AArch64.cpp 24.2 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695
//===- AArch64.cpp --------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "Symbols.h"
#include "SyntheticSections.h"
#include "Target.h"
#include "Thunks.h"
#include "lld/Common/ErrorHandler.h"
#include "llvm/Object/ELF.h"
#include "llvm/Support/Endian.h"

using namespace llvm;
using namespace llvm::support::endian;
using namespace llvm::ELF;

namespace lld {
namespace elf {

// Page(Expr) is the page address of the expression Expr, defined
// as (Expr & ~0xFFF). (This applies even if the machine page size
// supported by the platform has a different value.)
uint64_t getAArch64Page(uint64_t expr) {
  return expr & ~static_cast<uint64_t>(0xFFF);
}

namespace {
class AArch64 : public TargetInfo {
public:
  AArch64();
  RelExpr getRelExpr(RelType type, const Symbol &s,
                     const uint8_t *loc) const override;
  RelType getDynRel(RelType type) const override;
  void writeGotPlt(uint8_t *buf, const Symbol &s) const override;
  void writePltHeader(uint8_t *buf) const override;
  void writePlt(uint8_t *buf, const Symbol &sym,
                uint64_t pltEntryAddr) const override;
  bool needsThunk(RelExpr expr, RelType type, const InputFile *file,
                  uint64_t branchAddr, const Symbol &s,
                  int64_t a) const override;
  uint32_t getThunkSectionSpacing() const override;
  bool inBranchRange(RelType type, uint64_t src, uint64_t dst) const override;
  bool usesOnlyLowPageBits(RelType type) const override;
  void relocateOne(uint8_t *loc, RelType type, uint64_t val) const override;
  RelExpr adjustRelaxExpr(RelType type, const uint8_t *data,
                          RelExpr expr) const override;
  void relaxTlsGdToLe(uint8_t *loc, RelType type, uint64_t val) const override;
  void relaxTlsGdToIe(uint8_t *loc, RelType type, uint64_t val) const override;
  void relaxTlsIeToLe(uint8_t *loc, RelType type, uint64_t val) const override;
};
} // namespace

AArch64::AArch64() {
  copyRel = R_AARCH64_COPY;
  relativeRel = R_AARCH64_RELATIVE;
  iRelativeRel = R_AARCH64_IRELATIVE;
  gotRel = R_AARCH64_GLOB_DAT;
  noneRel = R_AARCH64_NONE;
  pltRel = R_AARCH64_JUMP_SLOT;
  symbolicRel = R_AARCH64_ABS64;
  tlsDescRel = R_AARCH64_TLSDESC;
  tlsGotRel = R_AARCH64_TLS_TPREL64;
  pltHeaderSize = 32;
  pltEntrySize = 16;
  ipltEntrySize = 16;
  defaultMaxPageSize = 65536;

  // Align to the 2 MiB page size (known as a superpage or huge page).
  // FreeBSD automatically promotes 2 MiB-aligned allocations.
  defaultImageBase = 0x200000;

