GSYMTest.cpp 54.9 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403
//===- llvm/unittest/DebugInfo/GSYMTest.cpp -------------------------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//

#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/DebugInfo/GSYM/Header.h"
#include "llvm/DebugInfo/GSYM/FileEntry.h"
#include "llvm/DebugInfo/GSYM/FileWriter.h"
#include "llvm/DebugInfo/GSYM/FunctionInfo.h"
#include "llvm/DebugInfo/GSYM/GsymCreator.h"
#include "llvm/DebugInfo/GSYM/GsymReader.h"
#include "llvm/DebugInfo/GSYM/InlineInfo.h"
#include "llvm/DebugInfo/GSYM/Range.h"
#include "llvm/DebugInfo/GSYM/StringTable.h"
#include "llvm/Support/DataExtractor.h"
#include "llvm/Support/Endian.h"
#include "llvm/Testing/Support/Error.h"

#include "gtest/gtest.h"
#include "gmock/gmock.h"
#include <string>

using namespace llvm;
using namespace gsym;

void checkError(ArrayRef<std::string> ExpectedMsgs, Error Err) {
  ASSERT_TRUE(bool(Err));
  size_t WhichMsg = 0;
  Error Remaining =
      handleErrors(std::move(Err), [&](const ErrorInfoBase &Actual) {
        ASSERT_LT(WhichMsg, ExpectedMsgs.size());
        // Use .str(), because googletest doesn't visualise a StringRef
        // properly.
        EXPECT_EQ(Actual.message(), ExpectedMsgs[WhichMsg++]);
      });
  EXPECT_EQ(WhichMsg, ExpectedMsgs.size());
  EXPECT_FALSE(Remaining);
}

void checkError(std::string ExpectedMsg, Error Err) {
  checkError(ArrayRef<std::string>{ExpectedMsg}, std::move(Err));
}
TEST(GSYMTest, TestFileEntry) {
  // Make sure default constructed GSYM FileEntry has zeroes in the
  // directory and basename string table indexes.
  FileEntry empty1;
  FileEntry empty2;
  EXPECT_EQ(empty1.Dir, 0u);
  EXPECT_EQ(empty1.Base, 0u);
  // Verify equality operator works
  FileEntry a1(10, 30);
  FileEntry a2(10, 30);
  FileEntry b(10, 40);
  EXPECT_EQ(empty1, empty2);
  EXPECT_EQ(a1, a2);
  EXPECT_NE(a1, b);
  EXPECT_NE(a1, empty1);
  // Test we can use llvm::gsym::FileEntry in llvm::DenseMap.
  DenseMap<FileEntry, uint32_t> EntryToIndex;
  constexpr uint32_t Index1 = 1;
  constexpr uint32_t Index2 = 1;
  auto R = EntryToIndex.insert(std::make_pair(a1, Index1));
  EXPECT_TRUE(R.second);
  EXPECT_EQ(R.first->second, Index1);
  R = EntryToIndex.insert(std::make_pair(a1, Index1));
  EXPECT_FALSE(R.second);
  EXPECT_EQ(R.first->second, Index1);
  R = EntryToIndex.insert(std::make_pair(b, Index2));
  EXPECT_TRUE(R.second);
  EXPECT_EQ(R.first->second, Index2);
  R = EntryToIndex.insert(std::make_pair(a1, Index2));
  EXPECT_FALSE(R.second);
  EXPECT_EQ(R.first->second, Index2);
}

TEST(GSYMTest, TestFunctionInfo) {
  // Test GSYM FunctionInfo structs and functionality.
  FunctionInfo invalid;
  EXPECT_FALSE(invalid.isValid());
  EXPECT_FALSE(invalid.hasRichInfo());
  const uint64_t StartAddr = 0x1000;
  const uint64_t EndAddr = 0x1100;
  const uint64_t Size = EndAddr - StartAddr;
  const uint32_t NameOffset = 30;
  FunctionInfo FI(StartAddr, Size, NameOffset);
  EXPECT_TRUE(FI.isValid());
  EXPECT_FALSE(FI.hasRichInfo());
  EXPECT_EQ(FI.startAddress(), StartAddr);
  EXPECT_EQ(FI.endAddress(), EndAddr);
  EXPECT_EQ(FI.size(), Size);
  const uint32_t FileIdx = 1;
  const uint32_t Line = 12;
  FI.OptLineTable = LineTable();
  FI.OptLineTable->push(LineEntry(StartAddr,FileIdx,Line));
  EXPECT_TRUE(FI.hasRichInfo());
  FI.clear();
  EXPECT_FALSE(FI.isValid());
  EXPECT_FALSE(FI.hasRichInfo());

  FunctionInfo A1(0x1000, 0x100, NameOffset);
  FunctionInfo A2(0x1000, 0x100, NameOffset);
  FunctionInfo B;
  // Check == operator
  EXPECT_EQ(A1, A2);
  // Make sure things are not equal if they only differ by start address.
  B = A2;
  B.setStartAddress(0x2000);
  EXPECT_NE(B, A2);
  // Make sure things are not equal if they only differ by size.
  B = A2;
  B.setSize(0x101);
  EXPECT_NE(B, A2);
  // Make sure things are not equal if they only differ by name.
  B = A2;
  B.Name = 60;
  EXPECT_NE(B, A2);
  // Check < operator.
  // Check less than where address differs.
  B = A2;
  B.setStartAddress(A2.startAddress() + 0x1000);
  EXPECT_LT(A1, B);

  // We use the < operator to take a variety of different FunctionInfo
  // structs from a variety of sources: symtab, debug info, runtime info
  // and we sort them and want the sorting to allow us to quickly get the
  // best version of a function info.
  FunctionInfo FISymtab(StartAddr, Size, NameOffset);
  FunctionInfo FIWithLines(StartAddr, Size, NameOffset);
  FIWithLines.OptLineTable = LineTable();
  FIWithLines.OptLineTable->push(LineEntry(StartAddr,FileIdx,Line));
  // Test that a FunctionInfo with just a name and size is less than one
  // that has name, size and any number of line table entries
  EXPECT_LT(FISymtab, FIWithLines);

  FunctionInfo FIWithLinesAndInline = FIWithLines;
  FIWithLinesAndInline.Inline = InlineInfo();
  FIWithLinesAndInline.Inline->Ranges.insert(
      AddressRange(StartAddr, StartAddr + 0x10));
  // Test that a FunctionInfo with name, size, and line entries is less than
  // the same one with valid inline info
  EXPECT_LT(FIWithLines, FIWithLinesAndInline);

  // Test if we have an entry with lines and one with more lines for the same
  // range, the ones with more lines is greater than the one with less.
  FunctionInfo FIWithMoreLines = FIWithLines;
  FIWithMoreLines.OptLineTable->push(LineEntry(StartAddr,FileIdx,Line+5));
  EXPECT_LT(FIWithLines, FIWithMoreLines);

  // Test that if we have the same number of lines we compare the line entries
  // in the FunctionInfo.OptLineTable.Lines vector.
  FunctionInfo FIWithLinesWithHigherAddress = FIWithLines;
  FIWithLinesWithHigherAddress.OptLineTable->get(0).Addr += 0x10;
  EXPECT_LT(FIWithLines, FIWithLinesWithHigherAddress);
}

static void TestFunctionInfoDecodeError(llvm::support::endianness ByteOrder,
                                        std::string Bytes,
                                        const uint64_t BaseAddr,
                                        std::string ExpectedErrorMsg) {
  uint8_t AddressSize = 4;
  DataExtractor Data(Bytes, ByteOrder == llvm::support::little, AddressSize);
  llvm::Expected<FunctionInfo> Decoded = FunctionInfo::decode(Data, BaseAddr);
  // Make sure decoding fails.
  ASSERT_FALSE((bool)Decoded);
  // Make sure decoded object is the same as the one we encoded.
  checkError(ExpectedErrorMsg, Decoded.takeError());
}

