SparsePropagation.cpp 20.8 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543
//===- SparsePropagation.cpp - Unit tests for the generic solver ----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "llvm/Analysis/SparsePropagation.h"
#include "llvm/ADT/PointerIntPair.h"
#include "llvm/IR/CallSite.h"
#include "llvm/IR/IRBuilder.h"
#include "gtest/gtest.h"
using namespace llvm;

namespace {
/// To enable interprocedural analysis, we assign LLVM values to the following
/// groups. The register group represents SSA registers, the return group
/// represents the return values of functions, and the memory group represents
/// in-memory values. An LLVM Value can technically be in more than one group.
/// It's necessary to distinguish these groups so we can, for example, track a
/// global variable separately from the value stored at its location.
enum class IPOGrouping { Register, Return, Memory };

/// Our LatticeKeys are PointerIntPairs composed of LLVM values and groupings.
/// The PointerIntPair header provides a DenseMapInfo specialization, so using
/// these as LatticeKeys is fine.
using TestLatticeKey = PointerIntPair<Value *, 2, IPOGrouping>;
} // namespace

namespace llvm {
/// A specialization of LatticeKeyInfo for TestLatticeKeys. The generic solver
/// must translate between LatticeKeys and LLVM Values when adding Values to
/// its work list and inspecting the state of control-flow related values.
template <> struct LatticeKeyInfo<TestLatticeKey> {
  static inline Value *getValueFromLatticeKey(TestLatticeKey Key) {
    return Key.getPointer();
  }
  static inline TestLatticeKey getLatticeKeyFromValue(Value *V) {
    return TestLatticeKey(V, IPOGrouping::Register);
  }
};
} // namespace llvm

namespace {
/// This class defines a simple test lattice value that could be used for
/// solving problems similar to constant propagation. The value is maintained
/// as a PointerIntPair.
class TestLatticeVal {
public:
  /// The states of the lattices value. Only the ConstantVal state is
  /// interesting; the rest are special states used by the generic solver. The
  /// UntrackedVal state differs from the other three in that the generic
  /// solver uses it to avoid doing unnecessary work. In particular, when a
  /// value moves to the UntrackedVal state, it's users are not notified.
  enum TestLatticeStateTy {
    UndefinedVal,
    ConstantVal,
    OverdefinedVal,
    UntrackedVal
  };

  TestLatticeVal() : LatticeVal(nullptr, UndefinedVal) {}
  TestLatticeVal(Constant *C, TestLatticeStateTy State)
      : LatticeVal(C, State) {}

  /// Return true if this lattice value is in the Constant state. This is used
  /// for checking the solver results.
  bool isConstant() const { return LatticeVal.getInt() == ConstantVal; }

  /// Return true if this lattice value is in the Overdefined state. This is
  /// used for checking the solver results.
  bool isOverdefined() const { return LatticeVal.getInt() == OverdefinedVal; }

  bool operator==(const TestLatticeVal &RHS) const {
    return LatticeVal == RHS.LatticeVal;
  }

  bool operator!=(const TestLatticeVal &RHS) const {
    return LatticeVal != RHS.LatticeVal;
  }

private:
  /// A simple lattice value type for problems similar to constant propagation.
  /// It holds the constant value and the lattice state.
  PointerIntPair<const Constant *, 2, TestLatticeStateTy> LatticeVal;
};

/// This class defines a simple test lattice function that could be used for
/// solving problems similar to constant propagation. The test lattice differs
/// from a "real" lattice in a few ways. First, it initializes all return
/// values, values stored in global variables, and arguments in the undefined
/// state. This means that there are no limitations on what we can track
/// interprocedurally. For simplicity, all global values in the tests will be
/// given internal linkage, since this is not something this lattice function
/// tracks. Second, it only handles the few instructions necessary for the
/// tests.
class TestLatticeFunc
    : public AbstractLatticeFunction<TestLatticeKey, TestLatticeVal> {
public:
  /// Construct a new test lattice function with special values for the
  /// Undefined, Overdefined, and Untracked states.
  TestLatticeFunc()
      : AbstractLatticeFunction(
            TestLatticeVal(nullptr, TestLatticeVal::UndefinedVal),
            TestLatticeVal(nullptr, TestLatticeVal::OverdefinedVal),
            TestLatticeVal(nullptr, TestLatticeVal::UntrackedVal)) {}

