Chunks.cpp 31.9 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922
//===- Chunks.cpp ---------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "Chunks.h"
#include "InputFiles.h"
#include "Symbols.h"
#include "Writer.h"
#include "SymbolTable.h"
#include "lld/Common/ErrorHandler.h"
#include "llvm/ADT/Twine.h"
#include "llvm/BinaryFormat/COFF.h"
#include "llvm/Object/COFF.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/Endian.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>

using namespace llvm;
using namespace llvm::object;
using namespace llvm::support::endian;
using namespace llvm::COFF;
using llvm::support::ulittle32_t;

namespace lld {
namespace coff {

SectionChunk::SectionChunk(ObjFile *f, const coff_section *h)
    : Chunk(SectionKind), file(f), header(h), repl(this) {
  // Initialize relocs.
  setRelocs(file->getCOFFObj()->getRelocations(header));

  // Initialize sectionName.
  StringRef sectionName;
  if (Expected<StringRef> e = file->getCOFFObj()->getSectionName(header))
    sectionName = *e;
  sectionNameData = sectionName.data();
  sectionNameSize = sectionName.size();

  setAlignment(header->getAlignment());

  hasData = !(header->Characteristics & IMAGE_SCN_CNT_UNINITIALIZED_DATA);

  // If linker GC is disabled, every chunk starts out alive.  If linker GC is
  // enabled, treat non-comdat sections as roots. Generally optimized object
  // files will be built with -ffunction-sections or /Gy, so most things worth
  // stripping will be in a comdat.
  live = !config->doGC || !isCOMDAT();
}

// SectionChunk is one of the most frequently allocated classes, so it is
// important to keep it as compact as possible. As of this writing, the number
// below is the size of this class on x64 platforms.
static_assert(sizeof(SectionChunk) <= 88, "SectionChunk grew unexpectedly");

static void add16(uint8_t *p, int16_t v) { write16le(p, read16le(p) + v); }
static void add32(uint8_t *p, int32_t v) { write32le(p, read32le(p) + v); }
static void add64(uint8_t *p, int64_t v) { write64le(p, read64le(p) + v); }
static void or16(uint8_t *p, uint16_t v) { write16le(p, read16le(p) | v); }
static void or32(uint8_t *p, uint32_t v) { write32le(p, read32le(p) | v); }

// Verify that given sections are appropriate targets for SECREL
// relocations. This check is relaxed because unfortunately debug
// sections have section-relative relocations against absolute symbols.
static bool checkSecRel(const SectionChunk *sec, OutputSection *os) {
  if (os)
    return true;
  if (sec->isCodeView())
    return false;
  error("SECREL relocation cannot be applied to absolute symbols");
  return false;
}

static void applySecRel(const SectionChunk *sec, uint8_t *off,
                        OutputSection *os, uint64_t s) {
  if (!checkSecRel(sec, os))
    return;
  uint64_t secRel = s - os->getRVA();
  if (secRel > UINT32_MAX) {
    error("overflow in SECREL relocation in section: " + sec->getSectionName());
    return;
  }
  add32(off, secRel);
}

static void applySecIdx(uint8_t *off, OutputSection *os) {
  // Absolute symbol doesn't have section index, but section index relocation
  // against absolute symbol should be resolved to one plus the last output
  // section index. This is required for compatibility with MSVC.
  if (os)
    add16(off, os->sectionIndex);
  else
    add16(off, DefinedAbsolute::numOutputSections + 1);
}

void SectionChunk::applyRelX64(uint8_t *off, uint16_t type, OutputSection *os,
                               uint64_t s, uint64_t p) const {
  switch (type) {
  case IMAGE_REL_AMD64_ADDR32:   add32(off, s + config->imageBase); break;
  case IMAGE_REL_AMD64_ADDR64:   add64(off, s + config->imageBase); break;
  case IMAGE_REL_AMD64_ADDR32NB: add32(off, s); break;
  case IMAGE_REL_AMD64_REL32:    add32(off, s - p - 4); break;
  case IMAGE_REL_AMD64_REL32_1:  add32(off, s - p - 5); break;
  case IMAGE_REL_AMD64_REL32_2:  add32(off, s - p - 6); break;
  case IMAGE_REL_AMD64_REL32_3:  add32(off, s - p - 7); break;
  case IMAGE_REL_AMD64_REL32_4:  add32(off, s - p - 8); break;
  case IMAGE_REL_AMD64_REL32_5:  add32(off, s - p - 9); break;
  case IMAGE_REL_AMD64_SECTION:  applySecIdx(off, os); break;
  case IMAGE_REL_AMD64_SECREL:   applySecRel(this, off, os, s); break;
  default:
    error("unsupported relocation type 0x" + Twine::utohexstr(type) + " in " +
          toString(file));
  }
}

