AArch64.cpp
24.2 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
//===- AArch64.cpp --------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "Symbols.h"
#include "SyntheticSections.h"
#include "Target.h"
#include "Thunks.h"
#include "lld/Common/ErrorHandler.h"
#include "llvm/Object/ELF.h"
#include "llvm/Support/Endian.h"
using namespace llvm;
using namespace llvm::support::endian;
using namespace llvm::ELF;
namespace lld {
namespace elf {
// Page(Expr) is the page address of the expression Expr, defined
// as (Expr & ~0xFFF). (This applies even if the machine page size
// supported by the platform has a different value.)
uint64_t getAArch64Page(uint64_t expr) {
return expr & ~static_cast<uint64_t>(0xFFF);
}
namespace {
class AArch64 : public TargetInfo {
public:
AArch64();
RelExpr getRelExpr(RelType type, const Symbol &s,
const uint8_t *loc) const override;
RelType getDynRel(RelType type) const override;
void writeGotPlt(uint8_t *buf, const Symbol &s) const override;
void writePltHeader(uint8_t *buf) const override;
void writePlt(uint8_t *buf, const Symbol &sym,
uint64_t pltEntryAddr) const override;
bool needsThunk(RelExpr expr, RelType type, const InputFile *file,
uint64_t branchAddr, const Symbol &s,
int64_t a) const override;
uint32_t getThunkSectionSpacing() const override;
bool inBranchRange(RelType type, uint64_t src, uint64_t dst) const override;
bool usesOnlyLowPageBits(RelType type) const override;
void relocateOne(uint8_t *loc, RelType type, uint64_t val) const override;
RelExpr adjustRelaxExpr(RelType type, const uint8_t *data,
RelExpr expr) const override;
void relaxTlsGdToLe(uint8_t *loc, RelType type, uint64_t val) const override;
void relaxTlsGdToIe(uint8_t *loc, RelType type, uint64_t val) const override;
void relaxTlsIeToLe(uint8_t *loc, RelType type, uint64_t val) const override;
};
} // namespace
AArch64::AArch64() {
copyRel = R_AARCH64_COPY;
relativeRel = R_AARCH64_RELATIVE;
iRelativeRel = R_AARCH64_IRELATIVE;
gotRel = R_AARCH64_GLOB_DAT;
noneRel = R_AARCH64_NONE;
pltRel = R_AARCH64_JUMP_SLOT;
symbolicRel = R_AARCH64_ABS64;
tlsDescRel = R_AARCH64_TLSDESC;
tlsGotRel = R_AARCH64_TLS_TPREL64;
pltHeaderSize = 32;
pltEntrySize = 16;
ipltEntrySize = 16;
defaultMaxPageSize = 65536;
// Align to the 2 MiB page size (known as a superpage or huge page).
// FreeBSD automatically promotes 2 MiB-aligned allocations.
