HexagonPatterns.td 141 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180
//==- HexagonPatterns.td - Target Description for Hexagon -*- tablegen -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

// Table of contents:
//     (0) Definitions
//     (1) Immediates
//     (2) Type casts
//     (3) Extend/truncate
//     (4) Logical
//     (5) Compare
//     (6) Select
//     (7) Insert/extract
//     (8) Shift/permute
//     (9) Arithmetic/bitwise
//    (10) Bit
//    (11) PIC
//    (12) Load
//    (13) Store
//    (14) Memop
//    (15) Call
//    (16) Branch
//    (17) Misc

// Guidelines (in no particular order):
// 1. Avoid relying on pattern ordering to give preference to one pattern
//    over another, prefer using AddedComplexity instead. The reason for
//    this is to avoid unintended conseqeuences (caused by altering the
//    order) when making changes. The current order of patterns in this
//    file obviously does play some role, but none of the ordering was
//    deliberately chosen (other than to create a logical structure of
//    this file). When making changes, adding AddedComplexity to existing
//    patterns may be needed.
// 2. Maintain the logical structure of the file, try to put new patterns
//    in designated sections.
// 3. Do not use A2_combinew instruction directly, use Combinew fragment
//    instead. It uses REG_SEQUENCE, which is more amenable to optimizations.
// 4. Most selection macros are based on PatFrags. For DAGs that involve
//    SDNodes, use pf1/pf2 to convert them to PatFrags. Use common frags
//    whenever possible (see the Definitions section). When adding new
//    macro, try to make is general to enable reuse across sections.
// 5. Compound instructions (e.g. Rx+Rs*Rt) are generated under the condition
//    that the nested operation has only one use. Having it separated in case
//    of multiple uses avoids duplication of (processor) work.
// 6. The v4 vector instructions (64-bit) are treated as core instructions,
//    for example, A2_vaddh is in the "arithmetic" section with A2_add.
// 7. When adding a pattern for an instruction with a constant-extendable
//    operand, allow all possible kinds of inputs for the immediate value
//    (see AnyImm/anyimm and their variants in the Definitions section).


// --(0) Definitions -----------------------------------------------------
//

// This complex pattern exists only to create a machine instruction operand
// of type "frame index". There doesn't seem to be a way to do that directly
// in the patterns.
def AddrFI: ComplexPattern<i32, 1, "SelectAddrFI", [frameindex], []>;

// These complex patterns are not strictly necessary, since global address
// folding will happen during DAG combining. For distinguishing between GA
// and GP, pat frags with HexagonCONST32 and HexagonCONST32_GP can be used.
def AddrGA: ComplexPattern<i32, 1, "SelectAddrGA", [], []>;
def AddrGP: ComplexPattern<i32, 1, "SelectAddrGP", [], []>;
def AnyImm: ComplexPattern<i32, 1, "SelectAnyImm", [], []>;
def AnyInt: ComplexPattern<i32, 1, "SelectAnyInt", [], []>;

// Global address or a constant being a multiple of 2^n.
def AnyImm0: ComplexPattern<i32, 1, "SelectAnyImm0", [], []>;
def AnyImm1: ComplexPattern<i32, 1, "SelectAnyImm1", [], []>;
def AnyImm2: ComplexPattern<i32, 1, "SelectAnyImm2", [], []>;
def AnyImm3: ComplexPattern<i32, 1, "SelectAnyImm3", [], []>;


// Type helper frags.
def V2I1:   PatLeaf<(v2i1    PredRegs:$R)>;
def V4I1:   PatLeaf<(v4i1    PredRegs:$R)>;
def V8I1:   PatLeaf<(v8i1    PredRegs:$R)>;
def V4I8:   PatLeaf<(v4i8    IntRegs:$R)>;
def V2I16:  PatLeaf<(v2i16   IntRegs:$R)>;

def V8I8:   PatLeaf<(v8i8    DoubleRegs:$R)>;
def V4I16:  PatLeaf<(v4i16   DoubleRegs:$R)>;
def V2I32:  PatLeaf<(v2i32   DoubleRegs:$R)>;

def HQ8:    PatLeaf<(VecQ8   HvxQR:$R)>;
def HQ16:   PatLeaf<(VecQ16  HvxQR:$R)>;
def HQ32:   PatLeaf<(VecQ32  HvxQR:$R)>;

def HVI8:   PatLeaf<(VecI8   HvxVR:$R)>;
def HVI16:  PatLeaf<(VecI16  HvxVR:$R)>;
def HVI32:  PatLeaf<(VecI32  HvxVR:$R)>;

def HWI8:   PatLeaf<(VecPI8  HvxWR:$R)>;
def HWI16:  PatLeaf<(VecPI16 HvxWR:$R)>;
def HWI32:  PatLeaf<(VecPI32 HvxWR:$R)>;