TEST(GSYMTest, TestFunctionInfoDecodeErrors) {
  // Test decoding FunctionInfo objects that ensure we report an appropriate
  // error message.
  const llvm::support::endianness ByteOrder = llvm::support::little;
  SmallString<512> Str;
  raw_svector_ostream OutStrm(Str);
  FileWriter FW(OutStrm, ByteOrder);
  const uint64_t BaseAddr = 0x100;
  TestFunctionInfoDecodeError(ByteOrder, OutStrm.str(), BaseAddr,
      "0x00000000: missing FunctionInfo Size");
  FW.writeU32(0x100); // Function size.
  TestFunctionInfoDecodeError(ByteOrder, OutStrm.str(), BaseAddr,
      "0x00000004: missing FunctionInfo Name");
  // Write out an invalid Name string table offset of zero.
  FW.writeU32(0);
  TestFunctionInfoDecodeError(ByteOrder, OutStrm.str(), BaseAddr,
      "0x00000004: invalid FunctionInfo Name value 0x00000000");
  // Modify the Name to be 0x00000001, which is a valid value.
  FW.fixup32(0x00000001, 4);
  TestFunctionInfoDecodeError(ByteOrder, OutStrm.str(), BaseAddr,
      "0x00000008: missing FunctionInfo InfoType value");
  auto FixupOffset = FW.tell();
  FW.writeU32(1); // InfoType::LineTableInfo.
  TestFunctionInfoDecodeError(ByteOrder, OutStrm.str(), BaseAddr,
      "0x0000000c: missing FunctionInfo InfoType length");
  FW.fixup32(4, FixupOffset); // Write an invalid InfoType enumeration value
  FW.writeU32(0); // LineTableInfo InfoType data length.
  TestFunctionInfoDecodeError(ByteOrder, OutStrm.str(), BaseAddr,
      "0x00000008: unsupported InfoType 4");
}

static void TestFunctionInfoEncodeError(llvm::support::endianness ByteOrder,
                                      const FunctionInfo &FI,
                                      std::string ExpectedErrorMsg) {
  SmallString<512> Str;
  raw_svector_ostream OutStrm(Str);
  FileWriter FW(OutStrm, ByteOrder);
  Expected<uint64_t> ExpectedOffset = FI.encode(FW);
  ASSERT_FALSE(ExpectedOffset);
  checkError(ExpectedErrorMsg, ExpectedOffset.takeError());
}

TEST(GSYMTest, TestFunctionInfoEncodeErrors) {
  const uint64_t FuncAddr = 0x1000;
  const uint64_t FuncSize = 0x100;
  const uint32_t InvalidName = 0;
  const uint32_t ValidName = 1;
  FunctionInfo InvalidNameFI(FuncAddr, FuncSize, InvalidName);
  TestFunctionInfoEncodeError(llvm::support::little, InvalidNameFI,
      "attempted to encode invalid FunctionInfo object");

  FunctionInfo InvalidLineTableFI(FuncAddr, FuncSize, ValidName);
  // Empty line tables are not valid. Verify if the encoding of anything
  // in our line table fails, that we see get the error propagated.
  InvalidLineTableFI.OptLineTable = LineTable();
  TestFunctionInfoEncodeError(llvm::support::little, InvalidLineTableFI,
      "attempted to encode invalid LineTable object");

  FunctionInfo InvalidInlineInfoFI(FuncAddr, FuncSize, ValidName);
  // Empty line tables are not valid. Verify if the encoding of anything
  // in our line table fails, that we see get the error propagated.
  InvalidInlineInfoFI.Inline = InlineInfo();
  TestFunctionInfoEncodeError(llvm::support::little, InvalidInlineInfoFI,
      "attempted to encode invalid InlineInfo object");
}

static void TestFunctionInfoEncodeDecode(llvm::support::endianness ByteOrder,
                                         const FunctionInfo &FI) {
  // Test encoding and decoding FunctionInfo objects.
  SmallString<512> Str;
  raw_svector_ostream OutStrm(Str);
  FileWriter FW(OutStrm, ByteOrder);
  llvm::Expected<uint64_t> ExpectedOffset = FI.encode(FW);
  ASSERT_TRUE(bool(ExpectedOffset));
  // Verify we got the encoded offset back from the encode function.
  ASSERT_EQ(ExpectedOffset.get(), 0ULL);
  std::string Bytes(OutStrm.str());
  uint8_t AddressSize = 4;
  DataExtractor Data(Bytes, ByteOrder == llvm::support::little, AddressSize);
  llvm::Expected<FunctionInfo> Decoded = FunctionInfo::decode(Data,
                                                              FI.Range.Start);
  // Make sure decoding succeeded.
  ASSERT_TRUE((bool)Decoded);
  // Make sure decoded object is the same as the one we encoded.
  EXPECT_EQ(FI, Decoded.get());
}

static void AddLines(uint64_t FuncAddr, uint32_t FileIdx, FunctionInfo &FI) {
    FI.OptLineTable = LineTable();
    LineEntry Line0(FuncAddr + 0x000, FileIdx, 10);
    LineEntry Line1(FuncAddr + 0x010, FileIdx, 11);
    LineEntry Line2(FuncAddr + 0x100, FileIdx, 1000);
    FI.OptLineTable->push(Line0);
    FI.OptLineTable->push(Line1);
    FI.OptLineTable->push(Line2);
}


static void AddInline(uint64_t FuncAddr, uint64_t FuncSize, FunctionInfo &FI) {
    FI.Inline = InlineInfo();
    FI.Inline->Ranges.insert(AddressRange(FuncAddr, FuncAddr + FuncSize));
    InlineInfo Inline1;
    Inline1.Ranges.insert(AddressRange(FuncAddr + 0x10, FuncAddr + 0x30));
    Inline1.Name = 1;
    Inline1.CallFile = 1;
    Inline1.CallLine = 11;
    FI.Inline->Children.push_back(Inline1);
}

TEST(GSYMTest, TestFunctionInfoEncoding) {
  constexpr uint64_t FuncAddr = 0x1000;
  constexpr uint64_t FuncSize = 0x100;
  constexpr uint32_t FuncName = 1;
  constexpr uint32_t FileIdx = 1;
  // Make sure that we can encode and decode a FunctionInfo with no line table
  // or inline info.
  FunctionInfo FI(FuncAddr, FuncSize, FuncName);
  TestFunctionInfoEncodeDecode(llvm::support::little, FI);
  TestFunctionInfoEncodeDecode(llvm::support::big, FI);

  // Make sure that we can encode and decode a FunctionInfo with a line table
  // and no inline info.
  FunctionInfo FILines(FuncAddr, FuncSize, FuncName);
  AddLines(FuncAddr, FileIdx, FILines);
  TestFunctionInfoEncodeDecode(llvm::support::little, FILines);
  TestFunctionInfoEncodeDecode(llvm::support::big, FILines);

  // Make sure that we can encode and decode a FunctionInfo with no line table
  // and with inline info.
  FunctionInfo FIInline(FuncAddr, FuncSize, FuncName);
  AddInline(FuncAddr, FuncSize, FIInline);
  TestFunctionInfoEncodeDecode(llvm::support::little, FIInline);
  TestFunctionInfoEncodeDecode(llvm::support::big, FIInline);

  // Make sure that we can encode and decode a FunctionInfo with no line table
  // and with inline info.
  FunctionInfo FIBoth(FuncAddr, FuncSize, FuncName);
  AddLines(FuncAddr, FileIdx, FIBoth);
  AddInline(FuncAddr, FuncSize, FIBoth);
  TestFunctionInfoEncodeDecode(llvm::support::little, FIBoth);
  TestFunctionInfoEncodeDecode(llvm::support::big, FIBoth);
}

static void TestInlineInfoEncodeDecode(llvm::support::endianness ByteOrder,
                                       const InlineInfo &Inline) {
  // Test encoding and decoding InlineInfo objects
  SmallString<512> Str;
  raw_svector_ostream OutStrm(Str);
  FileWriter FW(OutStrm, ByteOrder);
  const uint64_t BaseAddr = Inline.Ranges[0].Start;
  llvm::Error Err = Inline.encode(FW, BaseAddr);
  ASSERT_FALSE(Err);
  std::string Bytes(OutStrm.str());
  uint8_t AddressSize = 4;
  DataExtractor Data(Bytes, ByteOrder == llvm::support::little, AddressSize);
  llvm::Expected<InlineInfo> Decoded = InlineInfo::decode(Data, BaseAddr);
  // Make sure decoding succeeded.
  ASSERT_TRUE((bool)Decoded);
  // Make sure decoded object is the same as the one we encoded.
  EXPECT_EQ(Inline, Decoded.get());
}

static void TestInlineInfoDecodeError(llvm::support::endianness ByteOrder,
                                      std::string Bytes,
                                      const uint64_t BaseAddr,
                                      std::string ExpectedErrorMsg) {
  uint8_t AddressSize = 4;
  DataExtractor Data(Bytes, ByteOrder == llvm::support::little, AddressSize);
  llvm::Expected<InlineInfo> Decoded = InlineInfo::decode(Data, BaseAddr);
  // Make sure decoding fails.
  ASSERT_FALSE((bool)Decoded);
  // Make sure decoded object is the same as the one we encoded.
  checkError(ExpectedErrorMsg, Decoded.takeError());
}

static void TestInlineInfoEncodeError(llvm::support::endianness ByteOrder,
                                      const InlineInfo &Inline,
                                      std::string ExpectedErrorMsg) {
  SmallString<512> Str;
  raw_svector_ostream OutStrm(Str);
  FileWriter FW(OutStrm, ByteOrder);
  const uint64_t BaseAddr = Inline.Ranges.empty() ? 0 : Inline.Ranges[0].Start;
  llvm::Error Err = Inline.encode(FW, BaseAddr);
  checkError(ExpectedErrorMsg, std::move(Err));
}

