APInt.cpp 98.1 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114
//===-- APInt.cpp - Implement APInt class ---------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements a class to represent arbitrary precision integer
// constant values and provide a variety of arithmetic operations on them.
//
//===----------------------------------------------------------------------===//

#include "llvm/ADT/APInt.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/FoldingSet.h"
#include "llvm/ADT/Hashing.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/bit.h"
#include "llvm/Config/llvm-config.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include <climits>
#include <cmath>
#include <cstdlib>
#include <cstring>
using namespace llvm;

#define DEBUG_TYPE "apint"

/// A utility function for allocating memory, checking for allocation failures,
/// and ensuring the contents are zeroed.
inline static uint64_t* getClearedMemory(unsigned numWords) {
  uint64_t *result = new uint64_t[numWords];
  memset(result, 0, numWords * sizeof(uint64_t));
  return result;
}

/// A utility function for allocating memory and checking for allocation
/// failure.  The content is not zeroed.
inline static uint64_t* getMemory(unsigned numWords) {
  return new uint64_t[numWords];
}

/// A utility function that converts a character to a digit.
inline static unsigned getDigit(char cdigit, uint8_t radix) {
  unsigned r;

  if (radix == 16 || radix == 36) {
    r = cdigit - '0';
    if (r <= 9)
      return r;

    r = cdigit - 'A';
    if (r <= radix - 11U)
      return r + 10;

    r = cdigit - 'a';
    if (r <= radix - 11U)
      return r + 10;

    radix = 10;
  }

  r = cdigit - '0';
  if (r < radix)
    return r;

  return -1U;
}


void APInt::initSlowCase(uint64_t val, bool isSigned) {
  U.pVal = getClearedMemory(getNumWords());
  U.pVal[0] = val;
  if (isSigned && int64_t(val) < 0)
    for (unsigned i = 1; i < getNumWords(); ++i)
      U.pVal[i] = WORDTYPE_MAX;
  clearUnusedBits();
}

void APInt::initSlowCase(const APInt& that) {
  U.pVal = getMemory(getNumWords());
  memcpy(U.pVal, that.U.pVal, getNumWords() * APINT_WORD_SIZE);
}

void APInt::initFromArray(ArrayRef<uint64_t> bigVal) {
  assert(BitWidth && "Bitwidth too small");
  assert(bigVal.data() && "Null pointer detected!");
  if (isSingleWord())
    U.VAL = bigVal[0];
  else {
    // Get memory, cleared to 0
    U.pVal = getClearedMemory(getNumWords());
    // Calculate the number of words to copy
    unsigned words = std::min<unsigned>(bigVal.size(), getNumWords());
    // Copy the words from bigVal to pVal
    memcpy(U.pVal, bigVal.data(), words * APINT_WORD_SIZE);
  }
  // Make sure unused high bits are cleared
  clearUnusedBits();
}

APInt::APInt(unsigned numBits, ArrayRef<uint64_t> bigVal)
  : BitWidth(numBits) {
  initFromArray(bigVal);
}

APInt::APInt(unsigned numBits, unsigned numWords, const uint64_t bigVal[])
  : BitWidth(numBits) {
  initFromArray(makeArrayRef(bigVal, numWords));
}

APInt::APInt(unsigned numbits, StringRef Str, uint8_t radix)
  : BitWidth(numbits) {
  assert(BitWidth && "Bitwidth too small");
  fromString(numbits, Str, radix);
}

void APInt::reallocate(unsigned NewBitWidth) {
  // If the number of words is the same we can just change the width and stop.
  if (getNumWords() == getNumWords(NewBitWidth)) {
    BitWidth = NewBitWidth;
    return;
  }

  // If we have an allocation, delete it.
  if (!isSingleWord())
    delete [] U.pVal;

  // Update BitWidth.
  BitWidth = NewBitWidth;

  // If we are supposed to have an allocation, create it.
  if (!isSingleWord())
    U.pVal = getMemory(getNumWords());
}

void APInt::AssignSlowCase(const APInt& RHS) {
  // Don't do anything for X = X
  if (this == &RHS)
    return;

  // Adjust the bit width and handle allocations as necessary.
  reallocate(RHS.getBitWidth());

  // Copy the data.
  if (isSingleWord())
    U.VAL = RHS.U.VAL;
  else
    memcpy(U.pVal, RHS.U.pVal, getNumWords() * APINT_WORD_SIZE);
}

/// This method 'profiles' an APInt for use with FoldingSet.
void APInt::Profile(FoldingSetNodeID& ID) const {
  ID.AddInteger(BitWidth);

  if (isSingleWord()) {
    ID.AddInteger(U.VAL);
    return;
  }

  unsigned NumWords = getNumWords();
  for (unsigned i = 0; i < NumWords; ++i)
    ID.AddInteger(U.pVal[i]);
}

/// Prefix increment operator. Increments the APInt by one.
APInt& APInt::operator++() {
  if (isSingleWord())
    ++U.VAL;
  else
    tcIncrement(U.pVal, getNumWords());
  return clearUnusedBits();
}

/// Prefix decrement operator. Decrements the APInt by one.
APInt& APInt::operator--() {
  if (isSingleWord())
    --U.VAL;
  else
    tcDecrement(U.pVal, getNumWords());
  return clearUnusedBits();
}

/// Adds the RHS APInt to this APInt.
/// @returns this, after addition of RHS.
/// Addition assignment operator.
APInt& APInt::operator+=(const APInt& RHS) {
  assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
  if (isSingleWord())
    U.VAL += RHS.U.VAL;
  else
    tcAdd(U.pVal, RHS.U.pVal, 0, getNumWords());
  return clearUnusedBits();
}

APInt& APInt::operator+=(uint64_t RHS) {
  if (isSingleWord())
    U.VAL += RHS;
  else
    tcAddPart(U.pVal, RHS, getNumWords());
  return clearUnusedBits();
}

/// Subtracts the RHS APInt from this APInt
/// @returns this, after subtraction
/// Subtraction assignment operator.
APInt& APInt::operator-=(const APInt& RHS) {
  assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
  if (isSingleWord())
    U.VAL -= RHS.U.VAL;
  else
    tcSubtract(U.pVal, RHS.U.pVal, 0, getNumWords());
  return clearUnusedBits();
}

APInt& APInt::operator-=(uint64_t RHS) {
  if (isSingleWord())
    U.VAL -= RHS;
  else
    tcSubtractPart(U.pVal, RHS, getNumWords());
  return clearUnusedBits();
}

APInt APInt::operator*(const APInt& RHS) const {
  assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
  if (isSingleWord())
    return APInt(BitWidth, U.VAL * RHS.U.VAL);

  APInt Result(getMemory(getNumWords()), getBitWidth());

  tcMultiply(Result.U.pVal, U.pVal, RHS.U.pVal, getNumWords());

  Result.clearUnusedBits();
  return Result;
}

void APInt::AndAssignSlowCase(const APInt& RHS) {
  tcAnd(U.pVal, RHS.U.pVal, getNumWords());
}

void APInt::OrAssignSlowCase(const APInt& RHS) {
  tcOr(U.pVal, RHS.U.pVal, getNumWords());
}

void APInt::XorAssignSlowCase(const APInt& RHS) {
  tcXor(U.pVal, RHS.U.pVal, getNumWords());
}

APInt& APInt::operator*=(const APInt& RHS) {
  assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
  *this = *this * RHS;
  return *this;
}

APInt& APInt::operator*=(uint64_t RHS) {
  if (isSingleWord()) {
    U.VAL *= RHS;
  } else {
    unsigned NumWords = getNumWords();
    tcMultiplyPart(U.pVal, U.pVal, RHS, 0, NumWords, NumWords, false);
  }
  return clearUnusedBits();
}

bool APInt::EqualSlowCase(const APInt& RHS) const {
  return std::equal(U.pVal, U.pVal + getNumWords(), RHS.U.pVal);
}

int APInt::compare(const APInt& RHS) const {
  assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison");
  if (isSingleWord())
    return U.VAL < RHS.U.VAL ? -1 : U.VAL > RHS.U.VAL;

  return tcCompare(U.pVal, RHS.U.pVal, getNumWords());
}

int APInt::compareSigned(const APInt& RHS) const {
  assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison");
  if (isSingleWord()) {
    int64_t lhsSext = SignExtend64(U.VAL, BitWidth);
    int64_t rhsSext = SignExtend64(RHS.U.VAL, BitWidth);
    return lhsSext < rhsSext ? -1 : lhsSext > rhsSext;
  }

  bool lhsNeg = isNegative();
  bool rhsNeg = RHS.isNegative();

  // If the sign bits don't match, then (LHS < RHS) if LHS is negative
  if (lhsNeg != rhsNeg)
    return lhsNeg ? -1 : 1;

  // Otherwise we can just use an unsigned comparison, because even negative
  // numbers compare correctly this way if both have the same signed-ness.
  return tcCompare(U.pVal, RHS.U.pVal, getNumWords());
}

void APInt::setBitsSlowCase(unsigned loBit, unsigned hiBit) {
  unsigned loWord = whichWord(loBit);
  unsigned hiWord = whichWord(hiBit);

  // Create an initial mask for the low word with zeros below loBit.
  uint64_t loMask = WORDTYPE_MAX << whichBit(loBit);

  // If hiBit is not aligned, we need a high mask.
  unsigned hiShiftAmt = whichBit(hiBit);
  if (hiShiftAmt != 0) {
    // Create a high mask with zeros above hiBit.
    uint64_t hiMask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - hiShiftAmt);
    // If loWord and hiWord are equal, then we combine the masks. Otherwise,
    // set the bits in hiWord.
    if (hiWord == loWord)
      loMask &= hiMask;
    else
      U.pVal[hiWord] |= hiMask;
  }
  // Apply the mask to the low word.
  U.pVal[loWord] |= loMask;

  // Fill any words between loWord and hiWord with all ones.
  for (unsigned word = loWord + 1; word < hiWord; ++word)
    U.pVal[word] = WORDTYPE_MAX;
}

/// Toggle every bit to its opposite value.
void APInt::flipAllBitsSlowCase() {
  tcComplement(U.pVal, getNumWords());
  clearUnusedBits();
}

/// Toggle a given bit to its opposite value whose position is given
/// as "bitPosition".
/// Toggles a given bit to its opposite value.
void APInt::flipBit(unsigned bitPosition) {
  assert(bitPosition < BitWidth && "Out of the bit-width range!");
  if ((*this)[bitPosition]) clearBit(bitPosition);
  else setBit(bitPosition);
}

void APInt::insertBits(const APInt &subBits, unsigned bitPosition) {
  unsigned subBitWidth = subBits.getBitWidth();
  assert(0 < subBitWidth && (subBitWidth + bitPosition) <= BitWidth &&
         "Illegal bit insertion");

  // Insertion is a direct copy.
  if (subBitWidth == BitWidth) {
    *this = subBits;
    return;
  }

  // Single word result can be done as a direct bitmask.
  if (isSingleWord()) {
    uint64_t mask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - subBitWidth);
    U.VAL &= ~(mask << bitPosition);
    U.VAL |= (subBits.U.VAL << bitPosition);
    return;
  }

  unsigned loBit = whichBit(bitPosition);
  unsigned loWord = whichWord(bitPosition);
  unsigned hi1Word = whichWord(bitPosition + subBitWidth - 1);

  // Insertion within a single word can be done as a direct bitmask.
  if (loWord == hi1Word) {
    uint64_t mask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - subBitWidth);
    U.pVal[loWord] &= ~(mask << loBit);
    U.pVal[loWord] |= (subBits.U.VAL << loBit);
    return;
  }

  // Insert on word boundaries.
  if (loBit == 0) {
    // Direct copy whole words.
    unsigned numWholeSubWords = subBitWidth / APINT_BITS_PER_WORD;
    memcpy(U.pVal + loWord, subBits.getRawData(),
           numWholeSubWords * APINT_WORD_SIZE);

    // Mask+insert remaining bits.
    unsigned remainingBits = subBitWidth % APINT_BITS_PER_WORD;
    if (remainingBits != 0) {
      uint64_t mask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - remainingBits);
      U.pVal[hi1Word] &= ~mask;
      U.pVal[hi1Word] |= subBits.getWord(subBitWidth - 1);
    }
    return;
  }

  // General case - set/clear individual bits in dst based on src.
  // TODO - there is scope for optimization here, but at the moment this code
  // path is barely used so prefer readability over performance.
  for (unsigned i = 0; i != subBitWidth; ++i) {
    if (subBits[i])
      setBit(bitPosition + i);
    else
      clearBit(bitPosition + i);
  }
}

void APInt::insertBits(uint64_t subBits, unsigned bitPosition, unsigned numBits) {
  uint64_t maskBits = maskTrailingOnes<uint64_t>(numBits);
  subBits &= maskBits;
  if (isSingleWord()) {
    U.VAL &= ~(maskBits << bitPosition);
    U.VAL |= subBits << bitPosition;
    return;
  }

  unsigned loBit = whichBit(bitPosition);
  unsigned loWord = whichWord(bitPosition);
  unsigned hiWord = whichWord(bitPosition + numBits - 1);
  if (loWord == hiWord) {
    U.pVal[loWord] &= ~(maskBits << loBit);
    U.pVal[loWord] |= subBits << loBit;
    return;
  }

  static_assert(8 * sizeof(WordType) <= 64, "This code assumes only two words affected");
  unsigned wordBits = 8 * sizeof(WordType);
  U.pVal[loWord] &= ~(maskBits << loBit);
  U.pVal[loWord] |= subBits << loBit;

  U.pVal[hiWord] &= ~(maskBits >> (wordBits - loBit));
  U.pVal[hiWord] |= subBits >> (wordBits - loBit);
}

APInt APInt::extractBits(unsigned numBits, unsigned bitPosition) const {
  assert(numBits > 0 && "Can't extract zero bits");
  assert(bitPosition < BitWidth && (numBits + bitPosition) <= BitWidth &&
         "Illegal bit extraction");

  if (isSingleWord())
    return APInt(numBits, U.VAL >> bitPosition);

  unsigned loBit = whichBit(bitPosition);
  unsigned loWord = whichWord(bitPosition);
  unsigned hiWord = whichWord(bitPosition + numBits - 1);

  // Single word result extracting bits from a single word source.
  if (loWord == hiWord)
    return APInt(numBits, U.pVal[loWord] >> loBit);

