UseNullptrCheck.cpp 17.9 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496
//===--- UseNullptrCheck.cpp - clang-tidy----------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "UseNullptrCheck.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/RecursiveASTVisitor.h"
#include "clang/ASTMatchers/ASTMatchFinder.h"
#include "clang/Lex/Lexer.h"

using namespace clang;
using namespace clang::ast_matchers;
using namespace llvm;

namespace clang {
namespace tidy {
namespace modernize {
namespace {

const char CastSequence[] = "sequence";

AST_MATCHER(Type, sugaredNullptrType) {
  const Type *DesugaredType = Node.getUnqualifiedDesugaredType();
  if (const auto *BT = dyn_cast<BuiltinType>(DesugaredType))
    return BT->getKind() == BuiltinType::NullPtr;
  return false;
}

/// Create a matcher that finds implicit casts as well as the head of a
/// sequence of zero or more nested explicit casts that have an implicit cast
/// to null within.
/// Finding sequences of explicit casts is necessary so that an entire sequence
/// can be replaced instead of just the inner-most implicit cast.
StatementMatcher makeCastSequenceMatcher() {
  StatementMatcher ImplicitCastToNull = implicitCastExpr(
      anyOf(hasCastKind(CK_NullToPointer), hasCastKind(CK_NullToMemberPointer)),
      unless(hasImplicitDestinationType(qualType(substTemplateTypeParmType()))),
      unless(hasSourceExpression(hasType(sugaredNullptrType()))));

  return castExpr(anyOf(ImplicitCastToNull,
                        explicitCastExpr(hasDescendant(ImplicitCastToNull))),
                  unless(hasAncestor(explicitCastExpr())))
      .bind(CastSequence);
}

bool isReplaceableRange(SourceLocation StartLoc, SourceLocation EndLoc,
                        const SourceManager &SM) {
  return SM.isWrittenInSameFile(StartLoc, EndLoc);
}

/// Replaces the provided range with the text "nullptr", but only if
/// the start and end location are both in main file.
/// Returns true if and only if a replacement was made.
void replaceWithNullptr(ClangTidyCheck &Check, SourceManager &SM,
                        SourceLocation StartLoc, SourceLocation EndLoc) {
  CharSourceRange Range(SourceRange(StartLoc, EndLoc), true);
  // Add a space if nullptr follows an alphanumeric character. This happens
  // whenever there is an c-style explicit cast to nullptr not surrounded by
  // parentheses and right beside a return statement.
  SourceLocation PreviousLocation = StartLoc.getLocWithOffset(-1);
  bool NeedsSpace = isAlphanumeric(*SM.getCharacterData(PreviousLocation));
  Check.diag(Range.getBegin(), "use nullptr") << FixItHint::CreateReplacement(
      Range, NeedsSpace ? " nullptr" : "nullptr");
}

/// Returns the name of the outermost macro.
///
/// Given
/// \code
/// #define MY_NULL NULL
/// \endcode
/// If \p Loc points to NULL, this function will return the name MY_NULL.
StringRef getOutermostMacroName(SourceLocation Loc, const SourceManager &SM,
                                const LangOptions &LO) {
  assert(Loc.isMacroID());
  SourceLocation OutermostMacroLoc;

  while (Loc.isMacroID()) {
    OutermostMacroLoc = Loc;
    Loc = SM.getImmediateMacroCallerLoc(Loc);
  }

  return Lexer::getImmediateMacroName(OutermostMacroLoc, SM, LO);
}

/// RecursiveASTVisitor for ensuring all nodes rooted at a given AST
/// subtree that have file-level source locations corresponding to a macro
/// argument have implicit NullTo(Member)Pointer nodes as ancestors.
class MacroArgUsageVisitor : public RecursiveASTVisitor<MacroArgUsageVisitor> {
public:
  MacroArgUsageVisitor(SourceLocation CastLoc, const SourceManager &SM)
      : CastLoc(CastLoc), SM(SM), Visited(false), CastFound(false),
        InvalidFound(false) {
    assert(CastLoc.isFileID());
  }

  bool TraverseStmt(Stmt *S) {
    bool VisitedPreviously = Visited;

    if (!RecursiveASTVisitor<MacroArgUsageVisitor>::TraverseStmt(S))
      return false;