  /// Compute and return a TestLatticeVal for the given TestLatticeKey. For the
  /// test analysis, a LatticeKey will begin in the undefined state, unless it
  /// represents an LLVM Constant in the register grouping.
  TestLatticeVal ComputeLatticeVal(TestLatticeKey Key) override {
    if (Key.getInt() == IPOGrouping::Register)
      if (auto *C = dyn_cast<Constant>(Key.getPointer()))
        return TestLatticeVal(C, TestLatticeVal::ConstantVal);
    return getUndefVal();
  }

  /// Merge the two given lattice values. This merge should be equivalent to
  /// what is done for constant propagation. That is, the resulting lattice
  /// value is constant only if the two given lattice values are constant and
  /// hold the same value.
  TestLatticeVal MergeValues(TestLatticeVal X, TestLatticeVal Y) override {
    if (X == getUntrackedVal() || Y == getUntrackedVal())
      return getUntrackedVal();
    if (X == getOverdefinedVal() || Y == getOverdefinedVal())
      return getOverdefinedVal();
    if (X == getUndefVal() && Y == getUndefVal())
      return getUndefVal();
    if (X == getUndefVal())
      return Y;
    if (Y == getUndefVal())
      return X;
    if (X == Y)
      return X;
    return getOverdefinedVal();
  }

  /// Compute the lattice values that change as a result of executing the given
  /// instruction. We only handle the few instructions needed for the tests.
  void ComputeInstructionState(
      Instruction &I, DenseMap<TestLatticeKey, TestLatticeVal> &ChangedValues,
      SparseSolver<TestLatticeKey, TestLatticeVal> &SS) override {
    switch (I.getOpcode()) {
    case Instruction::Call:
      return visitCallSite(cast<CallInst>(&I), ChangedValues, SS);
    case Instruction::Ret:
      return visitReturn(*cast<ReturnInst>(&I), ChangedValues, SS);
    case Instruction::Store:
      return visitStore(*cast<StoreInst>(&I), ChangedValues, SS);
    default:
      return visitInst(I, ChangedValues, SS);
    }
  }

private:
  /// Handle call sites. The state of a called function's argument is the merge
  /// of the current formal argument state with the call site's corresponding
  /// actual argument state. The call site state is the merge of the call site
  /// state with the returned value state of the called function.
  void visitCallSite(CallSite CS,
                     DenseMap<TestLatticeKey, TestLatticeVal> &ChangedValues,
                     SparseSolver<TestLatticeKey, TestLatticeVal> &SS) {
    Function *F = CS.getCalledFunction();
    Instruction *I = CS.getInstruction();
    auto RegI = TestLatticeKey(I, IPOGrouping::Register);
    if (!F) {
      ChangedValues[RegI] = getOverdefinedVal();
      return;
    }
    SS.MarkBlockExecutable(&F->front());
    for (Argument &A : F->args()) {
      auto RegFormal = TestLatticeKey(&A, IPOGrouping::Register);
      auto RegActual =
          TestLatticeKey(CS.getArgument(A.getArgNo()), IPOGrouping::Register);
      ChangedValues[RegFormal] =
          MergeValues(SS.getValueState(RegFormal), SS.getValueState(RegActual));
    }
    auto RetF = TestLatticeKey(F, IPOGrouping::Return);
    ChangedValues[RegI] =
        MergeValues(SS.getValueState(RegI), SS.getValueState(RetF));
  }

  /// Handle return instructions. The function's return state is the merge of
  /// the returned value state and the function's current return state.
  void visitReturn(ReturnInst &I,
                   DenseMap<TestLatticeKey, TestLatticeVal> &ChangedValues,
                   SparseSolver<TestLatticeKey, TestLatticeVal> &SS) {
    Function *F = I.getParent()->getParent();
    if (F->getReturnType()->isVoidTy())
      return;
    auto RegR = TestLatticeKey(I.getReturnValue(), IPOGrouping::Register);
    auto RetF = TestLatticeKey(F, IPOGrouping::Return);
    ChangedValues[RetF] =
        MergeValues(SS.getValueState(RegR), SS.getValueState(RetF));
  }

  /// Handle store instructions. If the pointer operand of the store is a
  /// global variable, we attempt to track the value. The global variable state
  /// is the merge of the stored value state with the current global variable
  /// state.
  void visitStore(StoreInst &I,
                  DenseMap<TestLatticeKey, TestLatticeVal> &ChangedValues,
                  SparseSolver<TestLatticeKey, TestLatticeVal> &SS) {
    auto *GV = dyn_cast<GlobalVariable>(I.getPointerOperand());
    if (!GV)
      return;
    auto RegVal = TestLatticeKey(I.getValueOperand(), IPOGrouping::Register);
    auto MemPtr = TestLatticeKey(GV, IPOGrouping::Memory);
    ChangedValues[MemPtr] =
        MergeValues(SS.getValueState(RegVal), SS.getValueState(MemPtr));
  }