  needsThunks = true;
}

RelExpr AArch64::getRelExpr(RelType type, const Symbol &s,
                            const uint8_t *loc) const {
  switch (type) {
  case R_AARCH64_ABS16:
  case R_AARCH64_ABS32:
  case R_AARCH64_ABS64:
  case R_AARCH64_ADD_ABS_LO12_NC:
  case R_AARCH64_LDST128_ABS_LO12_NC:
  case R_AARCH64_LDST16_ABS_LO12_NC:
  case R_AARCH64_LDST32_ABS_LO12_NC:
  case R_AARCH64_LDST64_ABS_LO12_NC:
  case R_AARCH64_LDST8_ABS_LO12_NC:
  case R_AARCH64_MOVW_SABS_G0:
  case R_AARCH64_MOVW_SABS_G1:
  case R_AARCH64_MOVW_SABS_G2:
  case R_AARCH64_MOVW_UABS_G0:
  case R_AARCH64_MOVW_UABS_G0_NC:
  case R_AARCH64_MOVW_UABS_G1:
  case R_AARCH64_MOVW_UABS_G1_NC:
  case R_AARCH64_MOVW_UABS_G2:
  case R_AARCH64_MOVW_UABS_G2_NC:
  case R_AARCH64_MOVW_UABS_G3:
    return R_ABS;
  case R_AARCH64_TLSDESC_ADR_PAGE21:
    return R_AARCH64_TLSDESC_PAGE;
  case R_AARCH64_TLSDESC_LD64_LO12:
  case R_AARCH64_TLSDESC_ADD_LO12:
    return R_TLSDESC;
  case R_AARCH64_TLSDESC_CALL:
    return R_TLSDESC_CALL;
  case R_AARCH64_TLSLE_ADD_TPREL_HI12:
  case R_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
  case R_AARCH64_TLSLE_LDST8_TPREL_LO12_NC:
  case R_AARCH64_TLSLE_LDST16_TPREL_LO12_NC:
  case R_AARCH64_TLSLE_LDST32_TPREL_LO12_NC:
  case R_AARCH64_TLSLE_LDST64_TPREL_LO12_NC:
  case R_AARCH64_TLSLE_LDST128_TPREL_LO12_NC:
  case R_AARCH64_TLSLE_MOVW_TPREL_G0:
  case R_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
  case R_AARCH64_TLSLE_MOVW_TPREL_G1:
  case R_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
  case R_AARCH64_TLSLE_MOVW_TPREL_G2:
    return R_TLS;
  case R_AARCH64_CALL26:
  case R_AARCH64_CONDBR19:
  case R_AARCH64_JUMP26:
  case R_AARCH64_TSTBR14:
    return R_PLT_PC;
  case R_AARCH64_PREL16:
  case R_AARCH64_PREL32:
  case R_AARCH64_PREL64:
  case R_AARCH64_ADR_PREL_LO21:
  case R_AARCH64_LD_PREL_LO19:
  case R_AARCH64_MOVW_PREL_G0:
  case R_AARCH64_MOVW_PREL_G0_NC:
  case R_AARCH64_MOVW_PREL_G1:
  case R_AARCH64_MOVW_PREL_G1_NC:
  case R_AARCH64_MOVW_PREL_G2:
  case R_AARCH64_MOVW_PREL_G2_NC:
  case R_AARCH64_MOVW_PREL_G3:
    return R_PC;
  case R_AARCH64_ADR_PREL_PG_HI21:
  case R_AARCH64_ADR_PREL_PG_HI21_NC:
    return R_AARCH64_PAGE_PC;
  case R_AARCH64_LD64_GOT_LO12_NC:
  case R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
    return R_GOT;
  case R_AARCH64_ADR_GOT_PAGE:
  case R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
    return R_AARCH64_GOT_PAGE_PC;
  case R_AARCH64_NONE:
    return R_NONE;
  default:
    error(getErrorLocation(loc) + "unknown relocation (" + Twine(type) +
          ") against symbol " + toString(s));
    return R_NONE;
  }
}

RelExpr AArch64::adjustRelaxExpr(RelType type, const uint8_t *data,
                                 RelExpr expr) const {
  if (expr == R_RELAX_TLS_GD_TO_IE) {
    if (type == R_AARCH64_TLSDESC_ADR_PAGE21)
      return R_AARCH64_RELAX_TLS_GD_TO_IE_PAGE_PC;
    return R_RELAX_TLS_GD_TO_IE_ABS;
  }
  return expr;
}

bool AArch64::usesOnlyLowPageBits(RelType type) const {
  switch (type) {
  default:
    return false;
  case R_AARCH64_ADD_ABS_LO12_NC:
  case R_AARCH64_LD64_GOT_LO12_NC:
  case R_AARCH64_LDST128_ABS_LO12_NC:
  case R_AARCH64_LDST16_ABS_LO12_NC:
  case R_AARCH64_LDST32_ABS_LO12_NC:
  case R_AARCH64_LDST64_ABS_LO12_NC:
  case R_AARCH64_LDST8_ABS_LO12_NC:
  case R_AARCH64_TLSDESC_ADD_LO12:
  case R_AARCH64_TLSDESC_LD64_LO12:
  case R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
    return true;
  }
}