    // The point at which VisitedPreviously is false and Visited is true is the
    // root of a subtree containing nodes whose locations match CastLoc. It's
    // at this point we test that the Implicit NullTo(Member)Pointer cast was
    // found or not.
    if (!VisitedPreviously) {
      if (Visited && !CastFound) {
        // Found nodes with matching SourceLocations but didn't come across a
        // cast. This is an invalid macro arg use. Can stop traversal
        // completely now.
        InvalidFound = true;
        return false;
      }
      // Reset state as we unwind back up the tree.
      CastFound = false;
      Visited = false;
    }
    return true;
  }

  bool VisitStmt(Stmt *S) {
    if (SM.getFileLoc(S->getBeginLoc()) != CastLoc)
      return true;
    Visited = true;

    const ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(S);
    if (Cast && (Cast->getCastKind() == CK_NullToPointer ||
                 Cast->getCastKind() == CK_NullToMemberPointer))
      CastFound = true;

    return true;
  }

  bool TraverseInitListExpr(InitListExpr *S) {
    // Only go through the semantic form of the InitListExpr, because
    // ImplicitCast might not appear in the syntactic form, and this results in
    // finding usages of the macro argument that don't have a ImplicitCast as an
    // ancestor (thus invalidating the replacement) when they actually have.
    return RecursiveASTVisitor<MacroArgUsageVisitor>::
        TraverseSynOrSemInitListExpr(
            S->isSemanticForm() ? S : S->getSemanticForm());
  }

  bool foundInvalid() const { return InvalidFound; }

private:
  SourceLocation CastLoc;
  const SourceManager &SM;

  bool Visited;
  bool CastFound;
  bool InvalidFound;
};

/// Looks for implicit casts as well as sequences of 0 or more explicit
/// casts with an implicit null-to-pointer cast within.
///
/// The matcher this visitor is used with will find a single implicit cast or a
/// top-most explicit cast (i.e. it has no explicit casts as an ancestor) where
/// an implicit cast is nested within. However, there is no guarantee that only
/// explicit casts exist between the found top-most explicit cast and the
/// possibly more than one nested implicit cast. This visitor finds all cast
/// sequences with an implicit cast to null within and creates a replacement
/// leaving the outermost explicit cast unchanged to avoid introducing
/// ambiguities.
class CastSequenceVisitor : public RecursiveASTVisitor<CastSequenceVisitor> {
public:
  CastSequenceVisitor(ASTContext &Context, ArrayRef<StringRef> NullMacros,
                      ClangTidyCheck &check)
      : SM(Context.getSourceManager()), Context(Context),
        NullMacros(NullMacros), Check(check), FirstSubExpr(nullptr),
        PruneSubtree(false) {}

  bool TraverseStmt(Stmt *S) {
    // Stop traversing down the tree if requested.
    if (PruneSubtree) {
      PruneSubtree = false;
      return true;
    }
    return RecursiveASTVisitor<CastSequenceVisitor>::TraverseStmt(S);
  }

  // Only VisitStmt is overridden as we shouldn't find other base AST types
  // within a cast expression.
  bool VisitStmt(Stmt *S) {
    auto *C = dyn_cast<CastExpr>(S);
    // Catch the castExpr inside cxxDefaultArgExpr.
    if (auto *E = dyn_cast<CXXDefaultArgExpr>(S)) {
      C = dyn_cast<CastExpr>(E->getExpr());
      FirstSubExpr = nullptr;
    }
    if (!C) {
      FirstSubExpr = nullptr;
      return true;
    }

    auto* CastSubExpr = C->getSubExpr()->IgnoreParens();
    // Ignore cast expressions which cast nullptr literal.
    if (isa<CXXNullPtrLiteralExpr>(CastSubExpr)) {
      return true;
    }

    if (!FirstSubExpr)
      FirstSubExpr = CastSubExpr;

    if (C->getCastKind() != CK_NullToPointer &&
        C->getCastKind() != CK_NullToMemberPointer) {
      return true;
    }