def SDTVecLeaf:
  SDTypeProfile<1, 0, [SDTCisVec<0>]>;
def SDTVecVecIntOp:
  SDTypeProfile<1, 3, [SDTCisVec<0>, SDTCisVec<1>, SDTCisSameAs<1,2>,
                       SDTCisVT<3,i32>]>;

def HexagonPTRUE:      SDNode<"HexagonISD::PTRUE",      SDTVecLeaf>;
def HexagonPFALSE:     SDNode<"HexagonISD::PFALSE",     SDTVecLeaf>;
def HexagonVALIGN:     SDNode<"HexagonISD::VALIGN",     SDTVecVecIntOp>;
def HexagonVALIGNADDR: SDNode<"HexagonISD::VALIGNADDR", SDTIntUnaryOp>;

def ptrue:  PatFrag<(ops), (HexagonPTRUE)>;
def pfalse: PatFrag<(ops), (HexagonPFALSE)>;
def pnot:   PatFrag<(ops node:$Pu), (xor node:$Pu, ptrue)>;

def valign: PatFrag<(ops node:$Vt, node:$Vs, node:$Ru),
                    (HexagonVALIGN node:$Vt, node:$Vs, node:$Ru)>;
def valignaddr: PatFrag<(ops node:$Addr), (HexagonVALIGNADDR node:$Addr)>;

// Pattern fragments to extract the low and high subregisters from a
// 64-bit value.
def LoReg: OutPatFrag<(ops node:$Rs), (EXTRACT_SUBREG (i64 $Rs), isub_lo)>;
def HiReg: OutPatFrag<(ops node:$Rs), (EXTRACT_SUBREG (i64 $Rs), isub_hi)>;

def IsOrAdd: PatFrag<(ops node:$A, node:$B), (or node:$A, node:$B), [{
  return isOrEquivalentToAdd(N);
}]>;

def IsPow2_32: PatLeaf<(i32 imm), [{
  uint32_t V = N->getZExtValue();
  return isPowerOf2_32(V);
}]>;

def IsPow2_64: PatLeaf<(i64 imm), [{
  uint64_t V = N->getZExtValue();
  return isPowerOf2_64(V);
}]>;

def IsNPow2_32: PatLeaf<(i32 imm), [{
  uint32_t NV = ~N->getZExtValue();
  return isPowerOf2_32(NV);
}]>;

def IsPow2_64L: PatLeaf<(i64 imm), [{
  uint64_t V = N->getZExtValue();
  return isPowerOf2_64(V) && Log2_64(V) < 32;
}]>;

def IsPow2_64H: PatLeaf<(i64 imm), [{
  uint64_t V = N->getZExtValue();
  return isPowerOf2_64(V) && Log2_64(V) >= 32;
}]>;

def IsNPow2_64L: PatLeaf<(i64 imm), [{
  uint64_t NV = ~N->getZExtValue();
  return isPowerOf2_64(NV) && Log2_64(NV) < 32;
}]>;

def IsNPow2_64H: PatLeaf<(i64 imm), [{
  uint64_t NV = ~N->getZExtValue();
  return isPowerOf2_64(NV) && Log2_64(NV) >= 32;
}]>;

class IsULE<int Width, int Arg>: PatLeaf<(i32 imm),
  "uint64_t V = N->getZExtValue();" #
  "return isUInt<" # Width # ">(V) && V <= " # Arg # ";"
>;

class IsUGT<int Width, int Arg>: PatLeaf<(i32 imm),
  "uint64_t V = N->getZExtValue();" #
  "return isUInt<" # Width # ">(V) && V > " # Arg # ";"
>;

def SDEC1: SDNodeXForm<imm, [{
  int32_t V = N->getSExtValue();
  return CurDAG->getTargetConstant(V-1, SDLoc(N), MVT::i32);
}]>;

def UDEC1: SDNodeXForm<imm, [{
  uint32_t V = N->getZExtValue();
  assert(V >= 1);
  return CurDAG->getTargetConstant(V-1, SDLoc(N), MVT::i32);
}]>;

def UDEC32: SDNodeXForm<imm, [{
  uint32_t V = N->getZExtValue();
  assert(V >= 32);
  return CurDAG->getTargetConstant(V-32, SDLoc(N), MVT::i32);
}]>;

class Subi<int From>: SDNodeXForm<imm,
  "int32_t V = " # From # " - N->getSExtValue();" #
  "return CurDAG->getTargetConstant(V, SDLoc(N), MVT::i32);"
>;

def Log2_32: SDNodeXForm<imm, [{
  uint32_t V = N->getZExtValue();
  return CurDAG->getTargetConstant(Log2_32(V), SDLoc(N), MVT::i32);
}]>;

def Log2_64: SDNodeXForm<imm, [{
  uint64_t V = N->getZExtValue();
  return CurDAG->getTargetConstant(Log2_64(V), SDLoc(N), MVT::i32);
}]>;