RelType AArch64::getDynRel(RelType type) const {
  if (type == R_AARCH64_ABS64)
    return type;
  return R_AARCH64_NONE;
}

void AArch64::writeGotPlt(uint8_t *buf, const Symbol &) const {
  write64le(buf, in.plt->getVA());
}

void AArch64::writePltHeader(uint8_t *buf) const {
  const uint8_t pltData[] = {
      0xf0, 0x7b, 0xbf, 0xa9, // stp    x16, x30, [sp,#-16]!
      0x10, 0x00, 0x00, 0x90, // adrp   x16, Page(&(.plt.got[2]))
      0x11, 0x02, 0x40, 0xf9, // ldr    x17, [x16, Offset(&(.plt.got[2]))]
      0x10, 0x02, 0x00, 0x91, // add    x16, x16, Offset(&(.plt.got[2]))
      0x20, 0x02, 0x1f, 0xd6, // br     x17
      0x1f, 0x20, 0x03, 0xd5, // nop
      0x1f, 0x20, 0x03, 0xd5, // nop
      0x1f, 0x20, 0x03, 0xd5  // nop
  };
  memcpy(buf, pltData, sizeof(pltData));

  uint64_t got = in.gotPlt->getVA();
  uint64_t plt = in.plt->getVA();
  relocateOne(buf + 4, R_AARCH64_ADR_PREL_PG_HI21,
              getAArch64Page(got + 16) - getAArch64Page(plt + 4));
  relocateOne(buf + 8, R_AARCH64_LDST64_ABS_LO12_NC, got + 16);
  relocateOne(buf + 12, R_AARCH64_ADD_ABS_LO12_NC, got + 16);
}

void AArch64::writePlt(uint8_t *buf, const Symbol &sym,
                       uint64_t pltEntryAddr) const {
  const uint8_t inst[] = {
      0x10, 0x00, 0x00, 0x90, // adrp x16, Page(&(.plt.got[n]))
      0x11, 0x02, 0x40, 0xf9, // ldr  x17, [x16, Offset(&(.plt.got[n]))]
      0x10, 0x02, 0x00, 0x91, // add  x16, x16, Offset(&(.plt.got[n]))
      0x20, 0x02, 0x1f, 0xd6  // br   x17
  };
  memcpy(buf, inst, sizeof(inst));

  uint64_t gotPltEntryAddr = sym.getGotPltVA();
  relocateOne(buf, R_AARCH64_ADR_PREL_PG_HI21,
              getAArch64Page(gotPltEntryAddr) - getAArch64Page(pltEntryAddr));
  relocateOne(buf + 4, R_AARCH64_LDST64_ABS_LO12_NC, gotPltEntryAddr);
  relocateOne(buf + 8, R_AARCH64_ADD_ABS_LO12_NC, gotPltEntryAddr);
}

bool AArch64::needsThunk(RelExpr expr, RelType type, const InputFile *file,
                         uint64_t branchAddr, const Symbol &s,
                         int64_t a) const {
  // If s is an undefined weak symbol and does not have a PLT entry then it
  // will be resolved as a branch to the next instruction.
  if (s.isUndefWeak() && !s.isInPlt())
    return false;
  // ELF for the ARM 64-bit architecture, section Call and Jump relocations
  // only permits range extension thunks for R_AARCH64_CALL26 and
  // R_AARCH64_JUMP26 relocation types.
  if (type != R_AARCH64_CALL26 && type != R_AARCH64_JUMP26)
    return false;
  uint64_t dst = expr == R_PLT_PC ? s.getPltVA() : s.getVA(a);
  return !inBranchRange(type, branchAddr, dst);
}

uint32_t AArch64::getThunkSectionSpacing() const {
  // See comment in Arch/ARM.cpp for a more detailed explanation of
  // getThunkSectionSpacing(). For AArch64 the only branches we are permitted to
  // Thunk have a range of +/- 128 MiB
  return (128 * 1024 * 1024) - 0x30000;
}