    SourceLocation StartLoc = FirstSubExpr->getBeginLoc();
    SourceLocation EndLoc = FirstSubExpr->getEndLoc();

    // If the location comes from a macro arg expansion, *all* uses of that
    // arg must be checked to result in NullTo(Member)Pointer casts.
    //
    // If the location comes from a macro body expansion, check to see if its
    // coming from one of the allowed 'NULL' macros.
    if (SM.isMacroArgExpansion(StartLoc) && SM.isMacroArgExpansion(EndLoc)) {
      SourceLocation FileLocStart = SM.getFileLoc(StartLoc),
                     FileLocEnd = SM.getFileLoc(EndLoc);
      SourceLocation ImmediateMacroArgLoc, MacroLoc;
      // Skip NULL macros used in macro.
      if (!getMacroAndArgLocations(StartLoc, ImmediateMacroArgLoc, MacroLoc) ||
          ImmediateMacroArgLoc != FileLocStart)
        return skipSubTree();

      if (isReplaceableRange(FileLocStart, FileLocEnd, SM) &&
          allArgUsesValid(C)) {
        replaceWithNullptr(Check, SM, FileLocStart, FileLocEnd);
      }
      return true;
    }

    if (SM.isMacroBodyExpansion(StartLoc) && SM.isMacroBodyExpansion(EndLoc)) {
      StringRef OutermostMacroName =
          getOutermostMacroName(StartLoc, SM, Context.getLangOpts());

      // Check to see if the user wants to replace the macro being expanded.
      if (!llvm::is_contained(NullMacros, OutermostMacroName))
        return skipSubTree();

      StartLoc = SM.getFileLoc(StartLoc);
      EndLoc = SM.getFileLoc(EndLoc);
    }

    if (!isReplaceableRange(StartLoc, EndLoc, SM)) {
      return skipSubTree();
    }
    replaceWithNullptr(Check, SM, StartLoc, EndLoc);

    return true;
  }

private:
  bool skipSubTree() {
    PruneSubtree = true;
    return true;
  }

  /// Tests that all expansions of a macro arg, one of which expands to
  /// result in \p CE, yield NullTo(Member)Pointer casts.
  bool allArgUsesValid(const CastExpr *CE) {
    SourceLocation CastLoc = CE->getBeginLoc();

    // Step 1: Get location of macro arg and location of the macro the arg was
    // provided to.
    SourceLocation ArgLoc, MacroLoc;
    if (!getMacroAndArgLocations(CastLoc, ArgLoc, MacroLoc))
      return false;

    // Step 2: Find the first ancestor that doesn't expand from this macro.
    ast_type_traits::DynTypedNode ContainingAncestor;
    if (!findContainingAncestor(
            ast_type_traits::DynTypedNode::create<Stmt>(*CE), MacroLoc,
            ContainingAncestor))
      return false;

