HexagonGenInsert.cpp 53.2 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636
//===- HexagonGenInsert.cpp -----------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "BitTracker.h"
#include "HexagonBitTracker.h"
#include "HexagonInstrInfo.h"
#include "HexagonRegisterInfo.h"
#include "HexagonSubtarget.h"
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/GraphTraits.h"
#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/Timer.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <iterator>
#include <utility>
#include <vector>

#define DEBUG_TYPE "hexinsert"

using namespace llvm;

static cl::opt<unsigned> VRegIndexCutoff("insert-vreg-cutoff", cl::init(~0U),
  cl::Hidden, cl::ZeroOrMore, cl::desc("Vreg# cutoff for insert generation."));
// The distance cutoff is selected based on the precheckin-perf results:
// cutoffs 20, 25, 35, and 40 are worse than 30.
static cl::opt<unsigned> VRegDistCutoff("insert-dist-cutoff", cl::init(30U),
  cl::Hidden, cl::ZeroOrMore, cl::desc("Vreg distance cutoff for insert "
  "generation."));

// Limit the container sizes for extreme cases where we run out of memory.
static cl::opt<unsigned> MaxORLSize("insert-max-orl", cl::init(4096),
  cl::Hidden, cl::ZeroOrMore, cl::desc("Maximum size of OrderedRegisterList"));
static cl::opt<unsigned> MaxIFMSize("insert-max-ifmap", cl::init(1024),
  cl::Hidden, cl::ZeroOrMore, cl::desc("Maximum size of IFMap"));

static cl::opt<bool> OptTiming("insert-timing", cl::init(false), cl::Hidden,
  cl::ZeroOrMore, cl::desc("Enable timing of insert generation"));
static cl::opt<bool> OptTimingDetail("insert-timing-detail", cl::init(false),
  cl::Hidden, cl::ZeroOrMore, cl::desc("Enable detailed timing of insert "
  "generation"));

static cl::opt<bool> OptSelectAll0("insert-all0", cl::init(false), cl::Hidden,
  cl::ZeroOrMore);
static cl::opt<bool> OptSelectHas0("insert-has0", cl::init(false), cl::Hidden,
  cl::ZeroOrMore);
// Whether to construct constant values via "insert". Could eliminate constant
// extenders, but often not practical.
static cl::opt<bool> OptConst("insert-const", cl::init(false), cl::Hidden,
  cl::ZeroOrMore);

// The preprocessor gets confused when the DEBUG macro is passed larger
// chunks of code. Use this function to detect debugging.
inline static bool isDebug() {
#ifndef NDEBUG
  return DebugFlag && isCurrentDebugType(DEBUG_TYPE);
#else
  return false;
#endif
}

namespace {

  // Set of virtual registers, based on BitVector.
  struct RegisterSet : private BitVector {
    RegisterSet() = default;
    explicit RegisterSet(unsigned s, bool t = false) : BitVector(s, t) {}
    RegisterSet(const RegisterSet &RS) : BitVector(RS) {}
    RegisterSet &operator=(const RegisterSet &RS) {
      BitVector::operator=(RS);
      return *this;
    }

    using BitVector::clear;

    unsigned find_first() const {
      int First = BitVector::find_first();
      if (First < 0)
        return 0;
      return x2v(First);
    }

    unsigned find_next(unsigned Prev) const {
      int Next = BitVector::find_next(v2x(Prev));
      if (Next < 0)
        return 0;
      return x2v(Next);
    }

    RegisterSet &insert(unsigned R) {
      unsigned Idx = v2x(R);
      ensure(Idx);
      return static_cast<RegisterSet&>(BitVector::set(Idx));
    }
    RegisterSet &remove(unsigned R) {
      unsigned Idx = v2x(R);
      if (Idx >= size())
        return *this;
      return static_cast<RegisterSet&>(BitVector::reset(Idx));
    }

    RegisterSet &insert(const RegisterSet &Rs) {
      return static_cast<RegisterSet&>(BitVector::operator|=(Rs));
    }
    RegisterSet &remove(const RegisterSet &Rs) {
      return static_cast<RegisterSet&>(BitVector::reset(Rs));
    }

    reference operator[](unsigned R) {
      unsigned Idx = v2x(R);
      ensure(Idx);
      return BitVector::operator[](Idx);
    }
    bool operator[](unsigned R) const {
      unsigned Idx = v2x(R);
      assert(Idx < size());
      return BitVector::operator[](Idx);
    }
    bool has(unsigned R) const {
      unsigned Idx = v2x(R);
      if (Idx >= size())
        return false;
      return BitVector::test(Idx);
    }

    bool empty() const {
      return !BitVector::any();
    }
    bool includes(const RegisterSet &Rs) const {
      // A.BitVector::test(B)  <=>  A-B != {}
      return !Rs.BitVector::test(*this);
    }
    bool intersects(const RegisterSet &Rs) const {
      return BitVector::anyCommon(Rs);
    }

  private:
    void ensure(unsigned Idx) {
      if (size() <= Idx)
        resize(std::max(Idx+1, 32U));
    }

    static inline unsigned v2x(unsigned v) {
      return Register::virtReg2Index(v);
    }

    static inline unsigned x2v(unsigned x) {
      return Register::index2VirtReg(x);
    }
  };

  struct PrintRegSet {
    PrintRegSet(const RegisterSet &S, const TargetRegisterInfo *RI)
      : RS(S), TRI(RI) {}

    friend raw_ostream &operator<< (raw_ostream &OS,
          const PrintRegSet &P);

  private:
    const RegisterSet &RS;
    const TargetRegisterInfo *TRI;
  };

  raw_ostream &operator<< (raw_ostream &OS, const PrintRegSet &P) {
    OS << '{';
    for (unsigned R = P.RS.find_first(); R; R = P.RS.find_next(R))
      OS << ' ' << printReg(R, P.TRI);
    OS << " }";
    return OS;
  }

  // A convenience class to associate unsigned numbers (such as virtual
  // registers) with unsigned numbers.
  struct UnsignedMap : public DenseMap<unsigned,unsigned> {
    UnsignedMap() = default;

  private:
    using BaseType = DenseMap<unsigned, unsigned>;
  };

  // A utility to establish an ordering between virtual registers:
  // VRegA < VRegB  <=>  RegisterOrdering[VRegA] < RegisterOrdering[VRegB]
  // This is meant as a cache for the ordering of virtual registers defined
  // by a potentially expensive comparison function, or obtained by a proce-
  // dure that should not be repeated each time two registers are compared.
  struct RegisterOrdering : public UnsignedMap {
    RegisterOrdering() = default;

    unsigned operator[](unsigned VR) const {
      const_iterator F = find(VR);
      assert(F != end());
      return F->second;
    }

    // Add operator(), so that objects of this class can be used as
    // comparators in std::sort et al.
    bool operator() (unsigned VR1, unsigned VR2) const {
      return operator[](VR1) < operator[](VR2);
    }
  };

  // Ordering of bit values. This class does not have operator[], but
  // is supplies a comparison operator() for use in std:: algorithms.
  // The order is as follows:
  // - 0 < 1 < ref
  // - ref1 < ref2, if ord(ref1.Reg) < ord(ref2.Reg),
  //   or ord(ref1.Reg) == ord(ref2.Reg), and ref1.Pos < ref2.Pos.
  struct BitValueOrdering {
    BitValueOrdering(const RegisterOrdering &RB) : BaseOrd(RB) {}

    bool operator() (const BitTracker::BitValue &V1,
          const BitTracker::BitValue &V2) const;

    const RegisterOrdering &BaseOrd;
  };

