CodeGenDAGPatterns.h
47.8 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
//===- CodeGenDAGPatterns.h - Read DAG patterns from .td file ---*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file declares the CodeGenDAGPatterns class, which is used to read and
// represent the patterns present in a .td file for instructions.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_UTILS_TABLEGEN_CODEGENDAGPATTERNS_H
#define LLVM_UTILS_TABLEGEN_CODEGENDAGPATTERNS_H
#include "CodeGenHwModes.h"
#include "CodeGenIntrinsics.h"
#include "CodeGenTarget.h"
#include "SDNodeProperties.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/ADT/StringSet.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MathExtras.h"
#include <algorithm>
#include <array>
#include <functional>
#include <map>
#include <numeric>
#include <set>
#include <vector>
namespace llvm {
class Record;
class Init;
class ListInit;
class DagInit;
class SDNodeInfo;
class TreePattern;
class TreePatternNode;
class CodeGenDAGPatterns;
class ComplexPattern;
/// Shared pointer for TreePatternNode.
using TreePatternNodePtr = std::shared_ptr<TreePatternNode>;
/// This represents a set of MVTs. Since the underlying type for the MVT
/// is uint8_t, there are at most 256 values. To reduce the number of memory
/// allocations and deallocations, represent the set as a sequence of bits.
/// To reduce the allocations even further, make MachineValueTypeSet own
/// the storage and use std::array as the bit container.
struct MachineValueTypeSet {
static_assert(std::is_same<std::underlying_type<MVT::SimpleValueType>::type,
uint8_t>::value,
"Change uint8_t here to the SimpleValueType's type");
static unsigned constexpr Capacity = std::numeric_limits<uint8_t>::max()+1;
using WordType = uint64_t;
static unsigned constexpr WordWidth = CHAR_BIT*sizeof(WordType);
static unsigned constexpr NumWords = Capacity/WordWidth;
static_assert(NumWords*WordWidth == Capacity,
"Capacity should be a multiple of WordWidth");
LLVM_ATTRIBUTE_ALWAYS_INLINE
MachineValueTypeSet() {
clear();
}
LLVM_ATTRIBUTE_ALWAYS_INLINE
unsigned size() const {
unsigned Count = 0;
for (WordType W : Words)
Count += countPopulation(W);
return Count;
}
LLVM_ATTRIBUTE_ALWAYS_INLINE
void clear() {
std::memset(Words.data(), 0, NumWords*sizeof(WordType));
}
LLVM_ATTRIBUTE_ALWAYS_INLINE
bool empty() const {
for (WordType W : Words)
if (W != 0)
return false;
return true;
}
LLVM_ATTRIBUTE_ALWAYS_INLINE
unsigned count(MVT T) const {
return (Words[T.SimpleTy / WordWidth] >> (T.SimpleTy % WordWidth)) & 1;
}
std::pair<MachineValueTypeSet&,bool> insert(MVT T) {
bool V = count(T.SimpleTy);
Words[T.SimpleTy / WordWidth] |= WordType(1) << (T.SimpleTy % WordWidth);
return {*this, V};
}
MachineValueTypeSet &insert(const MachineValueTypeSet &S) {
for (unsigned i = 0; i != NumWords; ++i)
Words[i] |= S.Words[i];
return *this;
}
LLVM_ATTRIBUTE_ALWAYS_INLINE
void erase(MVT T) {
Words[T.SimpleTy / WordWidth] &= ~(WordType(1) << (T.SimpleTy % WordWidth));
}
struct const_iterator {
// Some implementations of the C++ library require these traits to be
// defined.
using iterator_category = std::forward_iterator_tag;
using value_type = MVT;
using difference_type = ptrdiff_t;
using pointer = const MVT*;
using reference = const MVT&;
LLVM_ATTRIBUTE_ALWAYS_INLINE
MVT operator*() const {
assert(Pos != Capacity);
return MVT::SimpleValueType(Pos);
}
LLVM_ATTRIBUTE_ALWAYS_INLINE
const_iterator(const MachineValueTypeSet *S, bool End) : Set(S) {
Pos = End ? Capacity : find_from_pos(0);
}
LLVM_ATTRIBUTE_ALWAYS_INLINE
const_iterator &operator++() {
assert(Pos != Capacity);
Pos = find_from_pos(Pos+1);
return *this;
}
LLVM_ATTRIBUTE_ALWAYS_INLINE
bool operator==(const const_iterator &It) const {
return Set == It.Set && Pos == It.Pos;
}
LLVM_ATTRIBUTE_ALWAYS_INLINE
bool operator!=(const const_iterator &It) const {
return !operator==(It);
}
private:
unsigned find_from_pos(unsigned P) const {
unsigned SkipWords = P / WordWidth;
unsigned SkipBits = P % WordWidth;
unsigned Count = SkipWords * WordWidth;
// If P is in the middle of a word, process it manually here, because
// the trailing bits need to be masked off to use findFirstSet.
