Host.cpp 53.3 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583
//===-- Host.cpp - Implement OS Host Concept --------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
//  This file implements the operating system Host concept.
//
//===----------------------------------------------------------------------===//

#include "llvm/Support/Host.h"
#include "llvm/Support/TargetParser.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/ADT/Triple.h"
#include "llvm/Config/llvm-config.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/FileSystem.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/raw_ostream.h"
#include <assert.h>
#include <string.h>

// Include the platform-specific parts of this class.
#ifdef LLVM_ON_UNIX
#include "Unix/Host.inc"
#endif
#ifdef _WIN32
#include "Windows/Host.inc"
#endif
#ifdef _MSC_VER
#include <intrin.h>
#endif
#if defined(__APPLE__) && (!defined(__x86_64__))
#include <mach/host_info.h>
#include <mach/mach.h>
#include <mach/mach_host.h>
#include <mach/machine.h>
#endif

#define DEBUG_TYPE "host-detection"

//===----------------------------------------------------------------------===//
//
//  Implementations of the CPU detection routines
//
//===----------------------------------------------------------------------===//

using namespace llvm;

static std::unique_ptr<llvm::MemoryBuffer>
    LLVM_ATTRIBUTE_UNUSED getProcCpuinfoContent() {
  llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> Text =
      llvm::MemoryBuffer::getFileAsStream("/proc/cpuinfo");
  if (std::error_code EC = Text.getError()) {
    llvm::errs() << "Can't read "
                 << "/proc/cpuinfo: " << EC.message() << "\n";
    return nullptr;
  }
  return std::move(*Text);
}

StringRef sys::detail::getHostCPUNameForPowerPC(StringRef ProcCpuinfoContent) {
  // Access to the Processor Version Register (PVR) on PowerPC is privileged,
  // and so we must use an operating-system interface to determine the current
  // processor type. On Linux, this is exposed through the /proc/cpuinfo file.
  const char *generic = "generic";

  // The cpu line is second (after the 'processor: 0' line), so if this
  // buffer is too small then something has changed (or is wrong).
  StringRef::const_iterator CPUInfoStart = ProcCpuinfoContent.begin();
  StringRef::const_iterator CPUInfoEnd = ProcCpuinfoContent.end();

  StringRef::const_iterator CIP = CPUInfoStart;

  StringRef::const_iterator CPUStart = 0;
  size_t CPULen = 0;

  // We need to find the first line which starts with cpu, spaces, and a colon.
  // After the colon, there may be some additional spaces and then the cpu type.
  while (CIP < CPUInfoEnd && CPUStart == 0) {
    if (CIP < CPUInfoEnd && *CIP == '\n')
      ++CIP;

    if (CIP < CPUInfoEnd && *CIP == 'c') {
      ++CIP;
      if (CIP < CPUInfoEnd && *CIP == 'p') {
        ++CIP;
        if (CIP < CPUInfoEnd && *CIP == 'u') {
          ++CIP;
          while (CIP < CPUInfoEnd && (*CIP == ' ' || *CIP == '\t'))
            ++CIP;

          if (CIP < CPUInfoEnd && *CIP == ':') {
            ++CIP;
            while (CIP < CPUInfoEnd && (*CIP == ' ' || *CIP == '\t'))
              ++CIP;

            if (CIP < CPUInfoEnd) {
              CPUStart = CIP;
              while (CIP < CPUInfoEnd && (*CIP != ' ' && *CIP != '\t' &&
                                          *CIP != ',' && *CIP != '\n'))
                ++CIP;
              CPULen = CIP - CPUStart;
            }
          }
        }
      }
    }

    if (CPUStart == 0)
      while (CIP < CPUInfoEnd && *CIP != '\n')
        ++CIP;
  }

  if (CPUStart == 0)
    return generic;

  return StringSwitch<const char *>(StringRef(CPUStart, CPULen))
      .Case("604e", "604e")
      .Case("604", "604")
      .Case("7400", "7400")
      .Case("7410", "7400")
      .Case("7447", "7400")
      .Case("7455", "7450")
      .Case("G4", "g4")
      .Case("POWER4", "970")
      .Case("PPC970FX", "970")
      .Case("PPC970MP", "970")
      .Case("G5", "g5")
      .Case("POWER5", "g5")
      .Case("A2", "a2")
      .Case("POWER6", "pwr6")
      .Case("POWER7", "pwr7")
      .Case("POWER8", "pwr8")
      .Case("POWER8E", "pwr8")
      .Case("POWER8NVL", "pwr8")
      .Case("POWER9", "pwr9")
      // FIXME: If we get a simulator or machine with the capabilities of
      // mcpu=future, we should revisit this and add the name reported by the
      // simulator/machine.
      .Default(generic);
}

StringRef sys::detail::getHostCPUNameForARM(StringRef ProcCpuinfoContent) {
  // The cpuid register on arm is not accessible from user space. On Linux,
  // it is exposed through the /proc/cpuinfo file.

  // Read 32 lines from /proc/cpuinfo, which should contain the CPU part line
  // in all cases.
  SmallVector<StringRef, 32> Lines;
  ProcCpuinfoContent.split(Lines, "\n");

  // Look for the CPU implementer line.
  StringRef Implementer;
  StringRef Hardware;
  for (unsigned I = 0, E = Lines.size(); I != E; ++I) {
    if (Lines[I].startswith("CPU implementer"))
      Implementer = Lines[I].substr(15).ltrim("\t :");
    if (Lines[I].startswith("Hardware"))
      Hardware = Lines[I].substr(8).ltrim("\t :");
  }

  if (Implementer == "0x41") { // ARM Ltd.
    // MSM8992/8994 may give cpu part for the core that the kernel is running on,
    // which is undeterministic and wrong. Always return cortex-a53 for these SoC.
    if (Hardware.endswith("MSM8994") || Hardware.endswith("MSM8996"))
      return "cortex-a53";


    // Look for the CPU part line.
    for (unsigned I = 0, E = Lines.size(); I != E; ++I)
      if (Lines[I].startswith("CPU part"))
        // The CPU part is a 3 digit hexadecimal number with a 0x prefix. The
        // values correspond to the "Part number" in the CP15/c0 register. The
        // contents are specified in the various processor manuals.
        return StringSwitch<const char *>(Lines[I].substr(8).ltrim("\t :"))
            .Case("0x926", "arm926ej-s")
            .Case("0xb02", "mpcore")
            .Case("0xb36", "arm1136j-s")
            .Case("0xb56", "arm1156t2-s")
            .Case("0xb76", "arm1176jz-s")
            .Case("0xc08", "cortex-a8")
            .Case("0xc09", "cortex-a9")
            .Case("0xc0f", "cortex-a15")
            .Case("0xc20", "cortex-m0")
            .Case("0xc23", "cortex-m3")
            .Case("0xc24", "cortex-m4")
            .Case("0xd04", "cortex-a35")
            .Case("0xd03", "cortex-a53")
            .Case("0xd07", "cortex-a57")
            .Case("0xd08", "cortex-a72")
            .Case("0xd09", "cortex-a73")
            .Case("0xd0a", "cortex-a75")
            .Case("0xd0b", "cortex-a76")
            .Default("generic");
  }

  if (Implementer == "0x42" || Implementer == "0x43") { // Broadcom | Cavium.
    for (unsigned I = 0, E = Lines.size(); I != E; ++I) {
      if (Lines[I].startswith("CPU part")) {
        return StringSwitch<const char *>(Lines[I].substr(8).ltrim("\t :"))
          .Case("0x516", "thunderx2t99")
          .Case("0x0516", "thunderx2t99")
          .Case("0xaf", "thunderx2t99")
          .Case("0x0af", "thunderx2t99")
          .Case("0xa1", "thunderxt88")
          .Case("0x0a1", "thunderxt88")
          .Default("generic");
      }
    }
  }

  if (Implementer == "0x48") // HiSilicon Technologies, Inc.
    // Look for the CPU part line.
    for (unsigned I = 0, E = Lines.size(); I != E; ++I)
      if (Lines[I].startswith("CPU part"))
        // The CPU part is a 3 digit hexadecimal number with a 0x prefix. The
        // values correspond to the "Part number" in the CP15/c0 register. The
        // contents are specified in the various processor manuals.
        return StringSwitch<const char *>(Lines[I].substr(8).ltrim("\t :"))
          .Case("0xd01", "tsv110")
          .Default("generic");

  if (Implementer == "0x51") // Qualcomm Technologies, Inc.
    // Look for the CPU part line.
    for (unsigned I = 0, E = Lines.size(); I != E; ++I)
      if (Lines[I].startswith("CPU part"))
        // The CPU part is a 3 digit hexadecimal number with a 0x prefix. The
        // values correspond to the "Part number" in the CP15/c0 register. The
        // contents are specified in the various processor manuals.
        return StringSwitch<const char *>(Lines[I].substr(8).ltrim("\t :"))
            .Case("0x06f", "krait") // APQ8064
            .Case("0x201", "kryo")
            .Case("0x205", "kryo")
            .Case("0x211", "kryo")
            .Case("0x800", "cortex-a73")
            .Case("0x801", "cortex-a73")
            .Case("0x802", "cortex-a73")
            .Case("0x803", "cortex-a73")
            .Case("0x804", "cortex-a73")
            .Case("0x805", "cortex-a73")
            .Case("0xc00", "falkor")
            .Case("0xc01", "saphira")
            .Default("generic");

  if (Implementer == "0x53") { // Samsung Electronics Co., Ltd.
    // The Exynos chips have a convoluted ID scheme that doesn't seem to follow
    // any predictive pattern across variants and parts.
    unsigned Variant = 0, Part = 0;