} // end anonymous namespace

bool BitValueOrdering::operator() (const BitTracker::BitValue &V1,
      const BitTracker::BitValue &V2) const {
  if (V1 == V2)
    return false;
  // V1==0 => true, V2==0 => false
  if (V1.is(0) || V2.is(0))
    return V1.is(0);
  // Neither of V1,V2 is 0, and V1!=V2.
  // V2==1 => false, V1==1 => true
  if (V2.is(1) || V1.is(1))
    return !V2.is(1);
  // Both V1,V2 are refs.
  unsigned Ind1 = BaseOrd[V1.RefI.Reg], Ind2 = BaseOrd[V2.RefI.Reg];
  if (Ind1 != Ind2)
    return Ind1 < Ind2;
  // If V1.Pos==V2.Pos
  assert(V1.RefI.Pos != V2.RefI.Pos && "Bit values should be different");
  return V1.RefI.Pos < V2.RefI.Pos;
}

namespace {

  // Cache for the BitTracker's cell map. Map lookup has a logarithmic
  // complexity, this class will memoize the lookup results to reduce
  // the access time for repeated lookups of the same cell.
  struct CellMapShadow {
    CellMapShadow(const BitTracker &T) : BT(T) {}

    const BitTracker::RegisterCell &lookup(unsigned VR) {
      unsigned RInd = Register::virtReg2Index(VR);
      // Grow the vector to at least 32 elements.
      if (RInd >= CVect.size())
        CVect.resize(std::max(RInd+16, 32U), nullptr);
      const BitTracker::RegisterCell *CP = CVect[RInd];
      if (CP == nullptr)
        CP = CVect[RInd] = &BT.lookup(VR);
      return *CP;
    }

    const BitTracker &BT;

  private:
    using CellVectType = std::vector<const BitTracker::RegisterCell *>;

    CellVectType CVect;
  };

  // Comparator class for lexicographic ordering of virtual registers
  // according to the corresponding BitTracker::RegisterCell objects.
  struct RegisterCellLexCompare {
    RegisterCellLexCompare(const BitValueOrdering &BO, CellMapShadow &M)
      : BitOrd(BO), CM(M) {}

    bool operator() (unsigned VR1, unsigned VR2) const;

  private:
    const BitValueOrdering &BitOrd;
    CellMapShadow &CM;
  };

  // Comparator class for lexicographic ordering of virtual registers
  // according to the specified bits of the corresponding BitTracker::
  // RegisterCell objects.
  // Specifically, this class will be used to compare bit B of a register
  // cell for a selected virtual register R with bit N of any register
  // other than R.
  struct RegisterCellBitCompareSel {
    RegisterCellBitCompareSel(unsigned R, unsigned B, unsigned N,
          const BitValueOrdering &BO, CellMapShadow &M)
      : SelR(R), SelB(B), BitN(N), BitOrd(BO), CM(M) {}

    bool operator() (unsigned VR1, unsigned VR2) const;

  private:
    const unsigned SelR, SelB;
    const unsigned BitN;
    const BitValueOrdering &BitOrd;
    CellMapShadow &CM;
  };

} // end anonymous namespace

bool RegisterCellLexCompare::operator() (unsigned VR1, unsigned VR2) const {
  // Ordering of registers, made up from two given orderings:
  // - the ordering of the register numbers, and
  // - the ordering of register cells.
  // Def. R1 < R2 if:
  // - cell(R1) < cell(R2), or
  // - cell(R1) == cell(R2), and index(R1) < index(R2).
  //
  // For register cells, the ordering is lexicographic, with index 0 being
  // the most significant.
  if (VR1 == VR2)
    return false;

  const BitTracker::RegisterCell &RC1 = CM.lookup(VR1), &RC2 = CM.lookup(VR2);
  uint16_t W1 = RC1.width(), W2 = RC2.width();
  for (uint16_t i = 0, w = std::min(W1, W2); i < w; ++i) {
    const BitTracker::BitValue &V1 = RC1[i], &V2 = RC2[i];
    if (V1 != V2)
      return BitOrd(V1, V2);
  }
  // Cells are equal up until the common length.
  if (W1 != W2)
    return W1 < W2;

  return BitOrd.BaseOrd[VR1] < BitOrd.BaseOrd[VR2];
}

bool RegisterCellBitCompareSel::operator() (unsigned VR1, unsigned VR2) const {
  if (VR1 == VR2)
    return false;
  const BitTracker::RegisterCell &RC1 = CM.lookup(VR1);
  const BitTracker::RegisterCell &RC2 = CM.lookup(VR2);
  uint16_t W1 = RC1.width(), W2 = RC2.width();
  uint16_t Bit1 = (VR1 == SelR) ? SelB : BitN;
  uint16_t Bit2 = (VR2 == SelR) ? SelB : BitN;
  // If Bit1 exceeds the width of VR1, then:
  // - return false, if at the same time Bit2 exceeds VR2, or
  // - return true, otherwise.
  // (I.e. "a bit value that does not exist is less than any bit value
  // that does exist".)
  if (W1 <= Bit1)
    return Bit2 < W2;
  // If Bit1 is within VR1, but Bit2 is not within VR2, return false.
  if (W2 <= Bit2)
    return false;

  const BitTracker::BitValue &V1 = RC1[Bit1], V2 = RC2[Bit2];
  if (V1 != V2)
    return BitOrd(V1, V2);
  return false;
}

namespace {

  class OrderedRegisterList {
    using ListType = std::vector<unsigned>;
    const unsigned MaxSize;

  public:
    OrderedRegisterList(const RegisterOrdering &RO)
      : MaxSize(MaxORLSize), Ord(RO) {}

    void insert(unsigned VR);
    void remove(unsigned VR);

    unsigned operator[](unsigned Idx) const {
      assert(Idx < Seq.size());
      return Seq[Idx];
    }

    unsigned size() const {
      return Seq.size();
    }

    using iterator = ListType::iterator;
    using const_iterator = ListType::const_iterator;

    iterator begin() { return Seq.begin(); }
    iterator end() { return Seq.end(); }
    const_iterator begin() const { return Seq.begin(); }
    const_iterator end() const { return Seq.end(); }

    // Convenience function to convert an iterator to the corresponding index.
    unsigned idx(iterator It) const { return It-begin(); }

  private:
    ListType Seq;
    const RegisterOrdering &Ord;
  };

  struct PrintORL {
    PrintORL(const OrderedRegisterList &L, const TargetRegisterInfo *RI)
      : RL(L), TRI(RI) {}

    friend raw_ostream &operator<< (raw_ostream &OS, const PrintORL &P);

  private:
    const OrderedRegisterList &RL;
    const TargetRegisterInfo *TRI;
  };

  raw_ostream &operator<< (raw_ostream &OS, const PrintORL &P) {
    OS << '(';
    OrderedRegisterList::const_iterator B = P.RL.begin(), E = P.RL.end();
    for (OrderedRegisterList::const_iterator I = B; I != E; ++I) {
      if (I != B)
        OS << ", ";
      OS << printReg(*I, P.TRI);
    }
    OS << ')';
    return OS;
  }