def LogN2_32: SDNodeXForm<imm, [{
  uint32_t NV = ~N->getZExtValue();
  return CurDAG->getTargetConstant(Log2_32(NV), SDLoc(N), MVT::i32);
}]>;

def LogN2_64: SDNodeXForm<imm, [{
  uint64_t NV = ~N->getZExtValue();
  return CurDAG->getTargetConstant(Log2_64(NV), SDLoc(N), MVT::i32);
}]>;

def NegImm8: SDNodeXForm<imm, [{
  int8_t NV = -N->getSExtValue();
  return CurDAG->getTargetConstant(NV, SDLoc(N), MVT::i32);
}]>;

def NegImm16: SDNodeXForm<imm, [{
  int16_t NV = -N->getSExtValue();
  return CurDAG->getTargetConstant(NV, SDLoc(N), MVT::i32);
}]>;

def NegImm32: SDNodeXForm<imm, [{
  int32_t NV = -N->getSExtValue();
  return CurDAG->getTargetConstant(NV, SDLoc(N), MVT::i32);
}]>;


// Helpers for type promotions/contractions.
def I1toI32:  OutPatFrag<(ops node:$Rs), (C2_muxii (i1 $Rs), 1, 0)>;
def I32toI1:  OutPatFrag<(ops node:$Rs), (i1 (C2_cmpgtui (i32 $Rs), (i32 0)))>;
def ToZext64: OutPatFrag<(ops node:$Rs), (i64 (A4_combineir 0, (i32 $Rs)))>;
def ToSext64: OutPatFrag<(ops node:$Rs), (i64 (A2_sxtw (i32 $Rs)))>;
def ToAext64: OutPatFrag<(ops node:$Rs),
  (REG_SEQUENCE DoubleRegs, (i32 (IMPLICIT_DEF)), isub_hi, (i32 $Rs), isub_lo)>;

def Combinew: OutPatFrag<(ops node:$Rs, node:$Rt),
  (REG_SEQUENCE DoubleRegs, $Rs, isub_hi, $Rt, isub_lo)>;

def addrga: PatLeaf<(i32 AddrGA:$Addr)>;
def addrgp: PatLeaf<(i32 AddrGP:$Addr)>;
def anyimm: PatLeaf<(i32 AnyImm:$Imm)>;
def anyint: PatLeaf<(i32 AnyInt:$Imm)>;

// Global address or an aligned constant.
def anyimm0: PatLeaf<(i32 AnyImm0:$Addr)>;
def anyimm1: PatLeaf<(i32 AnyImm1:$Addr)>;
def anyimm2: PatLeaf<(i32 AnyImm2:$Addr)>;
def anyimm3: PatLeaf<(i32 AnyImm3:$Addr)>;

def f32ImmPred : PatLeaf<(f32 fpimm:$F)>;
def f64ImmPred : PatLeaf<(f64 fpimm:$F)>;

// This complex pattern is really only to detect various forms of
// sign-extension i32->i64. The selected value will be of type i64
// whose low word is the value being extended. The high word is
// unspecified.
def Usxtw:  ComplexPattern<i64, 1, "DetectUseSxtw", [], []>;

def Aext64: PatFrag<(ops node:$Rs), (i64 (anyext node:$Rs))>;
def Zext64: PatFrag<(ops node:$Rs), (i64 (zext node:$Rs))>;
def Sext64: PatLeaf<(i64 Usxtw:$Rs)>;

def azext: PatFrags<(ops node:$Rs), [(zext node:$Rs), (anyext node:$Rs)]>;
def asext: PatFrags<(ops node:$Rs), [(sext node:$Rs), (anyext node:$Rs)]>;

def: Pat<(IsOrAdd (i32 AddrFI:$Rs), s32_0ImmPred:$off),
         (PS_fi (i32 AddrFI:$Rs), imm:$off)>;


// Converters from unary/binary SDNode to PatFrag.
class pf1<SDNode Op> : PatFrag<(ops node:$a), (Op node:$a)>;
class pf2<SDNode Op> : PatFrag<(ops node:$a, node:$b), (Op node:$a, node:$b)>;

class Not2<PatFrag P>
  : PatFrag<(ops node:$A, node:$B), (P node:$A, (not node:$B))>;

// If there is a constant operand that feeds the and/or instruction,
// do not generate the compound instructions.
// It is not always profitable, as some times we end up with a transfer.
// Check the below example.
// ra = #65820; rb = lsr(rb, #8); rc ^= and (rb, ra)
// Instead this is preferable.
// ra = and (#65820, lsr(ra, #8)); rb = xor(rb, ra)
class Su_ni1<PatFrag Op>
  : PatFrag<Op.Operands, !head(Op.Fragments), [{
            if (hasOneUse(N)){
              // Check if Op1 is an immediate operand.
              SDValue Op1 = N->getOperand(1);
              return !isa<ConstantSDNode>(Op1);
            }
            return false;}],
            Op.OperandTransform>;

class Su<PatFrag Op>
  : PatFrag<Op.Operands, !head(Op.Fragments), [{ return hasOneUse(N); }],
            Op.OperandTransform>;