defaultImageBase = 0x200000;
needsThunks = true;
}
RelExpr AArch64::getRelExpr(RelType type, const Symbol &s,
const uint8_t *loc) const {
switch (type) {
case R_AARCH64_ABS16:
case R_AARCH64_ABS32:
case R_AARCH64_ABS64:
case R_AARCH64_ADD_ABS_LO12_NC:
case R_AARCH64_LDST128_ABS_LO12_NC:
case R_AARCH64_LDST16_ABS_LO12_NC:
case R_AARCH64_LDST32_ABS_LO12_NC:
case R_AARCH64_LDST64_ABS_LO12_NC:
case R_AARCH64_LDST8_ABS_LO12_NC:
case R_AARCH64_MOVW_SABS_G0:
case R_AARCH64_MOVW_SABS_G1:
case R_AARCH64_MOVW_SABS_G2:
case R_AARCH64_MOVW_UABS_G0:
case R_AARCH64_MOVW_UABS_G0_NC:
case R_AARCH64_MOVW_UABS_G1:
case R_AARCH64_MOVW_UABS_G1_NC:
case R_AARCH64_MOVW_UABS_G2:
case R_AARCH64_MOVW_UABS_G2_NC:
case R_AARCH64_MOVW_UABS_G3:
return R_ABS;
case R_AARCH64_TLSDESC_ADR_PAGE21:
return R_AARCH64_TLSDESC_PAGE;
case R_AARCH64_TLSDESC_LD64_LO12:
case R_AARCH64_TLSDESC_ADD_LO12:
return R_TLSDESC;
case R_AARCH64_TLSDESC_CALL:
return R_TLSDESC_CALL;
case R_AARCH64_TLSLE_ADD_TPREL_HI12:
case R_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
case R_AARCH64_TLSLE_LDST8_TPREL_LO12_NC:
case R_AARCH64_TLSLE_LDST16_TPREL_LO12_NC:
case R_AARCH64_TLSLE_LDST32_TPREL_LO12_NC:
case R_AARCH64_TLSLE_LDST64_TPREL_LO12_NC:
case R_AARCH64_TLSLE_LDST128_TPREL_LO12_NC:
case R_AARCH64_TLSLE_MOVW_TPREL_G0:
case R_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
case R_AARCH64_TLSLE_MOVW_TPREL_G1:
case R_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
case R_AARCH64_TLSLE_MOVW_TPREL_G2:
return R_TLS;
case R_AARCH64_CALL26:
case R_AARCH64_CONDBR19:
case R_AARCH64_JUMP26:
case R_AARCH64_TSTBR14:
return R_PLT_PC;
case R_AARCH64_PREL16:
case R_AARCH64_PREL32:
case R_AARCH64_PREL64:
case R_AARCH64_ADR_PREL_LO21:
case R_AARCH64_LD_PREL_LO19:
case R_AARCH64_MOVW_PREL_G0:
case R_AARCH64_MOVW_PREL_G0_NC:
case R_AARCH64_MOVW_PREL_G1:
case R_AARCH64_MOVW_PREL_G1_NC:
case R_AARCH64_MOVW_PREL_G2:
case R_AARCH64_MOVW_PREL_G2_NC:
case R_AARCH64_MOVW_PREL_G3:
return R_PC;
case R_AARCH64_ADR_PREL_PG_HI21:
case R_AARCH64_ADR_PREL_PG_HI21_NC:
return R_AARCH64_PAGE_PC;
case R_AARCH64_LD64_GOT_LO12_NC:
case R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
return R_GOT;
case R_AARCH64_ADR_GOT_PAGE:
case R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
return R_AARCH64_GOT_PAGE_PC;
case R_AARCH64_NONE:
return R_NONE;
default:
error(getErrorLocation(loc) + "unknown relocation (" + Twine(type) +
") against symbol " + toString(s));
return R_NONE;
}
}
RelExpr AArch64::adjustRelaxExpr(RelType type, const uint8_t *data,
RelExpr expr) const {
if (expr == R_RELAX_TLS_GD_TO_IE) {
if (type == R_AARCH64_TLSDESC_ADR_PAGE21)
return R_AARCH64_RELAX_TLS_GD_TO_IE_PAGE_PC;
return R_RELAX_TLS_GD_TO_IE_ABS;
}
return expr;
}
bool AArch64::usesOnlyLowPageBits(RelType type) const {
switch (type) {
default:
return false;
case R_AARCH64_ADD_ABS_LO12_NC:
case R_AARCH64_LD64_GOT_LO12_NC:
case R_AARCH64_LDST128_ABS_LO12_NC:
case R_AARCH64_LDST16_ABS_LO12_NC:
case R_AARCH64_LDST32_ABS_LO12_NC:
case R_AARCH64_LDST64_ABS_LO12_NC:
case R_AARCH64_LDST8_ABS_LO12_NC:
case R_AARCH64_TLSDESC_ADD_LO12:
case R_AARCH64_TLSDESC_LD64_LO12:
case R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
return true;
}
}
RelType AArch64::getDynRel(RelType type) const {
if (type == R_AARCH64_ABS64)
return type;
return R_AARCH64_NONE;
}
void AArch64::writeGotPlt(uint8_t *buf, const Symbol &) const {
write64le(buf, in.plt->getVA());
}
void AArch64::writePltHeader(uint8_t *buf) const {
const uint8_t pltData[] = {
0xf0, 0x7b, 0xbf, 0xa9, // stp x16, x30, [sp,#-16]!