  // Extracting bits that start on a source word boundary can be done
  // as a fast memory copy.
  if (loBit == 0)
    return APInt(numBits, makeArrayRef(U.pVal + loWord, 1 + hiWord - loWord));

  // General case - shift + copy source words directly into place.
  APInt Result(numBits, 0);
  unsigned NumSrcWords = getNumWords();
  unsigned NumDstWords = Result.getNumWords();

  uint64_t *DestPtr = Result.isSingleWord() ? &Result.U.VAL : Result.U.pVal;
  for (unsigned word = 0; word < NumDstWords; ++word) {
    uint64_t w0 = U.pVal[loWord + word];
    uint64_t w1 =
        (loWord + word + 1) < NumSrcWords ? U.pVal[loWord + word + 1] : 0;
    DestPtr[word] = (w0 >> loBit) | (w1 << (APINT_BITS_PER_WORD - loBit));
  }

  return Result.clearUnusedBits();
}

uint64_t APInt::extractBitsAsZExtValue(unsigned numBits,
                                       unsigned bitPosition) const {
  assert(numBits > 0 && "Can't extract zero bits");
  assert(bitPosition < BitWidth && (numBits + bitPosition) <= BitWidth &&
         "Illegal bit extraction");
  assert(numBits <= 64 && "Illegal bit extraction");

  uint64_t maskBits = maskTrailingOnes<uint64_t>(numBits);
  if (isSingleWord())
    return (U.VAL >> bitPosition) & maskBits;

  unsigned loBit = whichBit(bitPosition);
  unsigned loWord = whichWord(bitPosition);
  unsigned hiWord = whichWord(bitPosition + numBits - 1);
  if (loWord == hiWord)
    return (U.pVal[loWord] >> loBit) & maskBits;

  static_assert(8 * sizeof(WordType) <= 64, "This code assumes only two words affected");
  unsigned wordBits = 8 * sizeof(WordType);
  uint64_t retBits = U.pVal[loWord] >> loBit;
  retBits |= U.pVal[hiWord] << (wordBits - loBit);
  retBits &= maskBits;
  return retBits;
}

unsigned APInt::getBitsNeeded(StringRef str, uint8_t radix) {
  assert(!str.empty() && "Invalid string length");
  assert((radix == 10 || radix == 8 || radix == 16 || radix == 2 ||
          radix == 36) &&
         "Radix should be 2, 8, 10, 16, or 36!");

  size_t slen = str.size();

  // Each computation below needs to know if it's negative.
  StringRef::iterator p = str.begin();
  unsigned isNegative = *p == '-';
  if (*p == '-' || *p == '+') {
    p++;
    slen--;
    assert(slen && "String is only a sign, needs a value.");
  }

  // For radixes of power-of-two values, the bits required is accurately and
  // easily computed
  if (radix == 2)
    return slen + isNegative;
  if (radix == 8)
    return slen * 3 + isNegative;
  if (radix == 16)
    return slen * 4 + isNegative;

  // FIXME: base 36

  // This is grossly inefficient but accurate. We could probably do something
  // with a computation of roughly slen*64/20 and then adjust by the value of
  // the first few digits. But, I'm not sure how accurate that could be.

  // Compute a sufficient number of bits that is always large enough but might
  // be too large. This avoids the assertion in the constructor. This
  // calculation doesn't work appropriately for the numbers 0-9, so just use 4
  // bits in that case.
  unsigned sufficient
    = radix == 10? (slen == 1 ? 4 : slen * 64/18)
                 : (slen == 1 ? 7 : slen * 16/3);

  // Convert to the actual binary value.
  APInt tmp(sufficient, StringRef(p, slen), radix);

  // Compute how many bits are required. If the log is infinite, assume we need
  // just bit. If the log is exact and value is negative, then the value is
  // MinSignedValue with (log + 1) bits.
  unsigned log = tmp.logBase2();
  if (log == (unsigned)-1) {
    return isNegative + 1;
  } else if (isNegative && tmp.isPowerOf2()) {
    return isNegative + log;
  } else {
    return isNegative + log + 1;
  }
}

hash_code llvm::hash_value(const APInt &Arg) {
  if (Arg.isSingleWord())
    return hash_combine(Arg.U.VAL);

  return hash_combine_range(Arg.U.pVal, Arg.U.pVal + Arg.getNumWords());
}

bool APInt::isSplat(unsigned SplatSizeInBits) const {
  assert(getBitWidth() % SplatSizeInBits == 0 &&
         "SplatSizeInBits must divide width!");
  // We can check that all parts of an integer are equal by making use of a
  // little trick: rotate and check if it's still the same value.
  return *this == rotl(SplatSizeInBits);
}

/// This function returns the high "numBits" bits of this APInt.
APInt APInt::getHiBits(unsigned numBits) const {
  return this->lshr(BitWidth - numBits);
}

/// This function returns the low "numBits" bits of this APInt.
APInt APInt::getLoBits(unsigned numBits) const {
  APInt Result(getLowBitsSet(BitWidth, numBits));
  Result &= *this;
  return Result;
}

/// Return a value containing V broadcasted over NewLen bits.
APInt APInt::getSplat(unsigned NewLen, const APInt &V) {
  assert(NewLen >= V.getBitWidth() && "Can't splat to smaller bit width!");

  APInt Val = V.zextOrSelf(NewLen);
  for (unsigned I = V.getBitWidth(); I < NewLen; I <<= 1)
    Val |= Val << I;

  return Val;
}

unsigned APInt::countLeadingZerosSlowCase() const {
  unsigned Count = 0;
  for (int i = getNumWords()-1; i >= 0; --i) {
    uint64_t V = U.pVal[i];
    if (V == 0)
      Count += APINT_BITS_PER_WORD;
    else {
      Count += llvm::countLeadingZeros(V);
      break;
    }
  }
  // Adjust for unused bits in the most significant word (they are zero).
  unsigned Mod = BitWidth % APINT_BITS_PER_WORD;
  Count -= Mod > 0 ? APINT_BITS_PER_WORD - Mod : 0;
  return Count;
}

unsigned APInt::countLeadingOnesSlowCase() const {
  unsigned highWordBits = BitWidth % APINT_BITS_PER_WORD;
  unsigned shift;
  if (!highWordBits) {
    highWordBits = APINT_BITS_PER_WORD;
    shift = 0;
  } else {
    shift = APINT_BITS_PER_WORD - highWordBits;
  }
  int i = getNumWords() - 1;
  unsigned Count = llvm::countLeadingOnes(U.pVal[i] << shift);
  if (Count == highWordBits) {
    for (i--; i >= 0; --i) {
      if (U.pVal[i] == WORDTYPE_MAX)
        Count += APINT_BITS_PER_WORD;
      else {
        Count += llvm::countLeadingOnes(U.pVal[i]);
        break;
      }
    }
  }
  return Count;
}

unsigned APInt::countTrailingZerosSlowCase() const {
  unsigned Count = 0;
  unsigned i = 0;
  for (; i < getNumWords() && U.pVal[i] == 0; ++i)
    Count += APINT_BITS_PER_WORD;
  if (i < getNumWords())
    Count += llvm::countTrailingZeros(U.pVal[i]);
  return std::min(Count, BitWidth);
}

unsigned APInt::countTrailingOnesSlowCase() const {
  unsigned Count = 0;
  unsigned i = 0;
  for (; i < getNumWords() && U.pVal[i] == WORDTYPE_MAX; ++i)
    Count += APINT_BITS_PER_WORD;
  if (i < getNumWords())
    Count += llvm::countTrailingOnes(U.pVal[i]);
  assert(Count <= BitWidth);
  return Count;
}

unsigned APInt::countPopulationSlowCase() const {
  unsigned Count = 0;
  for (unsigned i = 0; i < getNumWords(); ++i)
    Count += llvm::countPopulation(U.pVal[i]);
  return Count;
}

bool APInt::intersectsSlowCase(const APInt &RHS) const {
  for (unsigned i = 0, e = getNumWords(); i != e; ++i)
    if ((U.pVal[i] & RHS.U.pVal[i]) != 0)
      return true;

  return false;
}

bool APInt::isSubsetOfSlowCase(const APInt &RHS) const {
  for (unsigned i = 0, e = getNumWords(); i != e; ++i)
    if ((U.pVal[i] & ~RHS.U.pVal[i]) != 0)
      return false;

  return true;
}

APInt APInt::byteSwap() const {
  assert(BitWidth >= 16 && BitWidth % 16 == 0 && "Cannot byteswap!");
  if (BitWidth == 16)
    return APInt(BitWidth, ByteSwap_16(uint16_t(U.VAL)));
  if (BitWidth == 32)
    return APInt(BitWidth, ByteSwap_32(unsigned(U.VAL)));
  if (BitWidth == 48) {
    unsigned Tmp1 = unsigned(U.VAL >> 16);
    Tmp1 = ByteSwap_32(Tmp1);
    uint16_t Tmp2 = uint16_t(U.VAL);
    Tmp2 = ByteSwap_16(Tmp2);
    return APInt(BitWidth, (uint64_t(Tmp2) << 32) | Tmp1);
  }
  if (BitWidth == 64)
    return APInt(BitWidth, ByteSwap_64(U.VAL));

  APInt Result(getNumWords() * APINT_BITS_PER_WORD, 0);
  for (unsigned I = 0, N = getNumWords(); I != N; ++I)
    Result.U.pVal[I] = ByteSwap_64(U.pVal[N - I - 1]);
  if (Result.BitWidth != BitWidth) {
    Result.lshrInPlace(Result.BitWidth - BitWidth);
    Result.BitWidth = BitWidth;
  }
  return Result;
}

APInt APInt::reverseBits() const {
  switch (BitWidth) {
  case 64:
    return APInt(BitWidth, llvm::reverseBits<uint64_t>(U.VAL));
  case 32:
    return APInt(BitWidth, llvm::reverseBits<uint32_t>(U.VAL));
  case 16:
    return APInt(BitWidth, llvm::reverseBits<uint16_t>(U.VAL));
  case 8:
    return APInt(BitWidth, llvm::reverseBits<uint8_t>(U.VAL));
  default:
    break;
  }

  APInt Val(*this);
  APInt Reversed(BitWidth, 0);
  unsigned S = BitWidth;

  for (; Val != 0; Val.lshrInPlace(1)) {
    Reversed <<= 1;
    Reversed |= Val[0];
    --S;
  }

  Reversed <<= S;
  return Reversed;
}

APInt llvm::APIntOps::GreatestCommonDivisor(APInt A, APInt B) {
  // Fast-path a common case.
  if (A == B) return A;

  // Corner cases: if either operand is zero, the other is the gcd.
  if (!A) return B;
  if (!B) return A;

  // Count common powers of 2 and remove all other powers of 2.
  unsigned Pow2;
  {
    unsigned Pow2_A = A.countTrailingZeros();
    unsigned Pow2_B = B.countTrailingZeros();
    if (Pow2_A > Pow2_B) {
      A.lshrInPlace(Pow2_A - Pow2_B);
      Pow2 = Pow2_B;
    } else if (Pow2_B > Pow2_A) {
      B.lshrInPlace(Pow2_B - Pow2_A);
      Pow2 = Pow2_A;
    } else {
      Pow2 = Pow2_A;
    }
  }

  // Both operands are odd multiples of 2^Pow_2:
  //
  //   gcd(a, b) = gcd(|a - b| / 2^i, min(a, b))
  //
  // This is a modified version of Stein's algorithm, taking advantage of
  // efficient countTrailingZeros().
  while (A != B) {
    if (A.ugt(B)) {
      A -= B;
      A.lshrInPlace(A.countTrailingZeros() - Pow2);
    } else {
      B -= A;
      B.lshrInPlace(B.countTrailingZeros() - Pow2);
    }
  }

  return A;
}

APInt llvm::APIntOps::RoundDoubleToAPInt(double Double, unsigned width) {
  uint64_t I = bit_cast<uint64_t>(Double);

  // Get the sign bit from the highest order bit
  bool isNeg = I >> 63;

  // Get the 11-bit exponent and adjust for the 1023 bit bias
  int64_t exp = ((I >> 52) & 0x7ff) - 1023;

  // If the exponent is negative, the value is < 0 so just return 0.
  if (exp < 0)
    return APInt(width, 0u);

  // Extract the mantissa by clearing the top 12 bits (sign + exponent).
  uint64_t mantissa = (I & (~0ULL >> 12)) | 1ULL << 52;

  // If the exponent doesn't shift all bits out of the mantissa
  if (exp < 52)
    return isNeg ? -APInt(width, mantissa >> (52 - exp)) :
                    APInt(width, mantissa >> (52 - exp));

  // If the client didn't provide enough bits for us to shift the mantissa into
  // then the result is undefined, just return 0
  if (width <= exp - 52)
    return APInt(width, 0);

  // Otherwise, we have to shift the mantissa bits up to the right location
  APInt Tmp(width, mantissa);
  Tmp <<= (unsigned)exp - 52;
  return isNeg ? -Tmp : Tmp;
}

/// This function converts this APInt to a double.
/// The layout for double is as following (IEEE Standard 754):
///  --------------------------------------
/// |  Sign    Exponent    Fraction    Bias |
/// |-------------------------------------- |
/// |  1[63]   11[62-52]   52[51-00]   1023 |
///  --------------------------------------
double APInt::roundToDouble(bool isSigned) const {

  // Handle the simple case where the value is contained in one uint64_t.
  // It is wrong to optimize getWord(0) to VAL; there might be more than one word.
  if (isSingleWord() || getActiveBits() <= APINT_BITS_PER_WORD) {
    if (isSigned) {
      int64_t sext = SignExtend64(getWord(0), BitWidth);
      return double(sext);
    } else
      return double(getWord(0));
  }

  // Determine if the value is negative.
  bool isNeg = isSigned ? (*this)[BitWidth-1] : false;

  // Construct the absolute value if we're negative.
  APInt Tmp(isNeg ? -(*this) : (*this));

  // Figure out how many bits we're using.
  unsigned n = Tmp.getActiveBits();

  // The exponent (without bias normalization) is just the number of bits
  // we are using. Note that the sign bit is gone since we constructed the
  // absolute value.
  uint64_t exp = n;

  // Return infinity for exponent overflow
  if (exp > 1023) {
    if (!isSigned || !isNeg)
      return std::numeric_limits<double>::infinity();
    else
      return -std::numeric_limits<double>::infinity();
  }
  exp += 1023; // Increment for 1023 bias