} // end anonymous namespace

void OrderedRegisterList::insert(unsigned VR) {
  iterator L = llvm::lower_bound(Seq, VR, Ord);
  if (L == Seq.end())
    Seq.push_back(VR);
  else
    Seq.insert(L, VR);

  unsigned S = Seq.size();
  if (S > MaxSize)
    Seq.resize(MaxSize);
  assert(Seq.size() <= MaxSize);
}

void OrderedRegisterList::remove(unsigned VR) {
  iterator L = llvm::lower_bound(Seq, VR, Ord);
  if (L != Seq.end())
    Seq.erase(L);
}

namespace {

  // A record of the insert form. The fields correspond to the operands
  // of the "insert" instruction:
  // ... = insert(SrcR, InsR, #Wdh, #Off)
  struct IFRecord {
    IFRecord(unsigned SR = 0, unsigned IR = 0, uint16_t W = 0, uint16_t O = 0)
      : SrcR(SR), InsR(IR), Wdh(W), Off(O) {}

    unsigned SrcR, InsR;
    uint16_t Wdh, Off;
  };

  struct PrintIFR {
    PrintIFR(const IFRecord &R, const TargetRegisterInfo *RI)
      : IFR(R), TRI(RI) {}

  private:
    friend raw_ostream &operator<< (raw_ostream &OS, const PrintIFR &P);

    const IFRecord &IFR;
    const TargetRegisterInfo *TRI;
  };

  raw_ostream &operator<< (raw_ostream &OS, const PrintIFR &P) {
    unsigned SrcR = P.IFR.SrcR, InsR = P.IFR.InsR;
    OS << '(' << printReg(SrcR, P.TRI) << ',' << printReg(InsR, P.TRI)
       << ",#" << P.IFR.Wdh << ",#" << P.IFR.Off << ')';
    return OS;
  }

  using IFRecordWithRegSet = std::pair<IFRecord, RegisterSet>;

} // end anonymous namespace

namespace llvm {

  void initializeHexagonGenInsertPass(PassRegistry&);
  FunctionPass *createHexagonGenInsert();

} // end namespace llvm

namespace {

  class HexagonGenInsert : public MachineFunctionPass {
  public:
    static char ID;

    HexagonGenInsert() : MachineFunctionPass(ID) {
      initializeHexagonGenInsertPass(*PassRegistry::getPassRegistry());
    }

    StringRef getPassName() const override {
      return "Hexagon generate \"insert\" instructions";
    }

    void getAnalysisUsage(AnalysisUsage &AU) const override {
      AU.addRequired<MachineDominatorTree>();
      AU.addPreserved<MachineDominatorTree>();
      MachineFunctionPass::getAnalysisUsage(AU);
    }

    bool runOnMachineFunction(MachineFunction &MF) override;

  private:
    using PairMapType = DenseMap<std::pair<unsigned, unsigned>, unsigned>;

    void buildOrderingMF(RegisterOrdering &RO) const;
    void buildOrderingBT(RegisterOrdering &RB, RegisterOrdering &RO) const;
    bool isIntClass(const TargetRegisterClass *RC) const;
    bool isConstant(unsigned VR) const;
    bool isSmallConstant(unsigned VR) const;
    bool isValidInsertForm(unsigned DstR, unsigned SrcR, unsigned InsR,
          uint16_t L, uint16_t S) const;
    bool findSelfReference(unsigned VR) const;
    bool findNonSelfReference(unsigned VR) const;
    void getInstrDefs(const MachineInstr *MI, RegisterSet &Defs) const;
    void getInstrUses(const MachineInstr *MI, RegisterSet &Uses) const;
    unsigned distance(const MachineBasicBlock *FromB,
          const MachineBasicBlock *ToB, const UnsignedMap &RPO,
          PairMapType &M) const;
    unsigned distance(MachineBasicBlock::const_iterator FromI,
          MachineBasicBlock::const_iterator ToI, const UnsignedMap &RPO,
          PairMapType &M) const;
    bool findRecordInsertForms(unsigned VR, OrderedRegisterList &AVs);
    void collectInBlock(MachineBasicBlock *B, OrderedRegisterList &AVs);
    void findRemovableRegisters(unsigned VR, IFRecord IF,
          RegisterSet &RMs) const;
    void computeRemovableRegisters();

    void pruneEmptyLists();
    void pruneCoveredSets(unsigned VR);
    void pruneUsesTooFar(unsigned VR, const UnsignedMap &RPO, PairMapType &M);
    void pruneRegCopies(unsigned VR);
    void pruneCandidates();
    void selectCandidates();
    bool generateInserts();

    bool removeDeadCode(MachineDomTreeNode *N);

    // IFRecord coupled with a set of potentially removable registers:
    using IFListType = std::vector<IFRecordWithRegSet>;
    using IFMapType = DenseMap<unsigned, IFListType>; // vreg -> IFListType

    void dump_map() const;

    const HexagonInstrInfo *HII = nullptr;
    const HexagonRegisterInfo *HRI = nullptr;

    MachineFunction *MFN;
    MachineRegisterInfo *MRI;
    MachineDominatorTree *MDT;
    CellMapShadow *CMS;

    RegisterOrdering BaseOrd;
    RegisterOrdering CellOrd;
    IFMapType IFMap;
  };

} // end anonymous namespace

char HexagonGenInsert::ID = 0;

void HexagonGenInsert::dump_map() const {
  using iterator = IFMapType::const_iterator;

  for (iterator I = IFMap.begin(), E = IFMap.end(); I != E; ++I) {
    dbgs() << "  " << printReg(I->first, HRI) << ":\n";
    const IFListType &LL = I->second;
    for (unsigned i = 0, n = LL.size(); i < n; ++i)
      dbgs() << "    " << PrintIFR(LL[i].first, HRI) << ", "
             << PrintRegSet(LL[i].second, HRI) << '\n';
  }
}

void HexagonGenInsert::buildOrderingMF(RegisterOrdering &RO) const {
  unsigned Index = 0;

  using mf_iterator = MachineFunction::const_iterator;

  for (mf_iterator A = MFN->begin(), Z = MFN->end(); A != Z; ++A) {
    const MachineBasicBlock &B = *A;
    if (!CMS->BT.reached(&B))
      continue;

    using mb_iterator = MachineBasicBlock::const_iterator;

    for (mb_iterator I = B.begin(), E = B.end(); I != E; ++I) {
      const MachineInstr *MI = &*I;
      for (unsigned i = 0, n = MI->getNumOperands(); i < n; ++i) {
        const MachineOperand &MO = MI->getOperand(i);
        if (MO.isReg() && MO.isDef()) {
          Register R = MO.getReg();
          assert(MO.getSubReg() == 0 && "Unexpected subregister in definition");
          if (Register::isVirtualRegister(R))
            RO.insert(std::make_pair(R, Index++));
        }
      }
    }
  }
  // Since some virtual registers may have had their def and uses eliminated,
  // they are no longer referenced in the code, and so they will not appear
  // in the map.
}

void HexagonGenInsert::buildOrderingBT(RegisterOrdering &RB,
      RegisterOrdering &RO) const {
  // Create a vector of all virtual registers (collect them from the base
  // ordering RB), and then sort it using the RegisterCell comparator.
  BitValueOrdering BVO(RB);
  RegisterCellLexCompare LexCmp(BVO, *CMS);

  using SortableVectorType = std::vector<unsigned>;

  SortableVectorType VRs;
  for (RegisterOrdering::iterator I = RB.begin(), E = RB.end(); I != E; ++I)
    VRs.push_back(I->first);
  llvm::sort(VRs, LexCmp);
  // Transfer the results to the outgoing register ordering.
  for (unsigned i = 0, n = VRs.size(); i < n; ++i)
    RO.insert(std::make_pair(VRs[i], i));
}

inline bool HexagonGenInsert::isIntClass(const TargetRegisterClass *RC) const {
  return RC == &Hexagon::IntRegsRegClass || RC == &Hexagon::DoubleRegsRegClass;
}

bool HexagonGenInsert::isConstant(unsigned VR) const {
  const BitTracker::RegisterCell &RC = CMS->lookup(VR);
  uint16_t W = RC.width();
  for (uint16_t i = 0; i < W; ++i) {
    const BitTracker::BitValue &BV = RC[i];
    if (BV.is(0) || BV.is(1))
      continue;
    return false;
  }
  return true;
}

bool HexagonGenInsert::isSmallConstant(unsigned VR) const {
  const BitTracker::RegisterCell &RC = CMS->lookup(VR);
  uint16_t W = RC.width();
  if (W > 64)
    return false;
  uint64_t V = 0, B = 1;
  for (uint16_t i = 0; i < W; ++i) {
    const BitTracker::BitValue &BV = RC[i];
    if (BV.is(1))
      V |= B;
    else if (!BV.is(0))
      return false;
    B <<= 1;
  }