if (SkipBits != 0) {
WordType W = Set->Words[SkipWords];
W &= maskLeadingOnes<WordType>(WordWidth-SkipBits);
if (W != 0)
return Count + findFirstSet(W);
Count += WordWidth;
SkipWords++;
}
for (unsigned i = SkipWords; i != NumWords; ++i) {
WordType W = Set->Words[i];
if (W != 0)
return Count + findFirstSet(W);
Count += WordWidth;
}
return Capacity;
}
const MachineValueTypeSet *Set;
unsigned Pos;
};
LLVM_ATTRIBUTE_ALWAYS_INLINE
const_iterator begin() const { return const_iterator(this, false); }
LLVM_ATTRIBUTE_ALWAYS_INLINE
const_iterator end() const { return const_iterator(this, true); }
LLVM_ATTRIBUTE_ALWAYS_INLINE
bool operator==(const MachineValueTypeSet &S) const {
return Words == S.Words;
}
LLVM_ATTRIBUTE_ALWAYS_INLINE
bool operator!=(const MachineValueTypeSet &S) const {
return !operator==(S);
}
private:
friend struct const_iterator;
std::array<WordType,NumWords> Words;
};
struct TypeSetByHwMode : public InfoByHwMode<MachineValueTypeSet> {
using SetType = MachineValueTypeSet;
std::vector<unsigned> AddrSpaces;
TypeSetByHwMode() = default;
TypeSetByHwMode(const TypeSetByHwMode &VTS) = default;
TypeSetByHwMode &operator=(const TypeSetByHwMode &) = default;
TypeSetByHwMode(MVT::SimpleValueType VT)
: TypeSetByHwMode(ValueTypeByHwMode(VT)) {}
TypeSetByHwMode(ValueTypeByHwMode VT)
: TypeSetByHwMode(ArrayRef<ValueTypeByHwMode>(&VT, 1)) {}
TypeSetByHwMode(ArrayRef<ValueTypeByHwMode> VTList);
SetType &getOrCreate(unsigned Mode) {
if (hasMode(Mode))
return get(Mode);
return Map.insert({Mode,SetType()}).first->second;
}
bool isValueTypeByHwMode(bool AllowEmpty) const;
ValueTypeByHwMode getValueTypeByHwMode() const;
LLVM_ATTRIBUTE_ALWAYS_INLINE
bool isMachineValueType() const {
return isDefaultOnly() && Map.begin()->second.size() == 1;
}
LLVM_ATTRIBUTE_ALWAYS_INLINE
MVT getMachineValueType() const {
assert(isMachineValueType());
return *Map.begin()->second.begin();
}
bool isPossible() const;
LLVM_ATTRIBUTE_ALWAYS_INLINE
bool isDefaultOnly() const {
return Map.size() == 1 && Map.begin()->first == DefaultMode;
}
bool isPointer() const {
return getValueTypeByHwMode().isPointer();
}
unsigned getPtrAddrSpace() const {
assert(isPointer());
return getValueTypeByHwMode().PtrAddrSpace;
}
bool insert(const ValueTypeByHwMode &VVT);
bool constrain(const TypeSetByHwMode &VTS);
template <typename Predicate> bool constrain(Predicate P);
template <typename Predicate>
bool assign_if(const TypeSetByHwMode &VTS, Predicate P);
void writeToStream(raw_ostream &OS) const;
static void writeToStream(const SetType &S, raw_ostream &OS);
bool operator==(const TypeSetByHwMode &VTS) const;
bool operator!=(const TypeSetByHwMode &VTS) const { return !(*this == VTS); }
void dump() const;
bool validate() const;
private:
unsigned PtrAddrSpace = std::numeric_limits<unsigned>::max();
/// Intersect two sets. Return true if anything has changed.
bool intersect(SetType &Out, const SetType &In);
};
raw_ostream &operator<<(raw_ostream &OS, const TypeSetByHwMode &T);
struct TypeInfer {
TypeInfer(TreePattern &T) : TP(T), ForceMode(0) {}
bool isConcrete(const TypeSetByHwMode &VTS, bool AllowEmpty) const {
return VTS.isValueTypeByHwMode(AllowEmpty);
}
ValueTypeByHwMode getConcrete(const TypeSetByHwMode &VTS,
bool AllowEmpty) const {
assert(VTS.isValueTypeByHwMode(AllowEmpty));
return VTS.getValueTypeByHwMode();
}
/// The protocol in the following functions (Merge*, force*, Enforce*,
/// expand*) is to return "true" if a change has been made, "false"
/// otherwise.
bool MergeInTypeInfo(TypeSetByHwMode &Out, const TypeSetByHwMode &In);
bool MergeInTypeInfo(TypeSetByHwMode &Out, MVT::SimpleValueType InVT) {
return MergeInTypeInfo(Out, TypeSetByHwMode(InVT));
}
bool MergeInTypeInfo(TypeSetByHwMode &Out, ValueTypeByHwMode InVT) {
return MergeInTypeInfo(Out, TypeSetByHwMode(InVT));
}
/// Reduce the set \p Out to have at most one element for each mode.
bool forceArbitrary(TypeSetByHwMode &Out);
/// The following four functions ensure that upon return the set \p Out
/// will only contain types of the specified kind: integer, floating-point,
/// scalar, or vector.
/// If \p Out is empty, all legal types of the specified kind will be added
/// to it. Otherwise, all types that are not of the specified kind will be
/// removed from \p Out.
bool EnforceInteger(TypeSetByHwMode &Out);
bool EnforceFloatingPoint(TypeSetByHwMode &Out);
bool EnforceScalar(TypeSetByHwMode &Out);
bool EnforceVector(TypeSetByHwMode &Out);
/// If \p Out is empty, fill it with all legal types. Otherwise, leave it
/// unchanged.
bool EnforceAny(TypeSetByHwMode &Out);
/// Make sure that for each type in \p Small, there exists a larger type
/// in \p Big.
bool EnforceSmallerThan(TypeSetByHwMode &Small, TypeSetByHwMode &Big);
/// 1. Ensure that for each type T in \p Vec, T is a vector type, and that
/// for each type U in \p Elem, U is a scalar type.
/// 2. Ensure that for each (scalar) type U in \p Elem, there exists a
/// (vector) type T in \p Vec, such that U is the element type of T.
bool EnforceVectorEltTypeIs(TypeSetByHwMode &Vec, TypeSetByHwMode &Elem);
bool EnforceVectorEltTypeIs(TypeSetByHwMode &Vec,
const ValueTypeByHwMode &VVT);
/// Ensure that for each type T in \p Sub, T is a vector type, and there
/// exists a type U in \p Vec such that U is a vector type with the same
/// element type as T and at least as many elements as T.
bool EnforceVectorSubVectorTypeIs(TypeSetByHwMode &Vec,
TypeSetByHwMode &Sub);
/// 1. Ensure that \p V has a scalar type iff \p W has a scalar type.
/// 2. Ensure that for each vector type T in \p V, there exists a vector
/// type U in \p W, such that T and U have the same number of elements.
/// 3. Ensure that for each vector type U in \p W, there exists a vector
/// type T in \p V, such that T and U have the same number of elements
/// (reverse of 2).
bool EnforceSameNumElts(TypeSetByHwMode &V, TypeSetByHwMode &W);
/// 1. Ensure that for each type T in \p A, there exists a type U in \p B,
/// such that T and U have equal size in bits.