// Main selection macros.

class OpR_R_pat<InstHexagon MI, PatFrag Op, ValueType ResVT, PatFrag RegPred>
  : Pat<(ResVT (Op RegPred:$Rs)), (MI RegPred:$Rs)>;

class OpR_RI_pat<InstHexagon MI, PatFrag Op, ValueType ResType,
                 PatFrag RegPred, PatFrag ImmPred>
  : Pat<(ResType (Op RegPred:$Rs, ImmPred:$I)),
        (MI RegPred:$Rs, imm:$I)>;

class OpR_RR_pat<InstHexagon MI, PatFrag Op, ValueType ResType,
                 PatFrag RsPred, PatFrag RtPred = RsPred>
  : Pat<(ResType (Op RsPred:$Rs, RtPred:$Rt)),
        (MI RsPred:$Rs, RtPred:$Rt)>;

class AccRRI_pat<InstHexagon MI, PatFrag AccOp, PatFrag Op,
                 PatFrag RegPred, PatFrag ImmPred>
  : Pat<(AccOp RegPred:$Rx, (Op RegPred:$Rs, ImmPred:$I)),
        (MI RegPred:$Rx, RegPred:$Rs, imm:$I)>;

class AccRRR_pat<InstHexagon MI, PatFrag AccOp, PatFrag Op,
                 PatFrag RxPred, PatFrag RsPred, PatFrag RtPred>
  : Pat<(AccOp RxPred:$Rx, (Op RsPred:$Rs, RtPred:$Rt)),
        (MI RxPred:$Rx, RsPred:$Rs, RtPred:$Rt)>;

multiclass SelMinMax_pats<PatFrag CmpOp, PatFrag Val,
                          InstHexagon InstA, InstHexagon InstB> {
  def: Pat<(select (i1 (CmpOp Val:$A, Val:$B)), Val:$A, Val:$B),
           (InstA Val:$A, Val:$B)>;
  def: Pat<(select (i1 (CmpOp Val:$A, Val:$B)), Val:$B, Val:$A),
           (InstB Val:$A, Val:$B)>;
}

multiclass MinMax_pats<InstHexagon PickT, InstHexagon PickS,
                       PatFrag Sel, PatFrag CmpOp,
                       ValueType CmpType, PatFrag CmpPred> {
  def: Pat<(Sel (CmpType (CmpOp CmpPred:$Vs, CmpPred:$Vt)),
                CmpPred:$Vt, CmpPred:$Vs),
           (PickT CmpPred:$Vs, CmpPred:$Vt)>;
  def: Pat<(Sel (CmpType (CmpOp CmpPred:$Vs, CmpPred:$Vt)),
                CmpPred:$Vs, CmpPred:$Vt),
           (PickS CmpPred:$Vs, CmpPred:$Vt)>;
}

// Bitcasts between same-size vector types are no-ops, except for the
// actual type change.
multiclass NopCast_pat<ValueType Ty1, ValueType Ty2, RegisterClass RC> {
  def: Pat<(Ty1 (bitconvert (Ty2 RC:$Val))), (Ty1 RC:$Val)>;
  def: Pat<(Ty2 (bitconvert (Ty1 RC:$Val))), (Ty2 RC:$Val)>;
}


// Frags for commonly used SDNodes.
def Add: pf2<add>;    def And: pf2<and>;    def Sra: pf2<sra>;
def Sub: pf2<sub>;    def Or:  pf2<or>;     def Srl: pf2<srl>;
def Mul: pf2<mul>;    def Xor: pf2<xor>;    def Shl: pf2<shl>;

def Rol: pf2<rotl>;

// --(1) Immediate -------------------------------------------------------
//

def SDTHexagonCONST32
  : SDTypeProfile<1, 1, [SDTCisVT<0, i32>, SDTCisVT<1, i32>, SDTCisPtrTy<0>]>;

def HexagonJT:          SDNode<"HexagonISD::JT",          SDTIntUnaryOp>;
def HexagonCP:          SDNode<"HexagonISD::CP",          SDTIntUnaryOp>;
def HexagonCONST32:     SDNode<"HexagonISD::CONST32",     SDTHexagonCONST32>;
def HexagonCONST32_GP:  SDNode<"HexagonISD::CONST32_GP",  SDTHexagonCONST32>;

def TruncI64ToI32: SDNodeXForm<imm, [{
  return CurDAG->getTargetConstant(N->getSExtValue(), SDLoc(N), MVT::i32);
}]>;