  // For 32-bit registers, consider: Rd = #s16.
  if (W == 32)
    return isInt<16>(V);

  // For 64-bit registers, it's Rdd = #s8 or Rdd = combine(#s8,#s8)
  return isInt<8>(Lo_32(V)) && isInt<8>(Hi_32(V));
}

bool HexagonGenInsert::isValidInsertForm(unsigned DstR, unsigned SrcR,
      unsigned InsR, uint16_t L, uint16_t S) const {
  const TargetRegisterClass *DstRC = MRI->getRegClass(DstR);
  const TargetRegisterClass *SrcRC = MRI->getRegClass(SrcR);
  const TargetRegisterClass *InsRC = MRI->getRegClass(InsR);
  // Only integet (32-/64-bit) register classes.
  if (!isIntClass(DstRC) || !isIntClass(SrcRC) || !isIntClass(InsRC))
    return false;
  // The "source" register must be of the same class as DstR.
  if (DstRC != SrcRC)
    return false;
  if (DstRC == InsRC)
    return true;
  // A 64-bit register can only be generated from other 64-bit registers.
  if (DstRC == &Hexagon::DoubleRegsRegClass)
    return false;
  // Otherwise, the L and S cannot span 32-bit word boundary.
  if (S < 32 && S+L > 32)
    return false;
  return true;
}

bool HexagonGenInsert::findSelfReference(unsigned VR) const {
  const BitTracker::RegisterCell &RC = CMS->lookup(VR);
  for (uint16_t i = 0, w = RC.width(); i < w; ++i) {
    const BitTracker::BitValue &V = RC[i];
    if (V.Type == BitTracker::BitValue::Ref && V.RefI.Reg == VR)
      return true;
  }
  return false;
}

bool HexagonGenInsert::findNonSelfReference(unsigned VR) const {
  BitTracker::RegisterCell RC = CMS->lookup(VR);
  for (uint16_t i = 0, w = RC.width(); i < w; ++i) {
    const BitTracker::BitValue &V = RC[i];
    if (V.Type == BitTracker::BitValue::Ref && V.RefI.Reg != VR)
      return true;
  }
  return false;
}

void HexagonGenInsert::getInstrDefs(const MachineInstr *MI,
      RegisterSet &Defs) const {
  for (unsigned i = 0, n = MI->getNumOperands(); i < n; ++i) {
    const MachineOperand &MO = MI->getOperand(i);
    if (!MO.isReg() || !MO.isDef())
      continue;
    Register R = MO.getReg();
    if (!Register::isVirtualRegister(R))
      continue;
    Defs.insert(R);
  }
}

void HexagonGenInsert::getInstrUses(const MachineInstr *MI,
      RegisterSet &Uses) const {
  for (unsigned i = 0, n = MI->getNumOperands(); i < n; ++i) {
    const MachineOperand &MO = MI->getOperand(i);
    if (!MO.isReg() || !MO.isUse())
      continue;
    Register R = MO.getReg();
    if (!Register::isVirtualRegister(R))
      continue;
    Uses.insert(R);
  }
}

unsigned HexagonGenInsert::distance(const MachineBasicBlock *FromB,
      const MachineBasicBlock *ToB, const UnsignedMap &RPO,
      PairMapType &M) const {
  // Forward distance from the end of a block to the beginning of it does
  // not make sense. This function should not be called with FromB == ToB.
  assert(FromB != ToB);

  unsigned FromN = FromB->getNumber(), ToN = ToB->getNumber();
  // If we have already computed it, return the cached result.
  PairMapType::iterator F = M.find(std::make_pair(FromN, ToN));
  if (F != M.end())
    return F->second;
  unsigned ToRPO = RPO.lookup(ToN);

  unsigned MaxD = 0;

  using pred_iterator = MachineBasicBlock::const_pred_iterator;

  for (pred_iterator I = ToB->pred_begin(), E = ToB->pred_end(); I != E; ++I) {
    const MachineBasicBlock *PB = *I;
    // Skip back edges. Also, if FromB is a predecessor of ToB, the distance
    // along that path will be 0, and we don't need to do any calculations
    // on it.
    if (PB == FromB || RPO.lookup(PB->getNumber()) >= ToRPO)
      continue;
    unsigned D = PB->size() + distance(FromB, PB, RPO, M);
    if (D > MaxD)
      MaxD = D;
  }

  // Memoize the result for later lookup.
  M.insert(std::make_pair(std::make_pair(FromN, ToN), MaxD));
  return MaxD;
}

unsigned HexagonGenInsert::distance(MachineBasicBlock::const_iterator FromI,
      MachineBasicBlock::const_iterator ToI, const UnsignedMap &RPO,
      PairMapType &M) const {
  const MachineBasicBlock *FB = FromI->getParent(), *TB = ToI->getParent();
  if (FB == TB)
    return std::distance(FromI, ToI);
  unsigned D1 = std::distance(TB->begin(), ToI);
  unsigned D2 = distance(FB, TB, RPO, M);
  unsigned D3 = std::distance(FromI, FB->end());
  return D1+D2+D3;
}

bool HexagonGenInsert::findRecordInsertForms(unsigned VR,
      OrderedRegisterList &AVs) {
  if (isDebug()) {
    dbgs() << __func__ << ": " << printReg(VR, HRI)
           << "  AVs: " << PrintORL(AVs, HRI) << "\n";
  }
  if (AVs.size() == 0)
    return false;

  using iterator = OrderedRegisterList::iterator;

  BitValueOrdering BVO(BaseOrd);
  const BitTracker::RegisterCell &RC = CMS->lookup(VR);
  uint16_t W = RC.width();

  using RSRecord = std::pair<unsigned, uint16_t>; // (reg,shift)
  using RSListType = std::vector<RSRecord>;
  // Have a map, with key being the matching prefix length, and the value
  // being the list of pairs (R,S), where R's prefix matches VR at S.
  // (DenseMap<uint16_t,RSListType> fails to instantiate.)
  using LRSMapType = DenseMap<unsigned, RSListType>;
  LRSMapType LM;