void SectionChunk::applyRelX86(uint8_t *off, uint16_t type, OutputSection *os,
                               uint64_t s, uint64_t p) const {
  switch (type) {
  case IMAGE_REL_I386_ABSOLUTE: break;
  case IMAGE_REL_I386_DIR32:    add32(off, s + config->imageBase); break;
  case IMAGE_REL_I386_DIR32NB:  add32(off, s); break;
  case IMAGE_REL_I386_REL32:    add32(off, s - p - 4); break;
  case IMAGE_REL_I386_SECTION:  applySecIdx(off, os); break;
  case IMAGE_REL_I386_SECREL:   applySecRel(this, off, os, s); break;
  default:
    error("unsupported relocation type 0x" + Twine::utohexstr(type) + " in " +
          toString(file));
  }
}

static void applyMOV(uint8_t *off, uint16_t v) {
  write16le(off, (read16le(off) & 0xfbf0) | ((v & 0x800) >> 1) | ((v >> 12) & 0xf));
  write16le(off + 2, (read16le(off + 2) & 0x8f00) | ((v & 0x700) << 4) | (v & 0xff));
}

static uint16_t readMOV(uint8_t *off, bool movt) {
  uint16_t op1 = read16le(off);
  if ((op1 & 0xfbf0) != (movt ? 0xf2c0 : 0xf240))
    error("unexpected instruction in " + Twine(movt ? "MOVT" : "MOVW") +
          " instruction in MOV32T relocation");
  uint16_t op2 = read16le(off + 2);
  if ((op2 & 0x8000) != 0)
    error("unexpected instruction in " + Twine(movt ? "MOVT" : "MOVW") +
          " instruction in MOV32T relocation");
  return (op2 & 0x00ff) | ((op2 >> 4) & 0x0700) | ((op1 << 1) & 0x0800) |
         ((op1 & 0x000f) << 12);
}

void applyMOV32T(uint8_t *off, uint32_t v) {
  uint16_t immW = readMOV(off, false);    // read MOVW operand
  uint16_t immT = readMOV(off + 4, true); // read MOVT operand
  uint32_t imm = immW | (immT << 16);
  v += imm;                         // add the immediate offset
  applyMOV(off, v);           // set MOVW operand
  applyMOV(off + 4, v >> 16); // set MOVT operand
}

static void applyBranch20T(uint8_t *off, int32_t v) {
  if (!isInt<21>(v))
    error("relocation out of range");
  uint32_t s = v < 0 ? 1 : 0;
  uint32_t j1 = (v >> 19) & 1;
  uint32_t j2 = (v >> 18) & 1;
  or16(off, (s << 10) | ((v >> 12) & 0x3f));
  or16(off + 2, (j1 << 13) | (j2 << 11) | ((v >> 1) & 0x7ff));
}

void applyBranch24T(uint8_t *off, int32_t v) {
  if (!isInt<25>(v))
    error("relocation out of range");
  uint32_t s = v < 0 ? 1 : 0;
  uint32_t j1 = ((~v >> 23) & 1) ^ s;
  uint32_t j2 = ((~v >> 22) & 1) ^ s;
  or16(off, (s << 10) | ((v >> 12) & 0x3ff));
  // Clear out the J1 and J2 bits which may be set.
  write16le(off + 2, (read16le(off + 2) & 0xd000) | (j1 << 13) | (j2 << 11) | ((v >> 1) & 0x7ff));
}

void SectionChunk::applyRelARM(uint8_t *off, uint16_t type, OutputSection *os,
                               uint64_t s, uint64_t p) const {
  // Pointer to thumb code must have the LSB set.
  uint64_t sx = s;
  if (os && (os->header.Characteristics & IMAGE_SCN_MEM_EXECUTE))
    sx |= 1;
  switch (type) {
  case IMAGE_REL_ARM_ADDR32:    add32(off, sx + config->imageBase); break;
  case IMAGE_REL_ARM_ADDR32NB:  add32(off, sx); break;
  case IMAGE_REL_ARM_MOV32T:    applyMOV32T(off, sx + config->imageBase); break;
  case IMAGE_REL_ARM_BRANCH20T: applyBranch20T(off, sx - p - 4); break;
  case IMAGE_REL_ARM_BRANCH24T: applyBranch24T(off, sx - p - 4); break;
  case IMAGE_REL_ARM_BLX23T:    applyBranch24T(off, sx - p - 4); break;
  case IMAGE_REL_ARM_SECTION:   applySecIdx(off, os); break;
  case IMAGE_REL_ARM_SECREL:    applySecRel(this, off, os, s); break;
  case IMAGE_REL_ARM_REL32:     add32(off, sx - p - 4); break;
  default:
    error("unsupported relocation type 0x" + Twine::utohexstr(type) + " in " +
          toString(file));
  }
}