bool AArch64::inBranchRange(RelType type, uint64_t src, uint64_t dst) const {
  if (type != R_AARCH64_CALL26 && type != R_AARCH64_JUMP26)
    return true;
  // The AArch64 call and unconditional branch instructions have a range of
  // +/- 128 MiB.
  uint64_t range = 128 * 1024 * 1024;
  if (dst > src) {
    // Immediate of branch is signed.
    range -= 4;
    return dst - src <= range;
  }
  return src - dst <= range;
}

static void write32AArch64Addr(uint8_t *l, uint64_t imm) {
  uint32_t immLo = (imm & 0x3) << 29;
  uint32_t immHi = (imm & 0x1FFFFC) << 3;
  uint64_t mask = (0x3 << 29) | (0x1FFFFC << 3);
  write32le(l, (read32le(l) & ~mask) | immLo | immHi);
}

// Return the bits [Start, End] from Val shifted Start bits.
// For instance, getBits(0xF0, 4, 8) returns 0xF.
static uint64_t getBits(uint64_t val, int start, int end) {
  uint64_t mask = ((uint64_t)1 << (end + 1 - start)) - 1;
  return (val >> start) & mask;
}

static void or32le(uint8_t *p, int32_t v) { write32le(p, read32le(p) | v); }

// Update the immediate field in a AARCH64 ldr, str, and add instruction.
static void or32AArch64Imm(uint8_t *l, uint64_t imm) {
  or32le(l, (imm & 0xFFF) << 10);
}

// Update the immediate field in an AArch64 movk, movn or movz instruction
// for a signed relocation, and update the opcode of a movn or movz instruction
// to match the sign of the operand.
static void writeSMovWImm(uint8_t *loc, uint32_t imm) {
  uint32_t inst = read32le(loc);
  // Opcode field is bits 30, 29, with 10 = movz, 00 = movn and 11 = movk.
  if (!(inst & (1 << 29))) {
    // movn or movz.
    if (imm & 0x10000) {
      // Change opcode to movn, which takes an inverted operand.
      imm ^= 0xFFFF;
      inst &= ~(1 << 30);
    } else {
      // Change opcode to movz.
      inst |= 1 << 30;
    }
  }
  write32le(loc, inst | ((imm & 0xFFFF) << 5));
}