    // Look for the CPU variant line, whose value is a 1 digit hexadecimal
    // number, corresponding to the Variant bits in the CP15/C0 register.
    for (auto I : Lines)
      if (I.consume_front("CPU variant"))
        I.ltrim("\t :").getAsInteger(0, Variant);

    // Look for the CPU part line, whose value is a 3 digit hexadecimal
    // number, corresponding to the PartNum bits in the CP15/C0 register.
    for (auto I : Lines)
      if (I.consume_front("CPU part"))
        I.ltrim("\t :").getAsInteger(0, Part);

    unsigned Exynos = (Variant << 12) | Part;
    switch (Exynos) {
    default:
      // Default by falling through to Exynos M3.
      LLVM_FALLTHROUGH;
    case 0x1002:
      return "exynos-m3";
    case 0x1003:
      return "exynos-m4";
    }
  }

  return "generic";
}

StringRef sys::detail::getHostCPUNameForS390x(StringRef ProcCpuinfoContent) {
  // STIDP is a privileged operation, so use /proc/cpuinfo instead.

  // The "processor 0:" line comes after a fair amount of other information,
  // including a cache breakdown, but this should be plenty.
  SmallVector<StringRef, 32> Lines;
  ProcCpuinfoContent.split(Lines, "\n");

  // Look for the CPU features.
  SmallVector<StringRef, 32> CPUFeatures;
  for (unsigned I = 0, E = Lines.size(); I != E; ++I)
    if (Lines[I].startswith("features")) {
      size_t Pos = Lines[I].find(":");
      if (Pos != StringRef::npos) {
        Lines[I].drop_front(Pos + 1).split(CPUFeatures, ' ');
        break;
      }
    }

  // We need to check for the presence of vector support independently of
  // the machine type, since we may only use the vector register set when
  // supported by the kernel (and hypervisor).
  bool HaveVectorSupport = false;
  for (unsigned I = 0, E = CPUFeatures.size(); I != E; ++I) {
    if (CPUFeatures[I] == "vx")
      HaveVectorSupport = true;
  }

  // Now check the processor machine type.
  for (unsigned I = 0, E = Lines.size(); I != E; ++I) {
    if (Lines[I].startswith("processor ")) {
      size_t Pos = Lines[I].find("machine = ");
      if (Pos != StringRef::npos) {
        Pos += sizeof("machine = ") - 1;
        unsigned int Id;
        if (!Lines[I].drop_front(Pos).getAsInteger(10, Id)) {
          if (Id >= 8561 && HaveVectorSupport)
            return "z15";
          if (Id >= 3906 && HaveVectorSupport)
            return "z14";
          if (Id >= 2964 && HaveVectorSupport)
            return "z13";
          if (Id >= 2827)
            return "zEC12";
          if (Id >= 2817)
            return "z196";
        }
      }
      break;
    }
  }

  return "generic";
}

StringRef sys::detail::getHostCPUNameForBPF() {
#if !defined(__linux__) || !defined(__x86_64__)
  return "generic";
#else
  uint8_t v3_insns[40] __attribute__ ((aligned (8))) =
      /* BPF_MOV64_IMM(BPF_REG_0, 0) */
    { 0xb7, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0,
      /* BPF_MOV64_IMM(BPF_REG_2, 1) */
      0xb7, 0x2, 0x0, 0x0, 0x1, 0x0, 0x0, 0x0,
      /* BPF_JMP32_REG(BPF_JLT, BPF_REG_0, BPF_REG_2, 1) */
      0xae, 0x20, 0x1, 0x0, 0x0, 0x0, 0x0, 0x0,
      /* BPF_MOV64_IMM(BPF_REG_0, 1) */
      0xb7, 0x0, 0x0, 0x0, 0x1, 0x0, 0x0, 0x0,
      /* BPF_EXIT_INSN() */
      0x95, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0 };

  uint8_t v2_insns[40] __attribute__ ((aligned (8))) =
      /* BPF_MOV64_IMM(BPF_REG_0, 0) */
    { 0xb7, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0,
      /* BPF_MOV64_IMM(BPF_REG_2, 1) */
      0xb7, 0x2, 0x0, 0x0, 0x1, 0x0, 0x0, 0x0,
      /* BPF_JMP_REG(BPF_JLT, BPF_REG_0, BPF_REG_2, 1) */
      0xad, 0x20, 0x1, 0x0, 0x0, 0x0, 0x0, 0x0,
      /* BPF_MOV64_IMM(BPF_REG_0, 1) */
      0xb7, 0x0, 0x0, 0x0, 0x1, 0x0, 0x0, 0x0,
      /* BPF_EXIT_INSN() */
      0x95, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0 };

  struct bpf_prog_load_attr {
    uint32_t prog_type;
    uint32_t insn_cnt;
    uint64_t insns;
    uint64_t license;
    uint32_t log_level;
    uint32_t log_size;
    uint64_t log_buf;
    uint32_t kern_version;
    uint32_t prog_flags;
  } attr = {};
  attr.prog_type = 1; /* BPF_PROG_TYPE_SOCKET_FILTER */
  attr.insn_cnt = 5;
  attr.insns = (uint64_t)v3_insns;
  attr.license = (uint64_t)"DUMMY";

  int fd = syscall(321 /* __NR_bpf */, 5 /* BPF_PROG_LOAD */, &attr,
                   sizeof(attr));
  if (fd >= 0) {
    close(fd);
    return "v3";
  }

  /* Clear the whole attr in case its content changed by syscall. */
  memset(&attr, 0, sizeof(attr));
  attr.prog_type = 1; /* BPF_PROG_TYPE_SOCKET_FILTER */
  attr.insn_cnt = 5;
  attr.insns = (uint64_t)v2_insns;
  attr.license = (uint64_t)"DUMMY";
  fd = syscall(321 /* __NR_bpf */, 5 /* BPF_PROG_LOAD */, &attr, sizeof(attr));
  if (fd >= 0) {
    close(fd);
    return "v2";
  }
  return "v1";
#endif
}

#if defined(__i386__) || defined(_M_IX86) || \
    defined(__x86_64__) || defined(_M_X64)

enum VendorSignatures {
  SIG_INTEL = 0x756e6547 /* Genu */,
  SIG_AMD = 0x68747541 /* Auth */
};

// The check below for i386 was copied from clang's cpuid.h (__get_cpuid_max).
// Check motivated by bug reports for OpenSSL crashing on CPUs without CPUID
// support. Consequently, for i386, the presence of CPUID is checked first
// via the corresponding eflags bit.
// Removal of cpuid.h header motivated by PR30384
// Header cpuid.h and method __get_cpuid_max are not used in llvm, clang, openmp
// or test-suite, but are used in external projects e.g. libstdcxx
static bool isCpuIdSupported() {
#if defined(__GNUC__) || defined(__clang__)
#if defined(__i386__)
  int __cpuid_supported;
  __asm__("  pushfl\n"
          "  popl   %%eax\n"
          "  movl   %%eax,%%ecx\n"
          "  xorl   $0x00200000,%%eax\n"
          "  pushl  %%eax\n"
          "  popfl\n"
          "  pushfl\n"
          "  popl   %%eax\n"
          "  movl   $0,%0\n"
          "  cmpl   %%eax,%%ecx\n"
          "  je     1f\n"
          "  movl   $1,%0\n"
          "1:"
          : "=r"(__cpuid_supported)
          :
          : "eax", "ecx");
  if (!__cpuid_supported)
    return false;
#endif
  return true;
#endif
  return true;
}