TEST(GSYMTest, TestInlineInfo) {
  // Test InlineInfo structs.
  InlineInfo II;
  EXPECT_FALSE(II.isValid());
  II.Ranges.insert(AddressRange(0x1000, 0x2000));
  // Make sure InlineInfo in valid with just an address range since
  // top level InlineInfo objects have ranges with no name, call file
  // or call line
  EXPECT_TRUE(II.isValid());
  // Make sure InlineInfo isn't after being cleared.
  II.clear();
  EXPECT_FALSE(II.isValid());

  // Create an InlineInfo that contains the following data. The
  // indentation of the address range indicates the parent child
  // relationships of the InlineInfo objects:
  //
  // Variable    Range and values
  // =========== ====================================================
  // Root        [0x100-0x200) (no name, file, or line)
  // Inline1       [0x150-0x160) Name = 1, File = 1, Line = 11
  // Inline1Sub1     [0x152-0x155) Name = 2, File = 2, Line = 22
  // Inline1Sub2     [0x157-0x158) Name = 3, File = 3, Line = 33
  InlineInfo Root;
  Root.Ranges.insert(AddressRange(0x100, 0x200));
  InlineInfo Inline1;
  Inline1.Ranges.insert(AddressRange(0x150, 0x160));
  Inline1.Name = 1;
  Inline1.CallFile = 1;
  Inline1.CallLine = 11;
  InlineInfo Inline1Sub1;
  Inline1Sub1.Ranges.insert(AddressRange(0x152, 0x155));
  Inline1Sub1.Name = 2;
  Inline1Sub1.CallFile = 2;
  Inline1Sub1.CallLine = 22;
  InlineInfo Inline1Sub2;
  Inline1Sub2.Ranges.insert(AddressRange(0x157, 0x158));
  Inline1Sub2.Name = 3;
  Inline1Sub2.CallFile = 3;
  Inline1Sub2.CallLine = 33;
  Inline1.Children.push_back(Inline1Sub1);
  Inline1.Children.push_back(Inline1Sub2);
  Root.Children.push_back(Inline1);

  // Make sure an address that is out of range won't match
  EXPECT_FALSE(Root.getInlineStack(0x50));

  // Verify that we get no inline stacks for addresses out of [0x100-0x200)
  EXPECT_FALSE(Root.getInlineStack(Root.Ranges[0].Start - 1));
  EXPECT_FALSE(Root.getInlineStack(Root.Ranges[0].End));

  // Verify we get no inline stack entries for addresses that are in
  // [0x100-0x200) but not in [0x150-0x160)
  EXPECT_FALSE(Root.getInlineStack(Inline1.Ranges[0].Start - 1));
  EXPECT_FALSE(Root.getInlineStack(Inline1.Ranges[0].End));

  // Verify we get one inline stack entry for addresses that are in
  // [[0x150-0x160)) but not in [0x152-0x155) or [0x157-0x158)
  auto InlineInfos = Root.getInlineStack(Inline1.Ranges[0].Start);
  ASSERT_TRUE(InlineInfos);
  ASSERT_EQ(InlineInfos->size(), 1u);
  ASSERT_EQ(*InlineInfos->at(0), Inline1);
  InlineInfos = Root.getInlineStack(Inline1.Ranges[0].End - 1);
  EXPECT_TRUE(InlineInfos);
  ASSERT_EQ(InlineInfos->size(), 1u);
  ASSERT_EQ(*InlineInfos->at(0), Inline1);

  // Verify we get two inline stack entries for addresses that are in
  // [0x152-0x155)
  InlineInfos = Root.getInlineStack(Inline1Sub1.Ranges[0].Start);
  EXPECT_TRUE(InlineInfos);
  ASSERT_EQ(InlineInfos->size(), 2u);
  ASSERT_EQ(*InlineInfos->at(0), Inline1Sub1);
  ASSERT_EQ(*InlineInfos->at(1), Inline1);
  InlineInfos = Root.getInlineStack(Inline1Sub1.Ranges[0].End - 1);
  EXPECT_TRUE(InlineInfos);
  ASSERT_EQ(InlineInfos->size(), 2u);
  ASSERT_EQ(*InlineInfos->at(0), Inline1Sub1);
  ASSERT_EQ(*InlineInfos->at(1), Inline1);

  // Verify we get two inline stack entries for addresses that are in
  // [0x157-0x158)
  InlineInfos = Root.getInlineStack(Inline1Sub2.Ranges[0].Start);
  EXPECT_TRUE(InlineInfos);
  ASSERT_EQ(InlineInfos->size(), 2u);
  ASSERT_EQ(*InlineInfos->at(0), Inline1Sub2);
  ASSERT_EQ(*InlineInfos->at(1), Inline1);
  InlineInfos = Root.getInlineStack(Inline1Sub2.Ranges[0].End - 1);
  EXPECT_TRUE(InlineInfos);
  ASSERT_EQ(InlineInfos->size(), 2u);
  ASSERT_EQ(*InlineInfos->at(0), Inline1Sub2);
  ASSERT_EQ(*InlineInfos->at(1), Inline1);

  // Test encoding and decoding InlineInfo objects
  TestInlineInfoEncodeDecode(llvm::support::little, Root);
  TestInlineInfoEncodeDecode(llvm::support::big, Root);
}

TEST(GSYMTest, TestInlineInfoEncodeErrors) {
  // Test InlineInfo encoding errors.

  // Test that we get an error when trying to encode an InlineInfo object
  // that has no ranges.
  InlineInfo Empty;
  std::string EmptyErr("attempted to encode invalid InlineInfo object");
  TestInlineInfoEncodeError(llvm::support::little, Empty, EmptyErr);
  TestInlineInfoEncodeError(llvm::support::big, Empty, EmptyErr);

  // Verify that we get an error trying to encode an InlineInfo object that has
  // a child InlineInfo that has no ranges.
  InlineInfo ContainsEmpty;
  ContainsEmpty.Ranges.insert({0x100,200});
  ContainsEmpty.Children.push_back(Empty);
  TestInlineInfoEncodeError(llvm::support::little, ContainsEmpty, EmptyErr);
  TestInlineInfoEncodeError(llvm::support::big, ContainsEmpty, EmptyErr);

  // Verify that we get an error trying to encode an InlineInfo object that has
  // a child whose address range is not contained in the parent address range.
  InlineInfo ChildNotContained;
  std::string ChildNotContainedErr("child range not contained in parent");
  ChildNotContained.Ranges.insert({0x100,200});
  InlineInfo ChildNotContainedChild;
  ChildNotContainedChild.Ranges.insert({0x200,300});
  ChildNotContained.Children.push_back(ChildNotContainedChild);
  TestInlineInfoEncodeError(llvm::support::little, ChildNotContained,
                            ChildNotContainedErr);
  TestInlineInfoEncodeError(llvm::support::big, ChildNotContained,
                            ChildNotContainedErr);

}

TEST(GSYMTest, TestInlineInfoDecodeErrors) {
  // Test decoding InlineInfo objects that ensure we report an appropriate
  // error message.
  const llvm::support::endianness ByteOrder = llvm::support::little;
  SmallString<512> Str;
  raw_svector_ostream OutStrm(Str);
  FileWriter FW(OutStrm, ByteOrder);
  const uint64_t BaseAddr = 0x100;
  TestInlineInfoDecodeError(ByteOrder, OutStrm.str(), BaseAddr,
      "0x00000000: missing InlineInfo address ranges data");
  AddressRanges Ranges;
  Ranges.insert({BaseAddr, BaseAddr+0x100});
  Ranges.encode(FW, BaseAddr);
  TestInlineInfoDecodeError(ByteOrder, OutStrm.str(), BaseAddr,
      "0x00000004: missing InlineInfo uint8_t indicating children");
  FW.writeU8(0);
  TestInlineInfoDecodeError(ByteOrder, OutStrm.str(), BaseAddr,
      "0x00000005: missing InlineInfo uint32_t for name");
  FW.writeU32(0);
  TestInlineInfoDecodeError(ByteOrder, OutStrm.str(), BaseAddr,
      "0x00000009: missing ULEB128 for InlineInfo call file");
  FW.writeU8(0);
  TestInlineInfoDecodeError(ByteOrder, OutStrm.str(), BaseAddr,
      "0x0000000a: missing ULEB128 for InlineInfo call line");
}

TEST(GSYMTest, TestLineEntry) {
  // test llvm::gsym::LineEntry structs.
  const uint64_t ValidAddr = 0x1000;
  const uint64_t InvalidFileIdx = 0;
  const uint32_t ValidFileIdx = 1;
  const uint32_t ValidLine = 5;