  // Number of bits in mantissa is 52. To obtain the mantissa value, we must
  // extract the high 52 bits from the correct words in pVal.
  uint64_t mantissa;
  unsigned hiWord = whichWord(n-1);
  if (hiWord == 0) {
    mantissa = Tmp.U.pVal[0];
    if (n > 52)
      mantissa >>= n - 52; // shift down, we want the top 52 bits.
  } else {
    assert(hiWord > 0 && "huh?");
    uint64_t hibits = Tmp.U.pVal[hiWord] << (52 - n % APINT_BITS_PER_WORD);
    uint64_t lobits = Tmp.U.pVal[hiWord-1] >> (11 + n % APINT_BITS_PER_WORD);
    mantissa = hibits | lobits;
  }

  // The leading bit of mantissa is implicit, so get rid of it.
  uint64_t sign = isNeg ? (1ULL << (APINT_BITS_PER_WORD - 1)) : 0;
  uint64_t I = sign | (exp << 52) | mantissa;
  return bit_cast<double>(I);
}

// Truncate to new width.
APInt APInt::trunc(unsigned width) const {
  assert(width < BitWidth && "Invalid APInt Truncate request");
  assert(width && "Can't truncate to 0 bits");

  if (width <= APINT_BITS_PER_WORD)
    return APInt(width, getRawData()[0]);

  APInt Result(getMemory(getNumWords(width)), width);

  // Copy full words.
  unsigned i;
  for (i = 0; i != width / APINT_BITS_PER_WORD; i++)
    Result.U.pVal[i] = U.pVal[i];

  // Truncate and copy any partial word.
  unsigned bits = (0 - width) % APINT_BITS_PER_WORD;
  if (bits != 0)
    Result.U.pVal[i] = U.pVal[i] << bits >> bits;

  return Result;
}

// Truncate to new width with unsigned saturation.
APInt APInt::truncUSat(unsigned width) const {
  assert(width < BitWidth && "Invalid APInt Truncate request");
  assert(width && "Can't truncate to 0 bits");

  // Can we just losslessly truncate it?
  if (isIntN(width))
    return trunc(width);
  // If not, then just return the new limit.
  return APInt::getMaxValue(width);
}

// Truncate to new width with signed saturation.
APInt APInt::truncSSat(unsigned width) const {
  assert(width < BitWidth && "Invalid APInt Truncate request");
  assert(width && "Can't truncate to 0 bits");

  // Can we just losslessly truncate it?
  if (isSignedIntN(width))
    return trunc(width);
  // If not, then just return the new limits.
  return isNegative() ? APInt::getSignedMinValue(width)
                      : APInt::getSignedMaxValue(width);
}

// Sign extend to a new width.
APInt APInt::sext(unsigned Width) const {
  assert(Width > BitWidth && "Invalid APInt SignExtend request");

  if (Width <= APINT_BITS_PER_WORD)
    return APInt(Width, SignExtend64(U.VAL, BitWidth));

  APInt Result(getMemory(getNumWords(Width)), Width);

  // Copy words.
  std::memcpy(Result.U.pVal, getRawData(), getNumWords() * APINT_WORD_SIZE);

  // Sign extend the last word since there may be unused bits in the input.
  Result.U.pVal[getNumWords() - 1] =
      SignExtend64(Result.U.pVal[getNumWords() - 1],
                   ((BitWidth - 1) % APINT_BITS_PER_WORD) + 1);

  // Fill with sign bits.
  std::memset(Result.U.pVal + getNumWords(), isNegative() ? -1 : 0,
              (Result.getNumWords() - getNumWords()) * APINT_WORD_SIZE);
  Result.clearUnusedBits();
  return Result;
}

//  Zero extend to a new width.
APInt APInt::zext(unsigned width) const {
  assert(width > BitWidth && "Invalid APInt ZeroExtend request");

  if (width <= APINT_BITS_PER_WORD)
    return APInt(width, U.VAL);

  APInt Result(getMemory(getNumWords(width)), width);

  // Copy words.
  std::memcpy(Result.U.pVal, getRawData(), getNumWords() * APINT_WORD_SIZE);

  // Zero remaining words.
  std::memset(Result.U.pVal + getNumWords(), 0,
              (Result.getNumWords() - getNumWords()) * APINT_WORD_SIZE);

  return Result;
}

APInt APInt::zextOrTrunc(unsigned width) const {
  if (BitWidth < width)
    return zext(width);
  if (BitWidth > width)
    return trunc(width);
  return *this;
}

APInt APInt::sextOrTrunc(unsigned width) const {
  if (BitWidth < width)
    return sext(width);
  if (BitWidth > width)
    return trunc(width);
  return *this;
}

APInt APInt::zextOrSelf(unsigned width) const {
  if (BitWidth < width)
    return zext(width);
  return *this;
}

APInt APInt::sextOrSelf(unsigned width) const {
  if (BitWidth < width)
    return sext(width);
  return *this;
}

/// Arithmetic right-shift this APInt by shiftAmt.
/// Arithmetic right-shift function.
void APInt::ashrInPlace(const APInt &shiftAmt) {
  ashrInPlace((unsigned)shiftAmt.getLimitedValue(BitWidth));
}

/// Arithmetic right-shift this APInt by shiftAmt.
/// Arithmetic right-shift function.
void APInt::ashrSlowCase(unsigned ShiftAmt) {
  // Don't bother performing a no-op shift.
  if (!ShiftAmt)
    return;

  // Save the original sign bit for later.
  bool Negative = isNegative();

  // WordShift is the inter-part shift; BitShift is intra-part shift.
  unsigned WordShift = ShiftAmt / APINT_BITS_PER_WORD;
  unsigned BitShift = ShiftAmt % APINT_BITS_PER_WORD;

  unsigned WordsToMove = getNumWords() - WordShift;
  if (WordsToMove != 0) {
    // Sign extend the last word to fill in the unused bits.
    U.pVal[getNumWords() - 1] = SignExtend64(
        U.pVal[getNumWords() - 1], ((BitWidth - 1) % APINT_BITS_PER_WORD) + 1);

    // Fastpath for moving by whole words.
    if (BitShift == 0) {
      std::memmove(U.pVal, U.pVal + WordShift, WordsToMove * APINT_WORD_SIZE);
    } else {
      // Move the words containing significant bits.
      for (unsigned i = 0; i != WordsToMove - 1; ++i)
        U.pVal[i] = (U.pVal[i + WordShift] >> BitShift) |
                    (U.pVal[i + WordShift + 1] << (APINT_BITS_PER_WORD - BitShift));

      // Handle the last word which has no high bits to copy.
      U.pVal[WordsToMove - 1] = U.pVal[WordShift + WordsToMove - 1] >> BitShift;
      // Sign extend one more time.
      U.pVal[WordsToMove - 1] =
          SignExtend64(U.pVal[WordsToMove - 1], APINT_BITS_PER_WORD - BitShift);
    }
  }

  // Fill in the remainder based on the original sign.
  std::memset(U.pVal + WordsToMove, Negative ? -1 : 0,
              WordShift * APINT_WORD_SIZE);
  clearUnusedBits();
}

/// Logical right-shift this APInt by shiftAmt.
/// Logical right-shift function.
void APInt::lshrInPlace(const APInt &shiftAmt) {
  lshrInPlace((unsigned)shiftAmt.getLimitedValue(BitWidth));
}

/// Logical right-shift this APInt by shiftAmt.
/// Logical right-shift function.
void APInt::lshrSlowCase(unsigned ShiftAmt) {
  tcShiftRight(U.pVal, getNumWords(), ShiftAmt);
}

/// Left-shift this APInt by shiftAmt.
/// Left-shift function.
APInt &APInt::operator<<=(const APInt &shiftAmt) {
  // It's undefined behavior in C to shift by BitWidth or greater.
  *this <<= (unsigned)shiftAmt.getLimitedValue(BitWidth);
  return *this;
}

void APInt::shlSlowCase(unsigned ShiftAmt) {
  tcShiftLeft(U.pVal, getNumWords(), ShiftAmt);
  clearUnusedBits();
}

// Calculate the rotate amount modulo the bit width.
static unsigned rotateModulo(unsigned BitWidth, const APInt &rotateAmt) {
  unsigned rotBitWidth = rotateAmt.getBitWidth();
  APInt rot = rotateAmt;
  if (rotBitWidth < BitWidth) {
    // Extend the rotate APInt, so that the urem doesn't divide by 0.
    // e.g. APInt(1, 32) would give APInt(1, 0).
    rot = rotateAmt.zext(BitWidth);
  }
  rot = rot.urem(APInt(rot.getBitWidth(), BitWidth));
  return rot.getLimitedValue(BitWidth);
}

APInt APInt::rotl(const APInt &rotateAmt) const {
  return rotl(rotateModulo(BitWidth, rotateAmt));
}

APInt APInt::rotl(unsigned rotateAmt) const {
  rotateAmt %= BitWidth;
  if (rotateAmt == 0)
    return *this;
  return shl(rotateAmt) | lshr(BitWidth - rotateAmt);
}

APInt APInt::rotr(const APInt &rotateAmt) const {
  return rotr(rotateModulo(BitWidth, rotateAmt));
}

APInt APInt::rotr(unsigned rotateAmt) const {
  rotateAmt %= BitWidth;
  if (rotateAmt == 0)
    return *this;
  return lshr(rotateAmt) | shl(BitWidth - rotateAmt);
}

// Square Root - this method computes and returns the square root of "this".
// Three mechanisms are used for computation. For small values (<= 5 bits),
// a table lookup is done. This gets some performance for common cases. For
// values using less than 52 bits, the value is converted to double and then
// the libc sqrt function is called. The result is rounded and then converted
// back to a uint64_t which is then used to construct the result. Finally,
// the Babylonian method for computing square roots is used.
APInt APInt::sqrt() const {

  // Determine the magnitude of the value.
  unsigned magnitude = getActiveBits();

  // Use a fast table for some small values. This also gets rid of some
  // rounding errors in libc sqrt for small values.
  if (magnitude <= 5) {
    static const uint8_t results[32] = {
      /*     0 */ 0,
      /*  1- 2 */ 1, 1,
      /*  3- 6 */ 2, 2, 2, 2,
      /*  7-12 */ 3, 3, 3, 3, 3, 3,
      /* 13-20 */ 4, 4, 4, 4, 4, 4, 4, 4,
      /* 21-30 */ 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
      /*    31 */ 6
    };
    return APInt(BitWidth, results[ (isSingleWord() ? U.VAL : U.pVal[0]) ]);
  }

  // If the magnitude of the value fits in less than 52 bits (the precision of
  // an IEEE double precision floating point value), then we can use the
  // libc sqrt function which will probably use a hardware sqrt computation.
  // This should be faster than the algorithm below.
  if (magnitude < 52) {
    return APInt(BitWidth,
                 uint64_t(::round(::sqrt(double(isSingleWord() ? U.VAL
                                                               : U.pVal[0])))));
  }

  // Okay, all the short cuts are exhausted. We must compute it. The following
  // is a classical Babylonian method for computing the square root. This code
  // was adapted to APInt from a wikipedia article on such computations.
  // See http://www.wikipedia.org/ and go to the page named
  // Calculate_an_integer_square_root.
  unsigned nbits = BitWidth, i = 4;
  APInt testy(BitWidth, 16);
  APInt x_old(BitWidth, 1);
  APInt x_new(BitWidth, 0);
  APInt two(BitWidth, 2);

  // Select a good starting value using binary logarithms.
  for (;; i += 2, testy = testy.shl(2))
    if (i >= nbits || this->ule(testy)) {
      x_old = x_old.shl(i / 2);
      break;
    }

  // Use the Babylonian method to arrive at the integer square root:
  for (;;) {
    x_new = (this->udiv(x_old) + x_old).udiv(two);
    if (x_old.ule(x_new))
      break;
    x_old = x_new;
  }

  // Make sure we return the closest approximation
  // NOTE: The rounding calculation below is correct. It will produce an
  // off-by-one discrepancy with results from pari/gp. That discrepancy has been
  // determined to be a rounding issue with pari/gp as it begins to use a
  // floating point representation after 192 bits. There are no discrepancies
  // between this algorithm and pari/gp for bit widths < 192 bits.
  APInt square(x_old * x_old);
  APInt nextSquare((x_old + 1) * (x_old +1));
  if (this->ult(square))
    return x_old;
  assert(this->ule(nextSquare) && "Error in APInt::sqrt computation");
  APInt midpoint((nextSquare - square).udiv(two));
  APInt offset(*this - square);
  if (offset.ult(midpoint))
    return x_old;
  return x_old + 1;
}

/// Computes the multiplicative inverse of this APInt for a given modulo. The
/// iterative extended Euclidean algorithm is used to solve for this value,
/// however we simplify it to speed up calculating only the inverse, and take
/// advantage of div+rem calculations. We also use some tricks to avoid copying
/// (potentially large) APInts around.
/// WARNING: a value of '0' may be returned,
///          signifying that no multiplicative inverse exists!
APInt APInt::multiplicativeInverse(const APInt& modulo) const {
  assert(ult(modulo) && "This APInt must be smaller than the modulo");

  // Using the properties listed at the following web page (accessed 06/21/08):
  //   http://www.numbertheory.org/php/euclid.html
  // (especially the properties numbered 3, 4 and 9) it can be proved that
  // BitWidth bits suffice for all the computations in the algorithm implemented
  // below. More precisely, this number of bits suffice if the multiplicative
  // inverse exists, but may not suffice for the general extended Euclidean
  // algorithm.

