MustExecute.cpp 26.6 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712
//===- MustExecute.cpp - Printer for isGuaranteedToExecute ----------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "llvm/Analysis/MustExecute.h"
#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/Analysis/CFG.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/Passes.h"
#include "llvm/Analysis/PostDominators.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/AssemblyAnnotationWriter.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/InstIterator.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Module.h"
#include "llvm/InitializePasses.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/FormattedStream.h"
#include "llvm/Support/raw_ostream.h"

using namespace llvm;

#define DEBUG_TYPE "must-execute"

const DenseMap<BasicBlock *, ColorVector> &
LoopSafetyInfo::getBlockColors() const {
  return BlockColors;
}

void LoopSafetyInfo::copyColors(BasicBlock *New, BasicBlock *Old) {
  ColorVector &ColorsForNewBlock = BlockColors[New];
  ColorVector &ColorsForOldBlock = BlockColors[Old];
  ColorsForNewBlock = ColorsForOldBlock;
}

bool SimpleLoopSafetyInfo::blockMayThrow(const BasicBlock *BB) const {
  (void)BB;
  return anyBlockMayThrow();
}

bool SimpleLoopSafetyInfo::anyBlockMayThrow() const {
  return MayThrow;
}

void SimpleLoopSafetyInfo::computeLoopSafetyInfo(const Loop *CurLoop) {
  assert(CurLoop != nullptr && "CurLoop can't be null");
  BasicBlock *Header = CurLoop->getHeader();
  // Iterate over header and compute safety info.
  HeaderMayThrow = !isGuaranteedToTransferExecutionToSuccessor(Header);
  MayThrow = HeaderMayThrow;
  // Iterate over loop instructions and compute safety info.
  // Skip header as it has been computed and stored in HeaderMayThrow.
  // The first block in loopinfo.Blocks is guaranteed to be the header.
  assert(Header == *CurLoop->getBlocks().begin() &&
         "First block must be header");
  for (Loop::block_iterator BB = std::next(CurLoop->block_begin()),
                            BBE = CurLoop->block_end();
       (BB != BBE) && !MayThrow; ++BB)
    MayThrow |= !isGuaranteedToTransferExecutionToSuccessor(*BB);

  computeBlockColors(CurLoop);
}

bool ICFLoopSafetyInfo::blockMayThrow(const BasicBlock *BB) const {
  return ICF.hasICF(BB);
}

bool ICFLoopSafetyInfo::anyBlockMayThrow() const {
  return MayThrow;
}

void ICFLoopSafetyInfo::computeLoopSafetyInfo(const Loop *CurLoop) {
  assert(CurLoop != nullptr && "CurLoop can't be null");
  ICF.clear();
  MW.clear();
  MayThrow = false;
  // Figure out the fact that at least one block may throw.
  for (auto &BB : CurLoop->blocks())
    if (ICF.hasICF(&*BB)) {
      MayThrow = true;
      break;
    }
  computeBlockColors(CurLoop);
}

void ICFLoopSafetyInfo::insertInstructionTo(const Instruction *Inst,
                                            const BasicBlock *BB) {
  ICF.insertInstructionTo(Inst, BB);
  MW.insertInstructionTo(Inst, BB);
}

void ICFLoopSafetyInfo::removeInstruction(const Instruction *Inst) {
  ICF.removeInstruction(Inst);
  MW.removeInstruction(Inst);
}

void LoopSafetyInfo::computeBlockColors(const Loop *CurLoop) {
  // Compute funclet colors if we might sink/hoist in a function with a funclet
  // personality routine.
  Function *Fn = CurLoop->getHeader()->getParent();
  if (Fn->hasPersonalityFn())
    if (Constant *PersonalityFn = Fn->getPersonalityFn())
      if (isScopedEHPersonality(classifyEHPersonality(PersonalityFn)))
        BlockColors = colorEHFunclets(*Fn);
}