// Interpret the existing immediate value as a byte offset to the
// target symbol, then update the instruction with the immediate as
// the page offset from the current instruction to the target.
void applyArm64Addr(uint8_t *off, uint64_t s, uint64_t p, int shift) {
  uint32_t orig = read32le(off);
  uint64_t imm = ((orig >> 29) & 0x3) | ((orig >> 3) & 0x1FFFFC);
  s += imm;
  imm = (s >> shift) - (p >> shift);
  uint32_t immLo = (imm & 0x3) << 29;
  uint32_t immHi = (imm & 0x1FFFFC) << 3;
  uint64_t mask = (0x3 << 29) | (0x1FFFFC << 3);
  write32le(off, (orig & ~mask) | immLo | immHi);
}

// Update the immediate field in a AARCH64 ldr, str, and add instruction.
// Optionally limit the range of the written immediate by one or more bits
// (rangeLimit).
void applyArm64Imm(uint8_t *off, uint64_t imm, uint32_t rangeLimit) {
  uint32_t orig = read32le(off);
  imm += (orig >> 10) & 0xFFF;
  orig &= ~(0xFFF << 10);
  write32le(off, orig | ((imm & (0xFFF >> rangeLimit)) << 10));
}

// Add the 12 bit page offset to the existing immediate.
// Ldr/str instructions store the opcode immediate scaled
// by the load/store size (giving a larger range for larger
// loads/stores). The immediate is always (both before and after
// fixing up the relocation) stored scaled similarly.
// Even if larger loads/stores have a larger range, limit the
// effective offset to 12 bit, since it is intended to be a
// page offset.
static void applyArm64Ldr(uint8_t *off, uint64_t imm) {
  uint32_t orig = read32le(off);
  uint32_t size = orig >> 30;
  // 0x04000000 indicates SIMD/FP registers
  // 0x00800000 indicates 128 bit
  if ((orig & 0x4800000) == 0x4800000)
    size += 4;
  if ((imm & ((1 << size) - 1)) != 0)
    error("misaligned ldr/str offset");
  applyArm64Imm(off, imm >> size, size);
}

static void applySecRelLow12A(const SectionChunk *sec, uint8_t *off,
                              OutputSection *os, uint64_t s) {
  if (checkSecRel(sec, os))
    applyArm64Imm(off, (s - os->getRVA()) & 0xfff, 0);
}

static void applySecRelHigh12A(const SectionChunk *sec, uint8_t *off,
                               OutputSection *os, uint64_t s) {
  if (!checkSecRel(sec, os))
    return;
  uint64_t secRel = (s - os->getRVA()) >> 12;
  if (0xfff < secRel) {
    error("overflow in SECREL_HIGH12A relocation in section: " +
          sec->getSectionName());
    return;
  }
  applyArm64Imm(off, secRel & 0xfff, 0);
}

static void applySecRelLdr(const SectionChunk *sec, uint8_t *off,
                           OutputSection *os, uint64_t s) {
  if (checkSecRel(sec, os))
    applyArm64Ldr(off, (s - os->getRVA()) & 0xfff);
}

void applyArm64Branch26(uint8_t *off, int64_t v) {
  if (!isInt<28>(v))
    error("relocation out of range");
  or32(off, (v & 0x0FFFFFFC) >> 2);
}

static void applyArm64Branch19(uint8_t *off, int64_t v) {
  if (!isInt<21>(v))
    error("relocation out of range");
  or32(off, (v & 0x001FFFFC) << 3);
}

static void applyArm64Branch14(uint8_t *off, int64_t v) {
  if (!isInt<16>(v))
    error("relocation out of range");
  or32(off, (v & 0x0000FFFC) << 3);
}