/// getX86CpuIDAndInfo - Execute the specified cpuid and return the 4 values in
/// the specified arguments.  If we can't run cpuid on the host, return true.
static bool getX86CpuIDAndInfo(unsigned value, unsigned *rEAX, unsigned *rEBX,
                               unsigned *rECX, unsigned *rEDX) {
#if defined(__GNUC__) || defined(__clang__)
#if defined(__x86_64__)
  // gcc doesn't know cpuid would clobber ebx/rbx. Preserve it manually.
  // FIXME: should we save this for Clang?
  __asm__("movq\t%%rbx, %%rsi\n\t"
          "cpuid\n\t"
          "xchgq\t%%rbx, %%rsi\n\t"
          : "=a"(*rEAX), "=S"(*rEBX), "=c"(*rECX), "=d"(*rEDX)
          : "a"(value));
  return false;
#elif defined(__i386__)
  __asm__("movl\t%%ebx, %%esi\n\t"
          "cpuid\n\t"
          "xchgl\t%%ebx, %%esi\n\t"
          : "=a"(*rEAX), "=S"(*rEBX), "=c"(*rECX), "=d"(*rEDX)
          : "a"(value));
  return false;
#else
  return true;
#endif
#elif defined(_MSC_VER)
  // The MSVC intrinsic is portable across x86 and x64.
  int registers[4];
  __cpuid(registers, value);
  *rEAX = registers[0];
  *rEBX = registers[1];
  *rECX = registers[2];
  *rEDX = registers[3];
  return false;
#else
  return true;
#endif
}

/// getX86CpuIDAndInfoEx - Execute the specified cpuid with subleaf and return
/// the 4 values in the specified arguments.  If we can't run cpuid on the host,
/// return true.
static bool getX86CpuIDAndInfoEx(unsigned value, unsigned subleaf,
                                 unsigned *rEAX, unsigned *rEBX, unsigned *rECX,
                                 unsigned *rEDX) {
#if defined(__GNUC__) || defined(__clang__)
#if defined(__x86_64__)
  // gcc doesn't know cpuid would clobber ebx/rbx. Preserve it manually.
  // FIXME: should we save this for Clang?
  __asm__("movq\t%%rbx, %%rsi\n\t"
          "cpuid\n\t"
          "xchgq\t%%rbx, %%rsi\n\t"
          : "=a"(*rEAX), "=S"(*rEBX), "=c"(*rECX), "=d"(*rEDX)
          : "a"(value), "c"(subleaf));
  return false;
#elif defined(__i386__)
  __asm__("movl\t%%ebx, %%esi\n\t"
          "cpuid\n\t"
          "xchgl\t%%ebx, %%esi\n\t"
          : "=a"(*rEAX), "=S"(*rEBX), "=c"(*rECX), "=d"(*rEDX)
          : "a"(value), "c"(subleaf));
  return false;
#else
  return true;
#endif
#elif defined(_MSC_VER)
  int registers[4];
  __cpuidex(registers, value, subleaf);
  *rEAX = registers[0];
  *rEBX = registers[1];
  *rECX = registers[2];
  *rEDX = registers[3];
  return false;
#else
  return true;
#endif
}

// Read control register 0 (XCR0). Used to detect features such as AVX.
static bool getX86XCR0(unsigned *rEAX, unsigned *rEDX) {
#if defined(__GNUC__) || defined(__clang__)
  // Check xgetbv; this uses a .byte sequence instead of the instruction
  // directly because older assemblers do not include support for xgetbv and
  // there is no easy way to conditionally compile based on the assembler used.
  __asm__(".byte 0x0f, 0x01, 0xd0" : "=a"(*rEAX), "=d"(*rEDX) : "c"(0));
  return false;
#elif defined(_MSC_FULL_VER) && defined(_XCR_XFEATURE_ENABLED_MASK)
  unsigned long long Result = _xgetbv(_XCR_XFEATURE_ENABLED_MASK);
  *rEAX = Result;
  *rEDX = Result >> 32;
  return false;
#else
  return true;
#endif
}

static void detectX86FamilyModel(unsigned EAX, unsigned *Family,
                                 unsigned *Model) {
  *Family = (EAX >> 8) & 0xf; // Bits 8 - 11
  *Model = (EAX >> 4) & 0xf;  // Bits 4 - 7
  if (*Family == 6 || *Family == 0xf) {
    if (*Family == 0xf)
      // Examine extended family ID if family ID is F.
      *Family += (EAX >> 20) & 0xff; // Bits 20 - 27
    // Examine extended model ID if family ID is 6 or F.
    *Model += ((EAX >> 16) & 0xf) << 4; // Bits 16 - 19
  }
}

static void
getIntelProcessorTypeAndSubtype(unsigned Family, unsigned Model,
                                unsigned Brand_id, unsigned Features,
                                unsigned Features2, unsigned Features3,
                                unsigned *Type, unsigned *Subtype) {
  if (Brand_id != 0)
    return;
  switch (Family) {
  case 3:
    *Type = X86::INTEL_i386;
    break;
  case 4:
    *Type = X86::INTEL_i486;
    break;
  case 5:
    if (Features & (1 << X86::FEATURE_MMX)) {
      *Type = X86::INTEL_PENTIUM_MMX;
      break;
    }
    *Type = X86::INTEL_PENTIUM;
    break;
  case 6:
    switch (Model) {
    case 0x01: // Pentium Pro processor
      *Type = X86::INTEL_PENTIUM_PRO;
      break;
    case 0x03: // Intel Pentium II OverDrive processor, Pentium II processor,
               // model 03
    case 0x05: // Pentium II processor, model 05, Pentium II Xeon processor,
               // model 05, and Intel Celeron processor, model 05
    case 0x06: // Celeron processor, model 06
      *Type = X86::INTEL_PENTIUM_II;
      break;
    case 0x07: // Pentium III processor, model 07, and Pentium III Xeon
               // processor, model 07
    case 0x08: // Pentium III processor, model 08, Pentium III Xeon processor,
               // model 08, and Celeron processor, model 08
    case 0x0a: // Pentium III Xeon processor, model 0Ah
    case 0x0b: // Pentium III processor, model 0Bh
      *Type = X86::INTEL_PENTIUM_III;
      break;
    case 0x09: // Intel Pentium M processor, Intel Celeron M processor model 09.
    case 0x0d: // Intel Pentium M processor, Intel Celeron M processor, model
               // 0Dh. All processors are manufactured using the 90 nm process.
    case 0x15: // Intel EP80579 Integrated Processor and Intel EP80579
               // Integrated Processor with Intel QuickAssist Technology
      *Type = X86::INTEL_PENTIUM_M;
      break;
    case 0x0e: // Intel Core Duo processor, Intel Core Solo processor, model
               // 0Eh. All processors are manufactured using the 65 nm process.
      *Type = X86::INTEL_CORE_DUO;
      break;   // yonah
    case 0x0f: // Intel Core 2 Duo processor, Intel Core 2 Duo mobile
               // processor, Intel Core 2 Quad processor, Intel Core 2 Quad
               // mobile processor, Intel Core 2 Extreme processor, Intel
               // Pentium Dual-Core processor, Intel Xeon processor, model
               // 0Fh. All processors are manufactured using the 65 nm process.
    case 0x16: // Intel Celeron processor model 16h. All processors are
               // manufactured using the 65 nm process
      *Type = X86::INTEL_CORE2; // "core2"
      *Subtype = X86::INTEL_CORE2_65;
      break;
    case 0x17: // Intel Core 2 Extreme processor, Intel Xeon processor, model
               // 17h. All processors are manufactured using the 45 nm process.
               //
               // 45nm: Penryn , Wolfdale, Yorkfield (XE)
    case 0x1d: // Intel Xeon processor MP. All processors are manufactured using
               // the 45 nm process.
      *Type = X86::INTEL_CORE2; // "penryn"
      *Subtype = X86::INTEL_CORE2_45;
      break;
    case 0x1a: // Intel Core i7 processor and Intel Xeon processor. All
               // processors are manufactured using the 45 nm process.
    case 0x1e: // Intel(R) Core(TM) i7 CPU         870  @ 2.93GHz.
               // As found in a Summer 2010 model iMac.
    case 0x1f:
    case 0x2e:             // Nehalem EX
      *Type = X86::INTEL_COREI7; // "nehalem"
      *Subtype = X86::INTEL_COREI7_NEHALEM;
      break;
    case 0x25: // Intel Core i7, laptop version.
    case 0x2c: // Intel Core i7 processor and Intel Xeon processor. All
               // processors are manufactured using the 32 nm process.
    case 0x2f: // Westmere EX
      *Type = X86::INTEL_COREI7; // "westmere"
      *Subtype = X86::INTEL_COREI7_WESTMERE;
      break;
    case 0x2a: // Intel Core i7 processor. All processors are manufactured
               // using the 32 nm process.
    case 0x2d:
      *Type = X86::INTEL_COREI7; //"sandybridge"
      *Subtype = X86::INTEL_COREI7_SANDYBRIDGE;
      break;
    case 0x3a:
    case 0x3e:             // Ivy Bridge EP
      *Type = X86::INTEL_COREI7; // "ivybridge"
      *Subtype = X86::INTEL_COREI7_IVYBRIDGE;
      break;