/// Return true if we can prove that the given ExitBlock is not reached on the
/// first iteration of the given loop.  That is, the backedge of the loop must
/// be executed before the ExitBlock is executed in any dynamic execution trace.
static bool CanProveNotTakenFirstIteration(const BasicBlock *ExitBlock,
                                           const DominatorTree *DT,
                                           const Loop *CurLoop) {
  auto *CondExitBlock = ExitBlock->getSinglePredecessor();
  if (!CondExitBlock)
    // expect unique exits
    return false;
  assert(CurLoop->contains(CondExitBlock) && "meaning of exit block");
  auto *BI = dyn_cast<BranchInst>(CondExitBlock->getTerminator());
  if (!BI || !BI->isConditional())
    return false;
  // If condition is constant and false leads to ExitBlock then we always
  // execute the true branch.
  if (auto *Cond = dyn_cast<ConstantInt>(BI->getCondition()))
    return BI->getSuccessor(Cond->getZExtValue() ? 1 : 0) == ExitBlock;
  auto *Cond = dyn_cast<CmpInst>(BI->getCondition());
  if (!Cond)
    return false;
  // todo: this would be a lot more powerful if we used scev, but all the
  // plumbing is currently missing to pass a pointer in from the pass
  // Check for cmp (phi [x, preheader] ...), y where (pred x, y is known
  auto *LHS = dyn_cast<PHINode>(Cond->getOperand(0));
  auto *RHS = Cond->getOperand(1);
  if (!LHS || LHS->getParent() != CurLoop->getHeader())
    return false;
  auto DL = ExitBlock->getModule()->getDataLayout();
  auto *IVStart = LHS->getIncomingValueForBlock(CurLoop->getLoopPreheader());
  auto *SimpleValOrNull = SimplifyCmpInst(Cond->getPredicate(),
                                          IVStart, RHS,
                                          {DL, /*TLI*/ nullptr,
                                              DT, /*AC*/ nullptr, BI});
  auto *SimpleCst = dyn_cast_or_null<Constant>(SimpleValOrNull);
  if (!SimpleCst)
    return false;
  if (ExitBlock == BI->getSuccessor(0))
    return SimpleCst->isZeroValue();
  assert(ExitBlock == BI->getSuccessor(1) && "implied by above");
  return SimpleCst->isAllOnesValue();
}

/// Collect all blocks from \p CurLoop which lie on all possible paths from
/// the header of \p CurLoop (inclusive) to BB (exclusive) into the set
/// \p Predecessors. If \p BB is the header, \p Predecessors will be empty.
static void collectTransitivePredecessors(
    const Loop *CurLoop, const BasicBlock *BB,
    SmallPtrSetImpl<const BasicBlock *> &Predecessors) {
  assert(Predecessors.empty() && "Garbage in predecessors set?");
  assert(CurLoop->contains(BB) && "Should only be called for loop blocks!");
  if (BB == CurLoop->getHeader())
    return;
  SmallVector<const BasicBlock *, 4> WorkList;
  for (auto *Pred : predecessors(BB)) {
    Predecessors.insert(Pred);
    WorkList.push_back(Pred);
  }
  while (!WorkList.empty()) {
    auto *Pred = WorkList.pop_back_val();
    assert(CurLoop->contains(Pred) && "Should only reach loop blocks!");
    // We are not interested in backedges and we don't want to leave loop.
    if (Pred == CurLoop->getHeader())
      continue;
    // TODO: If BB lies in an inner loop of CurLoop, this will traverse over all
    // blocks of this inner loop, even those that are always executed AFTER the
    // BB. It may make our analysis more conservative than it could be, see test
    // @nested and @nested_no_throw in test/Analysis/MustExecute/loop-header.ll.
    // We can ignore backedge of all loops containing BB to get a sligtly more
    // optimistic result.
    for (auto *PredPred : predecessors(Pred))
      if (Predecessors.insert(PredPred).second)
        WorkList.push_back(PredPred);
  }
}

bool LoopSafetyInfo::allLoopPathsLeadToBlock(const Loop *CurLoop,
                                             const BasicBlock *BB,
                                             const DominatorTree *DT) const {
  assert(CurLoop->contains(BB) && "Should only be called for loop blocks!");

  // Fast path: header is always reached once the loop is entered.
  if (BB == CurLoop->getHeader())
    return true;