void SectionChunk::applyRelARM64(uint8_t *off, uint16_t type, OutputSection *os,
                                 uint64_t s, uint64_t p) const {
  switch (type) {
  case IMAGE_REL_ARM64_PAGEBASE_REL21: applyArm64Addr(off, s, p, 12); break;
  case IMAGE_REL_ARM64_REL21:          applyArm64Addr(off, s, p, 0); break;
  case IMAGE_REL_ARM64_PAGEOFFSET_12A: applyArm64Imm(off, s & 0xfff, 0); break;
  case IMAGE_REL_ARM64_PAGEOFFSET_12L: applyArm64Ldr(off, s & 0xfff); break;
  case IMAGE_REL_ARM64_BRANCH26:       applyArm64Branch26(off, s - p); break;
  case IMAGE_REL_ARM64_BRANCH19:       applyArm64Branch19(off, s - p); break;
  case IMAGE_REL_ARM64_BRANCH14:       applyArm64Branch14(off, s - p); break;
  case IMAGE_REL_ARM64_ADDR32:         add32(off, s + config->imageBase); break;
  case IMAGE_REL_ARM64_ADDR32NB:       add32(off, s); break;
  case IMAGE_REL_ARM64_ADDR64:         add64(off, s + config->imageBase); break;
  case IMAGE_REL_ARM64_SECREL:         applySecRel(this, off, os, s); break;
  case IMAGE_REL_ARM64_SECREL_LOW12A:  applySecRelLow12A(this, off, os, s); break;
  case IMAGE_REL_ARM64_SECREL_HIGH12A: applySecRelHigh12A(this, off, os, s); break;
  case IMAGE_REL_ARM64_SECREL_LOW12L:  applySecRelLdr(this, off, os, s); break;
  case IMAGE_REL_ARM64_SECTION:        applySecIdx(off, os); break;
  case IMAGE_REL_ARM64_REL32:          add32(off, s - p - 4); break;
  default:
    error("unsupported relocation type 0x" + Twine::utohexstr(type) + " in " +
          toString(file));
  }
}

static void maybeReportRelocationToDiscarded(const SectionChunk *fromChunk,
                                             Defined *sym,
                                             const coff_relocation &rel) {
  // Don't report these errors when the relocation comes from a debug info
  // section or in mingw mode. MinGW mode object files (built by GCC) can
  // have leftover sections with relocations against discarded comdat
  // sections. Such sections are left as is, with relocations untouched.
  if (fromChunk->isCodeView() || fromChunk->isDWARF() || config->mingw)
    return;

  // Get the name of the symbol. If it's null, it was discarded early, so we
  // have to go back to the object file.
  ObjFile *file = fromChunk->file;
  StringRef name;
  if (sym) {
    name = sym->getName();
  } else {
    COFFSymbolRef coffSym =
        check(file->getCOFFObj()->getSymbol(rel.SymbolTableIndex));
    file->getCOFFObj()->getSymbolName(coffSym, name);
  }

  std::vector<std::string> symbolLocations =
      getSymbolLocations(file, rel.SymbolTableIndex);

  std::string out;
  llvm::raw_string_ostream os(out);
  os << "relocation against symbol in discarded section: " + name;
  for (const std::string &s : symbolLocations)
    os << s;
  error(os.str());
}

void SectionChunk::writeTo(uint8_t *buf) const {
  if (!hasData)
    return;
  // Copy section contents from source object file to output file.
  ArrayRef<uint8_t> a = getContents();
  if (!a.empty())
    memcpy(buf, a.data(), a.size());

  // Apply relocations.
  size_t inputSize = getSize();
  for (size_t i = 0, e = relocsSize; i < e; i++) {
    const coff_relocation &rel = relocsData[i];

    // Check for an invalid relocation offset. This check isn't perfect, because
    // we don't have the relocation size, which is only known after checking the
    // machine and relocation type. As a result, a relocation may overwrite the
    // beginning of the following input section.
    if (rel.VirtualAddress >= inputSize) {
      error("relocation points beyond the end of its parent section");
      continue;
    }

    uint8_t *off = buf + rel.VirtualAddress;

    auto *sym =
        dyn_cast_or_null<Defined>(file->getSymbol(rel.SymbolTableIndex));

    // Get the output section of the symbol for this relocation.  The output
    // section is needed to compute SECREL and SECTION relocations used in debug
    // info.
    Chunk *c = sym ? sym->getChunk() : nullptr;
    OutputSection *os = c ? c->getOutputSection() : nullptr;

    // Skip the relocation if it refers to a discarded section, and diagnose it
    // as an error if appropriate. If a symbol was discarded early, it may be
    // null. If it was discarded late, the output section will be null, unless
    // it was an absolute or synthetic symbol.
    if (!sym ||
        (!os && !isa<DefinedAbsolute>(sym) && !isa<DefinedSynthetic>(sym))) {
      maybeReportRelocationToDiscarded(this, sym, rel);
      continue;
    }

    uint64_t s = sym->getRVA();