  APInt r[2] = { modulo, *this };
  APInt t[2] = { APInt(BitWidth, 0), APInt(BitWidth, 1) };
  APInt q(BitWidth, 0);

  unsigned i;
  for (i = 0; r[i^1] != 0; i ^= 1) {
    // An overview of the math without the confusing bit-flipping:
    // q = r[i-2] / r[i-1]
    // r[i] = r[i-2] % r[i-1]
    // t[i] = t[i-2] - t[i-1] * q
    udivrem(r[i], r[i^1], q, r[i]);
    t[i] -= t[i^1] * q;
  }

  // If this APInt and the modulo are not coprime, there is no multiplicative
  // inverse, so return 0. We check this by looking at the next-to-last
  // remainder, which is the gcd(*this,modulo) as calculated by the Euclidean
  // algorithm.
  if (r[i] != 1)
    return APInt(BitWidth, 0);

  // The next-to-last t is the multiplicative inverse.  However, we are
  // interested in a positive inverse. Calculate a positive one from a negative
  // one if necessary. A simple addition of the modulo suffices because
  // abs(t[i]) is known to be less than *this/2 (see the link above).
  if (t[i].isNegative())
    t[i] += modulo;

  return std::move(t[i]);
}

/// Calculate the magic numbers required to implement a signed integer division
/// by a constant as a sequence of multiplies, adds and shifts.  Requires that
/// the divisor not be 0, 1, or -1.  Taken from "Hacker's Delight", Henry S.
/// Warren, Jr., chapter 10.
APInt::ms APInt::magic() const {
  const APInt& d = *this;
  unsigned p;
  APInt ad, anc, delta, q1, r1, q2, r2, t;
  APInt signedMin = APInt::getSignedMinValue(d.getBitWidth());
  struct ms mag;

  ad = d.abs();
  t = signedMin + (d.lshr(d.getBitWidth() - 1));
  anc = t - 1 - t.urem(ad);   // absolute value of nc
  p = d.getBitWidth() - 1;    // initialize p
  q1 = signedMin.udiv(anc);   // initialize q1 = 2p/abs(nc)
  r1 = signedMin - q1*anc;    // initialize r1 = rem(2p,abs(nc))
  q2 = signedMin.udiv(ad);    // initialize q2 = 2p/abs(d)
  r2 = signedMin - q2*ad;     // initialize r2 = rem(2p,abs(d))
  do {
    p = p + 1;
    q1 = q1<<1;          // update q1 = 2p/abs(nc)
    r1 = r1<<1;          // update r1 = rem(2p/abs(nc))
    if (r1.uge(anc)) {  // must be unsigned comparison
      q1 = q1 + 1;
      r1 = r1 - anc;
    }
    q2 = q2<<1;          // update q2 = 2p/abs(d)
    r2 = r2<<1;          // update r2 = rem(2p/abs(d))
    if (r2.uge(ad)) {   // must be unsigned comparison
      q2 = q2 + 1;
      r2 = r2 - ad;
    }
    delta = ad - r2;
  } while (q1.ult(delta) || (q1 == delta && r1 == 0));

  mag.m = q2 + 1;
  if (d.isNegative()) mag.m = -mag.m;   // resulting magic number
  mag.s = p - d.getBitWidth();          // resulting shift
  return mag;
}

/// Calculate the magic numbers required to implement an unsigned integer
/// division by a constant as a sequence of multiplies, adds and shifts.
/// Requires that the divisor not be 0.  Taken from "Hacker's Delight", Henry
/// S. Warren, Jr., chapter 10.
/// LeadingZeros can be used to simplify the calculation if the upper bits
/// of the divided value are known zero.
APInt::mu APInt::magicu(unsigned LeadingZeros) const {
  const APInt& d = *this;
  unsigned p;
  APInt nc, delta, q1, r1, q2, r2;
  struct mu magu;
  magu.a = 0;               // initialize "add" indicator
  APInt allOnes = APInt::getAllOnesValue(d.getBitWidth()).lshr(LeadingZeros);
  APInt signedMin = APInt::getSignedMinValue(d.getBitWidth());
  APInt signedMax = APInt::getSignedMaxValue(d.getBitWidth());

  nc = allOnes - (allOnes - d).urem(d);
  p = d.getBitWidth() - 1;  // initialize p
  q1 = signedMin.udiv(nc);  // initialize q1 = 2p/nc
  r1 = signedMin - q1*nc;   // initialize r1 = rem(2p,nc)
  q2 = signedMax.udiv(d);   // initialize q2 = (2p-1)/d
  r2 = signedMax - q2*d;    // initialize r2 = rem((2p-1),d)
  do {
    p = p + 1;
    if (r1.uge(nc - r1)) {
      q1 = q1 + q1 + 1;  // update q1
      r1 = r1 + r1 - nc; // update r1
    }
    else {
      q1 = q1+q1; // update q1
      r1 = r1+r1; // update r1
    }
    if ((r2 + 1).uge(d - r2)) {
      if (q2.uge(signedMax)) magu.a = 1;
      q2 = q2+q2 + 1;     // update q2
      r2 = r2+r2 + 1 - d; // update r2
    }
    else {
      if (q2.uge(signedMin)) magu.a = 1;
      q2 = q2+q2;     // update q2
      r2 = r2+r2 + 1; // update r2
    }
    delta = d - 1 - r2;
  } while (p < d.getBitWidth()*2 &&
           (q1.ult(delta) || (q1 == delta && r1 == 0)));
  magu.m = q2 + 1; // resulting magic number
  magu.s = p - d.getBitWidth();  // resulting shift
  return magu;
}

/// Implementation of Knuth's Algorithm D (Division of nonnegative integers)
/// from "Art of Computer Programming, Volume 2", section 4.3.1, p. 272. The
/// variables here have the same names as in the algorithm. Comments explain
/// the algorithm and any deviation from it.
static void KnuthDiv(uint32_t *u, uint32_t *v, uint32_t *q, uint32_t* r,
                     unsigned m, unsigned n) {
  assert(u && "Must provide dividend");
  assert(v && "Must provide divisor");
  assert(q && "Must provide quotient");
  assert(u != v && u != q && v != q && "Must use different memory");
  assert(n>1 && "n must be > 1");

  // b denotes the base of the number system. In our case b is 2^32.
  const uint64_t b = uint64_t(1) << 32;

// The DEBUG macros here tend to be spam in the debug output if you're not
// debugging this code. Disable them unless KNUTH_DEBUG is defined.
#ifdef KNUTH_DEBUG
#define DEBUG_KNUTH(X) LLVM_DEBUG(X)
#else
#define DEBUG_KNUTH(X) do {} while(false)
#endif

  DEBUG_KNUTH(dbgs() << "KnuthDiv: m=" << m << " n=" << n << '\n');
  DEBUG_KNUTH(dbgs() << "KnuthDiv: original:");
  DEBUG_KNUTH(for (int i = m + n; i >= 0; i--) dbgs() << " " << u[i]);
  DEBUG_KNUTH(dbgs() << " by");
  DEBUG_KNUTH(for (int i = n; i > 0; i--) dbgs() << " " << v[i - 1]);
  DEBUG_KNUTH(dbgs() << '\n');
  // D1. [Normalize.] Set d = b / (v[n-1] + 1) and multiply all the digits of
  // u and v by d. Note that we have taken Knuth's advice here to use a power
  // of 2 value for d such that d * v[n-1] >= b/2 (b is the base). A power of
  // 2 allows us to shift instead of multiply and it is easy to determine the
  // shift amount from the leading zeros.  We are basically normalizing the u
  // and v so that its high bits are shifted to the top of v's range without
  // overflow. Note that this can require an extra word in u so that u must
  // be of length m+n+1.
  unsigned shift = countLeadingZeros(v[n-1]);
  uint32_t v_carry = 0;
  uint32_t u_carry = 0;
  if (shift) {
    for (unsigned i = 0; i < m+n; ++i) {
      uint32_t u_tmp = u[i] >> (32 - shift);
      u[i] = (u[i] << shift) | u_carry;
      u_carry = u_tmp;
    }
    for (unsigned i = 0; i < n; ++i) {
      uint32_t v_tmp = v[i] >> (32 - shift);
      v[i] = (v[i] << shift) | v_carry;
      v_carry = v_tmp;
    }
  }
  u[m+n] = u_carry;

  DEBUG_KNUTH(dbgs() << "KnuthDiv:   normal:");
  DEBUG_KNUTH(for (int i = m + n; i >= 0; i--) dbgs() << " " << u[i]);
  DEBUG_KNUTH(dbgs() << " by");
  DEBUG_KNUTH(for (int i = n; i > 0; i--) dbgs() << " " << v[i - 1]);
  DEBUG_KNUTH(dbgs() << '\n');

  // D2. [Initialize j.]  Set j to m. This is the loop counter over the places.
  int j = m;
  do {
    DEBUG_KNUTH(dbgs() << "KnuthDiv: quotient digit #" << j << '\n');
    // D3. [Calculate q'.].
    //     Set qp = (u[j+n]*b + u[j+n-1]) / v[n-1]. (qp=qprime=q')
    //     Set rp = (u[j+n]*b + u[j+n-1]) % v[n-1]. (rp=rprime=r')
    // Now test if qp == b or qp*v[n-2] > b*rp + u[j+n-2]; if so, decrease
    // qp by 1, increase rp by v[n-1], and repeat this test if rp < b. The test
    // on v[n-2] determines at high speed most of the cases in which the trial
    // value qp is one too large, and it eliminates all cases where qp is two
    // too large.
    uint64_t dividend = Make_64(u[j+n], u[j+n-1]);
    DEBUG_KNUTH(dbgs() << "KnuthDiv: dividend == " << dividend << '\n');
    uint64_t qp = dividend / v[n-1];
    uint64_t rp = dividend % v[n-1];
    if (qp == b || qp*v[n-2] > b*rp + u[j+n-2]) {
      qp--;
      rp += v[n-1];
      if (rp < b && (qp == b || qp*v[n-2] > b*rp + u[j+n-2]))
        qp--;
    }
    DEBUG_KNUTH(dbgs() << "KnuthDiv: qp == " << qp << ", rp == " << rp << '\n');

    // D4. [Multiply and subtract.] Replace (u[j+n]u[j+n-1]...u[j]) with
    // (u[j+n]u[j+n-1]..u[j]) - qp * (v[n-1]...v[1]v[0]). This computation
    // consists of a simple multiplication by a one-place number, combined with
    // a subtraction.
    // The digits (u[j+n]...u[j]) should be kept positive; if the result of
    // this step is actually negative, (u[j+n]...u[j]) should be left as the
    // true value plus b**(n+1), namely as the b's complement of
    // the true value, and a "borrow" to the left should be remembered.
    int64_t borrow = 0;
    for (unsigned i = 0; i < n; ++i) {
      uint64_t p = uint64_t(qp) * uint64_t(v[i]);
      int64_t subres = int64_t(u[j+i]) - borrow - Lo_32(p);
      u[j+i] = Lo_32(subres);
      borrow = Hi_32(p) - Hi_32(subres);
      DEBUG_KNUTH(dbgs() << "KnuthDiv: u[j+i] = " << u[j + i]
                        << ", borrow = " << borrow << '\n');
    }
    bool isNeg = u[j+n] < borrow;
    u[j+n] -= Lo_32(borrow);

    DEBUG_KNUTH(dbgs() << "KnuthDiv: after subtraction:");
    DEBUG_KNUTH(for (int i = m + n; i >= 0; i--) dbgs() << " " << u[i]);
    DEBUG_KNUTH(dbgs() << '\n');

    // D5. [Test remainder.] Set q[j] = qp. If the result of step D4 was
    // negative, go to step D6; otherwise go on to step D7.
    q[j] = Lo_32(qp);
    if (isNeg) {
      // D6. [Add back]. The probability that this step is necessary is very
      // small, on the order of only 2/b. Make sure that test data accounts for
      // this possibility. Decrease q[j] by 1
      q[j]--;
      // and add (0v[n-1]...v[1]v[0]) to (u[j+n]u[j+n-1]...u[j+1]u[j]).
      // A carry will occur to the left of u[j+n], and it should be ignored
      // since it cancels with the borrow that occurred in D4.
      bool carry = false;
      for (unsigned i = 0; i < n; i++) {
        uint32_t limit = std::min(u[j+i],v[i]);
        u[j+i] += v[i] + carry;
        carry = u[j+i] < limit || (carry && u[j+i] == limit);
      }
      u[j+n] += carry;
    }
    DEBUG_KNUTH(dbgs() << "KnuthDiv: after correction:");
    DEBUG_KNUTH(for (int i = m + n; i >= 0; i--) dbgs() << " " << u[i]);
    DEBUG_KNUTH(dbgs() << "\nKnuthDiv: digit result = " << q[j] << '\n');

    // D7. [Loop on j.]  Decrease j by one. Now if j >= 0, go back to D3.
  } while (--j >= 0);

  DEBUG_KNUTH(dbgs() << "KnuthDiv: quotient:");
  DEBUG_KNUTH(for (int i = m; i >= 0; i--) dbgs() << " " << q[i]);
  DEBUG_KNUTH(dbgs() << '\n');

  // D8. [Unnormalize]. Now q[...] is the desired quotient, and the desired
  // remainder may be obtained by dividing u[...] by d. If r is non-null we
  // compute the remainder (urem uses this).
  if (r) {
    // The value d is expressed by the "shift" value above since we avoided
    // multiplication by d by using a shift left. So, all we have to do is
    // shift right here.
    if (shift) {
      uint32_t carry = 0;
      DEBUG_KNUTH(dbgs() << "KnuthDiv: remainder:");
      for (int i = n-1; i >= 0; i--) {
        r[i] = (u[i] >> shift) | carry;
        carry = u[i] << (32 - shift);
        DEBUG_KNUTH(dbgs() << " " << r[i]);
      }
    } else {
      for (int i = n-1; i >= 0; i--) {
        r[i] = u[i];
        DEBUG_KNUTH(dbgs() << " " << r[i]);
      }
    }
    DEBUG_KNUTH(dbgs() << '\n');
  }
  DEBUG_KNUTH(dbgs() << '\n');
}

void APInt::divide(const WordType *LHS, unsigned lhsWords, const WordType *RHS,
                   unsigned rhsWords, WordType *Quotient, WordType *Remainder) {
  assert(lhsWords >= rhsWords && "Fractional result");

  // First, compose the values into an array of 32-bit words instead of
  // 64-bit words. This is a necessity of both the "short division" algorithm
  // and the Knuth "classical algorithm" which requires there to be native
  // operations for +, -, and * on an m bit value with an m*2 bit result. We
  // can't use 64-bit operands here because we don't have native results of
  // 128-bits. Furthermore, casting the 64-bit values to 32-bit values won't
  // work on large-endian machines.
  unsigned n = rhsWords * 2;
  unsigned m = (lhsWords * 2) - n;

  // Allocate space for the temporary values we need either on the stack, if
  // it will fit, or on the heap if it won't.
  uint32_t SPACE[128];
  uint32_t *U = nullptr;
  uint32_t *V = nullptr;
  uint32_t *Q = nullptr;
  uint32_t *R = nullptr;
  if ((Remainder?4:3)*n+2*m+1 <= 128) {
    U = &SPACE[0];
    V = &SPACE[m+n+1];
    Q = &SPACE[(m+n+1) + n];
    if (Remainder)
      R = &SPACE[(m+n+1) + n + (m+n)];
  } else {
    U = new uint32_t[m + n + 1];
    V = new uint32_t[n];
    Q = new uint32_t[m+n];
    if (Remainder)
      R = new uint32_t[n];
  }

  // Initialize the dividend
  memset(U, 0, (m+n+1)*sizeof(uint32_t));
  for (unsigned i = 0; i < lhsWords; ++i) {
    uint64_t tmp = LHS[i];
    U[i * 2] = Lo_32(tmp);
    U[i * 2 + 1] = Hi_32(tmp);
  }
  U[m+n] = 0; // this extra word is for "spill" in the Knuth algorithm.

