cxx1z-class-template-argument-deduction.cpp
15.4 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
// RUN: %clang_cc1 -std=c++1z -verify %s -DERRORS -Wundefined-func-template
// RUN: %clang_cc1 -std=c++1z -verify %s -UERRORS -Wundefined-func-template
// This test is split into two because we only produce "undefined internal"
// warnings if we didn't produce any errors.
#if ERRORS
namespace std {
using size_t = decltype(sizeof(0));
template<typename T> struct initializer_list {
const T *p;
size_t n;
initializer_list();
};
// FIXME: This should probably not be necessary.
template<typename T> initializer_list(initializer_list<T>) -> initializer_list<T>;
}
template<typename T> constexpr bool has_type(...) { return false; }
template<typename T> constexpr bool has_type(T) { return true; }
std::initializer_list il = {1, 2, 3, 4, 5};
template<typename T> struct vector {
template<typename Iter> vector(Iter, Iter);
vector(std::initializer_list<T>);
};
template<typename T> vector(std::initializer_list<T>) -> vector<T>;
template<typename Iter> explicit vector(Iter, Iter) -> vector<typename Iter::value_type>;
template<typename T> explicit vector(std::size_t, T) -> vector<T>;
vector v1 = {1, 2, 3, 4};
static_assert(has_type<vector<int>>(v1));
struct iter { typedef char value_type; } it, end;
vector v2(it, end);
static_assert(has_type<vector<char>>(v2));
vector v3(5, 5);
static_assert(has_type<vector<int>>(v3));
vector v4 = {it, end};
static_assert(has_type<vector<iter>>(v4));
vector v5{it, end};
static_assert(has_type<vector<iter>>(v5));
template<typename ...T> struct tuple { tuple(T...); };
template<typename ...T> explicit tuple(T ...t) -> tuple<T...>; // expected-note {{declared}}
// FIXME: Remove
template<typename ...T> tuple(tuple<T...>) -> tuple<T...>;
const int n = 4;
tuple ta = tuple{1, 'a', "foo", n};
static_assert(has_type<tuple<int, char, const char*, int>>(ta));
tuple tb{ta};
static_assert(has_type<tuple<int, char, const char*, int>>(tb));
// FIXME: This should be tuple<tuple<...>>; when the above guide is removed.
tuple tc = {ta};
static_assert(has_type<tuple<int, char, const char*, int>>(tc));
tuple td = {1, 2, 3}; // expected-error {{selected an explicit deduction guide}}
static_assert(has_type<tuple<int, char, const char*, int>>(td));
// FIXME: This is a GCC extension for now; if CWG don't allow this, at least
// add a warning for it.
namespace new_expr {
tuple<int> *p = new tuple{0};
tuple<float, float> *q = new tuple(1.0f, 2.0f);
}
namespace ambiguity {
template<typename T> struct A {};
A(unsigned short) -> A<int>; // expected-note {{candidate}}
A(short) -> A<int>; // expected-note {{candidate}}
A a = 0; // expected-error {{ambiguous deduction for template arguments of 'A'}}
template<typename T> struct B {};
template<typename T> B(T(&)(int)) -> B<int>; // expected-note {{candidate function [with T = int]}}
template<typename T> B(int(&)(T)) -> B<int>; // expected-note {{candidate function [with T = int]}}
int f(int);
B b = f; // expected-error {{ambiguous deduction for template arguments of 'B'}}
}
// FIXME: Revisit this once CWG decides if attributes, and [[deprecated]] in
// particular, should be permitted here.