/// 2. Ensure that for each type U in \p B, there exists a type T in \p A
/// such that T and U have equal size in bits (reverse of 1).
bool EnforceSameSize(TypeSetByHwMode &A, TypeSetByHwMode &B);
/// For each overloaded type (i.e. of form *Any), replace it with the
/// corresponding subset of legal, specific types.
void expandOverloads(TypeSetByHwMode &VTS);
void expandOverloads(TypeSetByHwMode::SetType &Out,
const TypeSetByHwMode::SetType &Legal);
struct ValidateOnExit {
ValidateOnExit(TypeSetByHwMode &T, TypeInfer &TI) : Infer(TI), VTS(T) {}
#ifndef NDEBUG
~ValidateOnExit();
#else
~ValidateOnExit() {} // Empty destructor with NDEBUG.
#endif
TypeInfer &Infer;
TypeSetByHwMode &VTS;
};
struct SuppressValidation {
SuppressValidation(TypeInfer &TI) : Infer(TI), SavedValidate(TI.Validate) {
Infer.Validate = false;
}
~SuppressValidation() {
Infer.Validate = SavedValidate;
}
TypeInfer &Infer;
bool SavedValidate;
};
TreePattern &TP;
unsigned ForceMode; // Mode to use when set.
bool CodeGen = false; // Set during generation of matcher code.
bool Validate = true; // Indicate whether to validate types.
private:
const TypeSetByHwMode &getLegalTypes();
/// Cached legal types (in default mode).
bool LegalTypesCached = false;
TypeSetByHwMode LegalCache;
};
/// Set type used to track multiply used variables in patterns
typedef StringSet<> MultipleUseVarSet;
/// SDTypeConstraint - This is a discriminated union of constraints,
/// corresponding to the SDTypeConstraint tablegen class in Target.td.
struct SDTypeConstraint {
SDTypeConstraint(Record *R, const CodeGenHwModes &CGH);
unsigned OperandNo; // The operand # this constraint applies to.
enum {
SDTCisVT, SDTCisPtrTy, SDTCisInt, SDTCisFP, SDTCisVec, SDTCisSameAs,
SDTCisVTSmallerThanOp, SDTCisOpSmallerThanOp, SDTCisEltOfVec,
SDTCisSubVecOfVec, SDTCVecEltisVT, SDTCisSameNumEltsAs, SDTCisSameSizeAs
} ConstraintType;
union { // The discriminated union.
struct {
unsigned OtherOperandNum;
} SDTCisSameAs_Info;
struct {
unsigned OtherOperandNum;
} SDTCisVTSmallerThanOp_Info;
struct {
unsigned BigOperandNum;
} SDTCisOpSmallerThanOp_Info;
struct {
unsigned OtherOperandNum;
} SDTCisEltOfVec_Info;
struct {
unsigned OtherOperandNum;
} SDTCisSubVecOfVec_Info;
struct {
unsigned OtherOperandNum;
} SDTCisSameNumEltsAs_Info;
struct {
unsigned OtherOperandNum;
} SDTCisSameSizeAs_Info;
} x;
// The VT for SDTCisVT and SDTCVecEltisVT.
// Must not be in the union because it has a non-trivial destructor.
ValueTypeByHwMode VVT;
/// ApplyTypeConstraint - Given a node in a pattern, apply this type
/// constraint to the nodes operands. This returns true if it makes a
/// change, false otherwise. If a type contradiction is found, an error
/// is flagged.
bool ApplyTypeConstraint(TreePatternNode *N, const SDNodeInfo &NodeInfo,
TreePattern &TP) const;
};
/// ScopedName - A name of a node associated with a "scope" that indicates
/// the context (e.g. instance of Pattern or PatFrag) in which the name was
/// used. This enables substitution of pattern fragments while keeping track
/// of what name(s) were originally given to various nodes in the tree.
class ScopedName {
unsigned Scope;
std::string Identifier;
public:
ScopedName(unsigned Scope, StringRef Identifier)
: Scope(Scope), Identifier(Identifier) {
assert(Scope != 0 &&
"Scope == 0 is used to indicate predicates without arguments");
}
unsigned getScope() const { return Scope; }
const std::string &getIdentifier() const { return Identifier; }
std::string getFullName() const;
bool operator==(const ScopedName &o) const;
bool operator!=(const ScopedName &o) const;
};
/// SDNodeInfo - One of these records is created for each SDNode instance in
/// the target .td file. This represents the various dag nodes we will be
/// processing.
class SDNodeInfo {
Record *Def;
StringRef EnumName;
StringRef SDClassName;
unsigned Properties;
unsigned NumResults;
int NumOperands;
std::vector<SDTypeConstraint> TypeConstraints;
public:
// Parse the specified record.
SDNodeInfo(Record *R, const CodeGenHwModes &CGH);
unsigned getNumResults() const { return NumResults; }
/// getNumOperands - This is the number of operands required or -1 if
/// variadic.
int getNumOperands() const { return NumOperands; }
Record *getRecord() const { return Def; }
StringRef getEnumName() const { return EnumName; }
StringRef getSDClassName() const { return SDClassName; }
const std::vector<SDTypeConstraint> &getTypeConstraints() const {
return TypeConstraints;
}
/// getKnownType - If the type constraints on this node imply a fixed type
/// (e.g. all stores return void, etc), then return it as an
/// MVT::SimpleValueType. Otherwise, return MVT::Other.
MVT::SimpleValueType getKnownType(unsigned ResNo) const;
/// hasProperty - Return true if this node has the specified property.
///
bool hasProperty(enum SDNP Prop) const { return Properties & (1 << Prop); }
/// ApplyTypeConstraints - Given a node in a pattern, apply the type
/// constraints for this node to the operands of the node. This returns
/// true if it makes a change, false otherwise. If a type contradiction is
/// found, an error is flagged.
bool ApplyTypeConstraints(TreePatternNode *N, TreePattern &TP) const;
};
/// TreePredicateFn - This is an abstraction that represents the predicates on
/// a PatFrag node. This is a simple one-word wrapper around a pointer to
/// provide nice accessors.
class TreePredicateFn {
/// PatFragRec - This is the TreePattern for the PatFrag that we
/// originally came from.
TreePattern *PatFragRec;
public:
/// TreePredicateFn constructor. Here 'N' is a subclass of PatFrag.