  // Collect all transitive predecessors of BB in the same loop. This set will
  // be a subset of the blocks within the loop.
  SmallPtrSet<const BasicBlock *, 4> Predecessors;
  collectTransitivePredecessors(CurLoop, BB, Predecessors);

  // Make sure that all successors of, all predecessors of BB which are not
  // dominated by BB, are either:
  // 1) BB,
  // 2) Also predecessors of BB,
  // 3) Exit blocks which are not taken on 1st iteration.
  // Memoize blocks we've already checked.
  SmallPtrSet<const BasicBlock *, 4> CheckedSuccessors;
  for (auto *Pred : Predecessors) {
    // Predecessor block may throw, so it has a side exit.
    if (blockMayThrow(Pred))
      return false;

    // BB dominates Pred, so if Pred runs, BB must run.
    // This is true when Pred is a loop latch.
    if (DT->dominates(BB, Pred))
      continue;

    for (auto *Succ : successors(Pred))
      if (CheckedSuccessors.insert(Succ).second &&
          Succ != BB && !Predecessors.count(Succ))
        // By discharging conditions that are not executed on the 1st iteration,
        // we guarantee that *at least* on the first iteration all paths from
        // header that *may* execute will lead us to the block of interest. So
        // that if we had virtually peeled one iteration away, in this peeled
        // iteration the set of predecessors would contain only paths from
        // header to BB without any exiting edges that may execute.
        //
        // TODO: We only do it for exiting edges currently. We could use the
        // same function to skip some of the edges within the loop if we know
        // that they will not be taken on the 1st iteration.
        //
        // TODO: If we somehow know the number of iterations in loop, the same
        // check may be done for any arbitrary N-th iteration as long as N is
        // not greater than minimum number of iterations in this loop.
        if (CurLoop->contains(Succ) ||
            !CanProveNotTakenFirstIteration(Succ, DT, CurLoop))
          return false;
  }

  // All predecessors can only lead us to BB.
  return true;
}

/// Returns true if the instruction in a loop is guaranteed to execute at least
/// once.
bool SimpleLoopSafetyInfo::isGuaranteedToExecute(const Instruction &Inst,
                                                 const DominatorTree *DT,
                                                 const Loop *CurLoop) const {
  // If the instruction is in the header block for the loop (which is very
  // common), it is always guaranteed to dominate the exit blocks.  Since this
  // is a common case, and can save some work, check it now.
  if (Inst.getParent() == CurLoop->getHeader())
    // If there's a throw in the header block, we can't guarantee we'll reach
    // Inst unless we can prove that Inst comes before the potential implicit
    // exit.  At the moment, we use a (cheap) hack for the common case where
    // the instruction of interest is the first one in the block.
    return !HeaderMayThrow ||
           Inst.getParent()->getFirstNonPHIOrDbg() == &Inst;

  // If there is a path from header to exit or latch that doesn't lead to our
  // instruction's block, return false.
  return allLoopPathsLeadToBlock(CurLoop, Inst.getParent(), DT);
}

bool ICFLoopSafetyInfo::isGuaranteedToExecute(const Instruction &Inst,
                                              const DominatorTree *DT,
                                              const Loop *CurLoop) const {
  return !ICF.isDominatedByICFIFromSameBlock(&Inst) &&
         allLoopPathsLeadToBlock(CurLoop, Inst.getParent(), DT);
}

bool ICFLoopSafetyInfo::doesNotWriteMemoryBefore(const BasicBlock *BB,
                                                 const Loop *CurLoop) const {
  assert(CurLoop->contains(BB) && "Should only be called for loop blocks!");

  // Fast path: there are no instructions before header.
  if (BB == CurLoop->getHeader())
    return true;