0x10, 0x00, 0x00, 0x90, // adrp x16, Page(&(.plt.got[2]))
0x11, 0x02, 0x40, 0xf9, // ldr x17, [x16, Offset(&(.plt.got[2]))]
0x10, 0x02, 0x00, 0x91, // add x16, x16, Offset(&(.plt.got[2]))
0x20, 0x02, 0x1f, 0xd6, // br x17
0x1f, 0x20, 0x03, 0xd5, // nop
0x1f, 0x20, 0x03, 0xd5, // nop
0x1f, 0x20, 0x03, 0xd5 // nop
};
memcpy(buf, pltData, sizeof(pltData));
uint64_t got = in.gotPlt->getVA();
uint64_t plt = in.plt->getVA();
relocateOne(buf + 4, R_AARCH64_ADR_PREL_PG_HI21,
getAArch64Page(got + 16) - getAArch64Page(plt + 4));
relocateOne(buf + 8, R_AARCH64_LDST64_ABS_LO12_NC, got + 16);
relocateOne(buf + 12, R_AARCH64_ADD_ABS_LO12_NC, got + 16);
}
void AArch64::writePlt(uint8_t *buf, const Symbol &sym,
uint64_t pltEntryAddr) const {
const uint8_t inst[] = {
0x10, 0x00, 0x00, 0x90, // adrp x16, Page(&(.plt.got[n]))
0x11, 0x02, 0x40, 0xf9, // ldr x17, [x16, Offset(&(.plt.got[n]))]
0x10, 0x02, 0x00, 0x91, // add x16, x16, Offset(&(.plt.got[n]))
0x20, 0x02, 0x1f, 0xd6 // br x17
};
memcpy(buf, inst, sizeof(inst));
uint64_t gotPltEntryAddr = sym.getGotPltVA();
relocateOne(buf, R_AARCH64_ADR_PREL_PG_HI21,
getAArch64Page(gotPltEntryAddr) - getAArch64Page(pltEntryAddr));
relocateOne(buf + 4, R_AARCH64_LDST64_ABS_LO12_NC, gotPltEntryAddr);
relocateOne(buf + 8, R_AARCH64_ADD_ABS_LO12_NC, gotPltEntryAddr);
}
bool AArch64::needsThunk(RelExpr expr, RelType type, const InputFile *file,
uint64_t branchAddr, const Symbol &s,
int64_t a) const {
// If s is an undefined weak symbol and does not have a PLT entry then it
// will be resolved as a branch to the next instruction.
if (s.isUndefWeak() && !s.isInPlt())
return false;
// ELF for the ARM 64-bit architecture, section Call and Jump relocations
// only permits range extension thunks for R_AARCH64_CALL26 and
// R_AARCH64_JUMP26 relocation types.
if (type != R_AARCH64_CALL26 && type != R_AARCH64_JUMP26)
return false;
uint64_t dst = expr == R_PLT_PC ? s.getPltVA() : s.getVA(a);
return !inBranchRange(type, branchAddr, dst);
}
uint32_t AArch64::getThunkSectionSpacing() const {
// See comment in Arch/ARM.cpp for a more detailed explanation of
// getThunkSectionSpacing(). For AArch64 the only branches we are permitted to
// Thunk have a range of +/- 128 MiB
return (128 * 1024 * 1024) - 0x30000;
}
bool AArch64::inBranchRange(RelType type, uint64_t src, uint64_t dst) const {
if (type != R_AARCH64_CALL26 && type != R_AARCH64_JUMP26)
return true;
// The AArch64 call and unconditional branch instructions have a range of
// +/- 128 MiB.