  LineEntry Invalid;
  EXPECT_FALSE(Invalid.isValid());
  // Make sure that an entry is invalid if it has a bad file index.
  LineEntry BadFile(ValidAddr, InvalidFileIdx, ValidLine);
  EXPECT_FALSE(BadFile.isValid());
  // Test operators
  LineEntry E1(ValidAddr, ValidFileIdx, ValidLine);
  LineEntry E2(ValidAddr, ValidFileIdx, ValidLine);
  LineEntry DifferentAddr(ValidAddr + 1, ValidFileIdx, ValidLine);
  LineEntry DifferentFile(ValidAddr, ValidFileIdx + 1, ValidLine);
  LineEntry DifferentLine(ValidAddr, ValidFileIdx, ValidLine + 1);
  EXPECT_TRUE(E1.isValid());
  EXPECT_EQ(E1, E2);
  EXPECT_NE(E1, DifferentAddr);
  EXPECT_NE(E1, DifferentFile);
  EXPECT_NE(E1, DifferentLine);
  EXPECT_LT(E1, DifferentAddr);
}

TEST(GSYMTest, TestRanges) {
  // test llvm::gsym::AddressRange.
  const uint64_t StartAddr = 0x1000;
  const uint64_t EndAddr = 0x2000;
  // Verify constructor and API to ensure it takes start and end address.
  const AddressRange Range(StartAddr, EndAddr);
  EXPECT_EQ(Range.size(), EndAddr - StartAddr);

  // Verify llvm::gsym::AddressRange::contains().
  EXPECT_FALSE(Range.contains(0));
  EXPECT_FALSE(Range.contains(StartAddr - 1));
  EXPECT_TRUE(Range.contains(StartAddr));
  EXPECT_TRUE(Range.contains(EndAddr - 1));
  EXPECT_FALSE(Range.contains(EndAddr));
  EXPECT_FALSE(Range.contains(UINT64_MAX));

  const AddressRange RangeSame(StartAddr, EndAddr);
  const AddressRange RangeDifferentStart(StartAddr + 1, EndAddr);
  const AddressRange RangeDifferentEnd(StartAddr, EndAddr + 1);
  const AddressRange RangeDifferentStartEnd(StartAddr + 1, EndAddr + 1);
  // Test == and != with values that are the same
  EXPECT_EQ(Range, RangeSame);
  EXPECT_FALSE(Range != RangeSame);
  // Test == and != with values that are the different
  EXPECT_NE(Range, RangeDifferentStart);
  EXPECT_NE(Range, RangeDifferentEnd);
  EXPECT_NE(Range, RangeDifferentStartEnd);
  EXPECT_FALSE(Range == RangeDifferentStart);
  EXPECT_FALSE(Range == RangeDifferentEnd);
  EXPECT_FALSE(Range == RangeDifferentStartEnd);

  // Test "bool operator<(const AddressRange &, const AddressRange &)".
  EXPECT_FALSE(Range < RangeSame);
  EXPECT_FALSE(RangeSame < Range);
  EXPECT_LT(Range, RangeDifferentStart);
  EXPECT_LT(Range, RangeDifferentEnd);
  EXPECT_LT(Range, RangeDifferentStartEnd);
  // Test "bool operator<(const AddressRange &, uint64_t)"
  EXPECT_LT(Range.Start, StartAddr + 1);
  // Test "bool operator<(uint64_t, const AddressRange &)"
  EXPECT_LT(StartAddr - 1, Range.Start);

  // Verify llvm::gsym::AddressRange::isContiguousWith() and
  // llvm::gsym::AddressRange::intersects().
  const AddressRange EndsBeforeRangeStart(0, StartAddr - 1);
  const AddressRange EndsAtRangeStart(0, StartAddr);
  const AddressRange OverlapsRangeStart(StartAddr - 1, StartAddr + 1);
  const AddressRange InsideRange(StartAddr + 1, EndAddr - 1);
  const AddressRange OverlapsRangeEnd(EndAddr - 1, EndAddr + 1);
  const AddressRange StartsAtRangeEnd(EndAddr, EndAddr + 0x100);
  const AddressRange StartsAfterRangeEnd(EndAddr + 1, EndAddr + 0x100);

  EXPECT_FALSE(Range.intersects(EndsBeforeRangeStart));
  EXPECT_FALSE(Range.intersects(EndsAtRangeStart));
  EXPECT_TRUE(Range.intersects(OverlapsRangeStart));
  EXPECT_TRUE(Range.intersects(InsideRange));
  EXPECT_TRUE(Range.intersects(OverlapsRangeEnd));
  EXPECT_FALSE(Range.intersects(StartsAtRangeEnd));
  EXPECT_FALSE(Range.intersects(StartsAfterRangeEnd));

  // Test the functions that maintain GSYM address ranges:
  //  "bool AddressRange::contains(uint64_t Addr) const;"
  //  "void AddressRanges::insert(const AddressRange &R);"
  AddressRanges Ranges;
  Ranges.insert(AddressRange(0x1000, 0x2000));
  Ranges.insert(AddressRange(0x2000, 0x3000));
  Ranges.insert(AddressRange(0x4000, 0x5000));

  EXPECT_FALSE(Ranges.contains(0));
  EXPECT_FALSE(Ranges.contains(0x1000 - 1));
  EXPECT_TRUE(Ranges.contains(0x1000));
  EXPECT_TRUE(Ranges.contains(0x2000));
  EXPECT_TRUE(Ranges.contains(0x4000));
  EXPECT_TRUE(Ranges.contains(0x2000 - 1));
  EXPECT_TRUE(Ranges.contains(0x3000 - 1));
  EXPECT_FALSE(Ranges.contains(0x3000 + 1));
  EXPECT_TRUE(Ranges.contains(0x5000 - 1));
  EXPECT_FALSE(Ranges.contains(0x5000 + 1));
  EXPECT_FALSE(Ranges.contains(UINT64_MAX));

  EXPECT_FALSE(Ranges.contains(AddressRange()));
  EXPECT_FALSE(Ranges.contains(AddressRange(0x1000-1, 0x1000)));
  EXPECT_FALSE(Ranges.contains(AddressRange(0x1000, 0x1000)));
  EXPECT_TRUE(Ranges.contains(AddressRange(0x1000, 0x1000+1)));
  EXPECT_TRUE(Ranges.contains(AddressRange(0x1000, 0x2000)));
  EXPECT_FALSE(Ranges.contains(AddressRange(0x1000, 0x2001)));
  EXPECT_TRUE(Ranges.contains(AddressRange(0x2000, 0x3000)));
  EXPECT_FALSE(Ranges.contains(AddressRange(0x2000, 0x3001)));
  EXPECT_FALSE(Ranges.contains(AddressRange(0x3000, 0x3001)));
  EXPECT_FALSE(Ranges.contains(AddressRange(0x1500, 0x4500)));
  EXPECT_FALSE(Ranges.contains(AddressRange(0x5000, 0x5001)));

  // Verify that intersecting ranges get combined
  Ranges.clear();
  Ranges.insert(AddressRange(0x1100, 0x1F00));
  // Verify a wholy contained range that is added doesn't do anything.
  Ranges.insert(AddressRange(0x1500, 0x1F00));
  EXPECT_EQ(Ranges.size(), 1u);
  EXPECT_EQ(Ranges[0], AddressRange(0x1100, 0x1F00));

  // Verify a range that starts before and intersects gets combined.
  Ranges.insert(AddressRange(0x1000, Ranges[0].Start + 1));
  EXPECT_EQ(Ranges.size(), 1u);
  EXPECT_EQ(Ranges[0], AddressRange(0x1000, 0x1F00));

  // Verify a range that starts inside and extends ranges gets combined.
  Ranges.insert(AddressRange(Ranges[0].End - 1, 0x2000));
  EXPECT_EQ(Ranges.size(), 1u);
  EXPECT_EQ(Ranges[0], AddressRange(0x1000, 0x2000));

  // Verify that adjacent ranges don't get combined
  Ranges.insert(AddressRange(0x2000, 0x3000));
  EXPECT_EQ(Ranges.size(), 2u);
  EXPECT_EQ(Ranges[0], AddressRange(0x1000, 0x2000));
  EXPECT_EQ(Ranges[1], AddressRange(0x2000, 0x3000));
  // Verify if we add an address range that intersects two ranges
  // that they get combined
  Ranges.insert(AddressRange(Ranges[0].End - 1, Ranges[1].Start + 1));
  EXPECT_EQ(Ranges.size(), 1u);
  EXPECT_EQ(Ranges[0], AddressRange(0x1000, 0x3000));

  Ranges.insert(AddressRange(0x3000, 0x4000));
  Ranges.insert(AddressRange(0x4000, 0x5000));
  Ranges.insert(AddressRange(0x2000, 0x4500));
  EXPECT_EQ(Ranges.size(), 1u);
  EXPECT_EQ(Ranges[0], AddressRange(0x1000, 0x5000));
}