  // Initialize the divisor
  memset(V, 0, (n)*sizeof(uint32_t));
  for (unsigned i = 0; i < rhsWords; ++i) {
    uint64_t tmp = RHS[i];
    V[i * 2] = Lo_32(tmp);
    V[i * 2 + 1] = Hi_32(tmp);
  }

  // initialize the quotient and remainder
  memset(Q, 0, (m+n) * sizeof(uint32_t));
  if (Remainder)
    memset(R, 0, n * sizeof(uint32_t));

  // Now, adjust m and n for the Knuth division. n is the number of words in
  // the divisor. m is the number of words by which the dividend exceeds the
  // divisor (i.e. m+n is the length of the dividend). These sizes must not
  // contain any zero words or the Knuth algorithm fails.
  for (unsigned i = n; i > 0 && V[i-1] == 0; i--) {
    n--;
    m++;
  }
  for (unsigned i = m+n; i > 0 && U[i-1] == 0; i--)
    m--;

  // If we're left with only a single word for the divisor, Knuth doesn't work
  // so we implement the short division algorithm here. This is much simpler
  // and faster because we are certain that we can divide a 64-bit quantity
  // by a 32-bit quantity at hardware speed and short division is simply a
  // series of such operations. This is just like doing short division but we
  // are using base 2^32 instead of base 10.
  assert(n != 0 && "Divide by zero?");
  if (n == 1) {
    uint32_t divisor = V[0];
    uint32_t remainder = 0;
    for (int i = m; i >= 0; i--) {
      uint64_t partial_dividend = Make_64(remainder, U[i]);
      if (partial_dividend == 0) {
        Q[i] = 0;
        remainder = 0;
      } else if (partial_dividend < divisor) {
        Q[i] = 0;
        remainder = Lo_32(partial_dividend);
      } else if (partial_dividend == divisor) {
        Q[i] = 1;
        remainder = 0;
      } else {
        Q[i] = Lo_32(partial_dividend / divisor);
        remainder = Lo_32(partial_dividend - (Q[i] * divisor));
      }
    }
    if (R)
      R[0] = remainder;
  } else {
    // Now we're ready to invoke the Knuth classical divide algorithm. In this
    // case n > 1.
    KnuthDiv(U, V, Q, R, m, n);
  }

  // If the caller wants the quotient
  if (Quotient) {
    for (unsigned i = 0; i < lhsWords; ++i)
      Quotient[i] = Make_64(Q[i*2+1], Q[i*2]);
  }

  // If the caller wants the remainder
  if (Remainder) {
    for (unsigned i = 0; i < rhsWords; ++i)
      Remainder[i] = Make_64(R[i*2+1], R[i*2]);
  }

  // Clean up the memory we allocated.
  if (U != &SPACE[0]) {
    delete [] U;
    delete [] V;
    delete [] Q;
    delete [] R;
  }
}

APInt APInt::udiv(const APInt &RHS) const {
  assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");

  // First, deal with the easy case
  if (isSingleWord()) {
    assert(RHS.U.VAL != 0 && "Divide by zero?");
    return APInt(BitWidth, U.VAL / RHS.U.VAL);
  }

  // Get some facts about the LHS and RHS number of bits and words
  unsigned lhsWords = getNumWords(getActiveBits());
  unsigned rhsBits  = RHS.getActiveBits();
  unsigned rhsWords = getNumWords(rhsBits);
  assert(rhsWords && "Divided by zero???");

  // Deal with some degenerate cases
  if (!lhsWords)
    // 0 / X ===> 0
    return APInt(BitWidth, 0);
  if (rhsBits == 1)
    // X / 1 ===> X
    return *this;
  if (lhsWords < rhsWords || this->ult(RHS))
    // X / Y ===> 0, iff X < Y
    return APInt(BitWidth, 0);
  if (*this == RHS)
    // X / X ===> 1
    return APInt(BitWidth, 1);
  if (lhsWords == 1) // rhsWords is 1 if lhsWords is 1.
    // All high words are zero, just use native divide
    return APInt(BitWidth, this->U.pVal[0] / RHS.U.pVal[0]);

  // We have to compute it the hard way. Invoke the Knuth divide algorithm.
  APInt Quotient(BitWidth, 0); // to hold result.
  divide(U.pVal, lhsWords, RHS.U.pVal, rhsWords, Quotient.U.pVal, nullptr);
  return Quotient;
}

APInt APInt::udiv(uint64_t RHS) const {
  assert(RHS != 0 && "Divide by zero?");

  // First, deal with the easy case
  if (isSingleWord())
    return APInt(BitWidth, U.VAL / RHS);

  // Get some facts about the LHS words.
  unsigned lhsWords = getNumWords(getActiveBits());

  // Deal with some degenerate cases
  if (!lhsWords)
    // 0 / X ===> 0
    return APInt(BitWidth, 0);
  if (RHS == 1)
    // X / 1 ===> X
    return *this;
  if (this->ult(RHS))
    // X / Y ===> 0, iff X < Y
    return APInt(BitWidth, 0);
  if (*this == RHS)
    // X / X ===> 1
    return APInt(BitWidth, 1);
  if (lhsWords == 1) // rhsWords is 1 if lhsWords is 1.
    // All high words are zero, just use native divide
    return APInt(BitWidth, this->U.pVal[0] / RHS);

  // We have to compute it the hard way. Invoke the Knuth divide algorithm.
  APInt Quotient(BitWidth, 0); // to hold result.
  divide(U.pVal, lhsWords, &RHS, 1, Quotient.U.pVal, nullptr);
  return Quotient;
}

APInt APInt::sdiv(const APInt &RHS) const {
  if (isNegative()) {
    if (RHS.isNegative())
      return (-(*this)).udiv(-RHS);
    return -((-(*this)).udiv(RHS));
  }
  if (RHS.isNegative())
    return -(this->udiv(-RHS));
  return this->udiv(RHS);
}

APInt APInt::sdiv(int64_t RHS) const {
  if (isNegative()) {
    if (RHS < 0)
      return (-(*this)).udiv(-RHS);
    return -((-(*this)).udiv(RHS));
  }
  if (RHS < 0)
    return -(this->udiv(-RHS));
  return this->udiv(RHS);
}

APInt APInt::urem(const APInt &RHS) const {
  assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
  if (isSingleWord()) {
    assert(RHS.U.VAL != 0 && "Remainder by zero?");
    return APInt(BitWidth, U.VAL % RHS.U.VAL);
  }

  // Get some facts about the LHS
  unsigned lhsWords = getNumWords(getActiveBits());

  // Get some facts about the RHS
  unsigned rhsBits = RHS.getActiveBits();
  unsigned rhsWords = getNumWords(rhsBits);
  assert(rhsWords && "Performing remainder operation by zero ???");

  // Check the degenerate cases
  if (lhsWords == 0)
    // 0 % Y ===> 0
    return APInt(BitWidth, 0);
  if (rhsBits == 1)
    // X % 1 ===> 0
    return APInt(BitWidth, 0);
  if (lhsWords < rhsWords || this->ult(RHS))
    // X % Y ===> X, iff X < Y
    return *this;
  if (*this == RHS)
    // X % X == 0;
    return APInt(BitWidth, 0);
  if (lhsWords == 1)
    // All high words are zero, just use native remainder
    return APInt(BitWidth, U.pVal[0] % RHS.U.pVal[0]);

  // We have to compute it the hard way. Invoke the Knuth divide algorithm.
  APInt Remainder(BitWidth, 0);
  divide(U.pVal, lhsWords, RHS.U.pVal, rhsWords, nullptr, Remainder.U.pVal);
  return Remainder;
}

uint64_t APInt::urem(uint64_t RHS) const {
  assert(RHS != 0 && "Remainder by zero?");

  if (isSingleWord())
    return U.VAL % RHS;

  // Get some facts about the LHS
  unsigned lhsWords = getNumWords(getActiveBits());

  // Check the degenerate cases
  if (lhsWords == 0)
    // 0 % Y ===> 0
    return 0;
  if (RHS == 1)
    // X % 1 ===> 0
    return 0;
  if (this->ult(RHS))
    // X % Y ===> X, iff X < Y
    return getZExtValue();
  if (*this == RHS)
    // X % X == 0;
    return 0;
  if (lhsWords == 1)
    // All high words are zero, just use native remainder
    return U.pVal[0] % RHS;

  // We have to compute it the hard way. Invoke the Knuth divide algorithm.
  uint64_t Remainder;
  divide(U.pVal, lhsWords, &RHS, 1, nullptr, &Remainder);
  return Remainder;
}

APInt APInt::srem(const APInt &RHS) const {
  if (isNegative()) {
    if (RHS.isNegative())
      return -((-(*this)).urem(-RHS));
    return -((-(*this)).urem(RHS));
  }
  if (RHS.isNegative())
    return this->urem(-RHS);
  return this->urem(RHS);
}

int64_t APInt::srem(int64_t RHS) const {
  if (isNegative()) {
    if (RHS < 0)
      return -((-(*this)).urem(-RHS));
    return -((-(*this)).urem(RHS));
  }
  if (RHS < 0)
    return this->urem(-RHS);
  return this->urem(RHS);
}

void APInt::udivrem(const APInt &LHS, const APInt &RHS,
                    APInt &Quotient, APInt &Remainder) {
  assert(LHS.BitWidth == RHS.BitWidth && "Bit widths must be the same");
  unsigned BitWidth = LHS.BitWidth;

  // First, deal with the easy case
  if (LHS.isSingleWord()) {
    assert(RHS.U.VAL != 0 && "Divide by zero?");
    uint64_t QuotVal = LHS.U.VAL / RHS.U.VAL;
    uint64_t RemVal = LHS.U.VAL % RHS.U.VAL;
    Quotient = APInt(BitWidth, QuotVal);
    Remainder = APInt(BitWidth, RemVal);
    return;
  }

  // Get some size facts about the dividend and divisor
  unsigned lhsWords = getNumWords(LHS.getActiveBits());
  unsigned rhsBits  = RHS.getActiveBits();
  unsigned rhsWords = getNumWords(rhsBits);
  assert(rhsWords && "Performing divrem operation by zero ???");

  // Check the degenerate cases
  if (lhsWords == 0) {
    Quotient = APInt(BitWidth, 0);    // 0 / Y ===> 0
    Remainder = APInt(BitWidth, 0);   // 0 % Y ===> 0
    return;
  }

  if (rhsBits == 1) {
    Quotient = LHS;                   // X / 1 ===> X
    Remainder = APInt(BitWidth, 0);   // X % 1 ===> 0
  }

  if (lhsWords < rhsWords || LHS.ult(RHS)) {
    Remainder = LHS;                  // X % Y ===> X, iff X < Y
    Quotient = APInt(BitWidth, 0);    // X / Y ===> 0, iff X < Y
    return;
  }

  if (LHS == RHS) {
    Quotient  = APInt(BitWidth, 1);   // X / X ===> 1
    Remainder = APInt(BitWidth, 0);   // X % X ===> 0;
    return;
  }

  // Make sure there is enough space to hold the results.
  // NOTE: This assumes that reallocate won't affect any bits if it doesn't
  // change the size. This is necessary if Quotient or Remainder is aliased
  // with LHS or RHS.
  Quotient.reallocate(BitWidth);
  Remainder.reallocate(BitWidth);

  if (lhsWords == 1) { // rhsWords is 1 if lhsWords is 1.
    // There is only one word to consider so use the native versions.
    uint64_t lhsValue = LHS.U.pVal[0];
    uint64_t rhsValue = RHS.U.pVal[0];
    Quotient = lhsValue / rhsValue;
    Remainder = lhsValue % rhsValue;
    return;
  }

  // Okay, lets do it the long way
  divide(LHS.U.pVal, lhsWords, RHS.U.pVal, rhsWords, Quotient.U.pVal,
         Remainder.U.pVal);
  // Clear the rest of the Quotient and Remainder.
  std::memset(Quotient.U.pVal + lhsWords, 0,
              (getNumWords(BitWidth) - lhsWords) * APINT_WORD_SIZE);
  std::memset(Remainder.U.pVal + rhsWords, 0,
              (getNumWords(BitWidth) - rhsWords) * APINT_WORD_SIZE);
}

void APInt::udivrem(const APInt &LHS, uint64_t RHS, APInt &Quotient,
                    uint64_t &Remainder) {
  assert(RHS != 0 && "Divide by zero?");
  unsigned BitWidth = LHS.BitWidth;

  // First, deal with the easy case
  if (LHS.isSingleWord()) {
    uint64_t QuotVal = LHS.U.VAL / RHS;
    Remainder = LHS.U.VAL % RHS;
    Quotient = APInt(BitWidth, QuotVal);
    return;
  }

  // Get some size facts about the dividend and divisor
  unsigned lhsWords = getNumWords(LHS.getActiveBits());

  // Check the degenerate cases
  if (lhsWords == 0) {
    Quotient = APInt(BitWidth, 0);    // 0 / Y ===> 0
    Remainder = 0;                    // 0 % Y ===> 0
    return;
  }

  if (RHS == 1) {
    Quotient = LHS;                   // X / 1 ===> X
    Remainder = 0;                    // X % 1 ===> 0
    return;
  }

  if (LHS.ult(RHS)) {
    Remainder = LHS.getZExtValue();   // X % Y ===> X, iff X < Y
    Quotient = APInt(BitWidth, 0);    // X / Y ===> 0, iff X < Y
    return;
  }

  if (LHS == RHS) {
    Quotient  = APInt(BitWidth, 1);   // X / X ===> 1
    Remainder = 0;                    // X % X ===> 0;
    return;
  }

  // Make sure there is enough space to hold the results.
  // NOTE: This assumes that reallocate won't affect any bits if it doesn't
  // change the size. This is necessary if Quotient is aliased with LHS.
  Quotient.reallocate(BitWidth);

  if (lhsWords == 1) { // rhsWords is 1 if lhsWords is 1.
    // There is only one word to consider so use the native versions.
    uint64_t lhsValue = LHS.U.pVal[0];
    Quotient = lhsValue / RHS;
    Remainder = lhsValue % RHS;
    return;
  }