  // Conceptually, rotate the cell RC right (i.e. towards the LSB) by S,
  // and find matching prefixes from AVs with the rotated RC. Such a prefix
  // would match a string of bits (of length L) in RC starting at S.
  for (uint16_t S = 0; S < W; ++S) {
    iterator B = AVs.begin(), E = AVs.end();
    // The registers in AVs are ordered according to the lexical order of
    // the corresponding register cells. This means that the range of regis-
    // ters in AVs that match a prefix of length L+1 will be contained in
    // the range that matches a prefix of length L. This means that we can
    // keep narrowing the search space as the prefix length goes up. This
    // helps reduce the overall complexity of the search.
    uint16_t L;
    for (L = 0; L < W-S; ++L) {
      // Compare against VR's bits starting at S, which emulates rotation
      // of VR by S.
      RegisterCellBitCompareSel RCB(VR, S+L, L, BVO, *CMS);
      iterator NewB = std::lower_bound(B, E, VR, RCB);
      iterator NewE = std::upper_bound(NewB, E, VR, RCB);
      // For the registers that are eliminated from the next range, L is
      // the longest prefix matching VR at position S (their prefixes
      // differ from VR at S+L). If L>0, record this information for later
      // use.
      if (L > 0) {
        for (iterator I = B; I != NewB; ++I)
          LM[L].push_back(std::make_pair(*I, S));
        for (iterator I = NewE; I != E; ++I)
          LM[L].push_back(std::make_pair(*I, S));
      }
      B = NewB, E = NewE;
      if (B == E)
        break;
    }
    // Record the final register range. If this range is non-empty, then
    // L=W-S.
    assert(B == E || L == W-S);
    if (B != E) {
      for (iterator I = B; I != E; ++I)
        LM[L].push_back(std::make_pair(*I, S));
      // If B!=E, then we found a range of registers whose prefixes cover the
      // rest of VR from position S. There is no need to further advance S.
      break;
    }
  }

  if (isDebug()) {
    dbgs() << "Prefixes matching register " << printReg(VR, HRI) << "\n";
    for (LRSMapType::iterator I = LM.begin(), E = LM.end(); I != E; ++I) {
      dbgs() << "  L=" << I->first << ':';
      const RSListType &LL = I->second;
      for (unsigned i = 0, n = LL.size(); i < n; ++i)
        dbgs() << " (" << printReg(LL[i].first, HRI) << ",@"
               << LL[i].second << ')';
      dbgs() << '\n';
    }
  }

  bool Recorded = false;

  for (iterator I = AVs.begin(), E = AVs.end(); I != E; ++I) {
    unsigned SrcR = *I;
    int FDi = -1, LDi = -1;   // First/last different bit.
    const BitTracker::RegisterCell &AC = CMS->lookup(SrcR);
    uint16_t AW = AC.width();
    for (uint16_t i = 0, w = std::min(W, AW); i < w; ++i) {
      if (RC[i] == AC[i])
        continue;
      if (FDi == -1)
        FDi = i;
      LDi = i;
    }
    if (FDi == -1)
      continue;  // TODO (future): Record identical registers.
    // Look for a register whose prefix could patch the range [FD..LD]
    // where VR and SrcR differ.
    uint16_t FD = FDi, LD = LDi;  // Switch to unsigned type.
    uint16_t MinL = LD-FD+1;
    for (uint16_t L = MinL; L < W; ++L) {
      LRSMapType::iterator F = LM.find(L);
      if (F == LM.end())
        continue;
      RSListType &LL = F->second;
      for (unsigned i = 0, n = LL.size(); i < n; ++i) {
        uint16_t S = LL[i].second;
        // MinL is the minimum length of the prefix. Any length above MinL
        // allows some flexibility as to where the prefix can start:
        // given the extra length EL=L-MinL, the prefix must start between
        // max(0,FD-EL) and FD.
        if (S > FD)   // Starts too late.
          continue;
        uint16_t EL = L-MinL;
        uint16_t LowS = (EL < FD) ? FD-EL : 0;
        if (S < LowS) // Starts too early.
          continue;
        unsigned InsR = LL[i].first;
        if (!isValidInsertForm(VR, SrcR, InsR, L, S))
          continue;
        if (isDebug()) {
          dbgs() << printReg(VR, HRI) << " = insert(" << printReg(SrcR, HRI)
                 << ',' << printReg(InsR, HRI) << ",#" << L << ",#"
                 << S << ")\n";
        }
        IFRecordWithRegSet RR(IFRecord(SrcR, InsR, L, S), RegisterSet());
        IFMap[VR].push_back(RR);
        Recorded = true;
      }
    }
  }

  return Recorded;
}

void HexagonGenInsert::collectInBlock(MachineBasicBlock *B,
      OrderedRegisterList &AVs) {
  if (isDebug())
    dbgs() << "visiting block " << printMBBReference(*B) << "\n";

  // First, check if this block is reachable at all. If not, the bit tracker
  // will not have any information about registers in it.
  if (!CMS->BT.reached(B))
    return;

  bool DoConst = OptConst;
  // Keep a separate set of registers defined in this block, so that we
  // can remove them from the list of available registers once all DT
  // successors have been processed.
  RegisterSet BlockDefs, InsDefs;
  for (MachineBasicBlock::iterator I = B->begin(), E = B->end(); I != E; ++I) {
    MachineInstr *MI = &*I;
    InsDefs.clear();
    getInstrDefs(MI, InsDefs);
    // Leave those alone. They are more transparent than "insert".
    bool Skip = MI->isCopy() || MI->isRegSequence();

    if (!Skip) {
      // Visit all defined registers, and attempt to find the corresponding
      // "insert" representations.
      for (unsigned VR = InsDefs.find_first(); VR; VR = InsDefs.find_next(VR)) {
        // Do not collect registers that are known to be compile-time cons-
        // tants, unless requested.
        if (!DoConst && isConstant(VR))
          continue;
        // If VR's cell contains a reference to VR, then VR cannot be defined
        // via "insert". If VR is a constant that can be generated in a single
        // instruction (without constant extenders), generating it via insert
        // makes no sense.
        if (findSelfReference(VR) || isSmallConstant(VR))
          continue;

        findRecordInsertForms(VR, AVs);
        // Stop if the map size is too large.
        if (IFMap.size() > MaxIFMSize)
          return;
      }
    }

    // Insert the defined registers into the list of available registers
    // after they have been processed.
    for (unsigned VR = InsDefs.find_first(); VR; VR = InsDefs.find_next(VR))
      AVs.insert(VR);
    BlockDefs.insert(InsDefs);
  }

  for (auto *DTN : children<MachineDomTreeNode*>(MDT->getNode(B))) {
    MachineBasicBlock *SB = DTN->getBlock();
    collectInBlock(SB, AVs);
  }

  for (unsigned VR = BlockDefs.find_first(); VR; VR = BlockDefs.find_next(VR))
    AVs.remove(VR);
}

void HexagonGenInsert::findRemovableRegisters(unsigned VR, IFRecord IF,
      RegisterSet &RMs) const {
  // For a given register VR and a insert form, find the registers that are
  // used by the current definition of VR, and which would no longer be
  // needed for it after the definition of VR is replaced with the insert
  // form. These are the registers that could potentially become dead.
  RegisterSet Regs[2];

  unsigned S = 0;  // Register set selector.
  Regs[S].insert(VR);

  while (!Regs[S].empty()) {
    // Breadth-first search.
    unsigned OtherS = 1-S;
    Regs[OtherS].clear();
    for (unsigned R = Regs[S].find_first(); R; R = Regs[S].find_next(R)) {
      Regs[S].remove(R);
      if (R == IF.SrcR || R == IF.InsR)
        continue;
      // Check if a given register has bits that are references to any other
      // registers. This is to detect situations where the instruction that
      // defines register R takes register Q as an operand, but R itself does
      // not contain any bits from Q. Loads are examples of how this could
      // happen:
      //   R = load Q
      // In this case (assuming we do not have any knowledge about the loaded
      // value), we must not treat R as a "conveyance" of the bits from Q.
      // (The information in BT about R's bits would have them as constants,
      // in case of zero-extending loads, or refs to R.)
      if (!findNonSelfReference(R))
        continue;
      RMs.insert(R);
      const MachineInstr *DefI = MRI->getVRegDef(R);
      assert(DefI);
      // Do not iterate past PHI nodes to avoid infinite loops. This can
      // make the final set a bit less accurate, but the removable register
      // sets are an approximation anyway.
      if (DefI->isPHI())
        continue;
      getInstrUses(DefI, Regs[OtherS]);
    }
    S = OtherS;
  }
  // The register VR is added to the list as a side-effect of the algorithm,
  // but it is not "potentially removable". A potentially removable register
  // is one that may become unused (dead) after conversion to the insert form
  // IF, and obviously VR (or its replacement) will not become dead by apply-
  // ing IF.
  RMs.remove(VR);
}