    // Step 3:
    // Visit children of this containing parent looking for the least-descended
    // nodes of the containing parent which are macro arg expansions that expand
    // from the given arg location.
    // Visitor needs: arg loc.
    MacroArgUsageVisitor ArgUsageVisitor(SM.getFileLoc(CastLoc), SM);
    if (const auto *D = ContainingAncestor.get<Decl>())
      ArgUsageVisitor.TraverseDecl(const_cast<Decl *>(D));
    else if (const auto *S = ContainingAncestor.get<Stmt>())
      ArgUsageVisitor.TraverseStmt(const_cast<Stmt *>(S));
    else
      llvm_unreachable("Unhandled ContainingAncestor node type");

    return !ArgUsageVisitor.foundInvalid();
  }

  /// Given the SourceLocation for a macro arg expansion, finds the
  /// non-macro SourceLocation of the macro the arg was passed to and the
  /// non-macro SourceLocation of the argument in the arg list to that macro.
  /// These results are returned via \c MacroLoc and \c ArgLoc respectively.
  /// These values are undefined if the return value is false.
  ///
  /// \returns false if one of the returned SourceLocations would be a
  /// SourceLocation pointing within the definition of another macro.
  bool getMacroAndArgLocations(SourceLocation Loc, SourceLocation &ArgLoc,
                               SourceLocation &MacroLoc) {
    assert(Loc.isMacroID() && "Only reasonble to call this on macros");

    ArgLoc = Loc;

    // Find the location of the immediate macro expansion.
    while (true) {
      std::pair<FileID, unsigned> LocInfo = SM.getDecomposedLoc(ArgLoc);
      const SrcMgr::SLocEntry *E = &SM.getSLocEntry(LocInfo.first);
      const SrcMgr::ExpansionInfo &Expansion = E->getExpansion();

      SourceLocation OldArgLoc = ArgLoc;
      ArgLoc = Expansion.getExpansionLocStart();
      if (!Expansion.isMacroArgExpansion()) {
        if (!MacroLoc.isFileID())
          return false;

        StringRef Name =
            Lexer::getImmediateMacroName(OldArgLoc, SM, Context.getLangOpts());
        return llvm::is_contained(NullMacros, Name);
      }

      MacroLoc = SM.getExpansionRange(ArgLoc).getBegin();

      ArgLoc = Expansion.getSpellingLoc().getLocWithOffset(LocInfo.second);
      if (ArgLoc.isFileID())
        return true;

      // If spelling location resides in the same FileID as macro expansion
      // location, it means there is no inner macro.
      FileID MacroFID = SM.getFileID(MacroLoc);
      if (SM.isInFileID(ArgLoc, MacroFID)) {
        // Don't transform this case. If the characters that caused the
        // null-conversion come from within a macro, they can't be changed.
        return false;
      }
    }

    llvm_unreachable("getMacroAndArgLocations");
  }

  /// Tests if TestMacroLoc is found while recursively unravelling
  /// expansions starting at TestLoc. TestMacroLoc.isFileID() must be true.
  /// Implementation is very similar to getMacroAndArgLocations() except in this
  /// case, it's not assumed that TestLoc is expanded from a macro argument.
  /// While unravelling expansions macro arguments are handled as with
  /// getMacroAndArgLocations() but in this function macro body expansions are
  /// also handled.
  ///
  /// False means either:
  /// - TestLoc is not from a macro expansion.
  /// - TestLoc is from a different macro expansion.
  bool expandsFrom(SourceLocation TestLoc, SourceLocation TestMacroLoc) {
    if (TestLoc.isFileID()) {
      return false;
    }

    SourceLocation Loc = TestLoc, MacroLoc;

    while (true) {
      std::pair<FileID, unsigned> LocInfo = SM.getDecomposedLoc(Loc);
      const SrcMgr::SLocEntry *E = &SM.getSLocEntry(LocInfo.first);
      const SrcMgr::ExpansionInfo &Expansion = E->getExpansion();

      Loc = Expansion.getExpansionLocStart();

      if (!Expansion.isMacroArgExpansion()) {
        if (Loc.isFileID()) {
          return Loc == TestMacroLoc;
        }
        // Since Loc is still a macro ID and it's not an argument expansion, we
        // don't need to do the work of handling an argument expansion. Simply
        // keep recursively expanding until we hit a FileID or a macro arg
        // expansion or a macro arg expansion.
        continue;
      }