TEST(GSYMTest, TestStringTable) {
  StringTable StrTab(StringRef("\0Hello\0World\0", 13));
  // Test extracting strings from a string table.
  EXPECT_EQ(StrTab.getString(0), "");
  EXPECT_EQ(StrTab.getString(1), "Hello");
  EXPECT_EQ(StrTab.getString(7), "World");
  EXPECT_EQ(StrTab.getString(8), "orld");
  // Test pointing to last NULL terminator gets empty string.
  EXPECT_EQ(StrTab.getString(12), "");
  // Test pointing to past end gets empty string.
  EXPECT_EQ(StrTab.getString(13), "");
}

static void TestFileWriterHelper(llvm::support::endianness ByteOrder) {
  SmallString<512> Str;
  raw_svector_ostream OutStrm(Str);
  FileWriter FW(OutStrm, ByteOrder);
  const int64_t MinSLEB = INT64_MIN;
  const int64_t MaxSLEB = INT64_MAX;
  const uint64_t MinULEB = 0;
  const uint64_t MaxULEB = UINT64_MAX;
  const uint8_t U8 = 0x10;
  const uint16_t U16 = 0x1122;
  const uint32_t U32 = 0x12345678;
  const uint64_t U64 = 0x33445566778899aa;
  const char *Hello = "hello";
  FW.writeU8(U8);
  FW.writeU16(U16);
  FW.writeU32(U32);
  FW.writeU64(U64);
  FW.alignTo(16);
  const off_t FixupOffset = FW.tell();
  FW.writeU32(0);
  FW.writeSLEB(MinSLEB);
  FW.writeSLEB(MaxSLEB);
  FW.writeULEB(MinULEB);
  FW.writeULEB(MaxULEB);
  FW.writeNullTerminated(Hello);
  // Test Seek, Tell using Fixup32.
  FW.fixup32(U32, FixupOffset);

  std::string Bytes(OutStrm.str());
  uint8_t AddressSize = 4;
  DataExtractor Data(Bytes, ByteOrder == llvm::support::little, AddressSize);
  uint64_t Offset = 0;
  EXPECT_EQ(Data.getU8(&Offset), U8);
  EXPECT_EQ(Data.getU16(&Offset), U16);
  EXPECT_EQ(Data.getU32(&Offset), U32);
  EXPECT_EQ(Data.getU64(&Offset), U64);
  Offset = alignTo(Offset, 16);
  EXPECT_EQ(Data.getU32(&Offset), U32);
  EXPECT_EQ(Data.getSLEB128(&Offset), MinSLEB);
  EXPECT_EQ(Data.getSLEB128(&Offset), MaxSLEB);
  EXPECT_EQ(Data.getULEB128(&Offset), MinULEB);
  EXPECT_EQ(Data.getULEB128(&Offset), MaxULEB);
  EXPECT_EQ(Data.getCStrRef(&Offset), StringRef(Hello));
}

TEST(GSYMTest, TestFileWriter) {
  TestFileWriterHelper(llvm::support::little);
  TestFileWriterHelper(llvm::support::big);
}

TEST(GSYMTest, TestAddressRangeEncodeDecode) {
  // Test encoding and decoding AddressRange objects. AddressRange objects
  // are always stored as offsets from the a base address. The base address
  // is the FunctionInfo's base address for function level ranges, and is
  // the base address of the parent range for subranges.
  SmallString<512> Str;
  raw_svector_ostream OutStrm(Str);
  const auto ByteOrder = llvm::support::endian::system_endianness();
  FileWriter FW(OutStrm, ByteOrder);
  const uint64_t BaseAddr = 0x1000;
  const AddressRange Range1(0x1000, 0x1010);
  const AddressRange Range2(0x1020, 0x1030);
  Range1.encode(FW, BaseAddr);
  Range2.encode(FW, BaseAddr);
  std::string Bytes(OutStrm.str());
  uint8_t AddressSize = 4;
  DataExtractor Data(Bytes, ByteOrder == llvm::support::little, AddressSize);

  AddressRange DecodedRange1, DecodedRange2;
  uint64_t Offset = 0;
  DecodedRange1.decode(Data, BaseAddr, Offset);
  DecodedRange2.decode(Data, BaseAddr, Offset);
  EXPECT_EQ(Range1, DecodedRange1);
  EXPECT_EQ(Range2, DecodedRange2);
}

static void TestAddressRangeEncodeDecodeHelper(const AddressRanges &Ranges,
                                               const uint64_t BaseAddr) {
  SmallString<512> Str;
  raw_svector_ostream OutStrm(Str);
  const auto ByteOrder = llvm::support::endian::system_endianness();
  FileWriter FW(OutStrm, ByteOrder);
  Ranges.encode(FW, BaseAddr);

  std::string Bytes(OutStrm.str());
  uint8_t AddressSize = 4;
  DataExtractor Data(Bytes, ByteOrder == llvm::support::little, AddressSize);

  AddressRanges DecodedRanges;
  uint64_t Offset = 0;
  DecodedRanges.decode(Data, BaseAddr, Offset);
  EXPECT_EQ(Ranges, DecodedRanges);
}

TEST(GSYMTest, TestAddressRangesEncodeDecode) {
  // Test encoding and decoding AddressRanges. AddressRanges objects contain
  // ranges that are stored as offsets from the a base address. The base address
  // is the FunctionInfo's base address for function level ranges, and is the
  // base address of the parent range for subranges.
  const uint64_t BaseAddr = 0x1000;

  // Test encoding and decoding with no ranges.
  AddressRanges Ranges;
  TestAddressRangeEncodeDecodeHelper(Ranges, BaseAddr);

  // Test encoding and decoding with 1 range.
  Ranges.insert(AddressRange(0x1000, 0x1010));
  TestAddressRangeEncodeDecodeHelper(Ranges, BaseAddr);

  // Test encoding and decoding with multiple ranges.
  Ranges.insert(AddressRange(0x1020, 0x1030));
  Ranges.insert(AddressRange(0x1050, 0x1070));
  TestAddressRangeEncodeDecodeHelper(Ranges, BaseAddr);
}

static void TestLineTableHelper(llvm::support::endianness ByteOrder,
                                const LineTable &LT) {
  SmallString<512> Str;
  raw_svector_ostream OutStrm(Str);
  FileWriter FW(OutStrm, ByteOrder);
  const uint64_t BaseAddr = LT[0].Addr;
  llvm::Error Err = LT.encode(FW, BaseAddr);
  ASSERT_FALSE(Err);
  std::string Bytes(OutStrm.str());
  uint8_t AddressSize = 4;
  DataExtractor Data(Bytes, ByteOrder == llvm::support::little, AddressSize);
  llvm::Expected<LineTable> Decoded = LineTable::decode(Data, BaseAddr);
  // Make sure decoding succeeded.
  ASSERT_TRUE((bool)Decoded);
  // Make sure decoded object is the same as the one we encoded.
  EXPECT_EQ(LT, Decoded.get());
}

TEST(GSYMTest, TestLineTable) {
  const uint64_t StartAddr = 0x1000;
  const uint32_t FileIdx = 1;
  LineTable LT;
  LineEntry Line0(StartAddr+0x000, FileIdx, 10);
  LineEntry Line1(StartAddr+0x010, FileIdx, 11);
  LineEntry Line2(StartAddr+0x100, FileIdx, 1000);
  ASSERT_TRUE(LT.empty());
  ASSERT_EQ(LT.size(), (size_t)0);
  LT.push(Line0);
  ASSERT_EQ(LT.size(), (size_t)1);
  LT.push(Line1);
  LT.push(Line2);
  LT.push(LineEntry(StartAddr+0x120, FileIdx, 900));
  LT.push(LineEntry(StartAddr+0x120, FileIdx, 2000));
  LT.push(LineEntry(StartAddr+0x121, FileIdx, 2001));
  LT.push(LineEntry(StartAddr+0x122, FileIdx, 2002));
  LT.push(LineEntry(StartAddr+0x123, FileIdx, 2003));
  ASSERT_FALSE(LT.empty());
  ASSERT_EQ(LT.size(), (size_t)8);
  // Test operator[].
  ASSERT_EQ(LT[0], Line0);
  ASSERT_EQ(LT[1], Line1);
  ASSERT_EQ(LT[2], Line2);

  // Test encoding and decoding line tables.
  TestLineTableHelper(llvm::support::little, LT);
  TestLineTableHelper(llvm::support::big, LT);

  // Verify the clear method works as expected.
  LT.clear();
  ASSERT_TRUE(LT.empty());
  ASSERT_EQ(LT.size(), (size_t)0);

  LineTable LT1;
  LineTable LT2;

  // Test that two empty line tables are equal and neither are less than
  // each other.
  ASSERT_EQ(LT1, LT2);
  ASSERT_FALSE(LT1 < LT1);
  ASSERT_FALSE(LT1 < LT2);
  ASSERT_FALSE(LT2 < LT1);
  ASSERT_FALSE(LT2 < LT2);

