK-LABEL: @nabs_is_not_over_0_reduced_range(
; CHECK-NEXT:    ret i1 false
;
  %cmp = icmp slt i32 %x, 1
  %negx = sub i32 0, %x
  %nabs = select i1 %cmp, i32 %x, i32 %negx
  %r = icmp sgt i32 %nabs, 4223
  ret i1 %r
}

; Negative test - range intersection is not subset.

define i1 @nabs_is_not_over_0_wrong_range(i32 %x) {
; CHECK-LABEL: @nabs_is_not_over_0_wrong_range(
; CHECK-NEXT:    [[CMP:%.*]] = icmp slt i32 [[X:%.*]], 1
; CHECK-NEXT:    [[NEGX:%.*]] = sub i32 0, [[X]]
; CHECK-NEXT:    [[NABS:%.*]] = select i1 [[CMP]], i32 [[X]], i32 [[NEGX]]
; CHECK-NEXT:    [[R:%.*]] = icmp sgt i32 [[NABS]], -1
; CHECK-NEXT:    ret i1 [[R]]
;
  %cmp = icmp slt i32 %x, 1
  %negx = sub i32 0, %x
  %nabs = select i1 %cmp, i32 %x, i32 %negx
  %r = icmp sgt i32 %nabs, -1
  ret i1 %r
}

; More miscellaneous tests for predicates/types.

; Equality predicates are ok.

define i1 @abs_nsw_is_positive_eq(i32 %x) {
; CHECK-LABEL: @abs_nsw_is_positive_eq(
; CHECK-NEXT:    ret i1 false
;
  %cmp = icmp slt i32 %x, 1
  %negx = sub nsw i32 0, %x
  %abs = select i1 %cmp, i32 %negx, i32 %x
  %r = icmp eq i32 %abs, -8
  ret i1 %r
}

; An unsigned compare may work.

define i1 @abs_nsw_is_positive_ult(i8 %x) {
; CHECK-LABEL: @abs_nsw_is_positive_ult(
; CHECK-NEXT:    ret i1 true
;
  %cmp = icmp slt i8 %x, 0
  %negx = sub nsw i8 0, %x
  %abs = select i1 %cmp, i8 %negx, i8 %x
  %r = icmp ult i8 %abs, 139
  ret i1 %r
}

; An unsigned compare may work.

define i1 @abs_nsw_is_not_negative_ugt(i8 %x) {
; CHECK-LABEL: @abs_nsw_is_not_negative_ugt(
; CHECK-NEXT:    ret i1 false
;
  %cmp = icmp slt i8 %x, 0
  %negx = sub nsw i8 0, %x
  %abs = select i1 %cmp, i8 %negx, i8 %x
  %r = icmp ugt i8 %abs, 127
  ret i1 %r
}

; Vector types are ok.

define <2 x i1> @abs_nsw_is_not_negative_vec_splat(<2 x i32> %x) {
; CHECK-LABEL: @abs_nsw_is_not_negative_vec_splat(
; CHECK-NEXT:    ret <2 x i1> zeroinitializer
;
  %cmp = icmp slt <2 x i32> %x, zeroinitializer
  %negx = sub nsw <2 x i32> zeroinitializer, %x
  %abs = select <2 x i1> %cmp, <2 x i32> %negx, <2 x i32> %x
  %r = icmp slt <2 x i32> %abs, <i32 -8, i32 -8>
  ret <2 x i1> %r
}

; Equality predicates are ok.

define i1 @nabs_is_negative_or_0_ne(i8 %x) {
; CHECK-LABEL: @nabs_is_negative_or_0_ne(
; CHECK-NEXT:    ret i1 true
;
  %cmp = icmp slt i8 %x, 0
  %negx = sub i8 0, %x
  %nabs = select i1 %cmp, i8 %x, i8 %negx
  %r = icmp ne i8 %nabs, 12
  ret i1 %r
}

; Vector types are ok.

define <3 x i1> @nabs_is_not_over_0_sle_vec_splat(<3 x i33> %x) {
; CHECK-LABEL: @nabs_is_not_over_0_sle_vec_splat(
; CHECK-NEXT:    ret <3 x i1> zeroinitializer
;
  %cmp = icmp slt <3 x i33> %x, <i33 1, i33 1, i33 1>
  %negx = sub <3 x i33> zeroinitializer, %x
  %nabs = select <3 x i1> %cmp, <3 x i33> %x, <3 x i33> %negx
  %r = icmp sge <3 x i33> %nabs, <i33 1, i33 1, i33 1>
  ret <3 x i1> %r
}

; Negative test - intersection does not equal absolute value range.
; PR39510 - https://bugs.llvm.org/show_bug.cgi?id=39510

define i1 @abs_no_intersection(i32 %a) {
; CHECK-LABEL: @abs_no_intersection(
; CHECK-NEXT:    [[CMP:%.*]] = icmp slt i32 [[A:%.*]], 0
; CHECK-NEXT:    [[SUB:%.*]] = sub nsw i32 0, [[A]]
; CHECK-NEXT:    [[COND:%.*]] = select i1 [[CMP]], i32 [[SUB]], i32 [[A]]
; CHECK-NEXT:    [[R:%.*]] = icmp ne i32 [[COND]], 2
; CHECK-NEXT:    ret i1 [[R]]
;
  %cmp = icmp slt i32 %a, 0
  %sub = sub nsw i32 0, %a
  %cond = select i1 %cmp, i32 %sub, i32 %a
  %r = icmp ne i32 %cond, 2
  ret i1 %r
}

; Negative test - intersection does not equal absolute value range.

define i1 @nabs_no_intersection(i32 %a) {
; CHECK-LABEL: @nabs_no_intersection(
; CHECK-NEXT:    [[CMP:%.*]] = icmp sgt i32 [[A:%.*]], 0
; CHECK-NEXT:    [[SUB:%.*]] = sub i32 0, [[A]]
; CHECK-NEXT:    [[COND:%.*]] = select i1 [[CMP]], i32 [[SUB]], i32 [[A]]
; CHECK-NEXT:    [[R:%.*]] = icmp ne i32 [[COND]], -2
; CHECK-NEXT:    ret i1 [[R]]
;
  %cmp = icmp sgt i32 %a, 0
  %sub = sub i32 0, %a
  %cond = select i1 %cmp, i32 %sub, i32 %a
  %r = icmp ne i32 %cond, -2
  ret i1 %r
}

; We can't fold this to false unless both subs have nsw.
define i1 @abs_sub_sub_missing_nsw(i32 %x, i32 %y) {
; CHECK-LABEL: @abs_sub_sub_missing_nsw(
; CHECK-NEXT:    [[A:%.*]] = sub i32 [[X:%.*]], [[Y:%.*]]
; CHECK-NEXT:    [[B:%.*]] = sub nsw i32 [[Y]], [[X]]
; CHECK-NEXT:    [[C:%.*]] = icmp sgt i32 [[A]], -1
; CHECK-NEXT:    [[D:%.*]] = select i1 [[C]], i32 [[A]], i32 [[B]]
; CHECK-NEXT:    [[E:%.*]] = icmp slt i32 [[D]], 0
; CHECK-NEXT:    ret i1 [[E]]
;
  %a = sub i32 %x, %y
  %b = sub nsw i32 %y, %x
  %c = icmp sgt i32 %a, -1
  %d = select i1 %c, i32 %a, i32 %b
  %e = icmp slt i32 %d, 0
  ret i1 %e
}