    // Haswell:
    case 0x3c:
    case 0x3f:
    case 0x45:
    case 0x46:
      *Type = X86::INTEL_COREI7; // "haswell"
      *Subtype = X86::INTEL_COREI7_HASWELL;
      break;

    // Broadwell:
    case 0x3d:
    case 0x47:
    case 0x4f:
    case 0x56:
      *Type = X86::INTEL_COREI7; // "broadwell"
      *Subtype = X86::INTEL_COREI7_BROADWELL;
      break;

    // Skylake:
    case 0x4e:              // Skylake mobile
    case 0x5e:              // Skylake desktop
    case 0x8e:              // Kaby Lake mobile
    case 0x9e:              // Kaby Lake desktop
      *Type = X86::INTEL_COREI7; // "skylake"
      *Subtype = X86::INTEL_COREI7_SKYLAKE;
      break;

    // Skylake Xeon:
    case 0x55:
      *Type = X86::INTEL_COREI7;
      if (Features2 & (1 << (X86::FEATURE_AVX512BF16 - 32)))
        *Subtype = X86::INTEL_COREI7_COOPERLAKE; // "cooperlake"
      else if (Features2 & (1 << (X86::FEATURE_AVX512VNNI - 32)))
        *Subtype = X86::INTEL_COREI7_CASCADELAKE; // "cascadelake"
      else
        *Subtype = X86::INTEL_COREI7_SKYLAKE_AVX512; // "skylake-avx512"
      break;

    // Cannonlake:
    case 0x66:
      *Type = X86::INTEL_COREI7;
      *Subtype = X86::INTEL_COREI7_CANNONLAKE; // "cannonlake"
      break;

    // Icelake:
    case 0x7d:
    case 0x7e:
      *Type = X86::INTEL_COREI7;
      *Subtype = X86::INTEL_COREI7_ICELAKE_CLIENT; // "icelake-client"
      break;

    // Icelake Xeon:
    case 0x6a:
    case 0x6c:
      *Type = X86::INTEL_COREI7;
      *Subtype = X86::INTEL_COREI7_ICELAKE_SERVER; // "icelake-server"
      break;

    case 0x1c: // Most 45 nm Intel Atom processors
    case 0x26: // 45 nm Atom Lincroft
    case 0x27: // 32 nm Atom Medfield
    case 0x35: // 32 nm Atom Midview
    case 0x36: // 32 nm Atom Midview
      *Type = X86::INTEL_BONNELL;
      break; // "bonnell"

    // Atom Silvermont codes from the Intel software optimization guide.
    case 0x37:
    case 0x4a:
    case 0x4d:
    case 0x5a:
    case 0x5d:
    case 0x4c: // really airmont
      *Type = X86::INTEL_SILVERMONT;
      break; // "silvermont"
    // Goldmont:
    case 0x5c: // Apollo Lake
    case 0x5f: // Denverton
      *Type = X86::INTEL_GOLDMONT;
      break; // "goldmont"
    case 0x7a:
      *Type = X86::INTEL_GOLDMONT_PLUS;
      break;
    case 0x86:
      *Type = X86::INTEL_TREMONT;
      break;

    case 0x57:
      *Type = X86::INTEL_KNL; // knl
      break;

    case 0x85:
      *Type = X86::INTEL_KNM; // knm
      break;

    default: // Unknown family 6 CPU, try to guess.
      // TODO detect tigerlake host
      if (Features3 & (1 << (X86::FEATURE_AVX512VP2INTERSECT - 64))) {
        *Type = X86::INTEL_COREI7;
        *Subtype = X86::INTEL_COREI7_TIGERLAKE;
        break;
      }

      if (Features & (1 << X86::FEATURE_AVX512VBMI2)) {
        *Type = X86::INTEL_COREI7;
        *Subtype = X86::INTEL_COREI7_ICELAKE_CLIENT;
        break;
      }

      if (Features & (1 << X86::FEATURE_AVX512VBMI)) {
        *Type = X86::INTEL_COREI7;
        *Subtype = X86::INTEL_COREI7_CANNONLAKE;
        break;
      }

      if (Features2 & (1 << (X86::FEATURE_AVX512BF16 - 32))) {
        *Type = X86::INTEL_COREI7;
        *Subtype = X86::INTEL_COREI7_COOPERLAKE;
        break;
      }

      if (Features2 & (1 << (X86::FEATURE_AVX512VNNI - 32))) {
        *Type = X86::INTEL_COREI7;
        *Subtype = X86::INTEL_COREI7_CASCADELAKE;
        break;
      }

      if (Features & (1 << X86::FEATURE_AVX512VL)) {
        *Type = X86::INTEL_COREI7;
        *Subtype = X86::INTEL_COREI7_SKYLAKE_AVX512;
        break;
      }

      if (Features & (1 << X86::FEATURE_AVX512ER)) {
        *Type = X86::INTEL_KNL; // knl
        break;
      }

      if (Features3 & (1 << (X86::FEATURE_CLFLUSHOPT - 64))) {
        if (Features3 & (1 << (X86::FEATURE_SHA - 64))) {
          *Type = X86::INTEL_GOLDMONT;
        } else {
          *Type = X86::INTEL_COREI7;
          *Subtype = X86::INTEL_COREI7_SKYLAKE;
        }
        break;
      }
      if (Features3 & (1 << (X86::FEATURE_ADX - 64))) {
        *Type = X86::INTEL_COREI7;
        *Subtype = X86::INTEL_COREI7_BROADWELL;
        break;
      }
      if (Features & (1 << X86::FEATURE_AVX2)) {
        *Type = X86::INTEL_COREI7;
        *Subtype = X86::INTEL_COREI7_HASWELL;
        break;
      }
      if (Features & (1 << X86::FEATURE_AVX)) {
        *Type = X86::INTEL_COREI7;
        *Subtype = X86::INTEL_COREI7_SANDYBRIDGE;
        break;
      }
      if (Features & (1 << X86::FEATURE_SSE4_2)) {
        if (Features3 & (1 << (X86::FEATURE_MOVBE - 64))) {
          *Type = X86::INTEL_SILVERMONT;
        } else {
          *Type = X86::INTEL_COREI7;
          *Subtype = X86::INTEL_COREI7_NEHALEM;
        }
        break;
      }
      if (Features & (1 << X86::FEATURE_SSE4_1)) {
        *Type = X86::INTEL_CORE2; // "penryn"
        *Subtype = X86::INTEL_CORE2_45;
        break;
      }
      if (Features & (1 << X86::FEATURE_SSSE3)) {
        if (Features3 & (1 << (X86::FEATURE_MOVBE - 64))) {
          *Type = X86::INTEL_BONNELL; // "bonnell"
        } else {
          *Type = X86::INTEL_CORE2; // "core2"
          *Subtype = X86::INTEL_CORE2_65;
        }
        break;
      }
      if (Features3 & (1 << (X86::FEATURE_EM64T - 64))) {
        *Type = X86::INTEL_CORE2; // "core2"
        *Subtype = X86::INTEL_CORE2_65;
        break;
      }
      if (Features & (1 << X86::FEATURE_SSE3)) {
        *Type = X86::INTEL_CORE_DUO;
        break;
      }
      if (Features & (1 << X86::FEATURE_SSE2)) {
        *Type = X86::INTEL_PENTIUM_M;
        break;
      }
      if (Features & (1 << X86::FEATURE_SSE)) {
        *Type = X86::INTEL_PENTIUM_III;
        break;
      }
      if (Features & (1 << X86::FEATURE_MMX)) {
        *Type = X86::INTEL_PENTIUM_II;
        break;
      }
      *Type = X86::INTEL_PENTIUM_PRO;
      break;
    }
    break;
  case 15: {
    if (Features3 & (1 << (X86::FEATURE_EM64T - 64))) {
      *Type = X86::INTEL_NOCONA;
      break;
    }
    if (Features & (1 << X86::FEATURE_SSE3)) {
      *Type = X86::INTEL_PRESCOTT;
      break;
    }
    *Type = X86::INTEL_PENTIUM_IV;
    break;
  }
  default:
    break; /*"generic"*/
  }
}