  // Okay, lets do it the long way
  divide(LHS.U.pVal, lhsWords, &RHS, 1, Quotient.U.pVal, &Remainder);
  // Clear the rest of the Quotient.
  std::memset(Quotient.U.pVal + lhsWords, 0,
              (getNumWords(BitWidth) - lhsWords) * APINT_WORD_SIZE);
}

void APInt::sdivrem(const APInt &LHS, const APInt &RHS,
                    APInt &Quotient, APInt &Remainder) {
  if (LHS.isNegative()) {
    if (RHS.isNegative())
      APInt::udivrem(-LHS, -RHS, Quotient, Remainder);
    else {
      APInt::udivrem(-LHS, RHS, Quotient, Remainder);
      Quotient.negate();
    }
    Remainder.negate();
  } else if (RHS.isNegative()) {
    APInt::udivrem(LHS, -RHS, Quotient, Remainder);
    Quotient.negate();
  } else {
    APInt::udivrem(LHS, RHS, Quotient, Remainder);
  }
}

void APInt::sdivrem(const APInt &LHS, int64_t RHS,
                    APInt &Quotient, int64_t &Remainder) {
  uint64_t R = Remainder;
  if (LHS.isNegative()) {
    if (RHS < 0)
      APInt::udivrem(-LHS, -RHS, Quotient, R);
    else {
      APInt::udivrem(-LHS, RHS, Quotient, R);
      Quotient.negate();
    }
    R = -R;
  } else if (RHS < 0) {
    APInt::udivrem(LHS, -RHS, Quotient, R);
    Quotient.negate();
  } else {
    APInt::udivrem(LHS, RHS, Quotient, R);
  }
  Remainder = R;
}

APInt APInt::sadd_ov(const APInt &RHS, bool &Overflow) const {
  APInt Res = *this+RHS;
  Overflow = isNonNegative() == RHS.isNonNegative() &&
             Res.isNonNegative() != isNonNegative();
  return Res;
}

APInt APInt::uadd_ov(const APInt &RHS, bool &Overflow) const {
  APInt Res = *this+RHS;
  Overflow = Res.ult(RHS);
  return Res;
}

APInt APInt::ssub_ov(const APInt &RHS, bool &Overflow) const {
  APInt Res = *this - RHS;
  Overflow = isNonNegative() != RHS.isNonNegative() &&
             Res.isNonNegative() != isNonNegative();
  return Res;
}

APInt APInt::usub_ov(const APInt &RHS, bool &Overflow) const {
  APInt Res = *this-RHS;
  Overflow = Res.ugt(*this);
  return Res;
}

APInt APInt::sdiv_ov(const APInt &RHS, bool &Overflow) const {
  // MININT/-1  -->  overflow.
  Overflow = isMinSignedValue() && RHS.isAllOnesValue();
  return sdiv(RHS);
}

APInt APInt::smul_ov(const APInt &RHS, bool &Overflow) const {
  APInt Res = *this * RHS;

  if (*this != 0 && RHS != 0)
    Overflow = Res.sdiv(RHS) != *this || Res.sdiv(*this) != RHS;
  else
    Overflow = false;
  return Res;
}

APInt APInt::umul_ov(const APInt &RHS, bool &Overflow) const {
  if (countLeadingZeros() + RHS.countLeadingZeros() + 2 <= BitWidth) {
    Overflow = true;
    return *this * RHS;
  }

  APInt Res = lshr(1) * RHS;
  Overflow = Res.isNegative();
  Res <<= 1;
  if ((*this)[0]) {
    Res += RHS;
    if (Res.ult(RHS))
      Overflow = true;
  }
  return Res;
}

APInt APInt::sshl_ov(const APInt &ShAmt, bool &Overflow) const {
  Overflow = ShAmt.uge(getBitWidth());
  if (Overflow)
    return APInt(BitWidth, 0);

  if (isNonNegative()) // Don't allow sign change.
    Overflow = ShAmt.uge(countLeadingZeros());
  else
    Overflow = ShAmt.uge(countLeadingOnes());

  return *this << ShAmt;
}

APInt APInt::ushl_ov(const APInt &ShAmt, bool &Overflow) const {
  Overflow = ShAmt.uge(getBitWidth());
  if (Overflow)
    return APInt(BitWidth, 0);

  Overflow = ShAmt.ugt(countLeadingZeros());

  return *this << ShAmt;
}

APInt APInt::sadd_sat(const APInt &RHS) const {
  bool Overflow;
  APInt Res = sadd_ov(RHS, Overflow);
  if (!Overflow)
    return Res;

  return isNegative() ? APInt::getSignedMinValue(BitWidth)
                      : APInt::getSignedMaxValue(BitWidth);
}

APInt APInt::uadd_sat(const APInt &RHS) const {
  bool Overflow;
  APInt Res = uadd_ov(RHS, Overflow);
  if (!Overflow)
    return Res;

  return APInt::getMaxValue(BitWidth);
}

APInt APInt::ssub_sat(const APInt &RHS) const {
  bool Overflow;
  APInt Res = ssub_ov(RHS, Overflow);
  if (!Overflow)
    return Res;

  return isNegative() ? APInt::getSignedMinValue(BitWidth)
                      : APInt::getSignedMaxValue(BitWidth);
}

APInt APInt::usub_sat(const APInt &RHS) const {
  bool Overflow;
  APInt Res = usub_ov(RHS, Overflow);
  if (!Overflow)
    return Res;

  return APInt(BitWidth, 0);
}

APInt APInt::smul_sat(const APInt &RHS) const {
  bool Overflow;
  APInt Res = smul_ov(RHS, Overflow);
  if (!Overflow)
    return Res;

  // The result is negative if one and only one of inputs is negative.
  bool ResIsNegative = isNegative() ^ RHS.isNegative();

  return ResIsNegative ? APInt::getSignedMinValue(BitWidth)
                       : APInt::getSignedMaxValue(BitWidth);
}

APInt APInt::umul_sat(const APInt &RHS) const {
  bool Overflow;
  APInt Res = umul_ov(RHS, Overflow);
  if (!Overflow)
    return Res;

  return APInt::getMaxValue(BitWidth);
}

APInt APInt::sshl_sat(const APInt &RHS) const {
  bool Overflow;
  APInt Res = sshl_ov(RHS, Overflow);
  if (!Overflow)
    return Res;

  return isNegative() ? APInt::getSignedMinValue(BitWidth)
                      : APInt::getSignedMaxValue(BitWidth);
}

APInt APInt::ushl_sat(const APInt &RHS) const {
  bool Overflow;
  APInt Res = ushl_ov(RHS, Overflow);
  if (!Overflow)
    return Res;

  return APInt::getMaxValue(BitWidth);
}

void APInt::fromString(unsigned numbits, StringRef str, uint8_t radix) {
  // Check our assumptions here
  assert(!str.empty() && "Invalid string length");
  assert((radix == 10 || radix == 8 || radix == 16 || radix == 2 ||
          radix == 36) &&
         "Radix should be 2, 8, 10, 16, or 36!");

  StringRef::iterator p = str.begin();
  size_t slen = str.size();
  bool isNeg = *p == '-';
  if (*p == '-' || *p == '+') {
    p++;
    slen--;
    assert(slen && "String is only a sign, needs a value.");
  }
  assert((slen <= numbits || radix != 2) && "Insufficient bit width");
  assert(((slen-1)*3 <= numbits || radix != 8) && "Insufficient bit width");
  assert(((slen-1)*4 <= numbits || radix != 16) && "Insufficient bit width");
  assert((((slen-1)*64)/22 <= numbits || radix != 10) &&
         "Insufficient bit width");

  // Allocate memory if needed
  if (isSingleWord())
    U.VAL = 0;
  else
    U.pVal = getClearedMemory(getNumWords());

  // Figure out if we can shift instead of multiply
  unsigned shift = (radix == 16 ? 4 : radix == 8 ? 3 : radix == 2 ? 1 : 0);

  // Enter digit traversal loop
  for (StringRef::iterator e = str.end(); p != e; ++p) {
    unsigned digit = getDigit(*p, radix);
    assert(digit < radix && "Invalid character in digit string");

    // Shift or multiply the value by the radix
    if (slen > 1) {
      if (shift)
        *this <<= shift;
      else
        *this *= radix;
    }

    // Add in the digit we just interpreted
    *this += digit;
  }
  // If its negative, put it in two's complement form
  if (isNeg)
    this->negate();
}

void APInt::toString(SmallVectorImpl<char> &Str, unsigned Radix,
                     bool Signed, bool formatAsCLiteral) const {
  assert((Radix == 10 || Radix == 8 || Radix == 16 || Radix == 2 ||
          Radix == 36) &&
         "Radix should be 2, 8, 10, 16, or 36!");

  const char *Prefix = "";
  if (formatAsCLiteral) {
    switch (Radix) {
      case 2:
        // Binary literals are a non-standard extension added in gcc 4.3:
        // http://gcc.gnu.org/onlinedocs/gcc-4.3.0/gcc/Binary-constants.html
        Prefix = "0b";
        break;
      case 8:
        Prefix = "0";
        break;
      case 10:
        break; // No prefix
      case 16:
        Prefix = "0x";
        break;
      default:
        llvm_unreachable("Invalid radix!");
    }
  }

  // First, check for a zero value and just short circuit the logic below.
  if (*this == 0) {
    while (*Prefix) {
      Str.push_back(*Prefix);
      ++Prefix;
    };
    Str.push_back('0');
    return;
  }

  static const char Digits[] = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ";

  if (isSingleWord()) {
    char Buffer[65];
    char *BufPtr = std::end(Buffer);

    uint64_t N;
    if (!Signed) {
      N = getZExtValue();
    } else {
      int64_t I = getSExtValue();
      if (I >= 0) {
        N = I;
      } else {
        Str.push_back('-');
        N = -(uint64_t)I;
      }
    }

    while (*Prefix) {
      Str.push_back(*Prefix);
      ++Prefix;
    };

    while (N) {
      *--BufPtr = Digits[N % Radix];
      N /= Radix;
    }
    Str.append(BufPtr, std::end(Buffer));
    return;
  }

  APInt Tmp(*this);

  if (Signed && isNegative()) {
    // They want to print the signed version and it is a negative value
    // Flip the bits and add one to turn it into the equivalent positive
    // value and put a '-' in the result.
    Tmp.negate();
    Str.push_back('-');
  }

  while (*Prefix) {
    Str.push_back(*Prefix);
    ++Prefix;
  };

  // We insert the digits backward, then reverse them to get the right order.
  unsigned StartDig = Str.size();

  // For the 2, 8 and 16 bit cases, we can just shift instead of divide
  // because the number of bits per digit (1, 3 and 4 respectively) divides
  // equally.  We just shift until the value is zero.
  if (Radix == 2 || Radix == 8 || Radix == 16) {
    // Just shift tmp right for each digit width until it becomes zero
    unsigned ShiftAmt = (Radix == 16 ? 4 : (Radix == 8 ? 3 : 1));
    unsigned MaskAmt = Radix - 1;

    while (Tmp.getBoolValue()) {
      unsigned Digit = unsigned(Tmp.getRawData()[0]) & MaskAmt;
      Str.push_back(Digits[Digit]);
      Tmp.lshrInPlace(ShiftAmt);
    }
  } else {
    while (Tmp.getBoolValue()) {
      uint64_t Digit;
      udivrem(Tmp, Radix, Tmp, Digit);
      assert(Digit < Radix && "divide failed");
      Str.push_back(Digits[Digit]);
    }
  }

  // Reverse the digits before returning.
  std::reverse(Str.begin()+StartDig, Str.end());
}

/// Returns the APInt as a std::string. Note that this is an inefficient method.
/// It is better to pass in a SmallVector/SmallString to the methods above.
std::string APInt::toString(unsigned Radix = 10, bool Signed = true) const {
  SmallString<40> S;
  toString(S, Radix, Signed, /* formatAsCLiteral = */false);
  return S.str();
}

#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
LLVM_DUMP_METHOD void APInt::dump() const {
  SmallString<40> S, U;
  this->toStringUnsigned(U);
  this->toStringSigned(S);
  dbgs() << "APInt(" << BitWidth << "b, "
         << U << "u " << S << "s)\n";
}
#endif

void APInt::print(raw_ostream &OS, bool isSigned) const {
  SmallString<40> S;
  this->toString(S, 10, isSigned, /* formatAsCLiteral = */false);
  OS << S;
}

// This implements a variety of operations on a representation of
// arbitrary precision, two's-complement, bignum integer values.