def: Pat<(s32_0ImmPred:$s16), (A2_tfrsi imm:$s16)>;
def: Pat<(s8_0Imm64Pred:$s8), (A2_tfrpi (TruncI64ToI32 $s8))>;

def: Pat<(HexagonCONST32    tglobaltlsaddr:$A), (A2_tfrsi imm:$A)>;
def: Pat<(HexagonCONST32    bbl:$A),            (A2_tfrsi imm:$A)>;
def: Pat<(HexagonCONST32    tglobaladdr:$A),    (A2_tfrsi imm:$A)>;
def: Pat<(HexagonCONST32_GP tblockaddress:$A),  (A2_tfrsi imm:$A)>;
def: Pat<(HexagonCONST32_GP tglobaladdr:$A),    (A2_tfrsi imm:$A)>;
def: Pat<(HexagonJT         tjumptable:$A),     (A2_tfrsi imm:$A)>;
def: Pat<(HexagonCP         tconstpool:$A),     (A2_tfrsi imm:$A)>;
// The HVX load patterns also match CP directly. Make sure that if
// the selection of this opcode changes, it's updated in all places.

def: Pat<(i1 0),        (PS_false)>;
def: Pat<(i1 1),        (PS_true)>;
def: Pat<(i64 imm:$v),  (CONST64 imm:$v)>;

def ftoi : SDNodeXForm<fpimm, [{
  APInt I = N->getValueAPF().bitcastToAPInt();
  return CurDAG->getTargetConstant(I.getZExtValue(), SDLoc(N),
                                   MVT::getIntegerVT(I.getBitWidth()));
}]>;

def: Pat<(f32ImmPred:$f), (A2_tfrsi (ftoi $f))>;
def: Pat<(f64ImmPred:$f), (CONST64  (ftoi $f))>;

def ToI32: OutPatFrag<(ops node:$V), (A2_tfrsi $V)>;

// --(2) Type cast -------------------------------------------------------
//

def: OpR_R_pat<F2_conv_sf2df,      pf1<fpextend>,   f64, F32>;
def: OpR_R_pat<F2_conv_df2sf,      pf1<fpround>,    f32, F64>;

def: OpR_R_pat<F2_conv_w2sf,       pf1<sint_to_fp>, f32, I32>;
def: OpR_R_pat<F2_conv_d2sf,       pf1<sint_to_fp>, f32, I64>;
def: OpR_R_pat<F2_conv_w2df,       pf1<sint_to_fp>, f64, I32>;
def: OpR_R_pat<F2_conv_d2df,       pf1<sint_to_fp>, f64, I64>;

def: OpR_R_pat<F2_conv_uw2sf,      pf1<uint_to_fp>, f32, I32>;
def: OpR_R_pat<F2_conv_ud2sf,      pf1<uint_to_fp>, f32, I64>;
def: OpR_R_pat<F2_conv_uw2df,      pf1<uint_to_fp>, f64, I32>;
def: OpR_R_pat<F2_conv_ud2df,      pf1<uint_to_fp>, f64, I64>;

def: OpR_R_pat<F2_conv_sf2w_chop,  pf1<fp_to_sint>, i32, F32>;
def: OpR_R_pat<F2_conv_df2w_chop,  pf1<fp_to_sint>, i32, F64>;
def: OpR_R_pat<F2_conv_sf2d_chop,  pf1<fp_to_sint>, i64, F32>;
def: OpR_R_pat<F2_conv_df2d_chop,  pf1<fp_to_sint>, i64, F64>;

def: OpR_R_pat<F2_conv_sf2uw_chop, pf1<fp_to_uint>, i32, F32>;
def: OpR_R_pat<F2_conv_df2uw_chop, pf1<fp_to_uint>, i32, F64>;
def: OpR_R_pat<F2_conv_sf2ud_chop, pf1<fp_to_uint>, i64, F32>;
def: OpR_R_pat<F2_conv_df2ud_chop, pf1<fp_to_uint>, i64, F64>;

// Bitcast is different than [fp|sint|uint]_to_[sint|uint|fp].
def: Pat<(i32 (bitconvert F32:$v)), (I32:$v)>;
def: Pat<(f32 (bitconvert I32:$v)), (F32:$v)>;
def: Pat<(i64 (bitconvert F64:$v)), (I64:$v)>;
def: Pat<(f64 (bitconvert I64:$v)), (F64:$v)>;

// Bit convert 32- and 64-bit types.
// All of these are bitcastable to one another: i32, v2i16, v4i8.
defm: NopCast_pat<i32,   v2i16, IntRegs>;
defm: NopCast_pat<i32,    v4i8, IntRegs>;
defm: NopCast_pat<v2i16,  v4i8, IntRegs>;
// All of these are bitcastable to one another: i64, v2i32, v4i16, v8i8.
defm: NopCast_pat<i64,   v2i32, DoubleRegs>;
defm: NopCast_pat<i64,   v4i16, DoubleRegs>;
defm: NopCast_pat<i64,    v8i8, DoubleRegs>;
defm: NopCast_pat<v2i32, v4i16, DoubleRegs>;
defm: NopCast_pat<v2i32,  v8i8, DoubleRegs>;
defm: NopCast_pat<v4i16,  v8i8, DoubleRegs>;