static void getAMDProcessorTypeAndSubtype(unsigned Family, unsigned Model,
                                          unsigned Features, unsigned *Type,
                                          unsigned *Subtype) {
  // FIXME: this poorly matches the generated SubtargetFeatureKV table.  There
  // appears to be no way to generate the wide variety of AMD-specific targets
  // from the information returned from CPUID.
  switch (Family) {
  case 4:
    *Type = X86::AMD_i486;
    break;
  case 5:
    *Type = X86::AMDPENTIUM;
    switch (Model) {
    case 6:
    case 7:
      *Subtype = X86::AMDPENTIUM_K6;
      break; // "k6"
    case 8:
      *Subtype = X86::AMDPENTIUM_K62;
      break; // "k6-2"
    case 9:
    case 13:
      *Subtype = X86::AMDPENTIUM_K63;
      break; // "k6-3"
    case 10:
      *Subtype = X86::AMDPENTIUM_GEODE;
      break; // "geode"
    }
    break;
  case 6:
    if (Features & (1 << X86::FEATURE_SSE)) {
      *Type = X86::AMD_ATHLON_XP;
      break; // "athlon-xp"
    }
    *Type = X86::AMD_ATHLON;
    break; // "athlon"
  case 15:
    if (Features & (1 << X86::FEATURE_SSE3)) {
      *Type = X86::AMD_K8SSE3;
      break; // "k8-sse3"
    }
    *Type = X86::AMD_K8;
    break; // "k8"
  case 16:
    *Type = X86::AMDFAM10H; // "amdfam10"
    switch (Model) {
    case 2:
      *Subtype = X86::AMDFAM10H_BARCELONA;
      break;
    case 4:
      *Subtype = X86::AMDFAM10H_SHANGHAI;
      break;
    case 8:
      *Subtype = X86::AMDFAM10H_ISTANBUL;
      break;
    }
    break;
  case 20:
    *Type = X86::AMD_BTVER1;
    break; // "btver1";
  case 21:
    *Type = X86::AMDFAM15H;
    if (Model >= 0x60 && Model <= 0x7f) {
      *Subtype = X86::AMDFAM15H_BDVER4;
      break; // "bdver4"; 60h-7Fh: Excavator
    }
    if (Model >= 0x30 && Model <= 0x3f) {
      *Subtype = X86::AMDFAM15H_BDVER3;
      break; // "bdver3"; 30h-3Fh: Steamroller
    }
    if ((Model >= 0x10 && Model <= 0x1f) || Model == 0x02) {
      *Subtype = X86::AMDFAM15H_BDVER2;
      break; // "bdver2"; 02h, 10h-1Fh: Piledriver
    }
    if (Model <= 0x0f) {
      *Subtype = X86::AMDFAM15H_BDVER1;
      break; // "bdver1"; 00h-0Fh: Bulldozer
    }
    break;
  case 22:
    *Type = X86::AMD_BTVER2;
    break; // "btver2"
  case 23:
    *Type = X86::AMDFAM17H;
    if ((Model >= 0x30 && Model <= 0x3f) || Model == 0x71) {
      *Subtype = X86::AMDFAM17H_ZNVER2;
      break; // "znver2"; 30h-3fh, 71h: Zen2
    }
    if (Model <= 0x0f) {
      *Subtype = X86::AMDFAM17H_ZNVER1;
      break; // "znver1"; 00h-0Fh: Zen1
    }
    break;
  default:
    break; // "generic"
  }
}

static void getAvailableFeatures(unsigned ECX, unsigned EDX, unsigned MaxLeaf,
                                 unsigned *FeaturesOut, unsigned *Features2Out,
                                 unsigned *Features3Out) {
  unsigned Features = 0;
  unsigned Features2 = 0;
  unsigned Features3 = 0;
  unsigned EAX, EBX;

  auto setFeature = [&](unsigned F) {
    if (F < 32)
      Features |= 1U << (F & 0x1f);
    else if (F < 64)
      Features2 |= 1U << ((F - 32) & 0x1f);
    else if (F < 96)
      Features3 |= 1U << ((F - 64) & 0x1f);
    else
      llvm_unreachable("Unexpected FeatureBit");
  };

  if ((EDX >> 15) & 1)
    setFeature(X86::FEATURE_CMOV);
  if ((EDX >> 23) & 1)
    setFeature(X86::FEATURE_MMX);
  if ((EDX >> 25) & 1)
    setFeature(X86::FEATURE_SSE);
  if ((EDX >> 26) & 1)
    setFeature(X86::FEATURE_SSE2);

  if ((ECX >> 0) & 1)
    setFeature(X86::FEATURE_SSE3);
  if ((ECX >> 1) & 1)
    setFeature(X86::FEATURE_PCLMUL);
  if ((ECX >> 9) & 1)
    setFeature(X86::FEATURE_SSSE3);
  if ((ECX >> 12) & 1)
    setFeature(X86::FEATURE_FMA);
  if ((ECX >> 19) & 1)
    setFeature(X86::FEATURE_SSE4_1);
  if ((ECX >> 20) & 1)
    setFeature(X86::FEATURE_SSE4_2);
  if ((ECX >> 23) & 1)
    setFeature(X86::FEATURE_POPCNT);
  if ((ECX >> 25) & 1)
    setFeature(X86::FEATURE_AES);

  if ((ECX >> 22) & 1)
    setFeature(X86::FEATURE_MOVBE);

  // If CPUID indicates support for XSAVE, XRESTORE and AVX, and XGETBV
  // indicates that the AVX registers will be saved and restored on context
  // switch, then we have full AVX support.
  const unsigned AVXBits = (1 << 27) | (1 << 28);
  bool HasAVX = ((ECX & AVXBits) == AVXBits) && !getX86XCR0(&EAX, &EDX) &&
                ((EAX & 0x6) == 0x6);
#if defined(__APPLE__)
  // Darwin lazily saves the AVX512 context on first use: trust that the OS will
  // save the AVX512 context if we use AVX512 instructions, even the bit is not
  // set right now.
  bool HasAVX512Save = true;
#else
  // AVX512 requires additional context to be saved by the OS.
  bool HasAVX512Save = HasAVX && ((EAX & 0xe0) == 0xe0);
#endif

  if (HasAVX)
    setFeature(X86::FEATURE_AVX);

  bool HasLeaf7 =
      MaxLeaf >= 0x7 && !getX86CpuIDAndInfoEx(0x7, 0x0, &EAX, &EBX, &ECX, &EDX);

  if (HasLeaf7 && ((EBX >> 3) & 1))
    setFeature(X86::FEATURE_BMI);
  if (HasLeaf7 && ((EBX >> 5) & 1) && HasAVX)
    setFeature(X86::FEATURE_AVX2);
  if (HasLeaf7 && ((EBX >> 8) & 1))
    setFeature(X86::FEATURE_BMI2);
  if (HasLeaf7 && ((EBX >> 16) & 1) && HasAVX512Save)
    setFeature(X86::FEATURE_AVX512F);
  if (HasLeaf7 && ((EBX >> 17) & 1) && HasAVX512Save)
    setFeature(X86::FEATURE_AVX512DQ);
  if (HasLeaf7 && ((EBX >> 19) & 1))
    setFeature(X86::FEATURE_ADX);
  if (HasLeaf7 && ((EBX >> 21) & 1) && HasAVX512Save)
    setFeature(X86::FEATURE_AVX512IFMA);
  if (HasLeaf7 && ((EBX >> 23) & 1))
    setFeature(X86::FEATURE_CLFLUSHOPT);
  if (HasLeaf7 && ((EBX >> 26) & 1) && HasAVX512Save)
    setFeature(X86::FEATURE_AVX512PF);
  if (HasLeaf7 && ((EBX >> 27) & 1) && HasAVX512Save)
    setFeature(X86::FEATURE_AVX512ER);
  if (HasLeaf7 && ((EBX >> 28) & 1) && HasAVX512Save)
    setFeature(X86::FEATURE_AVX512CD);
  if (HasLeaf7 && ((EBX >> 29) & 1))
    setFeature(X86::FEATURE_SHA);
  if (HasLeaf7 && ((EBX >> 30) & 1) && HasAVX512Save)
    setFeature(X86::FEATURE_AVX512BW);
  if (HasLeaf7 && ((EBX >> 31) & 1) && HasAVX512Save)
    setFeature(X86::FEATURE_AVX512VL);