uint64_t range = 128 * 1024 * 1024;
if (dst > src) {
// Immediate of branch is signed.
range -= 4;
return dst - src <= range;
}
return src - dst <= range;
}
static void write32AArch64Addr(uint8_t *l, uint64_t imm) {
uint32_t immLo = (imm & 0x3) << 29;
uint32_t immHi = (imm & 0x1FFFFC) << 3;
uint64_t mask = (0x3 << 29) | (0x1FFFFC << 3);
write32le(l, (read32le(l) & ~mask) | immLo | immHi);
}
// Return the bits [Start, End] from Val shifted Start bits.
// For instance, getBits(0xF0, 4, 8) returns 0xF.
static uint64_t getBits(uint64_t val, int start, int end) {
uint64_t mask = ((uint64_t)1 << (end + 1 - start)) - 1;
return (val >> start) & mask;
}
static void or32le(uint8_t *p, int32_t v) { write32le(p, read32le(p) | v); }
// Update the immediate field in a AARCH64 ldr, str, and add instruction.
static void or32AArch64Imm(uint8_t *l, uint64_t imm) {
or32le(l, (imm & 0xFFF) << 10);
}
// Update the immediate field in an AArch64 movk, movn or movz instruction
// for a signed relocation, and update the opcode of a movn or movz instruction
// to match the sign of the operand.
static void writeSMovWImm(uint8_t *loc, uint32_t imm) {
uint32_t inst = read32le(loc);
// Opcode field is bits 30, 29, with 10 = movz, 00 = movn and 11 = movk.
if (!(inst & (1 << 29))) {
// movn or movz.
if (imm & 0x10000) {
// Change opcode to movn, which takes an inverted operand.
imm ^= 0xFFFF;
inst &= ~(1 << 30);
} else {
// Change opcode to movz.
inst |= 1 << 30;
}
}
write32le(loc, inst | ((imm & 0xFFFF) << 5));
}
void AArch64::relocateOne(uint8_t *loc, RelType type, uint64_t val) const {
switch (type) {
case R_AARCH64_ABS16:
case R_AARCH64_PREL16:
checkIntUInt(loc, val, 16, type);
write16le(loc, val);
break;
case R_AARCH64_ABS32:
case R_AARCH64_PREL32:
checkIntUInt(loc, val, 32, type);
write32le(loc, val);
break;
case R_AARCH64_ABS64:
case R_AARCH64_PREL64:
write64le(loc, val);
break;
case R_AARCH64_ADD_ABS_LO12_NC:
or32AArch64Imm(loc, val);
break;
case R_AARCH64_ADR_GOT_PAGE:
case R_AARCH64_ADR_PREL_PG_HI21:
case R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
case R_AARCH64_TLSDESC_ADR_PAGE21:
checkInt(loc, val, 33, type);
LLVM_FALLTHROUGH;
case R_AARCH64_ADR_PREL_PG_HI21_NC:
write32AArch64Addr(loc, val >> 12);
break;
case R_AARCH64_ADR_PREL_LO21:
checkInt(loc, val, 21, type);
write32AArch64Addr(loc, val);
break;
case R_AARCH64_JUMP26:
// Normally we would just write the bits of the immediate field, however
// when patching instructions for the cpu errata fix -fix-cortex-a53-843419
// we want to replace a non-branch instruction with a branch immediate
// instruction. By writing all the bits of the instruction including the
// opcode and the immediate (0 001 | 01 imm26) we can do this
// transformation by placing a R_AARCH64_JUMP26 relocation at the offset of
// the instruction we want to patch.