// Assumed by lowHalf, highHalf, partMSB and partLSB.  A fairly safe
// and unrestricting assumption.
static_assert(APInt::APINT_BITS_PER_WORD % 2 == 0,
              "Part width must be divisible by 2!");

/* Some handy functions local to this file.  */

/* Returns the integer part with the least significant BITS set.
   BITS cannot be zero.  */
static inline APInt::WordType lowBitMask(unsigned bits) {
  assert(bits != 0 && bits <= APInt::APINT_BITS_PER_WORD);

  return ~(APInt::WordType) 0 >> (APInt::APINT_BITS_PER_WORD - bits);
}

/* Returns the value of the lower half of PART.  */
static inline APInt::WordType lowHalf(APInt::WordType part) {
  return part & lowBitMask(APInt::APINT_BITS_PER_WORD / 2);
}

/* Returns the value of the upper half of PART.  */
static inline APInt::WordType highHalf(APInt::WordType part) {
  return part >> (APInt::APINT_BITS_PER_WORD / 2);
}

/* Returns the bit number of the most significant set bit of a part.
   If the input number has no bits set -1U is returned.  */
static unsigned partMSB(APInt::WordType value) {
  return findLastSet(value, ZB_Max);
}

/* Returns the bit number of the least significant set bit of a
   part.  If the input number has no bits set -1U is returned.  */
static unsigned partLSB(APInt::WordType value) {
  return findFirstSet(value, ZB_Max);
}

/* Sets the least significant part of a bignum to the input value, and
   zeroes out higher parts.  */
void APInt::tcSet(WordType *dst, WordType part, unsigned parts) {
  assert(parts > 0);

  dst[0] = part;
  for (unsigned i = 1; i < parts; i++)
    dst[i] = 0;
}

/* Assign one bignum to another.  */
void APInt::tcAssign(WordType *dst, const WordType *src, unsigned parts) {
  for (unsigned i = 0; i < parts; i++)
    dst[i] = src[i];
}

/* Returns true if a bignum is zero, false otherwise.  */
bool APInt::tcIsZero(const WordType *src, unsigned parts) {
  for (unsigned i = 0; i < parts; i++)
    if (src[i])
      return false;

  return true;
}

/* Extract the given bit of a bignum; returns 0 or 1.  */
int APInt::tcExtractBit(const WordType *parts, unsigned bit) {
  return (parts[whichWord(bit)] & maskBit(bit)) != 0;
}

/* Set the given bit of a bignum. */
void APInt::tcSetBit(WordType *parts, unsigned bit) {
  parts[whichWord(bit)] |= maskBit(bit);
}

/* Clears the given bit of a bignum. */
void APInt::tcClearBit(WordType *parts, unsigned bit) {
  parts[whichWord(bit)] &= ~maskBit(bit);
}

/* Returns the bit number of the least significant set bit of a
   number.  If the input number has no bits set -1U is returned.  */
unsigned APInt::tcLSB(const WordType *parts, unsigned n) {
  for (unsigned i = 0; i < n; i++) {
    if (parts[i] != 0) {
      unsigned lsb = partLSB(parts[i]);

      return lsb + i * APINT_BITS_PER_WORD;
    }
  }

  return -1U;
}

/* Returns the bit number of the most significant set bit of a number.
   If the input number has no bits set -1U is returned.  */
unsigned APInt::tcMSB(const WordType *parts, unsigned n) {
  do {
    --n;

    if (parts[n] != 0) {
      unsigned msb = partMSB(parts[n]);

      return msb + n * APINT_BITS_PER_WORD;
    }
  } while (n);

  return -1U;
}

/* Copy the bit vector of width srcBITS from SRC, starting at bit
   srcLSB, to DST, of dstCOUNT parts, such that the bit srcLSB becomes
   the least significant bit of DST.  All high bits above srcBITS in
   DST are zero-filled.  */
void
APInt::tcExtract(WordType *dst, unsigned dstCount, const WordType *src,
                 unsigned srcBits, unsigned srcLSB) {
  unsigned dstParts = (srcBits + APINT_BITS_PER_WORD - 1) / APINT_BITS_PER_WORD;
  assert(dstParts <= dstCount);

  unsigned firstSrcPart = srcLSB / APINT_BITS_PER_WORD;
  tcAssign (dst, src + firstSrcPart, dstParts);

  unsigned shift = srcLSB % APINT_BITS_PER_WORD;
  tcShiftRight (dst, dstParts, shift);

  /* We now have (dstParts * APINT_BITS_PER_WORD - shift) bits from SRC
     in DST.  If this is less that srcBits, append the rest, else
     clear the high bits.  */
  unsigned n = dstParts * APINT_BITS_PER_WORD - shift;
  if (n < srcBits) {
    WordType mask = lowBitMask (srcBits - n);
    dst[dstParts - 1] |= ((src[firstSrcPart + dstParts] & mask)
                          << n % APINT_BITS_PER_WORD);
  } else if (n > srcBits) {
    if (srcBits % APINT_BITS_PER_WORD)
      dst[dstParts - 1] &= lowBitMask (srcBits % APINT_BITS_PER_WORD);
  }

  /* Clear high parts.  */
  while (dstParts < dstCount)
    dst[dstParts++] = 0;
}

/* DST += RHS + C where C is zero or one.  Returns the carry flag.  */
APInt::WordType APInt::tcAdd(WordType *dst, const WordType *rhs,
                             WordType c, unsigned parts) {
  assert(c <= 1);

  for (unsigned i = 0; i < parts; i++) {
    WordType l = dst[i];
    if (c) {
      dst[i] += rhs[i] + 1;
      c = (dst[i] <= l);
    } else {
      dst[i] += rhs[i];
      c = (dst[i] < l);
    }
  }

  return c;
}

/// This function adds a single "word" integer, src, to the multiple
/// "word" integer array, dst[]. dst[] is modified to reflect the addition and
/// 1 is returned if there is a carry out, otherwise 0 is returned.
/// @returns the carry of the addition.
APInt::WordType APInt::tcAddPart(WordType *dst, WordType src,
                                 unsigned parts) {
  for (unsigned i = 0; i < parts; ++i) {
    dst[i] += src;
    if (dst[i] >= src)
      return 0; // No need to carry so exit early.
    src = 1; // Carry one to next digit.
  }

  return 1;
}

/* DST -= RHS + C where C is zero or one.  Returns the carry flag.  */
APInt::WordType APInt::tcSubtract(WordType *dst, const WordType *rhs,
                                  WordType c, unsigned parts) {
  assert(c <= 1);

  for (unsigned i = 0; i < parts; i++) {
    WordType l = dst[i];
    if (c) {
      dst[i] -= rhs[i] + 1;
      c = (dst[i] >= l);
    } else {
      dst[i] -= rhs[i];
      c = (dst[i] > l);
    }
  }

  return c;
}

/// This function subtracts a single "word" (64-bit word), src, from
/// the multi-word integer array, dst[], propagating the borrowed 1 value until
/// no further borrowing is needed or it runs out of "words" in dst.  The result
/// is 1 if "borrowing" exhausted the digits in dst, or 0 if dst was not
/// exhausted. In other words, if src > dst then this function returns 1,
/// otherwise 0.
/// @returns the borrow out of the subtraction
APInt::WordType APInt::tcSubtractPart(WordType *dst, WordType src,
                                      unsigned parts) {
  for (unsigned i = 0; i < parts; ++i) {
    WordType Dst = dst[i];
    dst[i] -= src;
    if (src <= Dst)
      return 0; // No need to borrow so exit early.
    src = 1; // We have to "borrow 1" from next "word"
  }

  return 1;
}

/* Negate a bignum in-place.  */
void APInt::tcNegate(WordType *dst, unsigned parts) {
  tcComplement(dst, parts);
  tcIncrement(dst, parts);
}

/*  DST += SRC * MULTIPLIER + CARRY   if add is true
    DST  = SRC * MULTIPLIER + CARRY   if add is false

    Requires 0 <= DSTPARTS <= SRCPARTS + 1.  If DST overlaps SRC
    they must start at the same point, i.e. DST == SRC.

    If DSTPARTS == SRCPARTS + 1 no overflow occurs and zero is
    returned.  Otherwise DST is filled with the least significant
    DSTPARTS parts of the result, and if all of the omitted higher
    parts were zero return zero, otherwise overflow occurred and
    return one.  */
int APInt::tcMultiplyPart(WordType *dst, const WordType *src,
                          WordType multiplier, WordType carry,
                          unsigned srcParts, unsigned dstParts,
                          bool add) {
  /* Otherwise our writes of DST kill our later reads of SRC.  */
  assert(dst <= src || dst >= src + srcParts);
  assert(dstParts <= srcParts + 1);

  /* N loops; minimum of dstParts and srcParts.  */
  unsigned n = std::min(dstParts, srcParts);

  for (unsigned i = 0; i < n; i++) {
    WordType low, mid, high, srcPart;

      /* [ LOW, HIGH ] = MULTIPLIER * SRC[i] + DST[i] + CARRY.

         This cannot overflow, because

         (n - 1) * (n - 1) + 2 (n - 1) = (n - 1) * (n + 1)

         which is less than n^2.  */

    srcPart = src[i];

    if (multiplier == 0 || srcPart == 0) {
      low = carry;
      high = 0;
    } else {
      low = lowHalf(srcPart) * lowHalf(multiplier);
      high = highHalf(srcPart) * highHalf(multiplier);

      mid = lowHalf(srcPart) * highHalf(multiplier);
      high += highHalf(mid);
      mid <<= APINT_BITS_PER_WORD / 2;
      if (low + mid < low)
        high++;
      low += mid;

      mid = highHalf(srcPart) * lowHalf(multiplier);
      high += highHalf(mid);
      mid <<= APINT_BITS_PER_WORD / 2;
      if (low + mid < low)
        high++;
      low += mid;

      /* Now add carry.  */
      if (low + carry < low)
        high++;
      low += carry;
    }

    if (add) {
      /* And now DST[i], and store the new low part there.  */
      if (low + dst[i] < low)
        high++;
      dst[i] += low;
    } else
      dst[i] = low;

    carry = high;
  }

  if (srcParts < dstParts) {
    /* Full multiplication, there is no overflow.  */
    assert(srcParts + 1 == dstParts);
    dst[srcParts] = carry;
    return 0;
  }

  /* We overflowed if there is carry.  */
  if (carry)
    return 1;

  /* We would overflow if any significant unwritten parts would be
     non-zero.  This is true if any remaining src parts are non-zero
     and the multiplier is non-zero.  */
  if (multiplier)
    for (unsigned i = dstParts; i < srcParts; i++)
      if (src[i])
        return 1;

  /* We fitted in the narrow destination.  */
  return 0;
}

/* DST = LHS * RHS, where DST has the same width as the operands and
   is filled with the least significant parts of the result.  Returns
   one if overflow occurred, otherwise zero.  DST must be disjoint
   from both operands.  */
int APInt::tcMultiply(WordType *dst, const WordType *lhs,
                      const WordType *rhs, unsigned parts) {
  assert(dst != lhs && dst != rhs);

  int overflow = 0;
  tcSet(dst, 0, parts);

  for (unsigned i = 0; i < parts; i++)
    overflow |= tcMultiplyPart(&dst[i], lhs, rhs[i], 0, parts,
                               parts - i, true);

  return overflow;
}

/// DST = LHS * RHS, where DST has width the sum of the widths of the
/// operands. No overflow occurs. DST must be disjoint from both operands.
void APInt::tcFullMultiply(WordType *dst, const WordType *lhs,
                           const WordType *rhs, unsigned lhsParts,
                           unsigned rhsParts) {
  /* Put the narrower number on the LHS for less loops below.  */
  if (lhsParts > rhsParts)
    return tcFullMultiply (dst, rhs, lhs, rhsParts, lhsParts);

  assert(dst != lhs && dst != rhs);

  tcSet(dst, 0, rhsParts);

  for (unsigned i = 0; i < lhsParts; i++)
    tcMultiplyPart(&dst[i], rhs, lhs[i], 0, rhsParts, rhsParts + 1, true);
}

/* If RHS is zero LHS and REMAINDER are left unchanged, return one.
   Otherwise set LHS to LHS / RHS with the fractional part discarded,
   set REMAINDER to the remainder, return zero.  i.e.

   OLD_LHS = RHS * LHS + REMAINDER

   SCRATCH is a bignum of the same size as the operands and result for
   use by the routine; its contents need not be initialized and are
   destroyed.  LHS, REMAINDER and SCRATCH must be distinct.
*/
int APInt::tcDivide(WordType *lhs, const WordType *rhs,
                    WordType *remainder, WordType *srhs,
                    unsigned parts) {
  assert(lhs != remainder && lhs != srhs && remainder != srhs);

  unsigned shiftCount = tcMSB(rhs, parts) + 1;
  if (shiftCount == 0)
    return true;

  shiftCount = parts * APINT_BITS_PER_WORD - shiftCount;
  unsigned n = shiftCount / APINT_BITS_PER_WORD;
  WordType mask = (WordType) 1 << (shiftCount % APINT_BITS_PER_WORD);

  tcAssign(srhs, rhs, parts);
  tcShiftLeft(srhs, parts, shiftCount);
  tcAssign(remainder, lhs, parts);
  tcSet(lhs, 0, parts);

  /* Loop, subtracting SRHS if REMAINDER is greater and adding that to
     the total.  */
  for (;;) {
    int compare = tcCompare(remainder, srhs, parts);
    if (compare >= 0) {
      tcSubtract(remainder, srhs, 0, parts);
      lhs[n] |= mask;
    }

    if (shiftCount == 0)
      break;
    shiftCount--;
    tcShiftRight(srhs, parts, 1);
    if ((mask >>= 1) == 0) {
      mask = (WordType) 1 << (APINT_BITS_PER_WORD - 1);
      n--;
    }
  }

  return false;
}

/// Shift a bignum left Cound bits in-place. Shifted in bits are zero. There are
/// no restrictions on Count.
void APInt::tcShiftLeft(WordType *Dst, unsigned Words, unsigned Count) {
  // Don't bother performing a no-op shift.
  if (!Count)
    return;

  // WordShift is the inter-part shift; BitShift is the intra-part shift.
  unsigned WordShift = std::min(Count / APINT_BITS_PER_WORD, Words);
  unsigned BitShift = Count % APINT_BITS_PER_WORD;

  // Fastpath for moving by whole words.
  if (BitShift == 0) {
    std::memmove(Dst + WordShift, Dst, (Words - WordShift) * APINT_WORD_SIZE);
  } else {
    while (Words-- > WordShift) {
      Dst[Words] = Dst[Words - WordShift] << BitShift;
      if (Words > WordShift)
        Dst[Words] |=
          Dst[Words - WordShift - 1] >> (APINT_BITS_PER_WORD - BitShift);
    }
  }

  // Fill in the remainder with 0s.
  std::memset(Dst, 0, WordShift * APINT_WORD_SIZE);
}

/// Shift a bignum right Count bits in-place. Shifted in bits are zero. There
/// are no restrictions on Count.
void APInt::tcShiftRight(WordType *Dst, unsigned Words, unsigned Count) {
  // Don't bother performing a no-op shift.
  if (!Count)
    return;

  // WordShift is the inter-part shift; BitShift is the intra-part shift.
  unsigned WordShift = std::min(Count / APINT_BITS_PER_WORD, Words);
  unsigned BitShift = Count % APINT_BITS_PER_WORD;

  unsigned WordsToMove = Words - WordShift;
  // Fastpath for moving by whole words.
  if (BitShift == 0) {
    std::memmove(Dst, Dst + WordShift, WordsToMove * APINT_WORD_SIZE);
  } else {
    for (unsigned i = 0; i != WordsToMove; ++i) {
      Dst[i] = Dst[i + WordShift] >> BitShift;
      if (i + 1 != WordsToMove)
        Dst[i] |= Dst[i + WordShift + 1] << (APINT_BITS_PER_WORD - BitShift);
    }
  }

  // Fill in the remainder with 0s.
  std::memset(Dst + WordsToMove, 0, WordShift * APINT_WORD_SIZE);
}

/* Bitwise and of two bignums.  */
void APInt::tcAnd(WordType *dst, const WordType *rhs, unsigned parts) {
  for (unsigned i = 0; i < parts; i++)
    dst[i] &= rhs[i];
}