void HexagonGenInsert::computeRemovableRegisters() {
  for (IFMapType::iterator I = IFMap.begin(), E = IFMap.end(); I != E; ++I) {
    IFListType &LL = I->second;
    for (unsigned i = 0, n = LL.size(); i < n; ++i)
      findRemovableRegisters(I->first, LL[i].first, LL[i].second);
  }
}

void HexagonGenInsert::pruneEmptyLists() {
  // Remove all entries from the map, where the register has no insert forms
  // associated with it.
  using IterListType = SmallVector<IFMapType::iterator, 16>;
  IterListType Prune;
  for (IFMapType::iterator I = IFMap.begin(), E = IFMap.end(); I != E; ++I) {
    if (I->second.empty())
      Prune.push_back(I);
  }
  for (unsigned i = 0, n = Prune.size(); i < n; ++i)
    IFMap.erase(Prune[i]);
}

void HexagonGenInsert::pruneCoveredSets(unsigned VR) {
  IFMapType::iterator F = IFMap.find(VR);
  assert(F != IFMap.end());
  IFListType &LL = F->second;

  // First, examine the IF candidates for register VR whose removable-regis-
  // ter sets are empty. This means that a given candidate will not help eli-
  // minate any registers, but since "insert" is not a constant-extendable
  // instruction, using such a candidate may reduce code size if the defini-
  // tion of VR is constant-extended.
  // If there exists a candidate with a non-empty set, the ones with empty
  // sets will not be used and can be removed.
  MachineInstr *DefVR = MRI->getVRegDef(VR);
  bool DefEx = HII->isConstExtended(*DefVR);
  bool HasNE = false;
  for (unsigned i = 0, n = LL.size(); i < n; ++i) {
    if (LL[i].second.empty())
      continue;
    HasNE = true;
    break;
  }
  if (!DefEx || HasNE) {
    // The definition of VR is not constant-extended, or there is a candidate
    // with a non-empty set. Remove all candidates with empty sets.
    auto IsEmpty = [] (const IFRecordWithRegSet &IR) -> bool {
      return IR.second.empty();
    };
    auto End = llvm::remove_if(LL, IsEmpty);
    if (End != LL.end())
      LL.erase(End, LL.end());
  } else {
    // The definition of VR is constant-extended, and all candidates have
    // empty removable-register sets. Pick the maximum candidate, and remove
    // all others. The "maximum" does not have any special meaning here, it
    // is only so that the candidate that will remain on the list is selec-
    // ted deterministically.
    IFRecord MaxIF = LL[0].first;
    for (unsigned i = 1, n = LL.size(); i < n; ++i) {
      // If LL[MaxI] < LL[i], then MaxI = i.
      const IFRecord &IF = LL[i].first;
      unsigned M0 = BaseOrd[MaxIF.SrcR], M1 = BaseOrd[MaxIF.InsR];
      unsigned R0 = BaseOrd[IF.SrcR], R1 = BaseOrd[IF.InsR];
      if (M0 > R0)
        continue;
      if (M0 == R0) {
        if (M1 > R1)
          continue;
        if (M1 == R1) {
          if (MaxIF.Wdh > IF.Wdh)
            continue;
          if (MaxIF.Wdh == IF.Wdh && MaxIF.Off >= IF.Off)
            continue;
        }
      }
      // MaxIF < IF.
      MaxIF = IF;
    }
    // Remove everything except the maximum candidate. All register sets
    // are empty, so no need to preserve anything.
    LL.clear();
    LL.push_back(std::make_pair(MaxIF, RegisterSet()));
  }

  // Now, remove those whose sets of potentially removable registers are
  // contained in another IF candidate for VR. For example, given these
  // candidates for %45,
  //   %45:
  //     (%44,%41,#9,#8), { %42 }
  //     (%43,%41,#9,#8), { %42 %44 }
  // remove the first one, since it is contained in the second one.
  for (unsigned i = 0, n = LL.size(); i < n; ) {
    const RegisterSet &RMi = LL[i].second;
    unsigned j = 0;
    while (j < n) {
      if (j != i && LL[j].second.includes(RMi))
        break;
      j++;
    }
    if (j == n) {   // RMi not contained in anything else.
      i++;
      continue;
    }
    LL.erase(LL.begin()+i);
    n = LL.size();
  }
}

void HexagonGenInsert::pruneUsesTooFar(unsigned VR, const UnsignedMap &RPO,
      PairMapType &M) {
  IFMapType::iterator F = IFMap.find(VR);
  assert(F != IFMap.end());
  IFListType &LL = F->second;
  unsigned Cutoff = VRegDistCutoff;
  const MachineInstr *DefV = MRI->getVRegDef(VR);

  for (unsigned i = LL.size(); i > 0; --i) {
    unsigned SR = LL[i-1].first.SrcR, IR = LL[i-1].first.InsR;
    const MachineInstr *DefS = MRI->getVRegDef(SR);
    const MachineInstr *DefI = MRI->getVRegDef(IR);
    unsigned DSV = distance(DefS, DefV, RPO, M);
    if (DSV < Cutoff) {
      unsigned DIV = distance(DefI, DefV, RPO, M);
      if (DIV < Cutoff)
        continue;
    }
    LL.erase(LL.begin()+(i-1));
  }
}

void HexagonGenInsert::pruneRegCopies(unsigned VR) {
  IFMapType::iterator F = IFMap.find(VR);
  assert(F != IFMap.end());
  IFListType &LL = F->second;

  auto IsCopy = [] (const IFRecordWithRegSet &IR) -> bool {
    return IR.first.Wdh == 32 && (IR.first.Off == 0 || IR.first.Off == 32);
  };
  auto End = llvm::remove_if(LL, IsCopy);
  if (End != LL.end())
    LL.erase(End, LL.end());
}

void HexagonGenInsert::pruneCandidates() {
  // Remove candidates that are not beneficial, regardless of the final
  // selection method.
  // First, remove candidates whose potentially removable set is a subset
  // of another candidate's set.
  for (IFMapType::iterator I = IFMap.begin(), E = IFMap.end(); I != E; ++I)
    pruneCoveredSets(I->first);

  UnsignedMap RPO;

  using RPOTType = ReversePostOrderTraversal<const MachineFunction *>;

  RPOTType RPOT(MFN);
  unsigned RPON = 0;
  for (RPOTType::rpo_iterator I = RPOT.begin(), E = RPOT.end(); I != E; ++I)
    RPO[(*I)->getNumber()] = RPON++;

  PairMapType Memo; // Memoization map for distance calculation.
  // Remove candidates that would use registers defined too far away.
  for (IFMapType::iterator I = IFMap.begin(), E = IFMap.end(); I != E; ++I)
    pruneUsesTooFar(I->first, RPO, Memo);

  pruneEmptyLists();

  for (IFMapType::iterator I = IFMap.begin(), E = IFMap.end(); I != E; ++I)
    pruneRegCopies(I->first);
}

namespace {

  // Class for comparing IF candidates for registers that have multiple of
  // them. The smaller the candidate, according to this ordering, the better.
  // First, compare the number of zeros in the associated potentially remova-
  // ble register sets. "Zero" indicates that the register is very likely to
  // become dead after this transformation.
  // Second, compare "averages", i.e. use-count per size. The lower wins.
  // After that, it does not really matter which one is smaller. Resolve
  // the tie in some deterministic way.
  struct IFOrdering {
    IFOrdering(const UnsignedMap &UC, const RegisterOrdering &BO)
      : UseC(UC), BaseOrd(BO) {}

    bool operator() (const IFRecordWithRegSet &A,
                     const IFRecordWithRegSet &B) const;

  private:
    void stats(const RegisterSet &Rs, unsigned &Size, unsigned &Zero,
          unsigned &Sum) const;

    const UnsignedMap &UseC;
    const RegisterOrdering &BaseOrd;
  };