write32le(loc, 0x14000000);
LLVM_FALLTHROUGH;
case R_AARCH64_CALL26:
checkInt(loc, val, 28, type);
or32le(loc, (val & 0x0FFFFFFC) >> 2);
break;
case R_AARCH64_CONDBR19:
case R_AARCH64_LD_PREL_LO19:
checkAlignment(loc, val, 4, type);
checkInt(loc, val, 21, type);
or32le(loc, (val & 0x1FFFFC) << 3);
break;
case R_AARCH64_LDST8_ABS_LO12_NC:
case R_AARCH64_TLSLE_LDST8_TPREL_LO12_NC:
or32AArch64Imm(loc, getBits(val, 0, 11));
break;
case R_AARCH64_LDST16_ABS_LO12_NC:
case R_AARCH64_TLSLE_LDST16_TPREL_LO12_NC:
checkAlignment(loc, val, 2, type);
or32AArch64Imm(loc, getBits(val, 1, 11));
break;
case R_AARCH64_LDST32_ABS_LO12_NC:
case R_AARCH64_TLSLE_LDST32_TPREL_LO12_NC:
checkAlignment(loc, val, 4, type);
or32AArch64Imm(loc, getBits(val, 2, 11));
break;
case R_AARCH64_LDST64_ABS_LO12_NC:
case R_AARCH64_LD64_GOT_LO12_NC:
case R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
case R_AARCH64_TLSLE_LDST64_TPREL_LO12_NC:
case R_AARCH64_TLSDESC_LD64_LO12:
checkAlignment(loc, val, 8, type);
or32AArch64Imm(loc, getBits(val, 3, 11));
break;
case R_AARCH64_LDST128_ABS_LO12_NC:
case R_AARCH64_TLSLE_LDST128_TPREL_LO12_NC:
checkAlignment(loc, val, 16, type);
or32AArch64Imm(loc, getBits(val, 4, 11));
break;
case R_AARCH64_MOVW_UABS_G0:
checkUInt(loc, val, 16, type);
LLVM_FALLTHROUGH;
case R_AARCH64_MOVW_UABS_G0_NC:
or32le(loc, (val & 0xFFFF) << 5);
break;
case R_AARCH64_MOVW_UABS_G1:
checkUInt(loc, val, 32, type);
LLVM_FALLTHROUGH;
case R_AARCH64_MOVW_UABS_G1_NC:
or32le(loc, (val & 0xFFFF0000) >> 11);
break;
case R_AARCH64_MOVW_UABS_G2:
checkUInt(loc, val, 48, type);
LLVM_FALLTHROUGH;
case R_AARCH64_MOVW_UABS_G2_NC:
or32le(loc, (val & 0xFFFF00000000) >> 27);
break;
case R_AARCH64_MOVW_UABS_G3:
or32le(loc, (val & 0xFFFF000000000000) >> 43);
break;
case R_AARCH64_MOVW_PREL_G0:
case R_AARCH64_MOVW_SABS_G0:
case R_AARCH64_TLSLE_MOVW_TPREL_G0:
checkInt(loc, val, 17, type);
LLVM_FALLTHROUGH;
case R_AARCH64_MOVW_PREL_G0_NC:
case R_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
writeSMovWImm(loc, val);
break;
case R_AARCH64_MOVW_PREL_G1:
case R_AARCH64_MOVW_SABS_G1:
case R_AARCH64_TLSLE_MOVW_TPREL_G1:
checkInt(loc, val, 33, type);
LLVM_FALLTHROUGH;
case R_AARCH64_MOVW_PREL_G1_NC:
case R_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
writeSMovWImm(loc, val >> 16);
break;
case R_AARCH64_MOVW_PREL_G2:
case R_AARCH64_MOVW_SABS_G2:
case R_AARCH64_TLSLE_MOVW_TPREL_G2:
checkInt(loc, val, 49, type);
LLVM_FALLTHROUGH;
case R_AARCH64_MOVW_PREL_G2_NC:
writeSMovWImm(loc, val >> 32);
break;
case R_AARCH64_MOVW_PREL_G3:
writeSMovWImm(loc, val >> 48);
break;
case R_AARCH64_TSTBR14:
checkInt(loc, val, 16, type);
or32le(loc, (val & 0xFFFC) << 3);
break;
case R_AARCH64_TLSLE_ADD_TPREL_HI12:
checkUInt(loc, val, 24, type);
or32AArch64Imm(loc, val >> 12);
break;
case R_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
case R_AARCH64_TLSDESC_ADD_LO12:
or32AArch64Imm(loc, val);