TreePredicateFn(TreePattern *N);
TreePattern *getOrigPatFragRecord() const { return PatFragRec; }
/// isAlwaysTrue - Return true if this is a noop predicate.
bool isAlwaysTrue() const;
bool isImmediatePattern() const { return hasImmCode(); }
/// getImmediatePredicateCode - Return the code that evaluates this pattern if
/// this is an immediate predicate. It is an error to call this on a
/// non-immediate pattern.
std::string getImmediatePredicateCode() const {
std::string Result = getImmCode();
assert(!Result.empty() && "Isn't an immediate pattern!");
return Result;
}
bool operator==(const TreePredicateFn &RHS) const {
return PatFragRec == RHS.PatFragRec;
}
bool operator!=(const TreePredicateFn &RHS) const { return !(*this == RHS); }
/// Return the name to use in the generated code to reference this, this is
/// "Predicate_foo" if from a pattern fragment "foo".
std::string getFnName() const;
/// getCodeToRunOnSDNode - Return the code for the function body that
/// evaluates this predicate. The argument is expected to be in "Node",
/// not N. This handles casting and conversion to a concrete node type as
/// appropriate.
std::string getCodeToRunOnSDNode() const;
/// Get the data type of the argument to getImmediatePredicateCode().
StringRef getImmType() const;
/// Get a string that describes the type returned by getImmType() but is
/// usable as part of an identifier.
StringRef getImmTypeIdentifier() const;
// Predicate code uses the PatFrag's captured operands.
bool usesOperands() const;
// Is the desired predefined predicate for a load?
bool isLoad() const;
// Is the desired predefined predicate for a store?
bool isStore() const;
// Is the desired predefined predicate for an atomic?
bool isAtomic() const;
/// Is this predicate the predefined unindexed load predicate?
/// Is this predicate the predefined unindexed store predicate?
bool isUnindexed() const;
/// Is this predicate the predefined non-extending load predicate?
bool isNonExtLoad() const;
/// Is this predicate the predefined any-extend load predicate?
bool isAnyExtLoad() const;
/// Is this predicate the predefined sign-extend load predicate?
bool isSignExtLoad() const;
/// Is this predicate the predefined zero-extend load predicate?
bool isZeroExtLoad() const;
/// Is this predicate the predefined non-truncating store predicate?
bool isNonTruncStore() const;
/// Is this predicate the predefined truncating store predicate?
bool isTruncStore() const;
/// Is this predicate the predefined monotonic atomic predicate?
bool isAtomicOrderingMonotonic() const;
/// Is this predicate the predefined acquire atomic predicate?
bool isAtomicOrderingAcquire() const;
/// Is this predicate the predefined release atomic predicate?
bool isAtomicOrderingRelease() const;
/// Is this predicate the predefined acquire-release atomic predicate?
bool isAtomicOrderingAcquireRelease() const;
/// Is this predicate the predefined sequentially consistent atomic predicate?
bool isAtomicOrderingSequentiallyConsistent() const;
/// Is this predicate the predefined acquire-or-stronger atomic predicate?
bool isAtomicOrderingAcquireOrStronger() const;
/// Is this predicate the predefined weaker-than-acquire atomic predicate?
bool isAtomicOrderingWeakerThanAcquire() const;
/// Is this predicate the predefined release-or-stronger atomic predicate?
bool isAtomicOrderingReleaseOrStronger() const;
/// Is this predicate the predefined weaker-than-release atomic predicate?
bool isAtomicOrderingWeakerThanRelease() const;
/// If non-null, indicates that this predicate is a predefined memory VT
/// predicate for a load/store and returns the ValueType record for the memory VT.
Record *getMemoryVT() const;
/// If non-null, indicates that this predicate is a predefined memory VT
/// predicate (checking only the scalar type) for load/store and returns the
/// ValueType record for the memory VT.
Record *getScalarMemoryVT() const;
ListInit *getAddressSpaces() const;
int64_t getMinAlignment() const;
// If true, indicates that GlobalISel-based C++ code was supplied.
bool hasGISelPredicateCode() const;
std::string getGISelPredicateCode() const;
private:
bool hasPredCode() const;
bool hasImmCode() const;
std::string getPredCode() const;
std::string getImmCode() const;
bool immCodeUsesAPInt() const;
bool immCodeUsesAPFloat() const;
bool isPredefinedPredicateEqualTo(StringRef Field, bool Value) const;
};
struct TreePredicateCall {
TreePredicateFn Fn;
// Scope -- unique identifier for retrieving named arguments. 0 is used when
// the predicate does not use named arguments.
unsigned Scope;
TreePredicateCall(const TreePredicateFn &Fn, unsigned Scope)
: Fn(Fn), Scope(Scope) {}
bool operator==(const TreePredicateCall &o) const {
return Fn == o.Fn && Scope == o.Scope;
}
bool operator!=(const TreePredicateCall &o) const {
return !(*this == o);
}
};
class TreePatternNode {
/// The type of each node result. Before and during type inference, each
/// result may be a set of possible types. After (successful) type inference,
/// each is a single concrete type.
std::vector<TypeSetByHwMode> Types;
/// The index of each result in results of the pattern.
std::vector<unsigned> ResultPerm;
/// Operator - The Record for the operator if this is an interior node (not
/// a leaf).
Record *Operator;
/// Val - The init value (e.g. the "GPRC" record, or "7") for a leaf.
///
Init *Val;
/// Name - The name given to this node with the :$foo notation.
///
std::string Name;
std::vector<ScopedName> NamesAsPredicateArg;
/// PredicateCalls - The predicate functions to execute on this node to check
/// for a match. If this list is empty, no predicate is involved.
std::vector<TreePredicateCall> PredicateCalls;
/// TransformFn - The transformation function to execute on this node before
/// it can be substituted into the resulting instruction on a pattern match.