// --(3) Extend/truncate -------------------------------------------------
//

def: Pat<(sext_inreg I32:$Rs, i8),  (A2_sxtb I32:$Rs)>;
def: Pat<(sext_inreg I32:$Rs, i16), (A2_sxth I32:$Rs)>;
def: Pat<(sext_inreg I64:$Rs, i32), (A2_sxtw (LoReg $Rs))>;
def: Pat<(sext_inreg I64:$Rs, i16), (A2_sxtw (A2_sxth (LoReg $Rs)))>;
def: Pat<(sext_inreg I64:$Rs, i8),  (A2_sxtw (A2_sxtb (LoReg $Rs)))>;

def: Pat<(i64 (sext I32:$Rs)), (A2_sxtw I32:$Rs)>;
def: Pat<(Zext64 I32:$Rs),     (ToZext64 $Rs)>;
def: Pat<(Aext64 I32:$Rs),     (ToZext64 $Rs)>;

def: Pat<(i32 (trunc I64:$Rs)), (LoReg $Rs)>;
def: Pat<(i1 (trunc I32:$Rs)),  (S2_tstbit_i I32:$Rs, 0)>;
def: Pat<(i1 (trunc I64:$Rs)),  (S2_tstbit_i (LoReg $Rs), 0)>;

let AddedComplexity = 20 in {
  def: Pat<(and I32:$Rs, 255),   (A2_zxtb I32:$Rs)>;
  def: Pat<(and I32:$Rs, 65535), (A2_zxth I32:$Rs)>;
}

// Extensions from i1 or vectors of i1.
def: Pat<(i32 (azext I1:$Pu)), (C2_muxii I1:$Pu, 1, 0)>;
def: Pat<(i64 (azext I1:$Pu)), (ToZext64 (C2_muxii I1:$Pu, 1, 0))>;
def: Pat<(i32  (sext I1:$Pu)), (C2_muxii I1:$Pu, -1, 0)>;
def: Pat<(i64  (sext I1:$Pu)), (Combinew (C2_muxii PredRegs:$Pu, -1, 0),
                                         (C2_muxii PredRegs:$Pu, -1, 0))>;

def: Pat<(v2i16 (sext V2I1:$Pu)), (S2_vtrunehb (C2_mask V2I1:$Pu))>;
def: Pat<(v2i32 (sext V2I1:$Pu)), (C2_mask V2I1:$Pu)>;
def: Pat<(v4i8  (sext V4I1:$Pu)), (S2_vtrunehb (C2_mask V4I1:$Pu))>;
def: Pat<(v4i16 (sext V4I1:$Pu)), (C2_mask V4I1:$Pu)>;
def: Pat<(v8i8  (sext V8I1:$Pu)), (C2_mask V8I1:$Pu)>;

def Vsplatpi: OutPatFrag<(ops node:$V),
                         (Combinew (A2_tfrsi $V), (A2_tfrsi $V))>;

def: Pat<(v2i16 (azext V2I1:$Pu)),
         (A2_andir (LoReg (C2_mask V2I1:$Pu)), (i32 0x00010001))>;
def: Pat<(v2i32 (azext V2I1:$Pu)),
         (A2_andp (C2_mask V2I1:$Pu), (A2_combineii (i32 1), (i32 1)))>;
def: Pat<(v4i8 (azext V4I1:$Pu)),
         (A2_andir (LoReg (C2_mask V4I1:$Pu)), (i32 0x01010101))>;
def: Pat<(v4i16 (azext V4I1:$Pu)),
         (A2_andp (C2_mask V4I1:$Pu), (Vsplatpi (i32 0x00010001)))>;
def: Pat<(v8i8 (azext V8I1:$Pu)),
         (A2_andp (C2_mask V8I1:$Pu), (Vsplatpi (i32 0x01010101)))>;

def: Pat<(v4i16 (azext  V4I8:$Rs)),  (S2_vzxtbh V4I8:$Rs)>;
def: Pat<(v2i32 (azext  V2I16:$Rs)), (S2_vzxthw V2I16:$Rs)>;
def: Pat<(v4i16 (sext   V4I8:$Rs)),  (S2_vsxtbh V4I8:$Rs)>;
def: Pat<(v2i32 (sext   V2I16:$Rs)), (S2_vsxthw V2I16:$Rs)>;

def: Pat<(v2i32 (sext_inreg V2I32:$Rs, v2i8)),
         (Combinew (A2_sxtb (HiReg $Rs)), (A2_sxtb (LoReg $Rs)))>;

def: Pat<(v2i32 (sext_inreg V2I32:$Rs, v2i16)),
         (Combinew (A2_sxth (HiReg $Rs)), (A2_sxth (LoReg $Rs)))>;