  // Test that a line table with less number of line entries is less than a
  // line table with more line entries and that they are not equal.
  LT2.push(Line0);
  ASSERT_LT(LT1, LT2);
  ASSERT_NE(LT1, LT2);

  // Test that two line tables with the same entries are equal.
  LT1.push(Line0);
  ASSERT_EQ(LT1, LT2);
  ASSERT_FALSE(LT1 < LT2);
  ASSERT_FALSE(LT2 < LT2);
}

static void TestLineTableDecodeError(llvm::support::endianness ByteOrder,
                                     std::string Bytes,
                                     const uint64_t BaseAddr,
                                     std::string ExpectedErrorMsg) {
  uint8_t AddressSize = 4;
  DataExtractor Data(Bytes, ByteOrder == llvm::support::little, AddressSize);
  llvm::Expected<LineTable> Decoded = LineTable::decode(Data, BaseAddr);
  // Make sure decoding fails.
  ASSERT_FALSE((bool)Decoded);
  // Make sure decoded object is the same as the one we encoded.
  checkError(ExpectedErrorMsg, Decoded.takeError());
}

TEST(GSYMTest, TestLineTableDecodeErrors) {
  // Test decoding InlineInfo objects that ensure we report an appropriate
  // error message.
  const llvm::support::endianness ByteOrder = llvm::support::little;
  SmallString<512> Str;
  raw_svector_ostream OutStrm(Str);
  FileWriter FW(OutStrm, ByteOrder);
  const uint64_t BaseAddr = 0x100;
  TestLineTableDecodeError(ByteOrder, OutStrm.str(), BaseAddr,
      "0x00000000: missing LineTable MinDelta");
  FW.writeU8(1); // MinDelta (ULEB)
  TestLineTableDecodeError(ByteOrder, OutStrm.str(), BaseAddr,
      "0x00000001: missing LineTable MaxDelta");
  FW.writeU8(10); // MaxDelta (ULEB)
  TestLineTableDecodeError(ByteOrder, OutStrm.str(), BaseAddr,
      "0x00000002: missing LineTable FirstLine");
  FW.writeU8(20); // FirstLine (ULEB)
  TestLineTableDecodeError(ByteOrder, OutStrm.str(), BaseAddr,
      "0x00000003: EOF found before EndSequence");
  // Test a SetFile with the argument missing from the stream
  FW.writeU8(1); // SetFile opcode (uint8_t)
  TestLineTableDecodeError(ByteOrder, OutStrm.str(), BaseAddr,
      "0x00000004: EOF found before SetFile value");
  FW.writeU8(5); // SetFile value as index (ULEB)
  // Test a AdvancePC with the argument missing from the stream
  FW.writeU8(2); // AdvancePC opcode (uint8_t)
  TestLineTableDecodeError(ByteOrder, OutStrm.str(), BaseAddr,
      "0x00000006: EOF found before AdvancePC value");
  FW.writeU8(20); // AdvancePC value as offset (ULEB)
  // Test a AdvancePC with the argument missing from the stream
  FW.writeU8(3); // AdvanceLine opcode (uint8_t)
  TestLineTableDecodeError(ByteOrder, OutStrm.str(), BaseAddr,
      "0x00000008: EOF found before AdvanceLine value");
  FW.writeU8(20); // AdvanceLine value as offset (LLEB)
}

TEST(GSYMTest, TestLineTableEncodeErrors) {
  const uint64_t BaseAddr = 0x1000;
  const uint32_t FileIdx = 1;
  const llvm::support::endianness ByteOrder = llvm::support::little;
  SmallString<512> Str;
  raw_svector_ostream OutStrm(Str);
  FileWriter FW(OutStrm, ByteOrder);
  LineTable LT;
  checkError("attempted to encode invalid LineTable object",
             LT.encode(FW, BaseAddr));

  // Try to encode a line table where a line entry has an address that is less
  // than BaseAddr and verify we get an appropriate error.
  LineEntry Line0(BaseAddr+0x000, FileIdx, 10);
  LineEntry Line1(BaseAddr+0x010, FileIdx, 11);
  LT.push(Line0);
  LT.push(Line1);
  checkError("LineEntry has address 0x1000 which is less than the function "
             "start address 0x1010", LT.encode(FW, BaseAddr+0x10));
  LT.clear();

  // Try to encode a line table where a line entries  has an address that is less
  // than BaseAddr and verify we get an appropriate error.
  LT.push(Line1);
  LT.push(Line0);
  checkError("LineEntry in LineTable not in ascending order",
             LT.encode(FW, BaseAddr));
  LT.clear();
}

static void TestHeaderEncodeError(const Header &H,
                                  std::string ExpectedErrorMsg) {
  const support::endianness ByteOrder = llvm::support::little;
  SmallString<512> Str;
  raw_svector_ostream OutStrm(Str);
  FileWriter FW(OutStrm, ByteOrder);
  llvm::Error Err = H.encode(FW);
  checkError(ExpectedErrorMsg, std::move(Err));
}

static void TestHeaderDecodeError(std::string Bytes,
                                  std::string ExpectedErrorMsg) {
  const support::endianness ByteOrder = llvm::support::little;
  uint8_t AddressSize = 4;
  DataExtractor Data(Bytes, ByteOrder == llvm::support::little, AddressSize);
  llvm::Expected<Header> Decoded = Header::decode(Data);
  // Make sure decoding fails.
  ASSERT_FALSE((bool)Decoded);
  // Make sure decoded object is the same as the one we encoded.
  checkError(ExpectedErrorMsg, Decoded.takeError());
}

// Populate a GSYM header with valid values.
static void InitHeader(Header &H) {
  H.Magic = GSYM_MAGIC;
  H.Version = GSYM_VERSION;
  H.AddrOffSize = 4;
  H.UUIDSize = 16;
  H.BaseAddress = 0x1000;
  H.NumAddresses = 1;
  H.StrtabOffset= 0x2000;
  H.StrtabSize = 0x1000;
  for (size_t i=0; i<GSYM_MAX_UUID_SIZE; ++i) {
    if (i < H.UUIDSize)
      H.UUID[i] = i;
    else
      H.UUID[i] = 0;
  }
}

TEST(GSYMTest, TestHeaderEncodeErrors) {
  Header H;
  InitHeader(H);
  H.Magic = 12;
  TestHeaderEncodeError(H, "invalid GSYM magic 0x0000000c");
  InitHeader(H);
  H.Version = 12;
  TestHeaderEncodeError(H, "unsupported GSYM version 12");
  InitHeader(H);
  H.AddrOffSize = 12;
  TestHeaderEncodeError(H, "invalid address offset size 12");
  InitHeader(H);
  H.UUIDSize = 128;
  TestHeaderEncodeError(H, "invalid UUID size 128");
}

TEST(GSYMTest, TestHeaderDecodeErrors) {
  const llvm::support::endianness ByteOrder = llvm::support::little;
  SmallString<512> Str;
  raw_svector_ostream OutStrm(Str);
  FileWriter FW(OutStrm, ByteOrder);
  Header H;
  InitHeader(H);
  llvm::Error Err = H.encode(FW);
  ASSERT_FALSE(Err);
  FW.fixup32(12, offsetof(Header, Magic));
  TestHeaderDecodeError(OutStrm.str(), "invalid GSYM magic 0x0000000c");
  FW.fixup32(GSYM_MAGIC, offsetof(Header, Magic));
  FW.fixup32(12, offsetof(Header, Version));
  TestHeaderDecodeError(OutStrm.str(), "unsupported GSYM version 12");
  FW.fixup32(GSYM_VERSION, offsetof(Header, Version));
  FW.fixup32(12, offsetof(Header, AddrOffSize));
  TestHeaderDecodeError(OutStrm.str(), "invalid address offset size 12");
  FW.fixup32(4, offsetof(Header, AddrOffSize));
  FW.fixup32(128, offsetof(Header, UUIDSize));
  TestHeaderDecodeError(OutStrm.str(), "invalid UUID size 128");
}

static void TestHeaderEncodeDecode(const Header &H,
                                   support::endianness ByteOrder) {
  uint8_t AddressSize = 4;
  SmallString<512> Str;
  raw_svector_ostream OutStrm(Str);
  FileWriter FW(OutStrm, ByteOrder);
  llvm::Error Err = H.encode(FW);
  ASSERT_FALSE(Err);
  std::string Bytes(OutStrm.str());
  DataExtractor Data(Bytes, ByteOrder == llvm::support::little, AddressSize);
  llvm::Expected<Header> Decoded = Header::decode(Data);
  // Make sure decoding succeeded.
  ASSERT_TRUE((bool)Decoded);
  EXPECT_EQ(H, Decoded.get());