break;
default:
llvm_unreachable("unknown relocation");
}
}
void AArch64::relaxTlsGdToLe(uint8_t *loc, RelType type, uint64_t val) const {
// TLSDESC Global-Dynamic relocation are in the form:
// adrp x0, :tlsdesc:v [R_AARCH64_TLSDESC_ADR_PAGE21]
// ldr x1, [x0, #:tlsdesc_lo12:v [R_AARCH64_TLSDESC_LD64_LO12]
// add x0, x0, :tlsdesc_los:v [R_AARCH64_TLSDESC_ADD_LO12]
// .tlsdesccall [R_AARCH64_TLSDESC_CALL]
// blr x1
// And it can optimized to:
// movz x0, #0x0, lsl #16
// movk x0, #0x10
// nop
// nop
checkUInt(loc, val, 32, type);
switch (type) {
case R_AARCH64_TLSDESC_ADD_LO12:
case R_AARCH64_TLSDESC_CALL:
write32le(loc, 0xd503201f); // nop
return;
case R_AARCH64_TLSDESC_ADR_PAGE21:
write32le(loc, 0xd2a00000 | (((val >> 16) & 0xffff) << 5)); // movz
return;
case R_AARCH64_TLSDESC_LD64_LO12:
write32le(loc, 0xf2800000 | ((val & 0xffff) << 5)); // movk
return;
default:
llvm_unreachable("unsupported relocation for TLS GD to LE relaxation");
}
}
void AArch64::relaxTlsGdToIe(uint8_t *loc, RelType type, uint64_t val) const {
// TLSDESC Global-Dynamic relocation are in the form:
// adrp x0, :tlsdesc:v [R_AARCH64_TLSDESC_ADR_PAGE21]
// ldr x1, [x0, #:tlsdesc_lo12:v [R_AARCH64_TLSDESC_LD64_LO12]
// add x0, x0, :tlsdesc_los:v [R_AARCH64_TLSDESC_ADD_LO12]
// .tlsdesccall [R_AARCH64_TLSDESC_CALL]
// blr x1
// And it can optimized to:
// adrp x0, :gottprel:v
// ldr x0, [x0, :gottprel_lo12:v]
// nop
// nop
switch (type) {
case R_AARCH64_TLSDESC_ADD_LO12:
case R_AARCH64_TLSDESC_CALL:
write32le(loc, 0xd503201f); // nop
break;
case R_AARCH64_TLSDESC_ADR_PAGE21:
write32le(loc, 0x90000000); // adrp
relocateOne(loc, R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21, val);
break;
case R_AARCH64_TLSDESC_LD64_LO12:
write32le(loc, 0xf9400000); // ldr
relocateOne(loc, R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC, val);
break;
default:
llvm_unreachable("unsupported relocation for TLS GD to LE relaxation");
}
}
void AArch64::relaxTlsIeToLe(uint8_t *loc, RelType type, uint64_t val) const {
checkUInt(loc, val, 32, type);
if (type == R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21) {
// Generate MOVZ.
uint32_t regNo = read32le(loc) & 0x1f;
write32le(loc, (0xd2a00000 | regNo) | (((val >> 16) & 0xffff) << 5));
return;
}
if (type == R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC) {
// Generate MOVK.
uint32_t regNo = read32le(loc) & 0x1f;
write32le(loc, (0xf2800000 | regNo) | ((val & 0xffff) << 5));
return;
}
llvm_unreachable("invalid relocation for TLS IE to LE relaxation");
}
// AArch64 may use security features in variant PLT sequences. These are:
// Pointer Authentication (PAC), introduced in armv8.3-a and Branch Target
// Indicator (BTI) introduced in armv8.5-a. The additional instructions used
// in the variant Plt sequences are encoded in the Hint space so they can be
// deployed on older architectures, which treat the instructions as a nop.