// Truncate: from vector B copy all 'E'ven 'B'yte elements:
// A[0] = B[0];  A[1] = B[2];  A[2] = B[4];  A[3] = B[6];
def: Pat<(v4i8 (trunc V4I16:$Rs)),
         (S2_vtrunehb V4I16:$Rs)>;

// Truncate: from vector B copy all 'O'dd 'B'yte elements:
// A[0] = B[1];  A[1] = B[3];  A[2] = B[5];  A[3] = B[7];
// S2_vtrunohb

// Truncate: from vectors B and C copy all 'E'ven 'H'alf-word elements:
// A[0] = B[0];  A[1] = B[2];  A[2] = C[0];  A[3] = C[2];
// S2_vtruneh

def: Pat<(v2i16 (trunc V2I32:$Rs)),
         (A2_combine_ll (HiReg $Rs), (LoReg $Rs))>;


// --(4) Logical ---------------------------------------------------------
//

def: Pat<(not I1:$Ps),      (C2_not I1:$Ps)>;
def: Pat<(pnot V2I1:$Ps),   (C2_not V2I1:$Ps)>;
def: Pat<(pnot V4I1:$Ps),   (C2_not V4I1:$Ps)>;
def: Pat<(pnot V8I1:$Ps),   (C2_not V8I1:$Ps)>;
def: Pat<(add I1:$Ps, -1),  (C2_not I1:$Ps)>;

multiclass BoolOpR_RR_pat<InstHexagon MI, PatFrag Op> {
  def: OpR_RR_pat<MI, Op,   i1,   I1>;
  def: OpR_RR_pat<MI, Op, v2i1, V2I1>;
  def: OpR_RR_pat<MI, Op, v4i1, V4I1>;
  def: OpR_RR_pat<MI, Op, v8i1, V8I1>;
}

multiclass BoolAccRRR_pat<InstHexagon MI, PatFrag AccOp, PatFrag Op> {
  def: AccRRR_pat<MI, AccOp, Op,   I1,   I1,   I1>;
  def: AccRRR_pat<MI, AccOp, Op, V2I1, V2I1, V2I1>;
  def: AccRRR_pat<MI, AccOp, Op, V4I1, V4I1, V4I1>;
  def: AccRRR_pat<MI, AccOp, Op, V8I1, V8I1, V8I1>;
}

defm: BoolOpR_RR_pat<C2_and,   And>;
defm: BoolOpR_RR_pat<C2_or,    Or>;
defm: BoolOpR_RR_pat<C2_xor,   Xor>;
defm: BoolOpR_RR_pat<C2_andn,  Not2<And>>;
defm: BoolOpR_RR_pat<C2_orn,   Not2<Or>>;

// op(Ps, op(Pt, Pu))
defm: BoolAccRRR_pat<C4_and_and,   And, Su<And>>;
defm: BoolAccRRR_pat<C4_and_or,    And, Su<Or>>;
defm: BoolAccRRR_pat<C4_or_and,    Or,  Su<And>>;
defm: BoolAccRRR_pat<C4_or_or,     Or,  Su<Or>>;

// op(Ps, op(Pt, ~Pu))
defm: BoolAccRRR_pat<C4_and_andn,  And, Su<Not2<And>>>;
defm: BoolAccRRR_pat<C4_and_orn,   And, Su<Not2<Or>>>;
defm: BoolAccRRR_pat<C4_or_andn,   Or,  Su<Not2<And>>>;
defm: BoolAccRRR_pat<C4_or_orn,    Or,  Su<Not2<Or>>>;


// --(5) Compare ---------------------------------------------------------
//

// Avoid negated comparisons, i.e. those of form "Pd = !cmp(...)".
// These cannot form compounds (e.g. J4_cmpeqi_tp0_jump_nt).

def: OpR_RI_pat<C2_cmpeqi,    seteq,          i1, I32,  anyimm>;
def: OpR_RI_pat<C2_cmpgti,    setgt,          i1, I32,  anyimm>;
def: OpR_RI_pat<C2_cmpgtui,   setugt,         i1, I32,  anyimm>;

def: Pat<(i1 (setge I32:$Rs, s32_0ImmPred:$s10)),
         (C2_cmpgti I32:$Rs, (SDEC1 imm:$s10))>;
def: Pat<(i1 (setuge I32:$Rs, u32_0ImmPred:$u9)),
         (C2_cmpgtui I32:$Rs, (UDEC1 imm:$u9))>;

def: Pat<(i1 (setlt I32:$Rs, s32_0ImmPred:$s10)),
         (C2_not (C2_cmpgti I32:$Rs, (SDEC1 imm:$s10)))>;
def: Pat<(i1 (setult I32:$Rs, u32_0ImmPred:$u9)),
         (C2_not (C2_cmpgtui I32:$Rs, (UDEC1 imm:$u9)))>;