  // Collect all transitive predecessors of BB in the same loop. This set will
  // be a subset of the blocks within the loop.
  SmallPtrSet<const BasicBlock *, 4> Predecessors;
  collectTransitivePredecessors(CurLoop, BB, Predecessors);
  // Find if there any instruction in either predecessor that could write
  // to memory.
  for (auto *Pred : Predecessors)
    if (MW.mayWriteToMemory(Pred))
      return false;
  return true;
}

bool ICFLoopSafetyInfo::doesNotWriteMemoryBefore(const Instruction &I,
                                                 const Loop *CurLoop) const {
  auto *BB = I.getParent();
  assert(CurLoop->contains(BB) && "Should only be called for loop blocks!");
  return !MW.isDominatedByMemoryWriteFromSameBlock(&I) &&
         doesNotWriteMemoryBefore(BB, CurLoop);
}

namespace {
  struct MustExecutePrinter : public FunctionPass {

    static char ID; // Pass identification, replacement for typeid
    MustExecutePrinter() : FunctionPass(ID) {
      initializeMustExecutePrinterPass(*PassRegistry::getPassRegistry());
    }
    void getAnalysisUsage(AnalysisUsage &AU) const override {
      AU.setPreservesAll();
      AU.addRequired<DominatorTreeWrapperPass>();
      AU.addRequired<LoopInfoWrapperPass>();
    }
    bool runOnFunction(Function &F) override;
  };
  struct MustBeExecutedContextPrinter : public ModulePass {
    static char ID;

    MustBeExecutedContextPrinter() : ModulePass(ID) {
      initializeMustBeExecutedContextPrinterPass(*PassRegistry::getPassRegistry());
    }
    void getAnalysisUsage(AnalysisUsage &AU) const override {
      AU.setPreservesAll();
    }
    bool runOnModule(Module &M) override;
  };
}

char MustExecutePrinter::ID = 0;
INITIALIZE_PASS_BEGIN(MustExecutePrinter, "print-mustexecute",
                      "Instructions which execute on loop entry", false, true)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
INITIALIZE_PASS_END(MustExecutePrinter, "print-mustexecute",
                    "Instructions which execute on loop entry", false, true)

FunctionPass *llvm::createMustExecutePrinter() {
  return new MustExecutePrinter();
}

char MustBeExecutedContextPrinter::ID = 0;
INITIALIZE_PASS_BEGIN(
    MustBeExecutedContextPrinter, "print-must-be-executed-contexts",
    "print the must-be-executed-contexed for all instructions", false, true)
INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
INITIALIZE_PASS_END(MustBeExecutedContextPrinter,
                    "print-must-be-executed-contexts",
                    "print the must-be-executed-contexed for all instructions",
                    false, true)

ModulePass *llvm::createMustBeExecutedContextPrinter() {
  return new MustBeExecutedContextPrinter();
}

bool MustBeExecutedContextPrinter::runOnModule(Module &M) {
  // We provide non-PM analysis here because the old PM doesn't like to query
  // function passes from a module pass.
  SmallVector<PostDominatorTree *, 8> PDTs;
  SmallVector<DominatorTree *, 8> DTs;
  SmallVector<LoopInfo *, 8> LIs;

  GetterTy<LoopInfo> LIGetter = [&](const Function &F) {
    DominatorTree *DT = new DominatorTree(const_cast<Function &>(F));
    LoopInfo *LI = new LoopInfo(*DT);
    DTs.push_back(DT);
    LIs.push_back(LI);
    return LI;
  };
  GetterTy<PostDominatorTree> PDTGetter = [&](const Function &F) {
    PostDominatorTree *PDT = new PostDominatorTree(const_cast<Function &>(F));
    PDTs.push_back(PDT);
    return PDT;
  };
  MustBeExecutedContextExplorer Explorer(true, LIGetter, PDTGetter);
  for (Function &F : M) {
    for (Instruction &I : instructions(F)) {
      dbgs() << "-- Explore context of: " << I << "\n";
      for (const Instruction *CI : Explorer.range(&I))
        dbgs() << "  [F: " << CI->getFunction()->getName() << "] " << *CI
               << "\n";
    }
  }