// PAC and BTI can be combined leading to the following combinations:
// writePltHeader
// writePltHeaderBti (no PAC Header needed)
// writePlt
// writePltBti (BTI only)
// writePltPac (PAC only)
// writePltBtiPac (BTI and PAC)
//
// When PAC is enabled the dynamic loader encrypts the address that it places
// in the .got.plt using the pacia1716 instruction which encrypts the value in
// x17 using the modifier in x16. The static linker places autia1716 before the
// indirect branch to x17 to authenticate the address in x17 with the modifier
// in x16. This makes it more difficult for an attacker to modify the value in
// the .got.plt.
//
// When BTI is enabled all indirect branches must land on a bti instruction.
// The static linker must place a bti instruction at the start of any PLT entry
// that may be the target of an indirect branch. As the PLT entries call the
// lazy resolver indirectly this must have a bti instruction at start. In
// general a bti instruction is not needed for a PLT entry as indirect calls
// are resolved to the function address and not the PLT entry for the function.
// There are a small number of cases where the PLT address can escape, such as
// taking the address of a function or ifunc via a non got-generating
// relocation, and a shared library refers to that symbol.
//
// We use the bti c variant of the instruction which permits indirect branches
// (br) via x16/x17 and indirect function calls (blr) via any register. The ABI
// guarantees that all indirect branches from code requiring BTI protection
// will go via x16/x17
namespace {
class AArch64BtiPac final : public AArch64 {
public:
AArch64BtiPac();
void writePltHeader(uint8_t *buf) const override;
void writePlt(uint8_t *buf, const Symbol &sym,
uint64_t pltEntryAddr) const override;
private:
bool btiHeader; // bti instruction needed in PLT Header
bool btiEntry; // bti instruction needed in PLT Entry
bool pacEntry; // autia1716 instruction needed in PLT Entry
};
} // namespace
AArch64BtiPac::AArch64BtiPac() {
btiHeader = (config->andFeatures & GNU_PROPERTY_AARCH64_FEATURE_1_BTI);
// A BTI (Branch Target Indicator) Plt Entry is only required if the
// address of the PLT entry can be taken by the program, which permits an
// indirect jump to the PLT entry. This can happen when the address
// of the PLT entry for a function is canonicalised due to the address of
// the function in an executable being taken by a shared library.
// FIXME: There is a potential optimization to omit the BTI if we detect
// that the address of the PLT entry isn't taken.
btiEntry = btiHeader && !config->shared;
pacEntry = (config->andFeatures & GNU_PROPERTY_AARCH64_FEATURE_1_PAC);
if (btiEntry || pacEntry) {
pltEntrySize = 24;
ipltEntrySize = 24;
}
}
void AArch64BtiPac::writePltHeader(uint8_t *buf) const {
const uint8_t btiData[] = { 0x5f, 0x24, 0x03, 0xd5 }; // bti c
const uint8_t pltData[] = {
0xf0, 0x7b, 0xbf, 0xa9, // stp x16, x30, [sp,#-16]!