  if (HasLeaf7 && ((ECX >> 1) & 1) && HasAVX512Save)
    setFeature(X86::FEATURE_AVX512VBMI);
  if (HasLeaf7 && ((ECX >> 6) & 1) && HasAVX512Save)
    setFeature(X86::FEATURE_AVX512VBMI2);
  if (HasLeaf7 && ((ECX >> 8) & 1))
    setFeature(X86::FEATURE_GFNI);
  if (HasLeaf7 && ((ECX >> 10) & 1) && HasAVX)
    setFeature(X86::FEATURE_VPCLMULQDQ);
  if (HasLeaf7 && ((ECX >> 11) & 1) && HasAVX512Save)
    setFeature(X86::FEATURE_AVX512VNNI);
  if (HasLeaf7 && ((ECX >> 12) & 1) && HasAVX512Save)
    setFeature(X86::FEATURE_AVX512BITALG);
  if (HasLeaf7 && ((ECX >> 14) & 1) && HasAVX512Save)
    setFeature(X86::FEATURE_AVX512VPOPCNTDQ);

  if (HasLeaf7 && ((EDX >> 2) & 1) && HasAVX512Save)
    setFeature(X86::FEATURE_AVX5124VNNIW);
  if (HasLeaf7 && ((EDX >> 3) & 1) && HasAVX512Save)
    setFeature(X86::FEATURE_AVX5124FMAPS);
  if (HasLeaf7 && ((EDX >> 8) & 1) && HasAVX512Save)
    setFeature(X86::FEATURE_AVX512VP2INTERSECT);

  bool HasLeaf7Subleaf1 =
      MaxLeaf >= 7 && !getX86CpuIDAndInfoEx(0x7, 0x1, &EAX, &EBX, &ECX, &EDX);
  if (HasLeaf7Subleaf1 && ((EAX >> 5) & 1) && HasAVX512Save)
    setFeature(X86::FEATURE_AVX512BF16);

  unsigned MaxExtLevel;
  getX86CpuIDAndInfo(0x80000000, &MaxExtLevel, &EBX, &ECX, &EDX);

  bool HasExtLeaf1 = MaxExtLevel >= 0x80000001 &&
                     !getX86CpuIDAndInfo(0x80000001, &EAX, &EBX, &ECX, &EDX);
  if (HasExtLeaf1 && ((ECX >> 6) & 1))
    setFeature(X86::FEATURE_SSE4_A);
  if (HasExtLeaf1 && ((ECX >> 11) & 1))
    setFeature(X86::FEATURE_XOP);
  if (HasExtLeaf1 && ((ECX >> 16) & 1))
    setFeature(X86::FEATURE_FMA4);

  if (HasExtLeaf1 && ((EDX >> 29) & 1))
    setFeature(X86::FEATURE_EM64T);

  *FeaturesOut  = Features;
  *Features2Out = Features2;
  *Features3Out = Features3;
}

StringRef sys::getHostCPUName() {
  unsigned EAX = 0, EBX = 0, ECX = 0, EDX = 0;
  unsigned MaxLeaf, Vendor;

#if defined(__GNUC__) || defined(__clang__)
  //FIXME: include cpuid.h from clang or copy __get_cpuid_max here
  // and simplify it to not invoke __cpuid (like cpu_model.c in
  // compiler-rt/lib/builtins/cpu_model.c?
  // Opting for the second option.
  if(!isCpuIdSupported())
    return "generic";
#endif
  if (getX86CpuIDAndInfo(0, &MaxLeaf, &Vendor, &ECX, &EDX) || MaxLeaf < 1)
    return "generic";
  getX86CpuIDAndInfo(0x1, &EAX, &EBX, &ECX, &EDX);

  unsigned Brand_id = EBX & 0xff;
  unsigned Family = 0, Model = 0;
  unsigned Features = 0, Features2 = 0, Features3 = 0;
  detectX86FamilyModel(EAX, &Family, &Model);
  getAvailableFeatures(ECX, EDX, MaxLeaf, &Features, &Features2, &Features3);

  unsigned Type = 0;
  unsigned Subtype = 0;

  if (Vendor == SIG_INTEL) {
    getIntelProcessorTypeAndSubtype(Family, Model, Brand_id, Features,
                                    Features2, Features3, &Type, &Subtype);
  } else if (Vendor == SIG_AMD) {
    getAMDProcessorTypeAndSubtype(Family, Model, Features, &Type, &Subtype);
  }

  // Check subtypes first since those are more specific.
#define X86_CPU_SUBTYPE(ARCHNAME, ENUM) \
  if (Subtype == X86::ENUM) \
    return ARCHNAME;
#include "llvm/Support/X86TargetParser.def"

  // Now check types.
#define X86_CPU_TYPE(ARCHNAME, ENUM) \
  if (Type == X86::ENUM) \
    return ARCHNAME;
#include "llvm/Support/X86TargetParser.def"

  return "generic";
}

#elif defined(__APPLE__) && (defined(__ppc__) || defined(__powerpc__))
StringRef sys::getHostCPUName() {
  host_basic_info_data_t hostInfo;
  mach_msg_type_number_t infoCount;

  infoCount = HOST_BASIC_INFO_COUNT;
  mach_port_t hostPort = mach_host_self();
  host_info(hostPort, HOST_BASIC_INFO, (host_info_t)&hostInfo,
            &infoCount);
  mach_port_deallocate(mach_task_self(), hostPort);

  if (hostInfo.cpu_type != CPU_TYPE_POWERPC)
    return "generic";

  switch (hostInfo.cpu_subtype) {
  case CPU_SUBTYPE_POWERPC_601:
    return "601";
  case CPU_SUBTYPE_POWERPC_602:
    return "602";
  case CPU_SUBTYPE_POWERPC_603:
    return "603";
  case CPU_SUBTYPE_POWERPC_603e:
    return "603e";
  case CPU_SUBTYPE_POWERPC_603ev:
    return "603ev";
  case CPU_SUBTYPE_POWERPC_604:
    return "604";
  case CPU_SUBTYPE_POWERPC_604e:
    return "604e";
  case CPU_SUBTYPE_POWERPC_620:
    return "620";
  case CPU_SUBTYPE_POWERPC_750:
    return "750";
  case CPU_SUBTYPE_POWERPC_7400:
    return "7400";
  case CPU_SUBTYPE_POWERPC_7450:
    return "7450";
  case CPU_SUBTYPE_POWERPC_970:
    return "970";
  default:;
  }

  return "generic";
}
#elif defined(__linux__) && (defined(__ppc__) || defined(__powerpc__))
StringRef sys::getHostCPUName() {
  std::unique_ptr<llvm::MemoryBuffer> P = getProcCpuinfoContent();
  StringRef Content = P ? P->getBuffer() : "";
  return detail::getHostCPUNameForPowerPC(Content);
}
#elif defined(__linux__) && (defined(__arm__) || defined(__aarch64__))
StringRef sys::getHostCPUName() {
  std::unique_ptr<llvm::MemoryBuffer> P = getProcCpuinfoContent();
  StringRef Content = P ? P->getBuffer() : "";
  return detail::getHostCPUNameForARM(Content);
}
#elif defined(__linux__) && defined(__s390x__)
StringRef sys::getHostCPUName() {
  std::unique_ptr<llvm::MemoryBuffer> P = getProcCpuinfoContent();
  StringRef Content = P ? P->getBuffer() : "";
  return detail::getHostCPUNameForS390x(Content);
}
#elif defined(__APPLE__) && defined(__aarch64__)
StringRef sys::getHostCPUName() {
  return "cyclone";
}
#elif defined(__APPLE__) && defined(__arm__)
StringRef sys::getHostCPUName() {
  host_basic_info_data_t hostInfo;
  mach_msg_type_number_t infoCount;

  infoCount = HOST_BASIC_INFO_COUNT;
  mach_port_t hostPort = mach_host_self();
  host_info(hostPort, HOST_BASIC_INFO, (host_info_t)&hostInfo,
            &infoCount);
  mach_port_deallocate(mach_task_self(), hostPort);

  if (hostInfo.cpu_type != CPU_TYPE_ARM) {
    assert(false && "CPUType not equal to ARM should not be possible on ARM");
    return "generic";
  }
  switch (hostInfo.cpu_subtype) {
    case CPU_SUBTYPE_ARM_V7S:
      return "swift";
    default:;
    }
  
  return "generic";
}
#else
StringRef sys::getHostCPUName() { return "generic"; }
#endif