    // Compute the RVA of the relocation for relative relocations.
    uint64_t p = rva + rel.VirtualAddress;
    switch (config->machine) {
    case AMD64:
      applyRelX64(off, rel.Type, os, s, p);
      break;
    case I386:
      applyRelX86(off, rel.Type, os, s, p);
      break;
    case ARMNT:
      applyRelARM(off, rel.Type, os, s, p);
      break;
    case ARM64:
      applyRelARM64(off, rel.Type, os, s, p);
      break;
    default:
      llvm_unreachable("unknown machine type");
    }
  }
}

void SectionChunk::addAssociative(SectionChunk *child) {
  // Insert this child at the head of the list.
  assert(child->assocChildren == nullptr &&
         "associated sections cannot have their own associated children");
  child->assocChildren = assocChildren;
  assocChildren = child;
}

static uint8_t getBaserelType(const coff_relocation &rel) {
  switch (config->machine) {
  case AMD64:
    if (rel.Type == IMAGE_REL_AMD64_ADDR64)
      return IMAGE_REL_BASED_DIR64;
    return IMAGE_REL_BASED_ABSOLUTE;
  case I386:
    if (rel.Type == IMAGE_REL_I386_DIR32)
      return IMAGE_REL_BASED_HIGHLOW;
    return IMAGE_REL_BASED_ABSOLUTE;
  case ARMNT:
    if (rel.Type == IMAGE_REL_ARM_ADDR32)
      return IMAGE_REL_BASED_HIGHLOW;
    if (rel.Type == IMAGE_REL_ARM_MOV32T)
      return IMAGE_REL_BASED_ARM_MOV32T;
    return IMAGE_REL_BASED_ABSOLUTE;
  case ARM64:
    if (rel.Type == IMAGE_REL_ARM64_ADDR64)
      return IMAGE_REL_BASED_DIR64;
    return IMAGE_REL_BASED_ABSOLUTE;
  default:
    llvm_unreachable("unknown machine type");
  }
}

// Windows-specific.
// Collect all locations that contain absolute addresses, which need to be
// fixed by the loader if load-time relocation is needed.
// Only called when base relocation is enabled.
void SectionChunk::getBaserels(std::vector<Baserel> *res) {
  for (size_t i = 0, e = relocsSize; i < e; i++) {
    const coff_relocation &rel = relocsData[i];
    uint8_t ty = getBaserelType(rel);
    if (ty == IMAGE_REL_BASED_ABSOLUTE)
      continue;
    Symbol *target = file->getSymbol(rel.SymbolTableIndex);
    if (!target || isa<DefinedAbsolute>(target))
      continue;
    res->emplace_back(rva + rel.VirtualAddress, ty);
  }
}

// MinGW specific.
// Check whether a static relocation of type Type can be deferred and
// handled at runtime as a pseudo relocation (for references to a module
// local variable, which turned out to actually need to be imported from
// another DLL) This returns the size the relocation is supposed to update,
// in bits, or 0 if the relocation cannot be handled as a runtime pseudo
// relocation.
static int getRuntimePseudoRelocSize(uint16_t type) {
  // Relocations that either contain an absolute address, or a plain
  // relative offset, since the runtime pseudo reloc implementation
  // adds 8/16/32/64 bit values to a memory address.
  //
  // Given a pseudo relocation entry,
  //
  // typedef struct {
  //   DWORD sym;
  //   DWORD target;
  //   DWORD flags;
  // } runtime_pseudo_reloc_item_v2;
  //
  // the runtime relocation performs this adjustment:
  //     *(base + .target) += *(base + .sym) - (base + .sym)
  //
  // This works for both absolute addresses (IMAGE_REL_*_ADDR32/64,
  // IMAGE_REL_I386_DIR32, where the memory location initially contains
  // the address of the IAT slot, and for relative addresses (IMAGE_REL*_REL32),
  // where the memory location originally contains the relative offset to the
  // IAT slot.
  //
  // This requires the target address to be writable, either directly out of
  // the image, or temporarily changed at runtime with VirtualProtect.
  // Since this only operates on direct address values, it doesn't work for
  // ARM/ARM64 relocations, other than the plain ADDR32/ADDR64 relocations.
  switch (config->machine) {
  case AMD64:
    switch (type) {
    case IMAGE_REL_AMD64_ADDR64:
      return 64;
    case IMAGE_REL_AMD64_ADDR32:
    case IMAGE_REL_AMD64_REL32:
    case IMAGE_REL_AMD64_REL32_1:
    case IMAGE_REL_AMD64_REL32_2:
    case IMAGE_REL_AMD64_REL32_3:
    case IMAGE_REL_AMD64_REL32_4:
    case IMAGE_REL_AMD64_REL32_5:
      return 32;
    default:
      return 0;
    }
  case I386:
    switch (type) {
    case IMAGE_REL_I386_DIR32:
    case IMAGE_REL_I386_REL32:
      return 32;
    default:
      return 0;
    }
  case ARMNT:
    switch (type) {
    case IMAGE_REL_ARM_ADDR32:
      return 32;
    default:
      return 0;
    }
  case ARM64:
    switch (type) {
    case IMAGE_REL_ARM64_ADDR64:
      return 64;
    case IMAGE_REL_ARM64_ADDR32:
      return 32;
    default:
      return 0;
    }
  default:
    llvm_unreachable("unknown machine type");
  }
}