  /// Handle all other instructions. All other instructions are marked
  /// overdefined.
  void visitInst(Instruction &I,
                 DenseMap<TestLatticeKey, TestLatticeVal> &ChangedValues,
                 SparseSolver<TestLatticeKey, TestLatticeVal> &SS) {
    auto RegI = TestLatticeKey(&I, IPOGrouping::Register);
    ChangedValues[RegI] = getOverdefinedVal();
  }
};

/// This class defines the common data used for all of the tests. The tests
/// should add code to the module and then run the solver.
class SparsePropagationTest : public testing::Test {
protected:
  LLVMContext Context;
  Module M;
  IRBuilder<> Builder;
  TestLatticeFunc Lattice;
  SparseSolver<TestLatticeKey, TestLatticeVal> Solver;

public:
  SparsePropagationTest()
      : M("", Context), Builder(Context), Solver(&Lattice) {}
};
} // namespace

/// Test that we mark discovered functions executable.
///
/// define internal void @f() {
///   call void @g()
///   ret void
/// }
///
/// define internal void @g() {
///   call void @f()
///   ret void
/// }
///
/// For this test, we initially mark "f" executable, and the solver discovers
/// "g" because of the call in "f". The mutually recursive call in "g" also
/// tests that we don't add a block to the basic block work list if it is
/// already executable. Doing so would put the solver into an infinite loop.
TEST_F(SparsePropagationTest, MarkBlockExecutable) {
  Function *F = Function::Create(FunctionType::get(Builder.getVoidTy(), false),
                                 GlobalValue::InternalLinkage, "f", &M);
  Function *G = Function::Create(FunctionType::get(Builder.getVoidTy(), false),
                                 GlobalValue::InternalLinkage, "g", &M);
  BasicBlock *FEntry = BasicBlock::Create(Context, "", F);
  BasicBlock *GEntry = BasicBlock::Create(Context, "", G);
  Builder.SetInsertPoint(FEntry);
  Builder.CreateCall(G);
  Builder.CreateRetVoid();
  Builder.SetInsertPoint(GEntry);
  Builder.CreateCall(F);
  Builder.CreateRetVoid();

  Solver.MarkBlockExecutable(FEntry);
  Solver.Solve();

  EXPECT_TRUE(Solver.isBlockExecutable(GEntry));
}

/// Test that we propagate information through global variables.
///
/// @gv = internal global i64
///
/// define internal void @f() {
///   store i64 1, i64* @gv
///   ret void
/// }
///
/// define internal void @g() {
///   store i64 1, i64* @gv
///   ret void
/// }
///
/// For this test, we initially mark both "f" and "g" executable, and the
/// solver computes the lattice state of the global variable as constant.
TEST_F(SparsePropagationTest, GlobalVariableConstant) {
  Function *F = Function::Create(FunctionType::get(Builder.getVoidTy(), false),
                                 GlobalValue::InternalLinkage, "f", &M);
  Function *G = Function::Create(FunctionType::get(Builder.getVoidTy(), false),
                                 GlobalValue::InternalLinkage, "g", &M);
  GlobalVariable *GV =
      new GlobalVariable(M, Builder.getInt64Ty(), false,
                         GlobalValue::InternalLinkage, nullptr, "gv");
  BasicBlock *FEntry = BasicBlock::Create(Context, "", F);
  BasicBlock *GEntry = BasicBlock::Create(Context, "", G);
  Builder.SetInsertPoint(FEntry);
  Builder.CreateStore(Builder.getInt64(1), GV);
  Builder.CreateRetVoid();
  Builder.SetInsertPoint(GEntry);
  Builder.CreateStore(Builder.getInt64(1), GV);
  Builder.CreateRetVoid();

  Solver.MarkBlockExecutable(FEntry);
  Solver.MarkBlockExecutable(GEntry);
  Solver.Solve();

  auto MemGV = TestLatticeKey(GV, IPOGrouping::Memory);
  EXPECT_TRUE(Solver.getExistingValueState(MemGV).isConstant());
}