}
TEST(GSYMTest, TestHeaderEncodeDecode) {
  Header H;
  InitHeader(H);
  TestHeaderEncodeDecode(H, llvm::support::little);
  TestHeaderEncodeDecode(H, llvm::support::big);
}

static void TestGsymCreatorEncodeError(llvm::support::endianness ByteOrder,
                                       const GsymCreator &GC,
                                       std::string ExpectedErrorMsg) {
  SmallString<512> Str;
  raw_svector_ostream OutStrm(Str);
  FileWriter FW(OutStrm, ByteOrder);
  llvm::Error Err = GC.encode(FW);
  ASSERT_TRUE(bool(Err));
  checkError(ExpectedErrorMsg, std::move(Err));
}

TEST(GSYMTest, TestGsymCreatorEncodeErrors) {
  const uint8_t ValidUUID[] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,
                               14, 15, 16};
  const uint8_t InvalidUUID[] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,
                                 14, 15, 16, 17, 18, 19, 20, 21};
  // Verify we get an error when trying to encode an GsymCreator with no
  // function infos. We shouldn't be saving a GSYM file in this case since
  // there is nothing inside of it.
  GsymCreator GC;
  TestGsymCreatorEncodeError(llvm::support::little, GC,
                             "no functions to encode");
  const uint64_t FuncAddr = 0x1000;
  const uint64_t FuncSize = 0x100;
  const uint32_t FuncName = GC.insertString("foo");
  // Verify we get an error trying to encode a GsymCreator that isn't
  // finalized.
  GC.addFunctionInfo(FunctionInfo(FuncAddr, FuncSize, FuncName));
  TestGsymCreatorEncodeError(llvm::support::little, GC,
                             "GsymCreator wasn't finalized prior to encoding");
  std::string finalizeIssues;
  raw_string_ostream OS(finalizeIssues);
  llvm::Error finalizeErr = GC.finalize(OS);
  ASSERT_FALSE(bool(finalizeErr));
  finalizeErr = GC.finalize(OS);
  ASSERT_TRUE(bool(finalizeErr));
  checkError("already finalized", std::move(finalizeErr));
  // Verify we get an error trying to encode a GsymCreator with a UUID that is
  // too long.
  GC.setUUID(InvalidUUID);
  TestGsymCreatorEncodeError(llvm::support::little, GC,
                             "invalid UUID size 21");
  GC.setUUID(ValidUUID);
  // Verify errors are propagated when we try to encoding an invalid line
  // table.
  GC.forEachFunctionInfo([](FunctionInfo &FI) -> bool {
    FI.OptLineTable = LineTable(); // Invalid line table.
    return false; // Stop iterating
  });
  TestGsymCreatorEncodeError(llvm::support::little, GC,
                             "attempted to encode invalid LineTable object");
  // Verify errors are propagated when we try to encoding an invalid inline
  // info.
  GC.forEachFunctionInfo([](FunctionInfo &FI) -> bool {
    FI.OptLineTable = llvm::None;
    FI.Inline = InlineInfo(); // Invalid InlineInfo.
    return false; // Stop iterating
  });
  TestGsymCreatorEncodeError(llvm::support::little, GC,
                             "attempted to encode invalid InlineInfo object");
}

static void Compare(const GsymCreator &GC, const GsymReader &GR) {
  // Verify that all of the data in a GsymCreator is correctly decoded from
  // a GsymReader. To do this, we iterator over
  GC.forEachFunctionInfo([&](const FunctionInfo &FI) -> bool {
    auto DecodedFI = GR.getFunctionInfo(FI.Range.Start);
    EXPECT_TRUE(bool(DecodedFI));
    EXPECT_EQ(FI, *DecodedFI);
    return true; // Keep iterating over all FunctionInfo objects.
  });
}

static void TestEncodeDecode(const GsymCreator &GC,
                             support::endianness ByteOrder, uint16_t Version,
                             uint8_t AddrOffSize, uint64_t BaseAddress,
                             uint32_t NumAddresses, ArrayRef<uint8_t> UUID) {
  SmallString<512> Str;
  raw_svector_ostream OutStrm(Str);
  FileWriter FW(OutStrm, ByteOrder);
  llvm::Error Err = GC.encode(FW);
  ASSERT_FALSE((bool)Err);
  Expected<GsymReader> GR = GsymReader::copyBuffer(OutStrm.str());
  ASSERT_TRUE(bool(GR));
  const Header &Hdr = GR->getHeader();
  EXPECT_EQ(Hdr.Version, Version);
  EXPECT_EQ(Hdr.AddrOffSize, AddrOffSize);
  EXPECT_EQ(Hdr.UUIDSize, UUID.size());
  EXPECT_EQ(Hdr.BaseAddress, BaseAddress);
  EXPECT_EQ(Hdr.NumAddresses, NumAddresses);
  EXPECT_EQ(ArrayRef<uint8_t>(Hdr.UUID, Hdr.UUIDSize), UUID);
  Compare(GC, GR.get());
}

TEST(GSYMTest, TestGsymCreator1ByteAddrOffsets) {
  uint8_t UUID[] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16};
  GsymCreator GC;
  GC.setUUID(UUID);
  constexpr uint64_t BaseAddr = 0x1000;
  constexpr uint8_t AddrOffSize = 1;
  const uint32_t Func1Name = GC.insertString("foo");
  const uint32_t Func2Name = GC.insertString("bar");
  GC.addFunctionInfo(FunctionInfo(BaseAddr+0x00, 0x10, Func1Name));
  GC.addFunctionInfo(FunctionInfo(BaseAddr+0x20, 0x10, Func2Name));
  Error Err = GC.finalize(llvm::nulls());
  ASSERT_FALSE(Err);
  TestEncodeDecode(GC, llvm::support::little,
                   GSYM_VERSION,
                   AddrOffSize,
                   BaseAddr,
                   2, // NumAddresses
                   ArrayRef<uint8_t>(UUID));
  TestEncodeDecode(GC, llvm::support::big,
                   GSYM_VERSION,
                   AddrOffSize,
                   BaseAddr,
                   2, // NumAddresses
                   ArrayRef<uint8_t>(UUID));
}

TEST(GSYMTest, TestGsymCreator2ByteAddrOffsets) {
  uint8_t UUID[] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16};
  GsymCreator GC;
  GC.setUUID(UUID);
  constexpr uint64_t BaseAddr = 0x1000;
  constexpr uint8_t AddrOffSize = 2;
  const uint32_t Func1Name = GC.insertString("foo");
  const uint32_t Func2Name = GC.insertString("bar");
  GC.addFunctionInfo(FunctionInfo(BaseAddr+0x000, 0x100, Func1Name));
  GC.addFunctionInfo(FunctionInfo(BaseAddr+0x200, 0x100, Func2Name));
  Error Err = GC.finalize(llvm::nulls());
  ASSERT_FALSE(Err);
  TestEncodeDecode(GC, llvm::support::little,
                   GSYM_VERSION,
                   AddrOffSize,
                   BaseAddr,
                   2, // NumAddresses
                   ArrayRef<uint8_t>(UUID));
  TestEncodeDecode(GC, llvm::support::big,
                   GSYM_VERSION,
                   AddrOffSize,
                   BaseAddr,
                   2, // NumAddresses
                   ArrayRef<uint8_t>(UUID));
}

TEST(GSYMTest, TestGsymCreator4ByteAddrOffsets) {
  uint8_t UUID[] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16};
  GsymCreator GC;
  GC.setUUID(UUID);
  constexpr uint64_t BaseAddr = 0x1000;
  constexpr uint8_t AddrOffSize = 4;
  const uint32_t Func1Name = GC.insertString("foo");
  const uint32_t Func2Name = GC.insertString("bar");
  GC.addFunctionInfo(FunctionInfo(BaseAddr+0x000, 0x100, Func1Name));
  GC.addFunctionInfo(FunctionInfo(BaseAddr+0x20000, 0x100, Func2Name));
  Error Err = GC.finalize(llvm::nulls());
  ASSERT_FALSE(Err);
  TestEncodeDecode(GC, llvm::support::little,
                   GSYM_VERSION,
                   AddrOffSize,
                   BaseAddr,
                   2, // NumAddresses
                   ArrayRef<uint8_t>(UUID));
  TestEncodeDecode(GC, llvm::support::big,
                   GSYM_VERSION,
                   AddrOffSize,
                   BaseAddr,
                   2, // NumAddresses
                   ArrayRef<uint8_t>(UUID));
}