  DeleteContainerPointers(PDTs);
  DeleteContainerPointers(LIs);
  DeleteContainerPointers(DTs);
  return false;
}

static bool isMustExecuteIn(const Instruction &I, Loop *L, DominatorTree *DT) {
  // TODO: merge these two routines.  For the moment, we display the best
  // result obtained by *either* implementation.  This is a bit unfair since no
  // caller actually gets the full power at the moment.
  SimpleLoopSafetyInfo LSI;
  LSI.computeLoopSafetyInfo(L);
  return LSI.isGuaranteedToExecute(I, DT, L) ||
    isGuaranteedToExecuteForEveryIteration(&I, L);
}

namespace {
/// An assembly annotator class to print must execute information in
/// comments.
class MustExecuteAnnotatedWriter : public AssemblyAnnotationWriter {
  DenseMap<const Value*, SmallVector<Loop*, 4> > MustExec;

public:
  MustExecuteAnnotatedWriter(const Function &F,
                             DominatorTree &DT, LoopInfo &LI) {
    for (auto &I: instructions(F)) {
      Loop *L = LI.getLoopFor(I.getParent());
      while (L) {
        if (isMustExecuteIn(I, L, &DT)) {
          MustExec[&I].push_back(L);
        }
        L = L->getParentLoop();
      };
    }
  }
  MustExecuteAnnotatedWriter(const Module &M,
                             DominatorTree &DT, LoopInfo &LI) {
    for (auto &F : M)
    for (auto &I: instructions(F)) {
      Loop *L = LI.getLoopFor(I.getParent());
      while (L) {
        if (isMustExecuteIn(I, L, &DT)) {
          MustExec[&I].push_back(L);
        }
        L = L->getParentLoop();
      };
    }
  }


  void printInfoComment(const Value &V, formatted_raw_ostream &OS) override {
    if (!MustExec.count(&V))
      return;

    const auto &Loops = MustExec.lookup(&V);
    const auto NumLoops = Loops.size();
    if (NumLoops > 1)
      OS << " ; (mustexec in " << NumLoops << " loops: ";
    else
      OS << " ; (mustexec in: ";

    bool first = true;
    for (const Loop *L : Loops) {
      if (!first)
        OS << ", ";
      first = false;
      OS << L->getHeader()->getName();
    }
    OS << ")";
  }
};
} // namespace

bool MustExecutePrinter::runOnFunction(Function &F) {
  auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
  auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();

  MustExecuteAnnotatedWriter Writer(F, DT, LI);
  F.print(dbgs(), &Writer);

  return false;
}

/// Return true if \p L might be an endless loop.
static bool maybeEndlessLoop(const Loop &L) {
  if (L.getHeader()->getParent()->hasFnAttribute(Attribute::WillReturn))
    return false;
  // TODO: Actually try to prove it is not.
  // TODO: If maybeEndlessLoop is going to be expensive, cache it.
  return true;
}

static bool mayContainIrreducibleControl(const Function &F, const LoopInfo *LI) {
  if (!LI)
    return false;
  using RPOTraversal = ReversePostOrderTraversal<const Function *>;
  RPOTraversal FuncRPOT(&F);
  return !containsIrreducibleCFG<const BasicBlock *, const RPOTraversal,
                                 const LoopInfo>(FuncRPOT, *LI);
}

/// Lookup \p Key in \p Map and return the result, potentially after
/// initializing the optional through \p Fn(\p args).
template <typename K, typename V, typename FnTy, typename... ArgsTy>
static V getOrCreateCachedOptional(K Key, DenseMap<K, Optional<V>> &Map,
                                   FnTy &&Fn, ArgsTy&&... args) {
  Optional<V> &OptVal = Map[Key];
  if (!OptVal.hasValue())
    OptVal = Fn(std::forward<ArgsTy>(args)...);
  return OptVal.getValue();
}

const BasicBlock *
MustBeExecutedContextExplorer::findForwardJoinPoint(const BasicBlock *InitBB) {
  const LoopInfo *LI = LIGetter(*InitBB->getParent());
  const PostDominatorTree *PDT = PDTGetter(*InitBB->getParent());

  LLVM_DEBUG(dbgs() << "\tFind forward join point for " << InitBB->getName()
                    << (LI ? " [LI]" : "") << (PDT ? " [PDT]" : ""));

  const Function &F = *InitBB->getParent();
  const Loop *L = LI ? LI->getLoopFor(InitBB) : nullptr;
  const BasicBlock *HeaderBB = L ? L->getHeader() : InitBB;
  bool WillReturnAndNoThrow = (F.hasFnAttribute(Attribute::WillReturn) ||
                               (L && !maybeEndlessLoop(*L))) &&
                              F.doesNotThrow();
  LLVM_DEBUG(dbgs() << (L ? " [in loop]" : "")
                    << (WillReturnAndNoThrow ? " [WillReturn] [NoUnwind]" : "")
                    << "\n");