/// Test that we propagate information through global variables.
///
/// @gv = internal global i64
///
/// define internal void @f() {
///   store i64 0, i64* @gv
///   ret void
/// }
///
/// define internal void @g() {
///   store i64 1, i64* @gv
///   ret void
/// }
///
/// For this test, we initially mark both "f" and "g" executable, and the
/// solver computes the lattice state of the global variable as overdefined.
TEST_F(SparsePropagationTest, GlobalVariableOverDefined) {
  Function *F = Function::Create(FunctionType::get(Builder.getVoidTy(), false),
                                 GlobalValue::InternalLinkage, "f", &M);
  Function *G = Function::Create(FunctionType::get(Builder.getVoidTy(), false),
                                 GlobalValue::InternalLinkage, "g", &M);
  GlobalVariable *GV =
      new GlobalVariable(M, Builder.getInt64Ty(), false,
                         GlobalValue::InternalLinkage, nullptr, "gv");
  BasicBlock *FEntry = BasicBlock::Create(Context, "", F);
  BasicBlock *GEntry = BasicBlock::Create(Context, "", G);
  Builder.SetInsertPoint(FEntry);
  Builder.CreateStore(Builder.getInt64(0), GV);
  Builder.CreateRetVoid();
  Builder.SetInsertPoint(GEntry);
  Builder.CreateStore(Builder.getInt64(1), GV);
  Builder.CreateRetVoid();

  Solver.MarkBlockExecutable(FEntry);
  Solver.MarkBlockExecutable(GEntry);
  Solver.Solve();

  auto MemGV = TestLatticeKey(GV, IPOGrouping::Memory);
  EXPECT_TRUE(Solver.getExistingValueState(MemGV).isOverdefined());
}

/// Test that we propagate information through function returns.
///
/// define internal i64 @f(i1* %cond) {
/// if:
///   %0 = load i1, i1* %cond
///   br i1 %0, label %then, label %else
///
/// then:
///   ret i64 1
///
/// else:
///   ret i64 1
/// }
///
/// For this test, we initially mark "f" executable, and the solver computes
/// the return value of the function as constant.
TEST_F(SparsePropagationTest, FunctionDefined) {
  Function *F =
      Function::Create(FunctionType::get(Builder.getInt64Ty(),
                                         {Type::getInt1PtrTy(Context)}, false),
                       GlobalValue::InternalLinkage, "f", &M);
  BasicBlock *If = BasicBlock::Create(Context, "if", F);
  BasicBlock *Then = BasicBlock::Create(Context, "then", F);
  BasicBlock *Else = BasicBlock::Create(Context, "else", F);
  F->arg_begin()->setName("cond");
  Builder.SetInsertPoint(If);
  LoadInst *Cond = Builder.CreateLoad(Type::getInt1Ty(Context), F->arg_begin());
  Builder.CreateCondBr(Cond, Then, Else);
  Builder.SetInsertPoint(Then);
  Builder.CreateRet(Builder.getInt64(1));
  Builder.SetInsertPoint(Else);
  Builder.CreateRet(Builder.getInt64(1));

  Solver.MarkBlockExecutable(If);
  Solver.Solve();

  auto RetF = TestLatticeKey(F, IPOGrouping::Return);
  EXPECT_TRUE(Solver.getExistingValueState(RetF).isConstant());
}

/// Test that we propagate information through function returns.
///
/// define internal i64 @f(i1* %cond) {
/// if:
///   %0 = load i1, i1* %cond
///   br i1 %0, label %then, label %else
///
/// then:
///   ret i64 0
///
/// else:
///   ret i64 1
/// }
///
/// For this test, we initially mark "f" executable, and the solver computes
/// the return value of the function as overdefined.
TEST_F(SparsePropagationTest, FunctionOverDefined) {
  Function *F =
      Function::Create(FunctionType::get(Builder.getInt64Ty(),
                                         {Type::getInt1PtrTy(Context)}, false),
                       GlobalValue::InternalLinkage, "f", &M);
  BasicBlock *If = BasicBlock::Create(Context, "if", F);
  BasicBlock *Then = BasicBlock::Create(Context, "then", F);
  BasicBlock *Else = BasicBlock::Create(Context, "else", F);
  F->arg_begin()->setName("cond");
  Builder.SetInsertPoint(If);
  LoadInst *Cond = Builder.CreateLoad(Type::getInt1Ty(Context), F->arg_begin());
  Builder.CreateCondBr(Cond, Then, Else);
  Builder.SetInsertPoint(Then);
  Builder.CreateRet(Builder.getInt64(0));
  Builder.SetInsertPoint(Else);
  Builder.CreateRet(Builder.getInt64(1));

  Solver.MarkBlockExecutable(If);
  Solver.Solve();

  auto RetF = TestLatticeKey(F, IPOGrouping::Return);
  EXPECT_TRUE(Solver.getExistingValueState(RetF).isOverdefined());
}