Record *TransformFn;
std::vector<TreePatternNodePtr> Children;
public:
TreePatternNode(Record *Op, std::vector<TreePatternNodePtr> Ch,
unsigned NumResults)
: Operator(Op), Val(nullptr), TransformFn(nullptr),
Children(std::move(Ch)) {
Types.resize(NumResults);
ResultPerm.resize(NumResults);
std::iota(ResultPerm.begin(), ResultPerm.end(), 0);
}
TreePatternNode(Init *val, unsigned NumResults) // leaf ctor
: Operator(nullptr), Val(val), TransformFn(nullptr) {
Types.resize(NumResults);
ResultPerm.resize(NumResults);
std::iota(ResultPerm.begin(), ResultPerm.end(), 0);
}
bool hasName() const { return !Name.empty(); }
const std::string &getName() const { return Name; }
void setName(StringRef N) { Name.assign(N.begin(), N.end()); }
const std::vector<ScopedName> &getNamesAsPredicateArg() const {
return NamesAsPredicateArg;
}
void setNamesAsPredicateArg(const std::vector<ScopedName>& Names) {
NamesAsPredicateArg = Names;
}
void addNameAsPredicateArg(const ScopedName &N) {
NamesAsPredicateArg.push_back(N);
}
bool isLeaf() const { return Val != nullptr; }
// Type accessors.
unsigned getNumTypes() const { return Types.size(); }
ValueTypeByHwMode getType(unsigned ResNo) const {
return Types[ResNo].getValueTypeByHwMode();
}
const std::vector<TypeSetByHwMode> &getExtTypes() const { return Types; }
const TypeSetByHwMode &getExtType(unsigned ResNo) const {
return Types[ResNo];
}
TypeSetByHwMode &getExtType(unsigned ResNo) { return Types[ResNo]; }
void setType(unsigned ResNo, const TypeSetByHwMode &T) { Types[ResNo] = T; }
MVT::SimpleValueType getSimpleType(unsigned ResNo) const {
return Types[ResNo].getMachineValueType().SimpleTy;
}
bool hasConcreteType(unsigned ResNo) const {
return Types[ResNo].isValueTypeByHwMode(false);
}
bool isTypeCompletelyUnknown(unsigned ResNo, TreePattern &TP) const {
return Types[ResNo].empty();
}
unsigned getNumResults() const { return ResultPerm.size(); }
unsigned getResultIndex(unsigned ResNo) const { return ResultPerm[ResNo]; }
void setResultIndex(unsigned ResNo, unsigned RI) { ResultPerm[ResNo] = RI; }
Init *getLeafValue() const { assert(isLeaf()); return Val; }
Record *getOperator() const { assert(!isLeaf()); return Operator; }
unsigned getNumChildren() const { return Children.size(); }
TreePatternNode *getChild(unsigned N) const { return Children[N].get(); }
const TreePatternNodePtr &getChildShared(unsigned N) const {
return Children[N];
}
void setChild(unsigned i, TreePatternNodePtr N) { Children[i] = N; }
/// hasChild - Return true if N is any of our children.
bool hasChild(const TreePatternNode *N) const {
for (unsigned i = 0, e = Children.size(); i != e; ++i)
if (Children[i].get() == N)
return true;
return false;
}
bool hasProperTypeByHwMode() const;
bool hasPossibleType() const;
bool setDefaultMode(unsigned Mode);
bool hasAnyPredicate() const { return !PredicateCalls.empty(); }
const std::vector<TreePredicateCall> &getPredicateCalls() const {
return PredicateCalls;
}
void clearPredicateCalls() { PredicateCalls.clear(); }
void setPredicateCalls(const std::vector<TreePredicateCall> &Calls) {
assert(PredicateCalls.empty() && "Overwriting non-empty predicate list!");
PredicateCalls = Calls;
}
void addPredicateCall(const TreePredicateCall &Call) {
assert(!Call.Fn.isAlwaysTrue() && "Empty predicate string!");
assert(!is_contained(PredicateCalls, Call) && "predicate applied recursively");
PredicateCalls.push_back(Call);
}
void addPredicateCall(const TreePredicateFn &Fn, unsigned Scope) {
assert((Scope != 0) == Fn.usesOperands());
addPredicateCall(TreePredicateCall(Fn, Scope));
}
Record *getTransformFn() const { return TransformFn; }
void setTransformFn(Record *Fn) { TransformFn = Fn; }
/// getIntrinsicInfo - If this node corresponds to an intrinsic, return the
/// CodeGenIntrinsic information for it, otherwise return a null pointer.
const CodeGenIntrinsic *getIntrinsicInfo(const CodeGenDAGPatterns &CDP) const;
/// getComplexPatternInfo - If this node corresponds to a ComplexPattern,
/// return the ComplexPattern information, otherwise return null.
const ComplexPattern *
getComplexPatternInfo(const CodeGenDAGPatterns &CGP) const;
/// Returns the number of MachineInstr operands that would be produced by this
/// node if it mapped directly to an output Instruction's
/// operand. ComplexPattern specifies this explicitly; MIOperandInfo gives it
/// for Operands; otherwise 1.
unsigned getNumMIResults(const CodeGenDAGPatterns &CGP) const;
/// NodeHasProperty - Return true if this node has the specified property.
bool NodeHasProperty(SDNP Property, const CodeGenDAGPatterns &CGP) const;
/// TreeHasProperty - Return true if any node in this tree has the specified
/// property.
bool TreeHasProperty(SDNP Property, const CodeGenDAGPatterns &CGP) const;
/// isCommutativeIntrinsic - Return true if the node is an intrinsic which is
/// marked isCommutative.
bool isCommutativeIntrinsic(const CodeGenDAGPatterns &CDP) const;
void print(raw_ostream &OS) const;
void dump() const;
public: // Higher level manipulation routines.
/// clone - Return a new copy of this tree.
///
TreePatternNodePtr clone() const;
/// RemoveAllTypes - Recursively strip all the types of this tree.
void RemoveAllTypes();
/// isIsomorphicTo - Return true if this node is recursively isomorphic to
/// the specified node. For this comparison, all of the state of the node
/// is considered, except for the assigned name. Nodes with differing names
/// that are otherwise identical are considered isomorphic.
bool isIsomorphicTo(const TreePatternNode *N,
const MultipleUseVarSet &DepVars) const;
/// SubstituteFormalArguments - Replace the formal arguments in this tree
/// with actual values specified by ArgMap.
void
SubstituteFormalArguments(std::map<std::string, TreePatternNodePtr> &ArgMap);
/// InlinePatternFragments - If this pattern refers to any pattern
/// fragments, return the set of inlined versions (this can be more than
/// one if a PatFrags record has multiple alternatives).
void InlinePatternFragments(TreePatternNodePtr T,
TreePattern &TP,
std::vector<TreePatternNodePtr> &OutAlternatives);
/// ApplyTypeConstraints - Apply all of the type constraints relevant to
/// this node and its children in the tree. This returns true if it makes a
/// change, false otherwise. If a type contradiction is found, flag an error.
bool ApplyTypeConstraints(TreePattern &TP, bool NotRegisters);
/// UpdateNodeType - Set the node type of N to VT if VT contains
/// information. If N already contains a conflicting type, then flag an
/// error. This returns true if any information was updated.