  // Determine the adjacent blocks in the given direction but exclude (self)
  // loops under certain circumstances.
  SmallVector<const BasicBlock *, 8> Worklist;
  for (const BasicBlock *SuccBB : successors(InitBB)) {
    bool IsLatch = SuccBB == HeaderBB;
    // Loop latches are ignored in forward propagation if the loop cannot be
    // endless and may not throw: control has to go somewhere.
    if (!WillReturnAndNoThrow || !IsLatch)
      Worklist.push_back(SuccBB);
  }
  LLVM_DEBUG(dbgs() << "\t\t#Worklist: " << Worklist.size() << "\n");

  // If there are no other adjacent blocks, there is no join point.
  if (Worklist.empty())
    return nullptr;

  // If there is one adjacent block, it is the join point.
  if (Worklist.size() == 1)
    return Worklist[0];

  // Try to determine a join block through the help of the post-dominance
  // tree. If no tree was provided, we perform simple pattern matching for one
  // block conditionals and one block loops only.
  const BasicBlock *JoinBB = nullptr;
  if (PDT)
    if (const auto *InitNode = PDT->getNode(InitBB))
      if (const auto *IDomNode = InitNode->getIDom())
        JoinBB = IDomNode->getBlock();

  if (!JoinBB && Worklist.size() == 2) {
    const BasicBlock *Succ0 = Worklist[0];
    const BasicBlock *Succ1 = Worklist[1];
    const BasicBlock *Succ0UniqueSucc = Succ0->getUniqueSuccessor();
    const BasicBlock *Succ1UniqueSucc = Succ1->getUniqueSuccessor();
    if (Succ0UniqueSucc == InitBB) {
      // InitBB -> Succ0 -> InitBB
      // InitBB -> Succ1  = JoinBB
      JoinBB = Succ1;
    } else if (Succ1UniqueSucc == InitBB) {
      // InitBB -> Succ1 -> InitBB
      // InitBB -> Succ0  = JoinBB
      JoinBB = Succ0;
    } else if (Succ0 == Succ1UniqueSucc) {
      // InitBB ->          Succ0 = JoinBB
      // InitBB -> Succ1 -> Succ0 = JoinBB
      JoinBB = Succ0;
    } else if (Succ1 == Succ0UniqueSucc) {
      // InitBB -> Succ0 -> Succ1 = JoinBB
      // InitBB ->          Succ1 = JoinBB
      JoinBB = Succ1;
    } else if (Succ0UniqueSucc == Succ1UniqueSucc) {
      // InitBB -> Succ0 -> JoinBB
      // InitBB -> Succ1 -> JoinBB
      JoinBB = Succ0UniqueSucc;
    }
  }

  if (!JoinBB && L)
    JoinBB = L->getUniqueExitBlock();

  if (!JoinBB)
    return nullptr;

  LLVM_DEBUG(dbgs() << "\t\tJoin block candidate: " << JoinBB->getName() << "\n");

  // In forward direction we check if control will for sure reach JoinBB from
  // InitBB, thus it can not be "stopped" along the way. Ways to "stop" control
  // are: infinite loops and instructions that do not necessarily transfer
  // execution to their successor. To check for them we traverse the CFG from
  // the adjacent blocks to the JoinBB, looking at all intermediate blocks.