// MinGW specific.
// Append information to the provided vector about all relocations that
// need to be handled at runtime as runtime pseudo relocations (references
// to a module local variable, which turned out to actually need to be
// imported from another DLL).
void SectionChunk::getRuntimePseudoRelocs(
    std::vector<RuntimePseudoReloc> &res) {
  for (const coff_relocation &rel : getRelocs()) {
    auto *target =
        dyn_cast_or_null<Defined>(file->getSymbol(rel.SymbolTableIndex));
    if (!target || !target->isRuntimePseudoReloc)
      continue;
    int sizeInBits = getRuntimePseudoRelocSize(rel.Type);
    if (sizeInBits == 0) {
      error("unable to automatically import from " + target->getName() +
            " with relocation type " +
            file->getCOFFObj()->getRelocationTypeName(rel.Type) + " in " +
            toString(file));
      continue;
    }
    // sizeInBits is used to initialize the Flags field; currently no
    // other flags are defined.
    res.emplace_back(
        RuntimePseudoReloc(target, this, rel.VirtualAddress, sizeInBits));
  }
}

bool SectionChunk::isCOMDAT() const {
  return header->Characteristics & IMAGE_SCN_LNK_COMDAT;
}

void SectionChunk::printDiscardedMessage() const {
  // Removed by dead-stripping. If it's removed by ICF, ICF already
  // printed out the name, so don't repeat that here.
  if (sym && this == repl)
    message("Discarded " + sym->getName());
}

StringRef SectionChunk::getDebugName() const {
  if (sym)
    return sym->getName();
  return "";
}

ArrayRef<uint8_t> SectionChunk::getContents() const {
  ArrayRef<uint8_t> a;
  cantFail(file->getCOFFObj()->getSectionContents(header, a));
  return a;
}

ArrayRef<uint8_t> SectionChunk::consumeDebugMagic() {
  assert(isCodeView());
  return consumeDebugMagic(getContents(), getSectionName());
}

ArrayRef<uint8_t> SectionChunk::consumeDebugMagic(ArrayRef<uint8_t> data,
                                                  StringRef sectionName) {
  if (data.empty())
    return {};

  // First 4 bytes are section magic.
  if (data.size() < 4)
    fatal("the section is too short: " + sectionName);

  if (!sectionName.startswith(".debug$"))
    fatal("invalid section: " + sectionName);

  uint32_t magic = support::endian::read32le(data.data());
  uint32_t expectedMagic = sectionName == ".debug$H"
                               ? DEBUG_HASHES_SECTION_MAGIC
                               : DEBUG_SECTION_MAGIC;
  if (magic != expectedMagic) {
    warn("ignoring section " + sectionName + " with unrecognized magic 0x" +
         utohexstr(magic));
    return {};
  }
  return data.slice(4);
}

SectionChunk *SectionChunk::findByName(ArrayRef<SectionChunk *> sections,
                                       StringRef name) {
  for (SectionChunk *c : sections)
    if (c->getSectionName() == name)
      return c;
  return nullptr;
}

void SectionChunk::replace(SectionChunk *other) {
  p2Align = std::max(p2Align, other->p2Align);
  other->repl = repl;
  other->live = false;
}

uint32_t SectionChunk::getSectionNumber() const {
  DataRefImpl r;
  r.p = reinterpret_cast<uintptr_t>(header);
  SectionRef s(r, file->getCOFFObj());
  return s.getIndex() + 1;
}

CommonChunk::CommonChunk(const COFFSymbolRef s) : sym(s) {
  // The value of a common symbol is its size. Align all common symbols smaller
  // than 32 bytes naturally, i.e. round the size up to the next power of two.
  // This is what MSVC link.exe does.
  setAlignment(std::min(32U, uint32_t(PowerOf2Ceil(sym.getValue()))));
  hasData = false;
}

uint32_t CommonChunk::getOutputCharacteristics() const {
  return IMAGE_SCN_CNT_UNINITIALIZED_DATA | IMAGE_SCN_MEM_READ |
         IMAGE_SCN_MEM_WRITE;
}

void StringChunk::writeTo(uint8_t *buf) const {
  memcpy(buf, str.data(), str.size());
  buf[str.size()] = '\0';
}