0x10, 0x00, 0x00, 0x90, // adrp x16, Page(&(.plt.got[2]))
0x11, 0x02, 0x40, 0xf9, // ldr x17, [x16, Offset(&(.plt.got[2]))]
0x10, 0x02, 0x00, 0x91, // add x16, x16, Offset(&(.plt.got[2]))
0x20, 0x02, 0x1f, 0xd6, // br x17
0x1f, 0x20, 0x03, 0xd5, // nop
0x1f, 0x20, 0x03, 0xd5 // nop
};
const uint8_t nopData[] = { 0x1f, 0x20, 0x03, 0xd5 }; // nop
uint64_t got = in.gotPlt->getVA();
uint64_t plt = in.plt->getVA();
if (btiHeader) {
// PltHeader is called indirectly by plt[N]. Prefix pltData with a BTI C
// instruction.
memcpy(buf, btiData, sizeof(btiData));
buf += sizeof(btiData);
plt += sizeof(btiData);
}
memcpy(buf, pltData, sizeof(pltData));
relocateOne(buf + 4, R_AARCH64_ADR_PREL_PG_HI21,
getAArch64Page(got + 16) - getAArch64Page(plt + 8));
relocateOne(buf + 8, R_AARCH64_LDST64_ABS_LO12_NC, got + 16);
relocateOne(buf + 12, R_AARCH64_ADD_ABS_LO12_NC, got + 16);
if (!btiHeader)
// We didn't add the BTI c instruction so round out size with NOP.
memcpy(buf + sizeof(pltData), nopData, sizeof(nopData));
}
void AArch64BtiPac::writePlt(uint8_t *buf, const Symbol &sym,
uint64_t pltEntryAddr) const {
// The PLT entry is of the form:
// [btiData] addrInst (pacBr | stdBr) [nopData]
const uint8_t btiData[] = { 0x5f, 0x24, 0x03, 0xd5 }; // bti c
const uint8_t addrInst[] = {
0x10, 0x00, 0x00, 0x90, // adrp x16, Page(&(.plt.got[n]))
0x11, 0x02, 0x40, 0xf9, // ldr x17, [x16, Offset(&(.plt.got[n]))]
0x10, 0x02, 0x00, 0x91 // add x16, x16, Offset(&(.plt.got[n]))
};
const uint8_t pacBr[] = {
0x9f, 0x21, 0x03, 0xd5, // autia1716
0x20, 0x02, 0x1f, 0xd6 // br x17
};
const uint8_t stdBr[] = {
0x20, 0x02, 0x1f, 0xd6, // br x17
0x1f, 0x20, 0x03, 0xd5 // nop
};
const uint8_t nopData[] = { 0x1f, 0x20, 0x03, 0xd5 }; // nop
if (btiEntry) {
memcpy(buf, btiData, sizeof(btiData));
buf += sizeof(btiData);
pltEntryAddr += sizeof(btiData);
}
uint64_t gotPltEntryAddr = sym.getGotPltVA();
memcpy(buf, addrInst, sizeof(addrInst));
relocateOne(buf, R_AARCH64_ADR_PREL_PG_HI21,
getAArch64Page(gotPltEntryAddr) -
getAArch64Page(pltEntryAddr));
relocateOne(buf + 4, R_AARCH64_LDST64_ABS_LO12_NC, gotPltEntryAddr);
relocateOne(buf + 8, R_AARCH64_ADD_ABS_LO12_NC, gotPltEntryAddr);
if (pacEntry)
memcpy(buf + sizeof(addrInst), pacBr, sizeof(pacBr));
else
memcpy(buf + sizeof(addrInst), stdBr, sizeof(stdBr));
if (!btiEntry)
// We didn't add the BTI c instruction so round out size with NOP.
memcpy(buf + sizeof(addrInst) + sizeof(stdBr), nopData, sizeof(nopData));
}
static TargetInfo *getTargetInfo() {
if (config->andFeatures & (GNU_PROPERTY_AARCH64_FEATURE_1_BTI |
GNU_PROPERTY_AARCH64_FEATURE_1_PAC)) {
static AArch64BtiPac t;
return &t;
}
static AArch64 t;
return &t;
}
TargetInfo *getAArch64TargetInfo() { return getTargetInfo(); }
} // namespace elf
} // namespace lld