#if defined(__linux__) && defined(__x86_64__)
// On Linux, the number of physical cores can be computed from /proc/cpuinfo,
// using the number of unique physical/core id pairs. The following
// implementation reads the /proc/cpuinfo format on an x86_64 system.
static int computeHostNumPhysicalCores() {
  // Read /proc/cpuinfo as a stream (until EOF reached). It cannot be
  // mmapped because it appears to have 0 size.
  llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> Text =
      llvm::MemoryBuffer::getFileAsStream("/proc/cpuinfo");
  if (std::error_code EC = Text.getError()) {
    llvm::errs() << "Can't read "
                 << "/proc/cpuinfo: " << EC.message() << "\n";
    return -1;
  }
  SmallVector<StringRef, 8> strs;
  (*Text)->getBuffer().split(strs, "\n", /*MaxSplit=*/-1,
                             /*KeepEmpty=*/false);
  int CurPhysicalId = -1;
  int CurCoreId = -1;
  SmallSet<std::pair<int, int>, 32> UniqueItems;
  for (auto &Line : strs) {
    Line = Line.trim();
    if (!Line.startswith("physical id") && !Line.startswith("core id"))
      continue;
    std::pair<StringRef, StringRef> Data = Line.split(':');
    auto Name = Data.first.trim();
    auto Val = Data.second.trim();
    if (Name == "physical id") {
      assert(CurPhysicalId == -1 &&
             "Expected a core id before seeing another physical id");
      Val.getAsInteger(10, CurPhysicalId);
    }
    if (Name == "core id") {
      assert(CurCoreId == -1 &&
             "Expected a physical id before seeing another core id");
      Val.getAsInteger(10, CurCoreId);
    }
    if (CurPhysicalId != -1 && CurCoreId != -1) {
      UniqueItems.insert(std::make_pair(CurPhysicalId, CurCoreId));
      CurPhysicalId = -1;
      CurCoreId = -1;
    }
  }
  return UniqueItems.size();
}
#elif defined(__APPLE__) && defined(__x86_64__)
#include <sys/param.h>
#include <sys/sysctl.h>

// Gets the number of *physical cores* on the machine.
static int computeHostNumPhysicalCores() {
  uint32_t count;
  size_t len = sizeof(count);
  sysctlbyname("hw.physicalcpu", &count, &len, NULL, 0);
  if (count < 1) {
    int nm[2];
    nm[0] = CTL_HW;
    nm[1] = HW_AVAILCPU;
    sysctl(nm, 2, &count, &len, NULL, 0);
    if (count < 1)
      return -1;
  }
  return count;
}
#else
// On other systems, return -1 to indicate unknown.
static int computeHostNumPhysicalCores() { return -1; }
#endif

int sys::getHostNumPhysicalCores() {
  static int NumCores = computeHostNumPhysicalCores();
  return NumCores;
}

#if defined(__i386__) || defined(_M_IX86) || \
    defined(__x86_64__) || defined(_M_X64)
bool sys::getHostCPUFeatures(StringMap<bool> &Features) {
  unsigned EAX = 0, EBX = 0, ECX = 0, EDX = 0;
  unsigned MaxLevel;
  union {
    unsigned u[3];
    char c[12];
  } text;

  if (getX86CpuIDAndInfo(0, &MaxLevel, text.u + 0, text.u + 2, text.u + 1) ||
      MaxLevel < 1)
    return false;

  getX86CpuIDAndInfo(1, &EAX, &EBX, &ECX, &EDX);

  Features["cx8"]    = (EDX >>  8) & 1;
  Features["cmov"]   = (EDX >> 15) & 1;
  Features["mmx"]    = (EDX >> 23) & 1;
  Features["fxsr"]   = (EDX >> 24) & 1;
  Features["sse"]    = (EDX >> 25) & 1;
  Features["sse2"]   = (EDX >> 26) & 1;

  Features["sse3"]   = (ECX >>  0) & 1;
  Features["pclmul"] = (ECX >>  1) & 1;
  Features["ssse3"]  = (ECX >>  9) & 1;
  Features["cx16"]   = (ECX >> 13) & 1;
  Features["sse4.1"] = (ECX >> 19) & 1;
  Features["sse4.2"] = (ECX >> 20) & 1;
  Features["movbe"]  = (ECX >> 22) & 1;
  Features["popcnt"] = (ECX >> 23) & 1;
  Features["aes"]    = (ECX >> 25) & 1;
  Features["rdrnd"]  = (ECX >> 30) & 1;

  // If CPUID indicates support for XSAVE, XRESTORE and AVX, and XGETBV
  // indicates that the AVX registers will be saved and restored on context
  // switch, then we have full AVX support.
  bool HasAVXSave = ((ECX >> 27) & 1) && ((ECX >> 28) & 1) &&
                    !getX86XCR0(&EAX, &EDX) && ((EAX & 0x6) == 0x6);
#if defined(__APPLE__)
  // Darwin lazily saves the AVX512 context on first use: trust that the OS will
  // save the AVX512 context if we use AVX512 instructions, even the bit is not
  // set right now.
  bool HasAVX512Save = true;
#else
  // AVX512 requires additional context to be saved by the OS.
  bool HasAVX512Save = HasAVXSave && ((EAX & 0xe0) == 0xe0);
#endif

  Features["avx"]   = HasAVXSave;
  Features["fma"]   = ((ECX >> 12) & 1) && HasAVXSave;
  // Only enable XSAVE if OS has enabled support for saving YMM state.
  Features["xsave"] = ((ECX >> 26) & 1) && HasAVXSave;
  Features["f16c"]  = ((ECX >> 29) & 1) && HasAVXSave;

  unsigned MaxExtLevel;
  getX86CpuIDAndInfo(0x80000000, &MaxExtLevel, &EBX, &ECX, &EDX);

  bool HasExtLeaf1 = MaxExtLevel >= 0x80000001 &&
                     !getX86CpuIDAndInfo(0x80000001, &EAX, &EBX, &ECX, &EDX);
  Features["sahf"]   = HasExtLeaf1 && ((ECX >>  0) & 1);
  Features["lzcnt"]  = HasExtLeaf1 && ((ECX >>  5) & 1);
  Features["sse4a"]  = HasExtLeaf1 && ((ECX >>  6) & 1);
  Features["prfchw"] = HasExtLeaf1 && ((ECX >>  8) & 1);
  Features["xop"]    = HasExtLeaf1 && ((ECX >> 11) & 1) && HasAVXSave;
  Features["lwp"]    = HasExtLeaf1 && ((ECX >> 15) & 1);
  Features["fma4"]   = HasExtLeaf1 && ((ECX >> 16) & 1) && HasAVXSave;
  Features["tbm"]    = HasExtLeaf1 && ((ECX >> 21) & 1);
  Features["mwaitx"] = HasExtLeaf1 && ((ECX >> 29) & 1);

  Features["64bit"]  = HasExtLeaf1 && ((EDX >> 29) & 1);

  // Miscellaneous memory related features, detected by
  // using the 0x80000008 leaf of the CPUID instruction
  bool HasExtLeaf8 = MaxExtLevel >= 0x80000008 &&
                     !getX86CpuIDAndInfo(0x80000008, &EAX, &EBX, &ECX, &EDX);
  Features["clzero"]   = HasExtLeaf8 && ((EBX >> 0) & 1);
  Features["wbnoinvd"] = HasExtLeaf8 && ((EBX >> 9) & 1);

  bool HasLeaf7 =
      MaxLevel >= 7 && !getX86CpuIDAndInfoEx(0x7, 0x0, &EAX, &EBX, &ECX, &EDX);