ImportThunkChunkX64::ImportThunkChunkX64(Defined *s) : ImportThunkChunk(s) {
  // Intel Optimization Manual says that all branch targets
  // should be 16-byte aligned. MSVC linker does this too.
  setAlignment(16);
}

void ImportThunkChunkX64::writeTo(uint8_t *buf) const {
  memcpy(buf, importThunkX86, sizeof(importThunkX86));
  // The first two bytes is a JMP instruction. Fill its operand.
  write32le(buf + 2, impSymbol->getRVA() - rva - getSize());
}

void ImportThunkChunkX86::getBaserels(std::vector<Baserel> *res) {
  res->emplace_back(getRVA() + 2);
}

void ImportThunkChunkX86::writeTo(uint8_t *buf) const {
  memcpy(buf, importThunkX86, sizeof(importThunkX86));
  // The first two bytes is a JMP instruction. Fill its operand.
  write32le(buf + 2,
            impSymbol->getRVA() + config->imageBase);
}

void ImportThunkChunkARM::getBaserels(std::vector<Baserel> *res) {
  res->emplace_back(getRVA(), IMAGE_REL_BASED_ARM_MOV32T);
}

void ImportThunkChunkARM::writeTo(uint8_t *buf) const {
  memcpy(buf, importThunkARM, sizeof(importThunkARM));
  // Fix mov.w and mov.t operands.
  applyMOV32T(buf, impSymbol->getRVA() + config->imageBase);
}

void ImportThunkChunkARM64::writeTo(uint8_t *buf) const {
  int64_t off = impSymbol->getRVA() & 0xfff;
  memcpy(buf, importThunkARM64, sizeof(importThunkARM64));
  applyArm64Addr(buf, impSymbol->getRVA(), rva, 12);
  applyArm64Ldr(buf + 4, off);
}

// A Thumb2, PIC, non-interworking range extension thunk.
const uint8_t armThunk[] = {
    0x40, 0xf2, 0x00, 0x0c, // P:  movw ip,:lower16:S - (P + (L1-P) + 4)
    0xc0, 0xf2, 0x00, 0x0c, //     movt ip,:upper16:S - (P + (L1-P) + 4)
    0xe7, 0x44,             // L1: add  pc, ip
};

size_t RangeExtensionThunkARM::getSize() const {
  assert(config->machine == ARMNT);
  return sizeof(armThunk);
}

void RangeExtensionThunkARM::writeTo(uint8_t *buf) const {
  assert(config->machine == ARMNT);
  uint64_t offset = target->getRVA() - rva - 12;
  memcpy(buf, armThunk, sizeof(armThunk));
  applyMOV32T(buf, uint32_t(offset));
}

// A position independent ARM64 adrp+add thunk, with a maximum range of
// +/- 4 GB, which is enough for any PE-COFF.
const uint8_t arm64Thunk[] = {
    0x10, 0x00, 0x00, 0x90, // adrp x16, Dest
    0x10, 0x02, 0x00, 0x91, // add  x16, x16, :lo12:Dest
    0x00, 0x02, 0x1f, 0xd6, // br   x16
};

size_t RangeExtensionThunkARM64::getSize() const {
  assert(config->machine == ARM64);
  return sizeof(arm64Thunk);
}

void RangeExtensionThunkARM64::writeTo(uint8_t *buf) const {
  assert(config->machine == ARM64);
  memcpy(buf, arm64Thunk, sizeof(arm64Thunk));
  applyArm64Addr(buf + 0, target->getRVA(), rva, 12);
  applyArm64Imm(buf + 4, target->getRVA() & 0xfff, 0);
}

void LocalImportChunk::getBaserels(std::vector<Baserel> *res) {
  res->emplace_back(getRVA());
}

size_t LocalImportChunk::getSize() const { return config->wordsize; }

void LocalImportChunk::writeTo(uint8_t *buf) const {
  if (config->is64()) {
    write64le(buf, sym->getRVA() + config->imageBase);
  } else {
    write32le(buf, sym->getRVA() + config->imageBase);
  }
}

void RVATableChunk::writeTo(uint8_t *buf) const {
  ulittle32_t *begin = reinterpret_cast<ulittle32_t *>(buf);
  size_t cnt = 0;
  for (const ChunkAndOffset &co : syms)
    begin[cnt++] = co.inputChunk->getRVA() + co.offset;
  std::sort(begin, begin + cnt);
  assert(std::unique(begin, begin + cnt) == begin + cnt &&
         "RVA tables should be de-duplicated");
}

// MinGW specific, for the "automatic import of variables from DLLs" feature.
size_t PseudoRelocTableChunk::getSize() const {
  if (relocs.empty())
    return 0;
  return 12 + 12 * relocs.size();
}

// MinGW specific.
void PseudoRelocTableChunk::writeTo(uint8_t *buf) const {
  if (relocs.empty())
    return;

  ulittle32_t *table = reinterpret_cast<ulittle32_t *>(buf);
  // This is the list header, to signal the runtime pseudo relocation v2
  // format.
  table[0] = 0;
  table[1] = 0;
  table[2] = 1;

  size_t idx = 3;
  for (const RuntimePseudoReloc &rpr : relocs) {
    table[idx + 0] = rpr.sym->getRVA();
    table[idx + 1] = rpr.target->getRVA() + rpr.targetOffset;
    table[idx + 2] = rpr.flags;
    idx += 3;
  }
}