/// Test that we propagate information through arguments.
///
/// define internal void @f() {
///   call void @g(i64 0, i64 1)
///   call void @g(i64 1, i64 1)
///   ret void
/// }
///
/// define internal void @g(i64 %a, i64 %b) {
///   ret void
/// }
///
/// For this test, we initially mark "f" executable, and the solver discovers
/// "g" because of the calls in "f". The solver computes the state of argument
/// "a" as overdefined and the state of "b" as constant.
///
/// In addition, this test demonstrates that ComputeInstructionState can alter
/// the state of multiple lattice values, in addition to the one associated
/// with the instruction definition. Each call instruction in this test updates
/// the state of arguments "a" and "b".
TEST_F(SparsePropagationTest, ComputeInstructionState) {
  Function *F = Function::Create(FunctionType::get(Builder.getVoidTy(), false),
                                 GlobalValue::InternalLinkage, "f", &M);
  Function *G = Function::Create(
      FunctionType::get(Builder.getVoidTy(),
                        {Builder.getInt64Ty(), Builder.getInt64Ty()}, false),
      GlobalValue::InternalLinkage, "g", &M);
  Argument *A = G->arg_begin();
  Argument *B = std::next(G->arg_begin());
  A->setName("a");
  B->setName("b");
  BasicBlock *FEntry = BasicBlock::Create(Context, "", F);
  BasicBlock *GEntry = BasicBlock::Create(Context, "", G);
  Builder.SetInsertPoint(FEntry);
  Builder.CreateCall(G, {Builder.getInt64(0), Builder.getInt64(1)});
  Builder.CreateCall(G, {Builder.getInt64(1), Builder.getInt64(1)});
  Builder.CreateRetVoid();
  Builder.SetInsertPoint(GEntry);
  Builder.CreateRetVoid();

  Solver.MarkBlockExecutable(FEntry);
  Solver.Solve();

  auto RegA = TestLatticeKey(A, IPOGrouping::Register);
  auto RegB = TestLatticeKey(B, IPOGrouping::Register);
  EXPECT_TRUE(Solver.getExistingValueState(RegA).isOverdefined());
  EXPECT_TRUE(Solver.getExistingValueState(RegB).isConstant());
}

/// Test that we can handle exceptional terminator instructions.
///
/// declare internal void @p()
///
/// declare internal void @g()
///
/// define internal void @f() personality i8* bitcast (void ()* @p to i8*) {
/// entry:
///   invoke void @g()
///           to label %exit unwind label %catch.pad
///
/// catch.pad:
///   %0 = catchswitch within none [label %catch.body] unwind to caller
///
/// catch.body:
///   %1 = catchpad within %0 []
///   catchret from %1 to label %exit
///
/// exit:
///   ret void
/// }
///
/// For this test, we initially mark the entry block executable. The solver
/// then discovers the rest of the blocks in the function are executable.
TEST_F(SparsePropagationTest, ExceptionalTerminatorInsts) {
  Function *P = Function::Create(FunctionType::get(Builder.getVoidTy(), false),
                                 GlobalValue::InternalLinkage, "p", &M);
  Function *G = Function::Create(FunctionType::get(Builder.getVoidTy(), false),
                                 GlobalValue::InternalLinkage, "g", &M);
  Function *F = Function::Create(FunctionType::get(Builder.getVoidTy(), false),
                                 GlobalValue::InternalLinkage, "f", &M);
  Constant *C =
      ConstantExpr::getCast(Instruction::BitCast, P, Builder.getInt8PtrTy());
  F->setPersonalityFn(C);
  BasicBlock *Entry = BasicBlock::Create(Context, "entry", F);
  BasicBlock *Pad = BasicBlock::Create(Context, "catch.pad", F);
  BasicBlock *Body = BasicBlock::Create(Context, "catch.body", F);
  BasicBlock *Exit = BasicBlock::Create(Context, "exit", F);
  Builder.SetInsertPoint(Entry);
  Builder.CreateInvoke(G, Exit, Pad);
  Builder.SetInsertPoint(Pad);
  CatchSwitchInst *CatchSwitch =
      Builder.CreateCatchSwitch(ConstantTokenNone::get(Context), nullptr, 1);
  CatchSwitch->addHandler(Body);
  Builder.SetInsertPoint(Body);
  CatchPadInst *CatchPad = Builder.CreateCatchPad(CatchSwitch, {});
  Builder.CreateCatchRet(CatchPad, Exit);
  Builder.SetInsertPoint(Exit);
  Builder.CreateRetVoid();

  Solver.MarkBlockExecutable(Entry);
  Solver.Solve();

  EXPECT_TRUE(Solver.isBlockExecutable(Pad));
  EXPECT_TRUE(Solver.isBlockExecutable(Body));
  EXPECT_TRUE(Solver.isBlockExecutable(Exit));
}