      MacroLoc = SM.getImmediateExpansionRange(Loc).getBegin();
      if (MacroLoc.isFileID() && MacroLoc == TestMacroLoc) {
        // Match made.
        return true;
      }

      Loc = Expansion.getSpellingLoc().getLocWithOffset(LocInfo.second);
      if (Loc.isFileID()) {
        // If we made it this far without finding a match, there is no match to
        // be made.
        return false;
      }
    }

    llvm_unreachable("expandsFrom");
  }

  /// Given a starting point \c Start in the AST, find an ancestor that
  /// doesn't expand from the macro called at file location \c MacroLoc.
  ///
  /// \pre MacroLoc.isFileID()
  /// \returns true if such an ancestor was found, false otherwise.
  bool findContainingAncestor(ast_type_traits::DynTypedNode Start,
                              SourceLocation MacroLoc,
                              ast_type_traits::DynTypedNode &Result) {
    // Below we're only following the first parent back up the AST. This should
    // be fine since for the statements we care about there should only be one
    // parent, except for the case specified below.

    assert(MacroLoc.isFileID());

    while (true) {
      const auto &Parents = Context.getParents(Start);
      if (Parents.empty())
        return false;
      if (Parents.size() > 1) {
        // If there are more than one parents, don't do the replacement unless
        // they are InitListsExpr (semantic and syntactic form). In this case we
        // can choose any one here, and the ASTVisitor will take care of
        // traversing the right one.
        for (const auto &Parent : Parents) {
          if (!Parent.get<InitListExpr>())
            return false;
        }
      }

      const ast_type_traits::DynTypedNode &Parent = Parents[0];

      SourceLocation Loc;
      if (const auto *D = Parent.get<Decl>())
        Loc = D->getBeginLoc();
      else if (const auto *S = Parent.get<Stmt>())
        Loc = S->getBeginLoc();

      // TypeLoc and NestedNameSpecifierLoc are members of the parent map. Skip
      // them and keep going up.
      if (Loc.isValid()) {
        if (!expandsFrom(Loc, MacroLoc)) {
          Result = Parent;
          return true;
        }
      }
      Start = Parent;
    }

    llvm_unreachable("findContainingAncestor");
  }

private:
  SourceManager &SM;
  ASTContext &Context;
  ArrayRef<StringRef> NullMacros;
  ClangTidyCheck &Check;
  Expr *FirstSubExpr;
  bool PruneSubtree;
};

} // namespace

UseNullptrCheck::UseNullptrCheck(StringRef Name, ClangTidyContext *Context)
    : ClangTidyCheck(Name, Context),
      NullMacrosStr(Options.get("NullMacros", "")) {
  StringRef(NullMacrosStr).split(NullMacros, ",");
}

void UseNullptrCheck::storeOptions(ClangTidyOptions::OptionMap &Opts) {
  Options.store(Opts, "NullMacros", NullMacrosStr);
}

void UseNullptrCheck::registerMatchers(MatchFinder *Finder) {
  // Only register the matcher for C++. Because this checker is used for
  // modernization, it is reasonable to run it on any C++ standard with the
  // assumption the user is trying to modernize their codebase.
  if (getLangOpts().CPlusPlus)
    Finder->addMatcher(makeCastSequenceMatcher(), this);
}

void UseNullptrCheck::check(const MatchFinder::MatchResult &Result) {
  const auto *NullCast = Result.Nodes.getNodeAs<CastExpr>(CastSequence);
  assert(NullCast && "Bad Callback. No node provided");

  // Given an implicit null-ptr cast or an explicit cast with an implicit
  // null-to-pointer cast within use CastSequenceVisitor to identify sequences
  // of explicit casts that can be converted into 'nullptr'.
  CastSequenceVisitor(*Result.Context, NullMacros, *this)
      .TraverseStmt(const_cast<CastExpr *>(NullCast));
}

} // namespace modernize
} // namespace tidy
} // namespace clang