///
bool UpdateNodeType(unsigned ResNo, const TypeSetByHwMode &InTy,
TreePattern &TP);
bool UpdateNodeType(unsigned ResNo, MVT::SimpleValueType InTy,
TreePattern &TP);
bool UpdateNodeType(unsigned ResNo, ValueTypeByHwMode InTy,
TreePattern &TP);
// Update node type with types inferred from an instruction operand or result
// def from the ins/outs lists.
// Return true if the type changed.
bool UpdateNodeTypeFromInst(unsigned ResNo, Record *Operand, TreePattern &TP);
/// ContainsUnresolvedType - Return true if this tree contains any
/// unresolved types.
bool ContainsUnresolvedType(TreePattern &TP) const;
/// canPatternMatch - If it is impossible for this pattern to match on this
/// target, fill in Reason and return false. Otherwise, return true.
bool canPatternMatch(std::string &Reason, const CodeGenDAGPatterns &CDP);
};
inline raw_ostream &operator<<(raw_ostream &OS, const TreePatternNode &TPN) {
TPN.print(OS);
return OS;
}
/// TreePattern - Represent a pattern, used for instructions, pattern
/// fragments, etc.
///
class TreePattern {
/// Trees - The list of pattern trees which corresponds to this pattern.
/// Note that PatFrag's only have a single tree.
///
std::vector<TreePatternNodePtr> Trees;
/// NamedNodes - This is all of the nodes that have names in the trees in this
/// pattern.
StringMap<SmallVector<TreePatternNode *, 1>> NamedNodes;
/// TheRecord - The actual TableGen record corresponding to this pattern.
///
Record *TheRecord;
/// Args - This is a list of all of the arguments to this pattern (for
/// PatFrag patterns), which are the 'node' markers in this pattern.
std::vector<std::string> Args;
/// CDP - the top-level object coordinating this madness.
///
CodeGenDAGPatterns &CDP;
/// isInputPattern - True if this is an input pattern, something to match.
/// False if this is an output pattern, something to emit.
bool isInputPattern;
/// hasError - True if the currently processed nodes have unresolvable types
/// or other non-fatal errors
bool HasError;
/// It's important that the usage of operands in ComplexPatterns is
/// consistent: each named operand can be defined by at most one
/// ComplexPattern. This records the ComplexPattern instance and the operand
/// number for each operand encountered in a ComplexPattern to aid in that
/// check.
StringMap<std::pair<Record *, unsigned>> ComplexPatternOperands;
TypeInfer Infer;
public:
/// TreePattern constructor - Parse the specified DagInits into the
/// current record.
TreePattern(Record *TheRec, ListInit *RawPat, bool isInput,
CodeGenDAGPatterns &ise);
TreePattern(Record *TheRec, DagInit *Pat, bool isInput,
CodeGenDAGPatterns &ise);
TreePattern(Record *TheRec, TreePatternNodePtr Pat, bool isInput,
CodeGenDAGPatterns &ise);
/// getTrees - Return the tree patterns which corresponds to this pattern.
///
const std::vector<TreePatternNodePtr> &getTrees() const { return Trees; }
unsigned getNumTrees() const { return Trees.size(); }
const TreePatternNodePtr &getTree(unsigned i) const { return Trees[i]; }
void setTree(unsigned i, TreePatternNodePtr Tree) { Trees[i] = Tree; }
const TreePatternNodePtr &getOnlyTree() const {
assert(Trees.size() == 1 && "Doesn't have exactly one pattern!");
return Trees[0];
}
const StringMap<SmallVector<TreePatternNode *, 1>> &getNamedNodesMap() {
if (NamedNodes.empty())
ComputeNamedNodes();
return NamedNodes;
}
/// getRecord - Return the actual TableGen record corresponding to this
/// pattern.
///
Record *getRecord() const { return TheRecord; }
unsigned getNumArgs() const { return Args.size(); }
const std::string &getArgName(unsigned i) const {
assert(i < Args.size() && "Argument reference out of range!");
return Args[i];
}
std::vector<std::string> &getArgList() { return Args; }
CodeGenDAGPatterns &getDAGPatterns() const { return CDP; }
/// InlinePatternFragments - If this pattern refers to any pattern
/// fragments, inline them into place, giving us a pattern without any
/// PatFrags references. This may increase the number of trees in the
/// pattern if a PatFrags has multiple alternatives.
void InlinePatternFragments() {
std::vector<TreePatternNodePtr> Copy = Trees;
Trees.clear();
for (unsigned i = 0, e = Copy.size(); i != e; ++i)
Copy[i]->InlinePatternFragments(Copy[i], *this, Trees);
}
/// InferAllTypes - Infer/propagate as many types throughout the expression
/// patterns as possible. Return true if all types are inferred, false
/// otherwise. Bail out if a type contradiction is found.
bool InferAllTypes(
const StringMap<SmallVector<TreePatternNode *, 1>> *NamedTypes = nullptr);
/// error - If this is the first error in the current resolution step,
/// print it and set the error flag. Otherwise, continue silently.
void error(const Twine &Msg);
bool hasError() const {
return HasError;
}
void resetError() {
HasError = false;
}
TypeInfer &getInfer() { return Infer; }
void print(raw_ostream &OS) const;
void dump() const;
private:
TreePatternNodePtr ParseTreePattern(Init *DI, StringRef OpName);
void ComputeNamedNodes();
void ComputeNamedNodes(TreePatternNode *N);
};
inline bool TreePatternNode::UpdateNodeType(unsigned ResNo,
const TypeSetByHwMode &InTy,
TreePattern &TP) {
TypeSetByHwMode VTS(InTy);
TP.getInfer().expandOverloads(VTS);
return TP.getInfer().MergeInTypeInfo(Types[ResNo], VTS);
}
inline bool TreePatternNode::UpdateNodeType(unsigned ResNo,
MVT::SimpleValueType InTy,
TreePattern &TP) {
TypeSetByHwMode VTS(InTy);
TP.getInfer().expandOverloads(VTS);
return TP.getInfer().MergeInTypeInfo(Types[ResNo], VTS);
}
inline bool TreePatternNode::UpdateNodeType(unsigned ResNo,
ValueTypeByHwMode InTy,
TreePattern &TP) {
TypeSetByHwMode VTS(InTy);
TP.getInfer().expandOverloads(VTS);
return TP.getInfer().MergeInTypeInfo(Types[ResNo], VTS);
}
/// DAGDefaultOperand - One of these is created for each OperandWithDefaultOps
/// that has a set ExecuteAlways / DefaultOps field.