void AArch64::relocateOne(uint8_t *loc, RelType type, uint64_t val) const {
  switch (type) {
  case R_AARCH64_ABS16:
  case R_AARCH64_PREL16:
    checkIntUInt(loc, val, 16, type);
    write16le(loc, val);
    break;
  case R_AARCH64_ABS32:
  case R_AARCH64_PREL32:
    checkIntUInt(loc, val, 32, type);
    write32le(loc, val);
    break;
  case R_AARCH64_ABS64:
  case R_AARCH64_PREL64:
    write64le(loc, val);
    break;
  case R_AARCH64_ADD_ABS_LO12_NC:
    or32AArch64Imm(loc, val);
    break;
  case R_AARCH64_ADR_GOT_PAGE:
  case R_AARCH64_ADR_PREL_PG_HI21:
  case R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
  case R_AARCH64_TLSDESC_ADR_PAGE21:
    checkInt(loc, val, 33, type);
    LLVM_FALLTHROUGH;
  case R_AARCH64_ADR_PREL_PG_HI21_NC:
    write32AArch64Addr(loc, val >> 12);
    break;
  case R_AARCH64_ADR_PREL_LO21:
    checkInt(loc, val, 21, type);
    write32AArch64Addr(loc, val);
    break;
  case R_AARCH64_JUMP26:
    // Normally we would just write the bits of the immediate field, however
    // when patching instructions for the cpu errata fix -fix-cortex-a53-843419
    // we want to replace a non-branch instruction with a branch immediate
    // instruction. By writing all the bits of the instruction including the
    // opcode and the immediate (0 001 | 01 imm26) we can do this
    // transformation by placing a R_AARCH64_JUMP26 relocation at the offset of
    // the instruction we want to patch.
    write32le(loc, 0x14000000);
    LLVM_FALLTHROUGH;
  case R_AARCH64_CALL26:
    checkInt(loc, val, 28, type);
    or32le(loc, (val & 0x0FFFFFFC) >> 2);
    break;
  case R_AARCH64_CONDBR19:
  case R_AARCH64_LD_PREL_LO19:
    checkAlignment(loc, val, 4, type);
    checkInt(loc, val, 21, type);
    or32le(loc, (val & 0x1FFFFC) << 3);
    break;
  case R_AARCH64_LDST8_ABS_LO12_NC:
  case R_AARCH64_TLSLE_LDST8_TPREL_LO12_NC:
    or32AArch64Imm(loc, getBits(val, 0, 11));
    break;
  case R_AARCH64_LDST16_ABS_LO12_NC:
  case R_AARCH64_TLSLE_LDST16_TPREL_LO12_NC:
    checkAlignment(loc, val, 2, type);
    or32AArch64Imm(loc, getBits(val, 1, 11));
    break;
  case R_AARCH64_LDST32_ABS_LO12_NC:
  case R_AARCH64_TLSLE_LDST32_TPREL_LO12_NC:
    checkAlignment(loc, val, 4, type);
    or32AArch64Imm(loc, getBits(val, 2, 11));
    break;
  case R_AARCH64_LDST64_ABS_LO12_NC:
  case R_AARCH64_LD64_GOT_LO12_NC:
  case R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
  case R_AARCH64_TLSLE_LDST64_TPREL_LO12_NC:
  case R_AARCH64_TLSDESC_LD64_LO12:
    checkAlignment(loc, val, 8, type);
    or32AArch64Imm(loc, getBits(val, 3, 11));
    break;
  case R_AARCH64_LDST128_ABS_LO12_NC:
  case R_AARCH64_TLSLE_LDST128_TPREL_LO12_NC:
    checkAlignment(loc, val, 16, type);
    or32AArch64Imm(loc, getBits(val, 4, 11));
    break;
  case R_AARCH64_MOVW_UABS_G0:
    checkUInt(loc, val, 16, type);
    LLVM_FALLTHROUGH;
  case R_AARCH64_MOVW_UABS_G0_NC:
    or32le(loc, (val & 0xFFFF) << 5);
    break;
  case R_AARCH64_MOVW_UABS_G1:
    checkUInt(loc, val, 32, type);
    LLVM_FALLTHROUGH;
  case R_AARCH64_MOVW_UABS_G1_NC:
    or32le(loc, (val & 0xFFFF0000) >> 11);
    break;
  case R_AARCH64_MOVW_UABS_G2:
    checkUInt(loc, val, 48, type);
    LLVM_FALLTHROUGH;
  case R_AARCH64_MOVW_UABS_G2_NC:
    or32le(loc, (val & 0xFFFF00000000) >> 27);
    break;
  case R_AARCH64_MOVW_UABS_G3:
    or32le(loc, (val & 0xFFFF000000000000) >> 43);
    break;
  case R_AARCH64_MOVW_PREL_G0:
  case R_AARCH64_MOVW_SABS_G0:
  case R_AARCH64_TLSLE_MOVW_TPREL_G0:
    checkInt(loc, val, 17, type);
    LLVM_FALLTHROUGH;
  case R_AARCH64_MOVW_PREL_G0_NC:
  case R_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
    writeSMovWImm(loc, val);
    break;
  case R_AARCH64_MOVW_PREL_G1:
  case R_AARCH64_MOVW_SABS_G1:
  case R_AARCH64_TLSLE_MOVW_TPREL_G1:
    checkInt(loc, val, 33, type);
    LLVM_FALLTHROUGH;
  case R_AARCH64_MOVW_PREL_G1_NC:
  case R_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
    writeSMovWImm(loc, val >> 16);
    break;
  case R_AARCH64_MOVW_PREL_G2:
  case R_AARCH64_MOVW_SABS_G2:
  case R_AARCH64_TLSLE_MOVW_TPREL_G2:
    checkInt(loc, val, 49, type);
    LLVM_FALLTHROUGH;
  case R_AARCH64_MOVW_PREL_G2_NC:
    writeSMovWImm(loc, val >> 32);
    break;
  case R_AARCH64_MOVW_PREL_G3:
    writeSMovWImm(loc, val >> 48);
    break;
  case R_AARCH64_TSTBR14:
    checkInt(loc, val, 16, type);
    or32le(loc, (val & 0xFFFC) << 3);
    break;
  case R_AARCH64_TLSLE_ADD_TPREL_HI12:
    checkUInt(loc, val, 24, type);
    or32AArch64Imm(loc, val >> 12);
    break;
  case R_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
  case R_AARCH64_TLSDESC_ADD_LO12:
    or32AArch64Imm(loc, val);
    break;
  default:
    llvm_unreachable("unknown relocation");
  }
}