} // end anonymous namespace

bool IFOrdering::operator() (const IFRecordWithRegSet &A,
      const IFRecordWithRegSet &B) const {
  unsigned SizeA = 0, ZeroA = 0, SumA = 0;
  unsigned SizeB = 0, ZeroB = 0, SumB = 0;
  stats(A.second, SizeA, ZeroA, SumA);
  stats(B.second, SizeB, ZeroB, SumB);

  // We will pick the minimum element. The more zeros, the better.
  if (ZeroA != ZeroB)
    return ZeroA > ZeroB;
  // Compare SumA/SizeA with SumB/SizeB, lower is better.
  uint64_t AvgA = SumA*SizeB, AvgB = SumB*SizeA;
  if (AvgA != AvgB)
    return AvgA < AvgB;

  // The sets compare identical so far. Resort to comparing the IF records.
  // The actual values don't matter, this is only for determinism.
  unsigned OSA = BaseOrd[A.first.SrcR], OSB = BaseOrd[B.first.SrcR];
  if (OSA != OSB)
    return OSA < OSB;
  unsigned OIA = BaseOrd[A.first.InsR], OIB = BaseOrd[B.first.InsR];
  if (OIA != OIB)
    return OIA < OIB;
  if (A.first.Wdh != B.first.Wdh)
    return A.first.Wdh < B.first.Wdh;
  return A.first.Off < B.first.Off;
}

void IFOrdering::stats(const RegisterSet &Rs, unsigned &Size, unsigned &Zero,
      unsigned &Sum) const {
  for (unsigned R = Rs.find_first(); R; R = Rs.find_next(R)) {
    UnsignedMap::const_iterator F = UseC.find(R);
    assert(F != UseC.end());
    unsigned UC = F->second;
    if (UC == 0)
      Zero++;
    Sum += UC;
    Size++;
  }
}

void HexagonGenInsert::selectCandidates() {
  // Some registers may have multiple valid candidates. Pick the best one
  // (or decide not to use any).

  // Compute the "removability" measure of R:
  // For each potentially removable register R, record the number of regis-
  // ters with IF candidates, where R appears in at least one set.
  RegisterSet AllRMs;
  UnsignedMap UseC, RemC;
  IFMapType::iterator End = IFMap.end();

  for (IFMapType::iterator I = IFMap.begin(); I != End; ++I) {
    const IFListType &LL = I->second;
    RegisterSet TT;
    for (unsigned i = 0, n = LL.size(); i < n; ++i)
      TT.insert(LL[i].second);
    for (unsigned R = TT.find_first(); R; R = TT.find_next(R))
      RemC[R]++;
    AllRMs.insert(TT);
  }

  for (unsigned R = AllRMs.find_first(); R; R = AllRMs.find_next(R)) {
    using use_iterator = MachineRegisterInfo::use_nodbg_iterator;
    using InstrSet = SmallSet<const MachineInstr *, 16>;

    InstrSet UIs;
    // Count as the number of instructions in which R is used, not the
    // number of operands.
    use_iterator E = MRI->use_nodbg_end();
    for (use_iterator I = MRI->use_nodbg_begin(R); I != E; ++I)
      UIs.insert(I->getParent());
    unsigned C = UIs.size();
    // Calculate a measure, which is the number of instructions using R,
    // minus the "removability" count computed earlier.
    unsigned D = RemC[R];
    UseC[R] = (C > D) ? C-D : 0;  // doz
  }

  bool SelectAll0 = OptSelectAll0, SelectHas0 = OptSelectHas0;
  if (!SelectAll0 && !SelectHas0)
    SelectAll0 = true;

  // The smaller the number UseC for a given register R, the "less used"
  // R is aside from the opportunities for removal offered by generating
  // "insert" instructions.
  // Iterate over the IF map, and for those registers that have multiple
  // candidates, pick the minimum one according to IFOrdering.
  IFOrdering IFO(UseC, BaseOrd);
  for (IFMapType::iterator I = IFMap.begin(); I != End; ++I) {
    IFListType &LL = I->second;
    if (LL.empty())
      continue;
    // Get the minimum element, remember it and clear the list. If the
    // element found is adequate, we will put it back on the list, other-
    // wise the list will remain empty, and the entry for this register
    // will be removed (i.e. this register will not be replaced by insert).
    IFListType::iterator MinI = std::min_element(LL.begin(), LL.end(), IFO);
    assert(MinI != LL.end());
    IFRecordWithRegSet M = *MinI;
    LL.clear();

    // We want to make sure that this replacement will have a chance to be
    // beneficial, and that means that we want to have indication that some
    // register will be removed. The most likely registers to be eliminated
    // are the use operands in the definition of I->first. Accept/reject a
    // candidate based on how many of its uses it can potentially eliminate.

    RegisterSet Us;
    const MachineInstr *DefI = MRI->getVRegDef(I->first);
    getInstrUses(DefI, Us);
    bool Accept = false;

    if (SelectAll0) {
      bool All0 = true;
      for (unsigned R = Us.find_first(); R; R = Us.find_next(R)) {
        if (UseC[R] == 0)
          continue;
        All0 = false;
        break;
      }
      Accept = All0;
    } else if (SelectHas0) {
      bool Has0 = false;
      for (unsigned R = Us.find_first(); R; R = Us.find_next(R)) {
        if (UseC[R] != 0)
          continue;
        Has0 = true;
        break;
      }
      Accept = Has0;
    }
    if (Accept)
      LL.push_back(M);
  }

  // Remove candidates that add uses of removable registers, unless the
  // removable registers are among replacement candidates.
  // Recompute the removable registers, since some candidates may have
  // been eliminated.
  AllRMs.clear();
  for (IFMapType::iterator I = IFMap.begin(); I != End; ++I) {
    const IFListType &LL = I->second;
    if (!LL.empty())
      AllRMs.insert(LL[0].second);
  }
  for (IFMapType::iterator I = IFMap.begin(); I != End; ++I) {
    IFListType &LL = I->second;
    if (LL.empty())
      continue;
    unsigned SR = LL[0].first.SrcR, IR = LL[0].first.InsR;
    if (AllRMs[SR] || AllRMs[IR])
      LL.clear();
  }

  pruneEmptyLists();
}

bool HexagonGenInsert::generateInserts() {
  // Create a new register for each one from IFMap, and store them in the
  // map.
  UnsignedMap RegMap;
  for (IFMapType::iterator I = IFMap.begin(), E = IFMap.end(); I != E; ++I) {
    unsigned VR = I->first;
    const TargetRegisterClass *RC = MRI->getRegClass(VR);
    Register NewVR = MRI->createVirtualRegister(RC);
    RegMap[VR] = NewVR;
  }