struct DAGDefaultOperand {
std::vector<TreePatternNodePtr> DefaultOps;
};
class DAGInstruction {
std::vector<Record*> Results;
std::vector<Record*> Operands;
std::vector<Record*> ImpResults;
TreePatternNodePtr SrcPattern;
TreePatternNodePtr ResultPattern;
public:
DAGInstruction(const std::vector<Record*> &results,
const std::vector<Record*> &operands,
const std::vector<Record*> &impresults,
TreePatternNodePtr srcpattern = nullptr,
TreePatternNodePtr resultpattern = nullptr)
: Results(results), Operands(operands), ImpResults(impresults),
SrcPattern(srcpattern), ResultPattern(resultpattern) {}
unsigned getNumResults() const { return Results.size(); }
unsigned getNumOperands() const { return Operands.size(); }
unsigned getNumImpResults() const { return ImpResults.size(); }
const std::vector<Record*>& getImpResults() const { return ImpResults; }
Record *getResult(unsigned RN) const {
assert(RN < Results.size());
return Results[RN];
}
Record *getOperand(unsigned ON) const {
assert(ON < Operands.size());
return Operands[ON];
}
Record *getImpResult(unsigned RN) const {
assert(RN < ImpResults.size());
return ImpResults[RN];
}
TreePatternNodePtr getSrcPattern() const { return SrcPattern; }
TreePatternNodePtr getResultPattern() const { return ResultPattern; }
};
/// This class represents a condition that has to be satisfied for a pattern
/// to be tried. It is a generalization of a class "Pattern" from Target.td:
/// in addition to the Target.td's predicates, this class can also represent
/// conditions associated with HW modes. Both types will eventually become
/// strings containing C++ code to be executed, the difference is in how
/// these strings are generated.
class Predicate {
public:
Predicate(Record *R, bool C = true) : Def(R), IfCond(C), IsHwMode(false) {
assert(R->isSubClassOf("Predicate") &&
"Predicate objects should only be created for records derived"
"from Predicate class");
}
Predicate(StringRef FS, bool C = true) : Def(nullptr), Features(FS.str()),
IfCond(C), IsHwMode(true) {}
/// Return a string which contains the C++ condition code that will serve
/// as a predicate during instruction selection.
std::string getCondString() const {
// The string will excute in a subclass of SelectionDAGISel.
// Cast to std::string explicitly to avoid ambiguity with StringRef.
std::string C = IsHwMode
? std::string("MF->getSubtarget().checkFeatures(\"" + Features + "\")")
: std::string(Def->getValueAsString("CondString"));
if (C.empty())
return "";
return IfCond ? C : "!("+C+')';
}
bool operator==(const Predicate &P) const {
return IfCond == P.IfCond && IsHwMode == P.IsHwMode && Def == P.Def;
}
bool operator<(const Predicate &P) const {
if (IsHwMode != P.IsHwMode)
return IsHwMode < P.IsHwMode;
assert(!Def == !P.Def && "Inconsistency between Def and IsHwMode");
if (IfCond != P.IfCond)
return IfCond < P.IfCond;
if (Def)
return LessRecord()(Def, P.Def);
return Features < P.Features;
}
Record *Def; ///< Predicate definition from .td file, null for
///< HW modes.
std::string Features; ///< Feature string for HW mode.
bool IfCond; ///< The boolean value that the condition has to
///< evaluate to for this predicate to be true.
bool IsHwMode; ///< Does this predicate correspond to a HW mode?
};
/// PatternToMatch - Used by CodeGenDAGPatterns to keep tab of patterns
/// processed to produce isel.
class PatternToMatch {
public:
PatternToMatch(Record *srcrecord, std::vector<Predicate> preds,
TreePatternNodePtr src, TreePatternNodePtr dst,
std::vector<Record *> dstregs, int complexity,
unsigned uid, unsigned setmode = 0)
: SrcRecord(srcrecord), SrcPattern(src), DstPattern(dst),
Predicates(std::move(preds)), Dstregs(std::move(dstregs)),
AddedComplexity(complexity), ID(uid), ForceMode(setmode) {}
Record *SrcRecord; // Originating Record for the pattern.
TreePatternNodePtr SrcPattern; // Source pattern to match.
TreePatternNodePtr DstPattern; // Resulting pattern.
std::vector<Predicate> Predicates; // Top level predicate conditions
// to match.
std::vector<Record*> Dstregs; // Physical register defs being matched.
int AddedComplexity; // Add to matching pattern complexity.
unsigned ID; // Unique ID for the record.
unsigned ForceMode; // Force this mode in type inference when set.
Record *getSrcRecord() const { return SrcRecord; }
TreePatternNode *getSrcPattern() const { return SrcPattern.get(); }
TreePatternNodePtr getSrcPatternShared() const { return SrcPattern; }
TreePatternNode *getDstPattern() const { return DstPattern.get(); }
TreePatternNodePtr getDstPatternShared() const { return DstPattern; }
const std::vector<Record*> &getDstRegs() const { return Dstregs; }
int getAddedComplexity() const { return AddedComplexity; }
const std::vector<Predicate> &getPredicates() const { return Predicates; }
std::string getPredicateCheck() const;
/// Compute the complexity metric for the input pattern. This roughly
/// corresponds to the number of nodes that are covered.