namespace deprecated {
template<typename T> struct A { A(int); };
[[deprecated]] A(int) -> A<void>; // expected-note {{marked deprecated here}}
A a = 0; // expected-warning {{'<deduction guide for A>' is deprecated}}
}
namespace dependent {
template<template<typename...> typename A> decltype(auto) a = A{1, 2, 3};
static_assert(has_type<vector<int>>(a<vector>));
static_assert(has_type<tuple<int, int, int>>(a<tuple>));
struct B {
template<typename T> struct X { X(T); };
X(int) -> X<int>;
template<typename T> using Y = X<T>; // expected-note {{template}}
};
template<typename T> void f() {
typename T::X tx = 0;
typename T::Y ty = 0; // expected-error {{alias template 'Y' requires template arguments; argument deduction only allowed for class templates}}
}
template void f<B>(); // expected-note {{in instantiation of}}
template<typename T> struct C { C(T); };
template<typename T> C(T) -> C<T>;
template<typename T> void g(T a) {
C b = 0;
C c = a;
using U = decltype(b); // expected-note {{previous}}
using U = decltype(c); // expected-error {{different types ('C<const char *>' vs 'C<int>')}}
}
void h() {
g(0);
g("foo"); // expected-note {{instantiation of}}
}
}
namespace look_into_current_instantiation {
template<typename U> struct Q {};
template<typename T> struct A {
using U = T;
template<typename> using V = Q<A<T>::U>;
template<typename W = int> A(V<W>);
};
A a = Q<float>(); // ok, can look through class-scope typedefs and alias
// templates, and members of the current instantiation
A<float> &r = a;
template<typename T> struct B { // expected-note {{could not match 'B<T>' against 'int'}}
struct X {
typedef T type;
};
B(typename X::type); // expected-note {{couldn't infer template argument 'T'}}
};
B b = 0; // expected-error {{no viable}}
// We should have a substitution failure in the immediate context of
// deduction when using the C(T, U) constructor (probably; core wording
// unclear).
template<typename T> struct C {
using U = typename T::type;
C(T, U);
};
struct R { R(int); typedef R type; };
C(...) -> C<R>;
C c = {1, 2};
}
namespace nondeducible {
template<typename A, typename B> struct X {};
template<typename A> // expected-note {{non-deducible template parameter 'A'}}
X() -> X<A, int>; // expected-error {{deduction guide template contains a template parameter that cannot be deduced}}
template<typename A> // expected-note {{non-deducible template parameter 'A'}}
X(typename X<A, int>::type) -> X<A, int>; // expected-error {{deduction guide template contains a template parameter that cannot be deduced}}
template<typename A = int,
typename B> // expected-note {{non-deducible template parameter 'B'}}
X(int) -> X<A, B>; // expected-error {{deduction guide template contains a template parameter that cannot be deduced}}
template<typename A = int,
typename ...B>
X(float) -> X<A, B...>; // ok
}
namespace default_args_from_ctor {
template <class A> struct S { S(A = 0) {} };
S s(0);
template <class A> struct T { template<typename B> T(A = 0, B = 0) {} };
T t(0, 0);
}
namespace transform_params {
template<typename T, T N, template<T (*v)[N]> typename U, T (*X)[N]>
struct A {
template<typename V, V M, V (*Y)[M], template<V (*v)[M]> typename W>
A(U<X>, W<Y>);
static constexpr T v = N;
};
int n[12];
template<int (*)[12]> struct Q {};
Q<&n> qn;
A a(qn, qn);
static_assert(a.v == 12);
template<typename ...T> struct B {
template<T ...V> B(const T (&...p)[V]) {
constexpr int Vs[] = {V...};
static_assert(Vs[0] == 3 && Vs[1] == 4 && Vs[2] == 4);
}
static constexpr int (*p)(T...) = (int(*)(int, char, char))nullptr;
};
B b({1, 2, 3}, "foo", {'x', 'y', 'z', 'w'}); // ok
template<typename ...T> struct C {
template<T ...V, template<T...> typename X>
C(X<V...>);
};
template<int...> struct Y {};
C c(Y<0, 1, 2>{});
template<typename ...T> struct D {
template<T ...V> D(Y<V...>);
};
D d(Y<0, 1, 2>{});
}
namespace variadic {
int arr3[3], arr4[4];
// PR32673
template<typename T> struct A {
template<typename ...U> A(T, U...);
};
A a(1, 2, 3);
template<typename T> struct B {
template<int ...N> B(T, int (&...r)[N]);
};
B b(1, arr3, arr4);
template<typename T> struct C {
template<template<typename> typename ...U> C(T, U<int>...);
};
C c(1, a, b);
template<typename ...U> struct X {
template<typename T> X(T, U...);
};
X x(1, 2, 3);
template<int ...N> struct Y {
template<typename T> Y(T, int (&...r)[N]);
};
Y y(1, arr3, arr4);
template<template<typename> typename ...U> struct Z {
template<typename T> Z(T, U<int>...);
};
Z z(1, a, b);
}
namespace tuple_tests {
// The converting n-ary constructor appears viable, deducing T as an empty
// pack (until we check its SFINAE constraints).