// Windows-specific. This class represents a block in .reloc section.
// The format is described here.
//
// On Windows, each DLL is linked against a fixed base address and
// usually loaded to that address. However, if there's already another
// DLL that overlaps, the loader has to relocate it. To do that, DLLs
// contain .reloc sections which contain offsets that need to be fixed
// up at runtime. If the loader finds that a DLL cannot be loaded to its
// desired base address, it loads it to somewhere else, and add <actual
// base address> - <desired base address> to each offset that is
// specified by the .reloc section. In ELF terms, .reloc sections
// contain relative relocations in REL format (as opposed to RELA.)
//
// This already significantly reduces the size of relocations compared
// to ELF .rel.dyn, but Windows does more to reduce it (probably because
// it was invented for PCs in the late '80s or early '90s.)  Offsets in
// .reloc are grouped by page where the page size is 12 bits, and
// offsets sharing the same page address are stored consecutively to
// represent them with less space. This is very similar to the page
// table which is grouped by (multiple stages of) pages.
//
// For example, let's say we have 0x00030, 0x00500, 0x00700, 0x00A00,
// 0x20004, and 0x20008 in a .reloc section for x64. The uppermost 4
// bits have a type IMAGE_REL_BASED_DIR64 or 0xA. In the section, they
// are represented like this:
//
//   0x00000  -- page address (4 bytes)
//   16       -- size of this block (4 bytes)
//     0xA030 -- entries (2 bytes each)
//     0xA500
//     0xA700
//     0xAA00
//   0x20000  -- page address (4 bytes)
//   12       -- size of this block (4 bytes)
//     0xA004 -- entries (2 bytes each)
//     0xA008
//
// Usually we have a lot of relocations for each page, so the number of
// bytes for one .reloc entry is close to 2 bytes on average.
BaserelChunk::BaserelChunk(uint32_t page, Baserel *begin, Baserel *end) {
  // Block header consists of 4 byte page RVA and 4 byte block size.
  // Each entry is 2 byte. Last entry may be padding.
  data.resize(alignTo((end - begin) * 2 + 8, 4));
  uint8_t *p = data.data();
  write32le(p, page);
  write32le(p + 4, data.size());
  p += 8;
  for (Baserel *i = begin; i != end; ++i) {
    write16le(p, (i->type << 12) | (i->rva - page));
    p += 2;
  }
}

void BaserelChunk::writeTo(uint8_t *buf) const {
  memcpy(buf, data.data(), data.size());
}

uint8_t Baserel::getDefaultType() {
  switch (config->machine) {
  case AMD64:
  case ARM64:
    return IMAGE_REL_BASED_DIR64;
  case I386:
  case ARMNT:
    return IMAGE_REL_BASED_HIGHLOW;
  default:
    llvm_unreachable("unknown machine type");
  }
}

MergeChunk *MergeChunk::instances[Log2MaxSectionAlignment + 1] = {};

MergeChunk::MergeChunk(uint32_t alignment)
    : builder(StringTableBuilder::RAW, alignment) {
  setAlignment(alignment);
}

void MergeChunk::addSection(SectionChunk *c) {
  assert(isPowerOf2_32(c->getAlignment()));
  uint8_t p2Align = llvm::Log2_32(c->getAlignment());
  assert(p2Align < array_lengthof(instances));
  auto *&mc = instances[p2Align];
  if (!mc)
    mc = make<MergeChunk>(c->getAlignment());
  mc->sections.push_back(c);
}

void MergeChunk::finalizeContents() {
  assert(!finalized && "should only finalize once");
  for (SectionChunk *c : sections)
    if (c->live)
      builder.add(toStringRef(c->getContents()));
  builder.finalize();
  finalized = true;
}

void MergeChunk::assignSubsectionRVAs() {
  for (SectionChunk *c : sections) {
    if (!c->live)
      continue;
    size_t off = builder.getOffset(toStringRef(c->getContents()));
    c->setRVA(rva + off);
  }
}

uint32_t MergeChunk::getOutputCharacteristics() const {
  return IMAGE_SCN_MEM_READ | IMAGE_SCN_CNT_INITIALIZED_DATA;
}

size_t MergeChunk::getSize() const {
  return builder.getSize();
}

void MergeChunk::writeTo(uint8_t *buf) const {
  builder.write(buf);
}

// MinGW specific.
size_t AbsolutePointerChunk::getSize() const { return config->wordsize; }

void AbsolutePointerChunk::writeTo(uint8_t *buf) const {
  if (config->is64()) {
    write64le(buf, value);
  } else {
    write32le(buf, value);
  }
}

} // namespace coff
} // namespace lld