TEST(GSYMTest, TestGsymCreator8ByteAddrOffsets) {
  uint8_t UUID[] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16};
  GsymCreator GC;
  GC.setUUID(UUID);
  constexpr uint64_t BaseAddr = 0x1000;
  constexpr uint8_t AddrOffSize = 8;
  const uint32_t Func1Name = GC.insertString("foo");
  const uint32_t Func2Name = GC.insertString("bar");
  GC.addFunctionInfo(FunctionInfo(BaseAddr+0x000, 0x100, Func1Name));
  GC.addFunctionInfo(FunctionInfo(BaseAddr+0x100000000, 0x100, Func2Name));
  Error Err = GC.finalize(llvm::nulls());
  ASSERT_FALSE(Err);
  TestEncodeDecode(GC, llvm::support::little,
                   GSYM_VERSION,
                   AddrOffSize,
                   BaseAddr,
                   2, // NumAddresses
                   ArrayRef<uint8_t>(UUID));
  TestEncodeDecode(GC, llvm::support::big,
                   GSYM_VERSION,
                   AddrOffSize,
                   BaseAddr,
                   2, // NumAddresses
                   ArrayRef<uint8_t>(UUID));
}

static void VerifyFunctionInfo(const GsymReader &GR, uint64_t Addr,
                               const FunctionInfo &FI) {
  auto ExpFI = GR.getFunctionInfo(Addr);
  ASSERT_TRUE(bool(ExpFI));
  ASSERT_EQ(FI, ExpFI.get());
}

static void VerifyFunctionInfoError(const GsymReader &GR, uint64_t Addr,
                                    std::string ErrMessage) {
  auto ExpFI = GR.getFunctionInfo(Addr);
  ASSERT_FALSE(bool(ExpFI));
  checkError(ErrMessage, ExpFI.takeError());
}

TEST(GSYMTest, TestGsymReader) {
  uint8_t UUID[] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16};
  GsymCreator GC;
  GC.setUUID(UUID);
  constexpr uint64_t BaseAddr = 0x1000;
  constexpr uint64_t Func1Addr = BaseAddr;
  constexpr uint64_t Func2Addr = BaseAddr+0x20;
  constexpr uint64_t FuncSize = 0x10;
  const uint32_t Func1Name = GC.insertString("foo");
  const uint32_t Func2Name = GC.insertString("bar");
  const auto ByteOrder = support::endian::system_endianness();
  GC.addFunctionInfo(FunctionInfo(Func1Addr, FuncSize, Func1Name));
  GC.addFunctionInfo(FunctionInfo(Func2Addr, FuncSize, Func2Name));
  Error FinalizeErr = GC.finalize(llvm::nulls());
  ASSERT_FALSE(FinalizeErr);
  SmallString<512> Str;
  raw_svector_ostream OutStrm(Str);
  FileWriter FW(OutStrm, ByteOrder);
  llvm::Error Err = GC.encode(FW);
  ASSERT_FALSE((bool)Err);
  if (auto ExpectedGR = GsymReader::copyBuffer(OutStrm.str())) {
    const GsymReader &GR = ExpectedGR.get();
    VerifyFunctionInfoError(GR, Func1Addr-1, "address 0xfff not in GSYM");

    FunctionInfo Func1(Func1Addr, FuncSize, Func1Name);
    VerifyFunctionInfo(GR, Func1Addr, Func1);
    VerifyFunctionInfo(GR, Func1Addr+1, Func1);
    VerifyFunctionInfo(GR, Func1Addr+FuncSize-1, Func1);
    VerifyFunctionInfoError(GR, Func1Addr+FuncSize,
                            "address 0x1010 not in GSYM");
    VerifyFunctionInfoError(GR, Func2Addr-1, "address 0x101f not in GSYM");
    FunctionInfo Func2(Func2Addr, FuncSize, Func2Name);
    VerifyFunctionInfo(GR, Func2Addr, Func2);
    VerifyFunctionInfo(GR, Func2Addr+1, Func2);
    VerifyFunctionInfo(GR, Func2Addr+FuncSize-1, Func2);
    VerifyFunctionInfoError(GR, Func2Addr+FuncSize,
                            "address 0x1030 not in GSYM");
  }
}

TEST(GSYMTest, TestGsymLookups) {
  // Test creating a GSYM file with a function that has a inline information.
  // Verify that lookups work correctly. Lookups do not decode the entire
  // FunctionInfo or InlineInfo, they only extract information needed for the
  // lookup to happen which avoids allocations which can slow down
  // symbolication.
  GsymCreator GC;
  FunctionInfo FI(0x1000, 0x100, GC.insertString("main"));
  const auto ByteOrder = support::endian::system_endianness();
  FI.OptLineTable = LineTable();
  const uint32_t MainFileIndex = GC.insertFile("/tmp/main.c");
  const uint32_t FooFileIndex = GC.insertFile("/tmp/foo.h");
  FI.OptLineTable->push(LineEntry(0x1000, MainFileIndex, 5));
  FI.OptLineTable->push(LineEntry(0x1010, FooFileIndex, 10));
  FI.OptLineTable->push(LineEntry(0x1012, FooFileIndex, 20));
  FI.OptLineTable->push(LineEntry(0x1014, FooFileIndex, 11));
  FI.OptLineTable->push(LineEntry(0x1016, FooFileIndex, 30));
  FI.OptLineTable->push(LineEntry(0x1018, FooFileIndex, 12));
  FI.OptLineTable->push(LineEntry(0x1020, MainFileIndex, 8));
  FI.Inline = InlineInfo();

  FI.Inline->Name = GC.insertString("inline1");
  FI.Inline->CallFile = MainFileIndex;
  FI.Inline->CallLine = 6;
  FI.Inline->Ranges.insert(AddressRange(0x1010, 0x1020));
  InlineInfo Inline2;
  Inline2.Name = GC.insertString("inline2");
  Inline2.CallFile = FooFileIndex;
  Inline2.CallLine = 33;
  Inline2.Ranges.insert(AddressRange(0x1012, 0x1014));
  FI.Inline->Children.emplace_back(Inline2);
  InlineInfo Inline3;
  Inline3.Name = GC.insertString("inline3");
  Inline3.CallFile = FooFileIndex;
  Inline3.CallLine = 35;
  Inline3.Ranges.insert(AddressRange(0x1016, 0x1018));
  FI.Inline->Children.emplace_back(Inline3);
  GC.addFunctionInfo(std::move(FI));
  Error FinalizeErr = GC.finalize(llvm::nulls());
  ASSERT_FALSE(FinalizeErr);
  SmallString<512> Str;
  raw_svector_ostream OutStrm(Str);
  FileWriter FW(OutStrm, ByteOrder);
  llvm::Error Err = GC.encode(FW);
  ASSERT_FALSE((bool)Err);
  Expected<GsymReader> GR = GsymReader::copyBuffer(OutStrm.str());
  ASSERT_TRUE(bool(GR));

  // Verify inline info is correct when doing lookups.
  auto LR = GR->lookup(0x1000);
  ASSERT_THAT_EXPECTED(LR, Succeeded());
  EXPECT_THAT(LR->Locations,
    testing::ElementsAre(SourceLocation{"main", "/tmp", "main.c", 5}));
  LR = GR->lookup(0x100F);
  ASSERT_THAT_EXPECTED(LR, Succeeded());
  EXPECT_THAT(LR->Locations,
    testing::ElementsAre(SourceLocation{"main", "/tmp", "main.c", 5}));

  LR = GR->lookup(0x1010);
  ASSERT_THAT_EXPECTED(LR, Succeeded());

  EXPECT_THAT(LR->Locations,
    testing::ElementsAre(SourceLocation{"inline1", "/tmp", "foo.h", 10},
                         SourceLocation{"main", "/tmp", "main.c", 6}));

  LR = GR->lookup(0x1012);
  ASSERT_THAT_EXPECTED(LR, Succeeded());
  EXPECT_THAT(LR->Locations,
    testing::ElementsAre(SourceLocation{"inline2", "/tmp", "foo.h", 20},
                         SourceLocation{"inline1", "/tmp", "foo.h", 33},
                         SourceLocation{"main", "/tmp", "main.c", 6}));

  LR = GR->lookup(0x1014);
  ASSERT_THAT_EXPECTED(LR, Succeeded());
  EXPECT_THAT(LR->Locations,
    testing::ElementsAre(SourceLocation{"inline1", "/tmp", "foo.h", 11},
                         SourceLocation{"main", "/tmp", "main.c", 6}));

  LR = GR->lookup(0x1016);
  ASSERT_THAT_EXPECTED(LR, Succeeded());
  EXPECT_THAT(LR->Locations,
    testing::ElementsAre(SourceLocation{"inline3", "/tmp", "foo.h", 30},
                         SourceLocation{"inline1", "/tmp", "foo.h", 35},
                         SourceLocation{"main", "/tmp", "main.c", 6}));

  LR = GR->lookup(0x1018);
  ASSERT_THAT_EXPECTED(LR, Succeeded());
  EXPECT_THAT(LR->Locations,
    testing::ElementsAre(SourceLocation{"inline1", "/tmp", "foo.h", 12},
                         SourceLocation{"main", "/tmp", "main.c", 6}));

  LR = GR->lookup(0x1020);
  ASSERT_THAT_EXPECTED(LR, Succeeded());
  EXPECT_THAT(LR->Locations,
    testing::ElementsAre(SourceLocation{"main", "/tmp", "main.c", 8}));
}