  Features["fsgsbase"]   = HasLeaf7 && ((EBX >>  0) & 1);
  Features["sgx"]        = HasLeaf7 && ((EBX >>  2) & 1);
  Features["bmi"]        = HasLeaf7 && ((EBX >>  3) & 1);
  // AVX2 is only supported if we have the OS save support from AVX.
  Features["avx2"]       = HasLeaf7 && ((EBX >>  5) & 1) && HasAVXSave;
  Features["bmi2"]       = HasLeaf7 && ((EBX >>  8) & 1);
  Features["invpcid"]    = HasLeaf7 && ((EBX >> 10) & 1);
  Features["rtm"]        = HasLeaf7 && ((EBX >> 11) & 1);
  // AVX512 is only supported if the OS supports the context save for it.
  Features["avx512f"]    = HasLeaf7 && ((EBX >> 16) & 1) && HasAVX512Save;
  Features["avx512dq"]   = HasLeaf7 && ((EBX >> 17) & 1) && HasAVX512Save;
  Features["rdseed"]     = HasLeaf7 && ((EBX >> 18) & 1);
  Features["adx"]        = HasLeaf7 && ((EBX >> 19) & 1);
  Features["avx512ifma"] = HasLeaf7 && ((EBX >> 21) & 1) && HasAVX512Save;
  Features["clflushopt"] = HasLeaf7 && ((EBX >> 23) & 1);
  Features["clwb"]       = HasLeaf7 && ((EBX >> 24) & 1);
  Features["avx512pf"]   = HasLeaf7 && ((EBX >> 26) & 1) && HasAVX512Save;
  Features["avx512er"]   = HasLeaf7 && ((EBX >> 27) & 1) && HasAVX512Save;
  Features["avx512cd"]   = HasLeaf7 && ((EBX >> 28) & 1) && HasAVX512Save;
  Features["sha"]        = HasLeaf7 && ((EBX >> 29) & 1);
  Features["avx512bw"]   = HasLeaf7 && ((EBX >> 30) & 1) && HasAVX512Save;
  Features["avx512vl"]   = HasLeaf7 && ((EBX >> 31) & 1) && HasAVX512Save;

  Features["prefetchwt1"]     = HasLeaf7 && ((ECX >>  0) & 1);
  Features["avx512vbmi"]      = HasLeaf7 && ((ECX >>  1) & 1) && HasAVX512Save;
  Features["pku"]             = HasLeaf7 && ((ECX >>  4) & 1);
  Features["waitpkg"]         = HasLeaf7 && ((ECX >>  5) & 1);
  Features["avx512vbmi2"]     = HasLeaf7 && ((ECX >>  6) & 1) && HasAVX512Save;
  Features["shstk"]           = HasLeaf7 && ((ECX >>  7) & 1);
  Features["gfni"]            = HasLeaf7 && ((ECX >>  8) & 1);
  Features["vaes"]            = HasLeaf7 && ((ECX >>  9) & 1) && HasAVXSave;
  Features["vpclmulqdq"]      = HasLeaf7 && ((ECX >> 10) & 1) && HasAVXSave;
  Features["avx512vnni"]      = HasLeaf7 && ((ECX >> 11) & 1) && HasAVX512Save;
  Features["avx512bitalg"]    = HasLeaf7 && ((ECX >> 12) & 1) && HasAVX512Save;
  Features["avx512vpopcntdq"] = HasLeaf7 && ((ECX >> 14) & 1) && HasAVX512Save;
  Features["rdpid"]           = HasLeaf7 && ((ECX >> 22) & 1);
  Features["cldemote"]        = HasLeaf7 && ((ECX >> 25) & 1);
  Features["movdiri"]         = HasLeaf7 && ((ECX >> 27) & 1);
  Features["movdir64b"]       = HasLeaf7 && ((ECX >> 28) & 1);
  Features["enqcmd"]          = HasLeaf7 && ((ECX >> 29) & 1);

  // There are two CPUID leafs which information associated with the pconfig
  // instruction:
  // EAX=0x7, ECX=0x0 indicates the availability of the instruction (via the 18th
  // bit of EDX), while the EAX=0x1b leaf returns information on the
  // availability of specific pconfig leafs.
  // The target feature here only refers to the the first of these two.
  // Users might need to check for the availability of specific pconfig
  // leaves using cpuid, since that information is ignored while
  // detecting features using the "-march=native" flag.
  // For more info, see X86 ISA docs.
  Features["pconfig"] = HasLeaf7 && ((EDX >> 18) & 1);
  bool HasLeaf7Subleaf1 =
      MaxLevel >= 7 && !getX86CpuIDAndInfoEx(0x7, 0x1, &EAX, &EBX, &ECX, &EDX);
  Features["avx512bf16"] = HasLeaf7Subleaf1 && ((EAX >> 5) & 1) && HasAVX512Save;

  bool HasLeafD = MaxLevel >= 0xd &&
                  !getX86CpuIDAndInfoEx(0xd, 0x1, &EAX, &EBX, &ECX, &EDX);

  // Only enable XSAVE if OS has enabled support for saving YMM state.
  Features["xsaveopt"] = HasLeafD && ((EAX >> 0) & 1) && HasAVXSave;
  Features["xsavec"]   = HasLeafD && ((EAX >> 1) & 1) && HasAVXSave;
  Features["xsaves"]   = HasLeafD && ((EAX >> 3) & 1) && HasAVXSave;

  bool HasLeaf14 = MaxLevel >= 0x14 &&
                  !getX86CpuIDAndInfoEx(0x14, 0x0, &EAX, &EBX, &ECX, &EDX);

  Features["ptwrite"] = HasLeaf14 && ((EBX >> 4) & 1);

  return true;
}
#elif defined(__linux__) && (defined(__arm__) || defined(__aarch64__))
bool sys::getHostCPUFeatures(StringMap<bool> &Features) {
  std::unique_ptr<llvm::MemoryBuffer> P = getProcCpuinfoContent();
  if (!P)
    return false;

  SmallVector<StringRef, 32> Lines;
  P->getBuffer().split(Lines, "\n");

  SmallVector<StringRef, 32> CPUFeatures;

  // Look for the CPU features.
  for (unsigned I = 0, E = Lines.size(); I != E; ++I)
    if (Lines[I].startswith("Features")) {
      Lines[I].split(CPUFeatures, ' ');
      break;
    }

#if defined(__aarch64__)
  // Keep track of which crypto features we have seen
  enum { CAP_AES = 0x1, CAP_PMULL = 0x2, CAP_SHA1 = 0x4, CAP_SHA2 = 0x8 };
  uint32_t crypto = 0;
#endif

  for (unsigned I = 0, E = CPUFeatures.size(); I != E; ++I) {
    StringRef LLVMFeatureStr = StringSwitch<StringRef>(CPUFeatures[I])
#if defined(__aarch64__)
                                   .Case("asimd", "neon")
                                   .Case("fp", "fp-armv8")
                                   .Case("crc32", "crc")
#else
                                   .Case("half", "fp16")
                                   .Case("neon", "neon")
                                   .Case("vfpv3", "vfp3")
                                   .Case("vfpv3d16", "d16")
                                   .Case("vfpv4", "vfp4")
                                   .Case("idiva", "hwdiv-arm")
                                   .Case("idivt", "hwdiv")
#endif
                                   .Default("");

#if defined(__aarch64__)
    // We need to check crypto separately since we need all of the crypto
    // extensions to enable the subtarget feature
    if (CPUFeatures[I] == "aes")
      crypto |= CAP_AES;
    else if (CPUFeatures[I] == "pmull")
      crypto |= CAP_PMULL;
    else if (CPUFeatures[I] == "sha1")
      crypto |= CAP_SHA1;
    else if (CPUFeatures[I] == "sha2")
      crypto |= CAP_SHA2;
#endif

    if (LLVMFeatureStr != "")
      Features[LLVMFeatureStr] = true;
  }

#if defined(__aarch64__)
  // If we have all crypto bits we can add the feature
  if (crypto == (CAP_AES | CAP_PMULL | CAP_SHA1 | CAP_SHA2))
    Features["crypto"] = true;
#endif

  return true;
}
#elif defined(_WIN32) && (defined(__aarch64__) || defined(_M_ARM64))
bool sys::getHostCPUFeatures(StringMap<bool> &Features) {
  if (IsProcessorFeaturePresent(PF_ARM_NEON_INSTRUCTIONS_AVAILABLE))
    Features["neon"] = true;
  if (IsProcessorFeaturePresent(PF_ARM_V8_CRC32_INSTRUCTIONS_AVAILABLE))
    Features["crc"] = true;
  if (IsProcessorFeaturePresent(PF_ARM_V8_CRYPTO_INSTRUCTIONS_AVAILABLE))
    Features["crypto"] = true;

  return true;
}
#else
bool sys::getHostCPUFeatures(StringMap<bool> &Features) { return false; }
#endif

std::string sys::getProcessTriple() {
  std::string TargetTripleString = updateTripleOSVersion(LLVM_HOST_TRIPLE);
  Triple PT(Triple::normalize(TargetTripleString));

  if (sizeof(void *) == 8 && PT.isArch32Bit())
    PT = PT.get64BitArchVariant();
  if (sizeof(void *) == 4 && PT.isArch64Bit())
    PT = PT.get32BitArchVariant();

  return PT.str();
}