  // If we know the function is "will-return" and "no-throw" there is no need
  // for futher checks.
  if (!F.hasFnAttribute(Attribute::WillReturn) || !F.doesNotThrow()) {

    auto BlockTransfersExecutionToSuccessor = [](const BasicBlock *BB) {
      return isGuaranteedToTransferExecutionToSuccessor(BB);
    };

    SmallPtrSet<const BasicBlock *, 16> Visited;
    while (!Worklist.empty()) {
      const BasicBlock *ToBB = Worklist.pop_back_val();
      if (ToBB == JoinBB)
        continue;

      // Make sure all loops in-between are finite.
      if (!Visited.insert(ToBB).second) {
        if (!F.hasFnAttribute(Attribute::WillReturn)) {
          if (!LI)
            return nullptr;

          bool MayContainIrreducibleControl = getOrCreateCachedOptional(
              &F, IrreducibleControlMap, mayContainIrreducibleControl, F, LI);
          if (MayContainIrreducibleControl)
            return nullptr;

          const Loop *L = LI->getLoopFor(ToBB);
          if (L && maybeEndlessLoop(*L))
            return nullptr;
        }

        continue;
      }

      // Make sure the block has no instructions that could stop control
      // transfer.
      bool TransfersExecution = getOrCreateCachedOptional(
          ToBB, BlockTransferMap, BlockTransfersExecutionToSuccessor, ToBB);
      if (!TransfersExecution)
        return nullptr;

      for (const BasicBlock *AdjacentBB : successors(ToBB))
        Worklist.push_back(AdjacentBB);
    }
  }

  LLVM_DEBUG(dbgs() << "\tJoin block: " << JoinBB->getName() << "\n");
  return JoinBB;
}

const Instruction *
MustBeExecutedContextExplorer::getMustBeExecutedNextInstruction(
    MustBeExecutedIterator &It, const Instruction *PP) {
  if (!PP)
    return PP;
  LLVM_DEBUG(dbgs() << "Find next instruction for " << *PP << "\n");

  // If we explore only inside a given basic block we stop at terminators.
  if (!ExploreInterBlock && PP->isTerminator()) {
    LLVM_DEBUG(dbgs() << "\tReached terminator in intra-block mode, done\n");
    return nullptr;
  }

  // If we do not traverse the call graph we check if we can make progress in
  // the current function. First, check if the instruction is guaranteed to
  // transfer execution to the successor.
  bool TransfersExecution = isGuaranteedToTransferExecutionToSuccessor(PP);
  if (!TransfersExecution)
    return nullptr;

  // If this is not a terminator we know that there is a single instruction
  // after this one that is executed next if control is transfered. If not,
  // we can try to go back to a call site we entered earlier. If none exists, we
  // do not know any instruction that has to be executd next.
  if (!PP->isTerminator()) {
    const Instruction *NextPP = PP->getNextNode();
    LLVM_DEBUG(dbgs() << "\tIntermediate instruction does transfer control\n");
    return NextPP;
  }

  // Finally, we have to handle terminators, trivial ones first.
  assert(PP->isTerminator() && "Expected a terminator!");

  // A terminator without a successor is not handled yet.
  if (PP->getNumSuccessors() == 0) {
    LLVM_DEBUG(dbgs() << "\tUnhandled terminator\n");
    return nullptr;
  }

  // A terminator with a single successor, we will continue at the beginning of
  // that one.
  if (PP->getNumSuccessors() == 1) {
    LLVM_DEBUG(
        dbgs() << "\tUnconditional terminator, continue with successor\n");
    return &PP->getSuccessor(0)->front();
  }

  // Multiple successors mean we need to find the join point where control flow
  // converges again. We use the findForwardJoinPoint helper function with
  // information about the function and helper analyses, if available.
  if (const BasicBlock *JoinBB = findForwardJoinPoint(PP->getParent()))
    return &JoinBB->front();

  LLVM_DEBUG(dbgs() << "\tNo join point found\n");
  return nullptr;
}

MustBeExecutedIterator::MustBeExecutedIterator(
    MustBeExecutedContextExplorer &Explorer, const Instruction *I)
    : Explorer(Explorer), CurInst(I) {
  reset(I);
}

void MustBeExecutedIterator::reset(const Instruction *I) {
  CurInst = I;
  Visited.clear();
  Visited.insert(I);
}

const Instruction *MustBeExecutedIterator::advance() {
  assert(CurInst && "Cannot advance an end iterator!");
  const Instruction *Next =
      Explorer.getMustBeExecutedNextInstruction(*this, CurInst);
  if (Next && !Visited.insert(Next).second)
    Next = nullptr;
  return Next;
}