/* Bitwise inclusive or of two bignums.  */
void APInt::tcOr(WordType *dst, const WordType *rhs, unsigned parts) {
  for (unsigned i = 0; i < parts; i++)
    dst[i] |= rhs[i];
}

/* Bitwise exclusive or of two bignums.  */
void APInt::tcXor(WordType *dst, const WordType *rhs, unsigned parts) {
  for (unsigned i = 0; i < parts; i++)
    dst[i] ^= rhs[i];
}

/* Complement a bignum in-place.  */
void APInt::tcComplement(WordType *dst, unsigned parts) {
  for (unsigned i = 0; i < parts; i++)
    dst[i] = ~dst[i];
}

/* Comparison (unsigned) of two bignums.  */
int APInt::tcCompare(const WordType *lhs, const WordType *rhs,
                     unsigned parts) {
  while (parts) {
    parts--;
    if (lhs[parts] != rhs[parts])
      return (lhs[parts] > rhs[parts]) ? 1 : -1;
  }

  return 0;
}

/* Set the least significant BITS bits of a bignum, clear the
   rest.  */
void APInt::tcSetLeastSignificantBits(WordType *dst, unsigned parts,
                                      unsigned bits) {
  unsigned i = 0;
  while (bits > APINT_BITS_PER_WORD) {
    dst[i++] = ~(WordType) 0;
    bits -= APINT_BITS_PER_WORD;
  }

  if (bits)
    dst[i++] = ~(WordType) 0 >> (APINT_BITS_PER_WORD - bits);

  while (i < parts)
    dst[i++] = 0;
}

APInt llvm::APIntOps::RoundingUDiv(const APInt &A, const APInt &B,
                                   APInt::Rounding RM) {
  // Currently udivrem always rounds down.
  switch (RM) {
  case APInt::Rounding::DOWN:
  case APInt::Rounding::TOWARD_ZERO:
    return A.udiv(B);
  case APInt::Rounding::UP: {
    APInt Quo, Rem;
    APInt::udivrem(A, B, Quo, Rem);
    if (Rem == 0)
      return Quo;
    return Quo + 1;
  }
  }
  llvm_unreachable("Unknown APInt::Rounding enum");
}

APInt llvm::APIntOps::RoundingSDiv(const APInt &A, const APInt &B,
                                   APInt::Rounding RM) {
  switch (RM) {
  case APInt::Rounding::DOWN:
  case APInt::Rounding::UP: {
    APInt Quo, Rem;
    APInt::sdivrem(A, B, Quo, Rem);
    if (Rem == 0)
      return Quo;
    // This algorithm deals with arbitrary rounding mode used by sdivrem.
    // We want to check whether the non-integer part of the mathematical value
    // is negative or not. If the non-integer part is negative, we need to round
    // down from Quo; otherwise, if it's positive or 0, we return Quo, as it's
    // already rounded down.
    if (RM == APInt::Rounding::DOWN) {
      if (Rem.isNegative() != B.isNegative())
        return Quo - 1;
      return Quo;
    }
    if (Rem.isNegative() != B.isNegative())
      return Quo;
    return Quo + 1;
  }
  // Currently sdiv rounds towards zero.
  case APInt::Rounding::TOWARD_ZERO:
    return A.sdiv(B);
  }
  llvm_unreachable("Unknown APInt::Rounding enum");
}

Optional<APInt>
llvm::APIntOps::SolveQuadraticEquationWrap(APInt A, APInt B, APInt C,
                                           unsigned RangeWidth) {
  unsigned CoeffWidth = A.getBitWidth();
  assert(CoeffWidth == B.getBitWidth() && CoeffWidth == C.getBitWidth());
  assert(RangeWidth <= CoeffWidth &&
         "Value range width should be less than coefficient width");
  assert(RangeWidth > 1 && "Value range bit width should be > 1");

  LLVM_DEBUG(dbgs() << __func__ << ": solving " << A << "x^2 + " << B
                    << "x + " << C << ", rw:" << RangeWidth << '\n');

  // Identify 0 as a (non)solution immediately.
  if (C.sextOrTrunc(RangeWidth).isNullValue() ) {
    LLVM_DEBUG(dbgs() << __func__ << ": zero solution\n");
    return APInt(CoeffWidth, 0);
  }

  // The result of APInt arithmetic has the same bit width as the operands,
  // so it can actually lose high bits. A product of two n-bit integers needs
  // 2n-1 bits to represent the full value.
  // The operation done below (on quadratic coefficients) that can produce
  // the largest value is the evaluation of the equation during bisection,
  // which needs 3 times the bitwidth of the coefficient, so the total number
  // of required bits is 3n.
  //
  // The purpose of this extension is to simulate the set Z of all integers,
  // where n+1 > n for all n in Z. In Z it makes sense to talk about positive
  // and negative numbers (not so much in a modulo arithmetic). The method
  // used to solve the equation is based on the standard formula for real
  // numbers, and uses the concepts of "positive" and "negative" with their
  // usual meanings.
  CoeffWidth *= 3;
  A = A.sext(CoeffWidth);
  B = B.sext(CoeffWidth);
  C = C.sext(CoeffWidth);

  // Make A > 0 for simplicity. Negate cannot overflow at this point because
  // the bit width has increased.
  if (A.isNegative()) {
    A.negate();
    B.negate();
    C.negate();
  }

  // Solving an equation q(x) = 0 with coefficients in modular arithmetic
  // is really solving a set of equations q(x) = kR for k = 0, 1, 2, ...,
  // and R = 2^BitWidth.
  // Since we're trying not only to find exact solutions, but also values
  // that "wrap around", such a set will always have a solution, i.e. an x
  // that satisfies at least one of the equations, or such that |q(x)|
  // exceeds kR, while |q(x-1)| for the same k does not.
  //
  // We need to find a value k, such that Ax^2 + Bx + C = kR will have a
  // positive solution n (in the above sense), and also such that the n
  // will be the least among all solutions corresponding to k = 0, 1, ...
  // (more precisely, the least element in the set
  //   { n(k) | k is such that a solution n(k) exists }).
  //
  // Consider the parabola (over real numbers) that corresponds to the
  // quadratic equation. Since A > 0, the arms of the parabola will point
  // up. Picking different values of k will shift it up and down by R.
  //
  // We want to shift the parabola in such a way as to reduce the problem
  // of solving q(x) = kR to solving shifted_q(x) = 0.
  // (The interesting solutions are the ceilings of the real number
  // solutions.)
  APInt R = APInt::getOneBitSet(CoeffWidth, RangeWidth);
  APInt TwoA = 2 * A;
  APInt SqrB = B * B;
  bool PickLow;

  auto RoundUp = [] (const APInt &V, const APInt &A) -> APInt {
    assert(A.isStrictlyPositive());
    APInt T = V.abs().urem(A);
    if (T.isNullValue())
      return V;
    return V.isNegative() ? V+T : V+(A-T);
  };

  // The vertex of the parabola is at -B/2A, but since A > 0, it's negative
  // iff B is positive.
  if (B.isNonNegative()) {
    // If B >= 0, the vertex it at a negative location (or at 0), so in
    // order to have a non-negative solution we need to pick k that makes
    // C-kR negative. To satisfy all the requirements for the solution
    // that we are looking for, it needs to be closest to 0 of all k.
    C = C.srem(R);
    if (C.isStrictlyPositive())
      C -= R;
    // Pick the greater solution.
    PickLow = false;
  } else {
    // If B < 0, the vertex is at a positive location. For any solution
    // to exist, the discriminant must be non-negative. This means that
    // C-kR <= B^2/4A is a necessary condition for k, i.e. there is a
    // lower bound on values of k: kR >= C - B^2/4A.
    APInt LowkR = C - SqrB.udiv(2*TwoA); // udiv because all values > 0.
    // Round LowkR up (towards +inf) to the nearest kR.
    LowkR = RoundUp(LowkR, R);

    // If there exists k meeting the condition above, and such that
    // C-kR > 0, there will be two positive real number solutions of
    // q(x) = kR. Out of all such values of k, pick the one that makes
    // C-kR closest to 0, (i.e. pick maximum k such that C-kR > 0).
    // In other words, find maximum k such that LowkR <= kR < C.
    if (C.sgt(LowkR)) {
      // If LowkR < C, then such a k is guaranteed to exist because
      // LowkR itself is a multiple of R.
      C -= -RoundUp(-C, R);      // C = C - RoundDown(C, R)
      // Pick the smaller solution.
      PickLow = true;
    } else {
      // If C-kR < 0 for all potential k's, it means that one solution
      // will be negative, while the other will be positive. The positive
      // solution will shift towards 0 if the parabola is moved up.
      // Pick the kR closest to the lower bound (i.e. make C-kR closest
      // to 0, or in other words, out of all parabolas that have solutions,
      // pick the one that is the farthest "up").
      // Since LowkR is itself a multiple of R, simply take C-LowkR.
      C -= LowkR;
      // Pick the greater solution.
      PickLow = false;
    }
  }

  LLVM_DEBUG(dbgs() << __func__ << ": updated coefficients " << A << "x^2 + "
                    << B << "x + " << C << ", rw:" << RangeWidth << '\n');

  APInt D = SqrB - 4*A*C;
  assert(D.isNonNegative() && "Negative discriminant");
  APInt SQ = D.sqrt();

  APInt Q = SQ * SQ;
  bool InexactSQ = Q != D;
  // The calculated SQ may actually be greater than the exact (non-integer)
  // value. If that's the case, decrement SQ to get a value that is lower.
  if (Q.sgt(D))
    SQ -= 1;

  APInt X;
  APInt Rem;

  // SQ is rounded down (i.e SQ * SQ <= D), so the roots may be inexact.
  // When using the quadratic formula directly, the calculated low root
  // may be greater than the exact one, since we would be subtracting SQ.
  // To make sure that the calculated root is not greater than the exact
  // one, subtract SQ+1 when calculating the low root (for inexact value
  // of SQ).
  if (PickLow)
    APInt::sdivrem(-B - (SQ+InexactSQ), TwoA, X, Rem);
  else
    APInt::sdivrem(-B + SQ, TwoA, X, Rem);

  // The updated coefficients should be such that the (exact) solution is
  // positive. Since APInt division rounds towards 0, the calculated one
  // can be 0, but cannot be negative.
  assert(X.isNonNegative() && "Solution should be non-negative");

  if (!InexactSQ && Rem.isNullValue()) {
    LLVM_DEBUG(dbgs() << __func__ << ": solution (root): " << X << '\n');
    return X;
  }

  assert((SQ*SQ).sle(D) && "SQ = |_sqrt(D)_|, so SQ*SQ <= D");
  // The exact value of the square root of D should be between SQ and SQ+1.
  // This implies that the solution should be between that corresponding to
  // SQ (i.e. X) and that corresponding to SQ+1.
  //
  // The calculated X cannot be greater than the exact (real) solution.
  // Actually it must be strictly less than the exact solution, while
  // X+1 will be greater than or equal to it.

  APInt VX = (A*X + B)*X + C;
  APInt VY = VX + TwoA*X + A + B;
  bool SignChange = VX.isNegative() != VY.isNegative() ||
                    VX.isNullValue() != VY.isNullValue();
  // If the sign did not change between X and X+1, X is not a valid solution.
  // This could happen when the actual (exact) roots don't have an integer
  // between them, so they would both be contained between X and X+1.
  if (!SignChange) {
    LLVM_DEBUG(dbgs() << __func__ << ": no valid solution\n");
    return None;
  }

  X += 1;
  LLVM_DEBUG(dbgs() << __func__ << ": solution (wrap): " << X << '\n');
  return X;
}

Optional<unsigned>
llvm::APIntOps::GetMostSignificantDifferentBit(const APInt &A, const APInt &B) {
  assert(A.getBitWidth() == B.getBitWidth() && "Must have the same bitwidth");
  if (A == B)
    return llvm::None;
  return A.getBitWidth() - ((A ^ B).countLeadingZeros() + 1);
}

/// StoreIntToMemory - Fills the StoreBytes bytes of memory starting from Dst
/// with the integer held in IntVal.
void llvm::StoreIntToMemory(const APInt &IntVal, uint8_t *Dst,
                            unsigned StoreBytes) {
  assert((IntVal.getBitWidth()+7)/8 >= StoreBytes && "Integer too small!");
  const uint8_t *Src = (const uint8_t *)IntVal.getRawData();

  if (sys::IsLittleEndianHost) {
    // Little-endian host - the source is ordered from LSB to MSB.  Order the
    // destination from LSB to MSB: Do a straight copy.
    memcpy(Dst, Src, StoreBytes);
  } else {
    // Big-endian host - the source is an array of 64 bit words ordered from
    // LSW to MSW.  Each word is ordered from MSB to LSB.  Order the destination
    // from MSB to LSB: Reverse the word order, but not the bytes in a word.
    while (StoreBytes > sizeof(uint64_t)) {
      StoreBytes -= sizeof(uint64_t);
      // May not be aligned so use memcpy.
      memcpy(Dst + StoreBytes, Src, sizeof(uint64_t));
      Src += sizeof(uint64_t);
    }

    memcpy(Dst, Src + sizeof(uint64_t) - StoreBytes, StoreBytes);
  }
}

/// LoadIntFromMemory - Loads the integer stored in the LoadBytes bytes starting
/// from Src into IntVal, which is assumed to be wide enough and to hold zero.
void llvm::LoadIntFromMemory(APInt &IntVal, uint8_t *Src, unsigned LoadBytes) {
  assert((IntVal.getBitWidth()+7)/8 >= LoadBytes && "Integer too small!");
  uint8_t *Dst = reinterpret_cast<uint8_t *>(
                   const_cast<uint64_t *>(IntVal.getRawData()));

  if (sys::IsLittleEndianHost)
    // Little-endian host - the destination must be ordered from LSB to MSB.
    // The source is ordered from LSB to MSB: Do a straight copy.
    memcpy(Dst, Src, LoadBytes);
  else {
    // Big-endian - the destination is an array of 64 bit words ordered from
    // LSW to MSW.  Each word must be ordered from MSB to LSB.  The source is
    // ordered from MSB to LSB: Reverse the word order, but not the bytes in
    // a word.
    while (LoadBytes > sizeof(uint64_t)) {
      LoadBytes -= sizeof(uint64_t);
      // May not be aligned so use memcpy.
      memcpy(Dst, Src + LoadBytes, sizeof(uint64_t));
      Dst += sizeof(uint64_t);
    }

    memcpy(Dst + sizeof(uint64_t) - LoadBytes, Src, LoadBytes);
  }
}