namespace libcxx_1 {
template<class ...T> struct tuple {
template<class ...Args> struct X { static const bool value = false; };
template<class ...U, bool Y = X<U...>::value> tuple(U &&...u);
};
tuple a = {1, 2, 3};
}
// Don't get caught by surprise when X<...> doesn't even exist in the
// selected specialization!
namespace libcxx_2 {
template<class ...T> struct tuple {
template<class ...Args> struct X { static const bool value = false; };
// Substitution into X<U...>::value succeeds but produces the
// value-dependent expression
// tuple<T...>::X<>::value
// FIXME: Is that the right behavior?
template<class ...U, bool Y = X<U...>::value> tuple(U &&...u);
};
template <> class tuple<> {};
tuple a = {1, 2, 3}; // expected-error {{excess elements in struct initializer}}
}
namespace libcxx_3 {
template<typename ...T> struct scoped_lock {
scoped_lock(T...);
};
template<> struct scoped_lock<> {};
scoped_lock l = {};
}
}
namespace dependent {
template<typename T> struct X {
X(T);
};
template<typename T> int Var(T t) {
X x(t);
return X(x) + 1; // expected-error {{invalid operands}}
}
template<typename T> int Cast(T t) {
return X(X(t)) + 1; // expected-error {{invalid operands}}
}
template<typename T> int New(T t) {
return X(new X(t)) + 1; // expected-error {{invalid operands}}
};
template int Var(float); // expected-note {{instantiation of}}
template int Cast(float); // expected-note {{instantiation of}}
template int New(float); // expected-note {{instantiation of}}
template<typename T> int operator+(X<T>, int);
template int Var(int);
template int Cast(int);
template int New(int);
template<template<typename> typename Y> void test() {
Y(0);
new Y(0);
Y y(0);
}
template void test<X>();
}
namespace injected_class_name {
template<typename T = void> struct A {
A();
template<typename U> A(A<U>);
};
A<int> a;
A b = a;
using T = decltype(a);
using T = decltype(b);
}
namespace member_guides {
// PR34520
template<class>
struct Foo {
template <class T> struct Bar {
Bar(...) {}
};
Bar(int) -> Bar<int>;
};
Foo<int>::Bar b = 0;
struct A {
template<typename T> struct Public; // expected-note {{declared public}}
Public(float) -> Public<float>;
protected: // expected-note {{declared protected by intervening access specifier}}
template<typename T> struct Protected; // expected-note 2{{declared protected}}
Protected(float) -> Protected<float>;
Public(int) -> Public<int>; // expected-error {{different access}}
private: // expected-note {{declared private by intervening access specifier}}
template<typename T> struct Private; // expected-note {{declared private}}
Protected(int) -> Protected<int>; // expected-error {{different access}}
public: // expected-note 2{{declared public by intervening access specifier}}
template<typename T> Public(T) -> Public<T>;
template<typename T> Protected(T) -> Protected<T>; // expected-error {{different access}}
template<typename T> Private(T) -> Private<T>; // expected-error {{different access}}
};
}
namespace rdar41903969 {
template <class T> struct A {};
template <class T> struct B;
template <class T> struct C {
C(A<T>&);
C(B<T>&);
};
void foo(A<int> &a, B<int> &b) {
(void)C{b};
(void)C{a};
}
template<typename T> struct X {
X(std::initializer_list<T>) = delete;
X(const X&);
};
template <class T> struct D : X<T> {};
void bar(D<int>& d) {
(void)X{d};
}
}
namespace rdar41330135 {
template <int> struct A {};
template <class T>
struct S {
template <class U>
S(T a, U t, A<sizeof(t)>);
};
template <class T> struct D {
D(T t, A<sizeof(t)>);
};
int f() {
S s(0, 0, A<sizeof(int)>());
D d(0, A<sizeof(int)>());
}