void AArch64::relaxTlsGdToLe(uint8_t *loc, RelType type, uint64_t val) const {
  // TLSDESC Global-Dynamic relocation are in the form:
  //   adrp    x0, :tlsdesc:v             [R_AARCH64_TLSDESC_ADR_PAGE21]
  //   ldr     x1, [x0, #:tlsdesc_lo12:v  [R_AARCH64_TLSDESC_LD64_LO12]
  //   add     x0, x0, :tlsdesc_los:v     [R_AARCH64_TLSDESC_ADD_LO12]
  //   .tlsdesccall                       [R_AARCH64_TLSDESC_CALL]
  //   blr     x1
  // And it can optimized to:
  //   movz    x0, #0x0, lsl #16
  //   movk    x0, #0x10
  //   nop
  //   nop
  checkUInt(loc, val, 32, type);

  switch (type) {
  case R_AARCH64_TLSDESC_ADD_LO12:
  case R_AARCH64_TLSDESC_CALL:
    write32le(loc, 0xd503201f); // nop
    return;
  case R_AARCH64_TLSDESC_ADR_PAGE21:
    write32le(loc, 0xd2a00000 | (((val >> 16) & 0xffff) << 5)); // movz
    return;
  case R_AARCH64_TLSDESC_LD64_LO12:
    write32le(loc, 0xf2800000 | ((val & 0xffff) << 5)); // movk
    return;
  default:
    llvm_unreachable("unsupported relocation for TLS GD to LE relaxation");
  }
}

void AArch64::relaxTlsGdToIe(uint8_t *loc, RelType type, uint64_t val) const {
  // TLSDESC Global-Dynamic relocation are in the form:
  //   adrp    x0, :tlsdesc:v             [R_AARCH64_TLSDESC_ADR_PAGE21]
  //   ldr     x1, [x0, #:tlsdesc_lo12:v  [R_AARCH64_TLSDESC_LD64_LO12]
  //   add     x0, x0, :tlsdesc_los:v     [R_AARCH64_TLSDESC_ADD_LO12]
  //   .tlsdesccall                       [R_AARCH64_TLSDESC_CALL]
  //   blr     x1
  // And it can optimized to:
  //   adrp    x0, :gottprel:v
  //   ldr     x0, [x0, :gottprel_lo12:v]
  //   nop
  //   nop

  switch (type) {
  case R_AARCH64_TLSDESC_ADD_LO12:
  case R_AARCH64_TLSDESC_CALL:
    write32le(loc, 0xd503201f); // nop
    break;
  case R_AARCH64_TLSDESC_ADR_PAGE21:
    write32le(loc, 0x90000000); // adrp
    relocateOne(loc, R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21, val);
    break;
  case R_AARCH64_TLSDESC_LD64_LO12:
    write32le(loc, 0xf9400000); // ldr
    relocateOne(loc, R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC, val);
    break;
  default:
    llvm_unreachable("unsupported relocation for TLS GD to LE relaxation");
  }
}

void AArch64::relaxTlsIeToLe(uint8_t *loc, RelType type, uint64_t val) const {
  checkUInt(loc, val, 32, type);

  if (type == R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21) {
    // Generate MOVZ.
    uint32_t regNo = read32le(loc) & 0x1f;
    write32le(loc, (0xd2a00000 | regNo) | (((val >> 16) & 0xffff) << 5));
    return;
  }
  if (type == R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC) {
    // Generate MOVK.
    uint32_t regNo = read32le(loc) & 0x1f;
    write32le(loc, (0xf2800000 | regNo) | ((val & 0xffff) << 5));
    return;
  }
  llvm_unreachable("invalid relocation for TLS IE to LE relaxation");
}