  // We can generate the "insert" instructions using potentially stale re-
  // gisters: SrcR and InsR for a given VR may be among other registers that
  // are also replaced. This is fine, we will do the mass "rauw" a bit later.
  for (IFMapType::iterator I = IFMap.begin(), E = IFMap.end(); I != E; ++I) {
    MachineInstr *MI = MRI->getVRegDef(I->first);
    MachineBasicBlock &B = *MI->getParent();
    DebugLoc DL = MI->getDebugLoc();
    unsigned NewR = RegMap[I->first];
    bool R32 = MRI->getRegClass(NewR) == &Hexagon::IntRegsRegClass;
    const MCInstrDesc &D = R32 ? HII->get(Hexagon::S2_insert)
                               : HII->get(Hexagon::S2_insertp);
    IFRecord IF = I->second[0].first;
    unsigned Wdh = IF.Wdh, Off = IF.Off;
    unsigned InsS = 0;
    if (R32 && MRI->getRegClass(IF.InsR) == &Hexagon::DoubleRegsRegClass) {
      InsS = Hexagon::isub_lo;
      if (Off >= 32) {
        InsS = Hexagon::isub_hi;
        Off -= 32;
      }
    }
    // Advance to the proper location for inserting instructions. This could
    // be B.end().
    MachineBasicBlock::iterator At = MI;
    if (MI->isPHI())
      At = B.getFirstNonPHI();

    BuildMI(B, At, DL, D, NewR)
      .addReg(IF.SrcR)
      .addReg(IF.InsR, 0, InsS)
      .addImm(Wdh)
      .addImm(Off);

    MRI->clearKillFlags(IF.SrcR);
    MRI->clearKillFlags(IF.InsR);
  }

  for (IFMapType::iterator I = IFMap.begin(), E = IFMap.end(); I != E; ++I) {
    MachineInstr *DefI = MRI->getVRegDef(I->first);
    MRI->replaceRegWith(I->first, RegMap[I->first]);
    DefI->eraseFromParent();
  }

  return true;
}

bool HexagonGenInsert::removeDeadCode(MachineDomTreeNode *N) {
  bool Changed = false;

  for (auto *DTN : children<MachineDomTreeNode*>(N))
    Changed |= removeDeadCode(DTN);

  MachineBasicBlock *B = N->getBlock();
  std::vector<MachineInstr*> Instrs;
  for (auto I = B->rbegin(), E = B->rend(); I != E; ++I)
    Instrs.push_back(&*I);

  for (auto I = Instrs.begin(), E = Instrs.end(); I != E; ++I) {
    MachineInstr *MI = *I;
    unsigned Opc = MI->getOpcode();
    // Do not touch lifetime markers. This is why the target-independent DCE
    // cannot be used.
    if (Opc == TargetOpcode::LIFETIME_START ||
        Opc == TargetOpcode::LIFETIME_END)
      continue;
    bool Store = false;
    if (MI->isInlineAsm() || !MI->isSafeToMove(nullptr, Store))
      continue;

    bool AllDead = true;
    SmallVector<unsigned,2> Regs;
    for (const MachineOperand &MO : MI->operands()) {
      if (!MO.isReg() || !MO.isDef())
        continue;
      Register R = MO.getReg();
      if (!Register::isVirtualRegister(R) || !MRI->use_nodbg_empty(R)) {
        AllDead = false;
        break;
      }
      Regs.push_back(R);
    }
    if (!AllDead)
      continue;

    B->erase(MI);
    for (unsigned I = 0, N = Regs.size(); I != N; ++I)
      MRI->markUsesInDebugValueAsUndef(Regs[I]);
    Changed = true;
  }

  return Changed;
}

bool HexagonGenInsert::runOnMachineFunction(MachineFunction &MF) {
  if (skipFunction(MF.getFunction()))
    return false;

  bool Timing = OptTiming, TimingDetail = Timing && OptTimingDetail;
  bool Changed = false;

  // Sanity check: one, but not both.
  assert(!OptSelectAll0 || !OptSelectHas0);

  IFMap.clear();
  BaseOrd.clear();
  CellOrd.clear();

  const auto &ST = MF.getSubtarget<HexagonSubtarget>();
  HII = ST.getInstrInfo();
  HRI = ST.getRegisterInfo();
  MFN = &MF;
  MRI = &MF.getRegInfo();
  MDT = &getAnalysis<MachineDominatorTree>();

  // Clean up before any further processing, so that dead code does not
  // get used in a newly generated "insert" instruction. Have a custom
  // version of DCE that preserves lifetime markers. Without it, merging
  // of stack objects can fail to recognize and merge disjoint objects
  // leading to unnecessary stack growth.
  Changed = removeDeadCode(MDT->getRootNode());

  const HexagonEvaluator HE(*HRI, *MRI, *HII, MF);
  BitTracker BTLoc(HE, MF);
  BTLoc.trace(isDebug());
  BTLoc.run();
  CellMapShadow MS(BTLoc);
  CMS = &MS;

  buildOrderingMF(BaseOrd);
  buildOrderingBT(BaseOrd, CellOrd);

  if (isDebug()) {
    dbgs() << "Cell ordering:\n";
    for (RegisterOrdering::iterator I = CellOrd.begin(), E = CellOrd.end();
        I != E; ++I) {
      unsigned VR = I->first, Pos = I->second;
      dbgs() << printReg(VR, HRI) << " -> " << Pos << "\n";
    }
  }

  // Collect candidates for conversion into the insert forms.
  MachineBasicBlock *RootB = MDT->getRoot();
  OrderedRegisterList AvailR(CellOrd);

  const char *const TGName = "hexinsert";
  const char *const TGDesc = "Generate Insert Instructions";

  {
    NamedRegionTimer _T("collection", "collection", TGName, TGDesc,
                        TimingDetail);
    collectInBlock(RootB, AvailR);
    // Complete the information gathered in IFMap.
    computeRemovableRegisters();
  }

  if (isDebug()) {
    dbgs() << "Candidates after collection:\n";
    dump_map();
  }

  if (IFMap.empty())
    return Changed;

  {
    NamedRegionTimer _T("pruning", "pruning", TGName, TGDesc, TimingDetail);
    pruneCandidates();
  }

  if (isDebug()) {
    dbgs() << "Candidates after pruning:\n";
    dump_map();
  }

  if (IFMap.empty())
    return Changed;

  {
    NamedRegionTimer _T("selection", "selection", TGName, TGDesc, TimingDetail);
    selectCandidates();
  }

  if (isDebug()) {
    dbgs() << "Candidates after selection:\n";
    dump_map();
  }

  // Filter out vregs beyond the cutoff.
  if (VRegIndexCutoff.getPosition()) {
    unsigned Cutoff = VRegIndexCutoff;

    using IterListType = SmallVector<IFMapType::iterator, 16>;

    IterListType Out;
    for (IFMapType::iterator I = IFMap.begin(), E = IFMap.end(); I != E; ++I) {
      unsigned Idx = Register::virtReg2Index(I->first);
      if (Idx >= Cutoff)
        Out.push_back(I);
    }
    for (unsigned i = 0, n = Out.size(); i < n; ++i)
      IFMap.erase(Out[i]);
  }
  if (IFMap.empty())
    return Changed;

  {
    NamedRegionTimer _T("generation", "generation", TGName, TGDesc,
                        TimingDetail);
    generateInserts();
  }

  return true;
}

FunctionPass *llvm::createHexagonGenInsert() {
  return new HexagonGenInsert();
}

//===----------------------------------------------------------------------===//
//                         Public Constructor Functions
//===----------------------------------------------------------------------===//

INITIALIZE_PASS_BEGIN(HexagonGenInsert, "hexinsert",
  "Hexagon generate \"insert\" instructions", false, false)
INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
INITIALIZE_PASS_END(HexagonGenInsert, "hexinsert",
  "Hexagon generate \"insert\" instructions", false, false)