namespace test_dupls {
template<unsigned long> struct X {};
template<typename T> struct A {
A(T t, X<sizeof(t)>);
};
A a(0, {});
template<typename U> struct B {
B(U u, X<sizeof(u)>);
};
B b(0, {});
}
}
#pragma clang diagnostic push
#pragma clang diagnostic warning "-Wctad-maybe-unsupported"
namespace test_implicit_ctad_warning {
template <class T>
struct Tag {};
template <class T>
struct NoExplicit { // expected-note {{add a deduction guide to suppress this warning}}
NoExplicit(T) {}
NoExplicit(T, int) {}
};
// expected-warning@+1 {{'NoExplicit' may not intend to support class template argument deduction}}
NoExplicit ne(42);
template <class U>
struct HasExplicit {
HasExplicit(U) {}
HasExplicit(U, int) {}
};
template <class U> HasExplicit(U, int) -> HasExplicit<Tag<U>>;
HasExplicit he(42);
// Motivating examples from (taken from Stephan Lavavej's 2018 Cppcon talk)
template <class T, class U>
struct AmateurPair { // expected-note {{add a deduction guide to suppress this warning}}
T first;
U second;
explicit AmateurPair(const T &t, const U &u) {}
};
// expected-warning@+1 {{'AmateurPair' may not intend to support class template argument deduction}}
AmateurPair p1(42, "hello world"); // deduces to Pair<int, char[12]>
template <class T, class U>
struct AmateurPair2 { // expected-note {{add a deduction guide to suppress this warning}}
T first;
U second;
explicit AmateurPair2(T t, U u) {}
};
// expected-warning@+1 {{'AmateurPair2' may not intend to support class template argument deduction}}
AmateurPair2 p2(42, "hello world"); // deduces to Pair2<int, const char*>
template <class T, class U>
struct ProPair {
T first; U second;
explicit ProPair(T const& t, U const& u) {}
};
template<class T1, class T2>
ProPair(T1, T2) -> ProPair<T1, T2>;
ProPair p3(42, "hello world"); // deduces to ProPair<int, const char*>
static_assert(__is_same(decltype(p3), ProPair<int, const char*>));
// Test that user-defined explicit guides suppress the warning even if they
// aren't used as candidates.
template <class T>
struct TestExplicitCtor {
TestExplicitCtor(T) {}
};
template <class T>
explicit TestExplicitCtor(TestExplicitCtor<T> const&) -> TestExplicitCtor<void>;
TestExplicitCtor<int> ce1{42};
TestExplicitCtor ce2 = ce1;
static_assert(__is_same(decltype(ce2), TestExplicitCtor<int>), "");
struct allow_ctad_t {
allow_ctad_t() = delete;
};
template <class T>
struct TestSuppression {
TestSuppression(T) {}
};
TestSuppression(allow_ctad_t)->TestSuppression<void>;
TestSuppression ta("abc");
static_assert(__is_same(decltype(ta), TestSuppression<const char *>), "");
}
#pragma clang diagnostic pop
namespace PR41549 {
template <class H, class P> struct umm;
template <class H = int, class P = int>
struct umm {
umm(H h = 0, P p = 0);
};
template <class H, class P> struct umm;
umm m(1);
}
namespace PR45124 {
class a { int d; };
class b : a {};
struct x { ~x(); };
template<typename> class y { y(x = x()); };
template<typename z> y(z)->y<z>;
// Not a constant initializer, but trivial default initialization. We won't
// detect this as trivial default initialization if synthesizing the implicit
// deduction guide 'template<typename T> y(x = x()) -> Y<T>;' leaves behind a
// pending cleanup.
__thread b g;
}
#else
// expected-no-diagnostics
namespace undefined_warnings {
// Make sure we don't get an "undefined but used internal symbol" warning for the deduction guide here.
namespace {
template <typename T>
struct TemplDObj {
explicit TemplDObj(T func) noexcept {}
};
auto test1 = TemplDObj(0);
TemplDObj(float) -> TemplDObj<double>;
auto test2 = TemplDObj(.0f);
}
}
#endif