// AArch64 may use security features in variant PLT sequences. These are:
// Pointer Authentication (PAC), introduced in armv8.3-a and Branch Target
// Indicator (BTI) introduced in armv8.5-a. The additional instructions used
// in the variant Plt sequences are encoded in the Hint space so they can be
// deployed on older architectures, which treat the instructions as a nop.
// PAC and BTI can be combined leading to the following combinations:
// writePltHeader
// writePltHeaderBti (no PAC Header needed)
// writePlt
// writePltBti (BTI only)
// writePltPac (PAC only)
// writePltBtiPac (BTI and PAC)
//
// When PAC is enabled the dynamic loader encrypts the address that it places
// in the .got.plt using the pacia1716 instruction which encrypts the value in
// x17 using the modifier in x16. The static linker places autia1716 before the
// indirect branch to x17 to authenticate the address in x17 with the modifier
// in x16. This makes it more difficult for an attacker to modify the value in
// the .got.plt.
//
// When BTI is enabled all indirect branches must land on a bti instruction.
// The static linker must place a bti instruction at the start of any PLT entry
// that may be the target of an indirect branch. As the PLT entries call the
// lazy resolver indirectly this must have a bti instruction at start. In
// general a bti instruction is not needed for a PLT entry as indirect calls
// are resolved to the function address and not the PLT entry for the function.
// There are a small number of cases where the PLT address can escape, such as
// taking the address of a function or ifunc via a non got-generating
// relocation, and a shared library refers to that symbol.
//
// We use the bti c variant of the instruction which permits indirect branches
// (br) via x16/x17 and indirect function calls (blr) via any register. The ABI
// guarantees that all indirect branches from code requiring BTI protection
// will go via x16/x17

namespace {
class AArch64BtiPac final : public AArch64 {
public:
  AArch64BtiPac();
  void writePltHeader(uint8_t *buf) const override;
  void writePlt(uint8_t *buf, const Symbol &sym,
                uint64_t pltEntryAddr) const override;

private:
  bool btiHeader; // bti instruction needed in PLT Header
  bool btiEntry;  // bti instruction needed in PLT Entry
  bool pacEntry;  // autia1716 instruction needed in PLT Entry
};
} // namespace

AArch64BtiPac::AArch64BtiPac() {
  btiHeader = (config->andFeatures & GNU_PROPERTY_AARCH64_FEATURE_1_BTI);
  // A BTI (Branch Target Indicator) Plt Entry is only required if the
  // address of the PLT entry can be taken by the program, which permits an
  // indirect jump to the PLT entry. This can happen when the address
  // of the PLT entry for a function is canonicalised due to the address of
  // the function in an executable being taken by a shared library.
  // FIXME: There is a potential optimization to omit the BTI if we detect
  // that the address of the PLT entry isn't taken.
  btiEntry = btiHeader && !config->shared;
  pacEntry = (config->andFeatures & GNU_PROPERTY_AARCH64_FEATURE_1_PAC);

  if (btiEntry || pacEntry) {
    pltEntrySize = 24;
    ipltEntrySize = 24;
  }
}

void AArch64BtiPac::writePltHeader(uint8_t *buf) const {
  const uint8_t btiData[] = { 0x5f, 0x24, 0x03, 0xd5 }; // bti c
  const uint8_t pltData[] = {
      0xf0, 0x7b, 0xbf, 0xa9, // stp    x16, x30, [sp,#-16]!
      0x10, 0x00, 0x00, 0x90, // adrp   x16, Page(&(.plt.got[2]))
      0x11, 0x02, 0x40, 0xf9, // ldr    x17, [x16, Offset(&(.plt.got[2]))]
      0x10, 0x02, 0x00, 0x91, // add    x16, x16, Offset(&(.plt.got[2]))
      0x20, 0x02, 0x1f, 0xd6, // br     x17
      0x1f, 0x20, 0x03, 0xd5, // nop
      0x1f, 0x20, 0x03, 0xd5  // nop
  };
  const uint8_t nopData[] = { 0x1f, 0x20, 0x03, 0xd5 }; // nop