int getPatternComplexity(const CodeGenDAGPatterns &CGP) const;
};
class CodeGenDAGPatterns {
RecordKeeper &Records;
CodeGenTarget Target;
CodeGenIntrinsicTable Intrinsics;
std::map<Record*, SDNodeInfo, LessRecordByID> SDNodes;
std::map<Record*, std::pair<Record*, std::string>, LessRecordByID>
SDNodeXForms;
std::map<Record*, ComplexPattern, LessRecordByID> ComplexPatterns;
std::map<Record *, std::unique_ptr<TreePattern>, LessRecordByID>
PatternFragments;
std::map<Record*, DAGDefaultOperand, LessRecordByID> DefaultOperands;
std::map<Record*, DAGInstruction, LessRecordByID> Instructions;
// Specific SDNode definitions:
Record *intrinsic_void_sdnode;
Record *intrinsic_w_chain_sdnode, *intrinsic_wo_chain_sdnode;
/// PatternsToMatch - All of the things we are matching on the DAG. The first
/// value is the pattern to match, the second pattern is the result to
/// emit.
std::vector<PatternToMatch> PatternsToMatch;
TypeSetByHwMode LegalVTS;
using PatternRewriterFn = std::function<void (TreePattern *)>;
PatternRewriterFn PatternRewriter;
unsigned NumScopes = 0;
public:
CodeGenDAGPatterns(RecordKeeper &R,
PatternRewriterFn PatternRewriter = nullptr);
CodeGenTarget &getTargetInfo() { return Target; }
const CodeGenTarget &getTargetInfo() const { return Target; }
const TypeSetByHwMode &getLegalTypes() const { return LegalVTS; }
Record *getSDNodeNamed(const std::string &Name) const;
const SDNodeInfo &getSDNodeInfo(Record *R) const {
auto F = SDNodes.find(R);
assert(F != SDNodes.end() && "Unknown node!");
return F->second;
}
// Node transformation lookups.
typedef std::pair<Record*, std::string> NodeXForm;
const NodeXForm &getSDNodeTransform(Record *R) const {
auto F = SDNodeXForms.find(R);
assert(F != SDNodeXForms.end() && "Invalid transform!");
return F->second;
}
const ComplexPattern &getComplexPattern(Record *R) const {
auto F = ComplexPatterns.find(R);
assert(F != ComplexPatterns.end() && "Unknown addressing mode!");
return F->second;
}
const CodeGenIntrinsic &getIntrinsic(Record *R) const {
for (unsigned i = 0, e = Intrinsics.size(); i != e; ++i)
if (Intrinsics[i].TheDef == R) return Intrinsics[i];
llvm_unreachable("Unknown intrinsic!");
}
const CodeGenIntrinsic &getIntrinsicInfo(unsigned IID) const {
if (IID-1 < Intrinsics.size())
return Intrinsics[IID-1];
llvm_unreachable("Bad intrinsic ID!");
}
unsigned getIntrinsicID(Record *R) const {
for (unsigned i = 0, e = Intrinsics.size(); i != e; ++i)
if (Intrinsics[i].TheDef == R) return i;
llvm_unreachable("Unknown intrinsic!");
}
const DAGDefaultOperand &getDefaultOperand(Record *R) const {
auto F = DefaultOperands.find(R);
assert(F != DefaultOperands.end() &&"Isn't an analyzed default operand!");
return F->second;
}
// Pattern Fragment information.
TreePattern *getPatternFragment(Record *R) const {
auto F = PatternFragments.find(R);
assert(F != PatternFragments.end() && "Invalid pattern fragment request!");
return F->second.get();
}
TreePattern *getPatternFragmentIfRead(Record *R) const {
auto F = PatternFragments.find(R);
if (F == PatternFragments.end())
return nullptr;
return F->second.get();
}
typedef std::map<Record *, std::unique_ptr<TreePattern>,
LessRecordByID>::const_iterator pf_iterator;
pf_iterator pf_begin() const { return PatternFragments.begin(); }
pf_iterator pf_end() const { return PatternFragments.end(); }
iterator_range<pf_iterator> ptfs() const { return PatternFragments; }
// Patterns to match information.
typedef std::vector<PatternToMatch>::const_iterator ptm_iterator;
ptm_iterator ptm_begin() const { return PatternsToMatch.begin(); }
ptm_iterator ptm_end() const { return PatternsToMatch.end(); }
iterator_range<ptm_iterator> ptms() const { return PatternsToMatch; }
/// Parse the Pattern for an instruction, and insert the result in DAGInsts.
typedef std::map<Record*, DAGInstruction, LessRecordByID> DAGInstMap;
void parseInstructionPattern(
CodeGenInstruction &CGI, ListInit *Pattern,
DAGInstMap &DAGInsts);
const DAGInstruction &getInstruction(Record *R) const {
auto F = Instructions.find(R);
assert(F != Instructions.end() && "Unknown instruction!");
return F->second;
}
Record *get_intrinsic_void_sdnode() const {
return intrinsic_void_sdnode;
}
Record *get_intrinsic_w_chain_sdnode() const {
return intrinsic_w_chain_sdnode;
}
Record *get_intrinsic_wo_chain_sdnode() const {
return intrinsic_wo_chain_sdnode;
}
unsigned allocateScope() { return ++NumScopes; }
bool operandHasDefault(Record *Op) const {
return Op->isSubClassOf("OperandWithDefaultOps") &&
!getDefaultOperand(Op).DefaultOps.empty();
}
private:
void ParseNodeInfo();
void ParseNodeTransforms();
void ParseComplexPatterns();
void ParsePatternFragments(bool OutFrags = false);
void ParseDefaultOperands();
void ParseInstructions();
void ParsePatterns();
void ExpandHwModeBasedTypes();
void InferInstructionFlags();
void GenerateVariants();
void VerifyInstructionFlags();
std::vector<Predicate> makePredList(ListInit *L);
void ParseOnePattern(Record *TheDef,
TreePattern &Pattern, TreePattern &Result,
const std::vector<Record *> &InstImpResults);
void AddPatternToMatch(TreePattern *Pattern, PatternToMatch &&PTM);
void FindPatternInputsAndOutputs(
TreePattern &I, TreePatternNodePtr Pat,
std::map<std::string, TreePatternNodePtr> &InstInputs,
MapVector<std::string, TreePatternNodePtr,
std::map<std::string, unsigned>> &InstResults,
std::vector<Record *> &InstImpResults);
};
inline bool SDNodeInfo::ApplyTypeConstraints(TreePatternNode *N,
TreePattern &TP) const {
bool MadeChange = false;
for (unsigned i = 0, e = TypeConstraints.size(); i != e; ++i)
MadeChange |= TypeConstraints[i].ApplyTypeConstraint(N, *this, TP);
return MadeChange;
}
} // end namespace llvm
#endif