  uint64_t got = in.gotPlt->getVA();
  uint64_t plt = in.plt->getVA();

  if (btiHeader) {
    // PltHeader is called indirectly by plt[N]. Prefix pltData with a BTI C
    // instruction.
    memcpy(buf, btiData, sizeof(btiData));
    buf += sizeof(btiData);
    plt += sizeof(btiData);
  }
  memcpy(buf, pltData, sizeof(pltData));

  relocateOne(buf + 4, R_AARCH64_ADR_PREL_PG_HI21,
              getAArch64Page(got + 16) - getAArch64Page(plt + 8));
  relocateOne(buf + 8, R_AARCH64_LDST64_ABS_LO12_NC, got + 16);
  relocateOne(buf + 12, R_AARCH64_ADD_ABS_LO12_NC, got + 16);
  if (!btiHeader)
    // We didn't add the BTI c instruction so round out size with NOP.
    memcpy(buf + sizeof(pltData), nopData, sizeof(nopData));
}

void AArch64BtiPac::writePlt(uint8_t *buf, const Symbol &sym,
                             uint64_t pltEntryAddr) const {
  // The PLT entry is of the form:
  // [btiData] addrInst (pacBr | stdBr) [nopData]
  const uint8_t btiData[] = { 0x5f, 0x24, 0x03, 0xd5 }; // bti c
  const uint8_t addrInst[] = {
      0x10, 0x00, 0x00, 0x90,  // adrp x16, Page(&(.plt.got[n]))
      0x11, 0x02, 0x40, 0xf9,  // ldr  x17, [x16, Offset(&(.plt.got[n]))]
      0x10, 0x02, 0x00, 0x91   // add  x16, x16, Offset(&(.plt.got[n]))
  };
  const uint8_t pacBr[] = {
      0x9f, 0x21, 0x03, 0xd5,  // autia1716
      0x20, 0x02, 0x1f, 0xd6   // br   x17
  };
  const uint8_t stdBr[] = {
      0x20, 0x02, 0x1f, 0xd6,  // br   x17
      0x1f, 0x20, 0x03, 0xd5   // nop
  };
  const uint8_t nopData[] = { 0x1f, 0x20, 0x03, 0xd5 }; // nop

  if (btiEntry) {
    memcpy(buf, btiData, sizeof(btiData));
    buf += sizeof(btiData);
    pltEntryAddr += sizeof(btiData);
  }

  uint64_t gotPltEntryAddr = sym.getGotPltVA();
  memcpy(buf, addrInst, sizeof(addrInst));
  relocateOne(buf, R_AARCH64_ADR_PREL_PG_HI21,
              getAArch64Page(gotPltEntryAddr) -
                  getAArch64Page(pltEntryAddr));
  relocateOne(buf + 4, R_AARCH64_LDST64_ABS_LO12_NC, gotPltEntryAddr);
  relocateOne(buf + 8, R_AARCH64_ADD_ABS_LO12_NC, gotPltEntryAddr);

  if (pacEntry)
    memcpy(buf + sizeof(addrInst), pacBr, sizeof(pacBr));
  else
    memcpy(buf + sizeof(addrInst), stdBr, sizeof(stdBr));
  if (!btiEntry)
    // We didn't add the BTI c instruction so round out size with NOP.
    memcpy(buf + sizeof(addrInst) + sizeof(stdBr), nopData, sizeof(nopData));
}

static TargetInfo *getTargetInfo() {
  if (config->andFeatures & (GNU_PROPERTY_AARCH64_FEATURE_1_BTI |
                             GNU_PROPERTY_AARCH64_FEATURE_1_PAC)) {
    static AArch64BtiPac t;
    return &t;
  }
  static AArch64 t;
  return &t;
}

TargetInfo *getAArch64TargetInfo() { return getTargetInfo(); }

} // namespace elf
} // namespace lld