// Patfrag to convert the usual comparison patfrags (e.g. setlt) to ones
// that reverse the order of the operands.
class RevCmp<PatFrag F>
  : PatFrag<(ops node:$rhs, node:$lhs), !head(F.Fragments), F.PredicateCode,
            F.OperandTransform>;

def: OpR_RR_pat<C2_cmpeq,     seteq,          i1,   I32>;
def: OpR_RR_pat<C2_cmpgt,     setgt,          i1,   I32>;
def: OpR_RR_pat<C2_cmpgtu,    setugt,         i1,   I32>;
def: OpR_RR_pat<C2_cmpgt,     RevCmp<setlt>,  i1,   I32>;
def: OpR_RR_pat<C2_cmpgtu,    RevCmp<setult>, i1,   I32>;
def: OpR_RR_pat<C2_cmpeqp,    seteq,          i1,   I64>;
def: OpR_RR_pat<C2_cmpgtp,    setgt,          i1,   I64>;
def: OpR_RR_pat<C2_cmpgtup,   setugt,         i1,   I64>;
def: OpR_RR_pat<C2_cmpgtp,    RevCmp<setlt>,  i1,   I64>;
def: OpR_RR_pat<C2_cmpgtup,   RevCmp<setult>, i1,   I64>;
def: OpR_RR_pat<A2_vcmpbeq,   seteq,          i1,   V8I8>;
def: OpR_RR_pat<A2_vcmpbeq,   seteq,          v8i1, V8I8>;
def: OpR_RR_pat<A4_vcmpbgt,   RevCmp<setlt>,  i1,   V8I8>;
def: OpR_RR_pat<A4_vcmpbgt,   RevCmp<setlt>,  v8i1, V8I8>;
def: OpR_RR_pat<A4_vcmpbgt,   setgt,          i1,   V8I8>;
def: OpR_RR_pat<A4_vcmpbgt,   setgt,          v8i1, V8I8>;
def: OpR_RR_pat<A2_vcmpbgtu,  RevCmp<setult>, i1,   V8I8>;
def: OpR_RR_pat<A2_vcmpbgtu,  RevCmp<setult>, v8i1, V8I8>;
def: OpR_RR_pat<A2_vcmpbgtu,  setugt,         i1,   V8I8>;
def: OpR_RR_pat<A2_vcmpbgtu,  setugt,         v8i1, V8I8>;
def: OpR_RR_pat<A2_vcmpheq,   seteq,          i1,   V4I16>;
def: OpR_RR_pat<A2_vcmpheq,   seteq,          v4i1, V4I16>;
def: OpR_RR_pat<A2_vcmphgt,   RevCmp<setlt>,  i1,   V4I16>;
def: OpR_RR_pat<A2_vcmphgt,   RevCmp<setlt>,  v4i1, V4I16>;
def: OpR_RR_pat<A2_vcmphgt,   setgt,          i1,   V4I16>;
def: OpR_RR_pat<A2_vcmphgt,   setgt,          v4i1, V4I16>;
def: OpR_RR_pat<A2_vcmphgtu,  RevCmp<setult>, i1,   V4I16>;
def: OpR_RR_pat<A2_vcmphgtu,  RevCmp<setult>, v4i1, V4I16>;
def: OpR_RR_pat<A2_vcmphgtu,  setugt,         i1,   V4I16>;
def: OpR_RR_pat<A2_vcmphgtu,  setugt,         v4i1, V4I16>;
def: OpR_RR_pat<A2_vcmpweq,   seteq,          i1,   V2I32>;
def: OpR_RR_pat<A2_vcmpweq,   seteq,          v2i1, V2I32>;
def: OpR_RR_pat<A2_vcmpwgt,   RevCmp<setlt>,  i1,   V2I32>;
def: OpR_RR_pat<A2_vcmpwgt,   RevCmp<setlt>,  v2i1, V2I32>;
def: OpR_RR_pat<A2_vcmpwgt,   setgt,          i1,   V2I32>;
def: OpR_RR_pat<A2_vcmpwgt,   setgt,          v2i1, V2I32>;
def: OpR_RR_pat<A2_vcmpwgtu,  RevCmp<setult>, i1,   V2I32>;
def: OpR_RR_pat<A2_vcmpwgtu,  RevCmp<setult>, v2i1, V2I32>;
def: OpR_RR_pat<A2_vcmpwgtu,  setugt,         i1,   V2I32>;
def: OpR_RR_pat<A2_vcmpwgtu,  setugt,         v2i1, V2I32>;

def: OpR_RR_pat<F2_sfcmpeq,   seteq,          i1, F32>;
def: OpR_RR_pat<F2_sfcmpgt,   setgt,          i1, F32>;
def: OpR_RR_pat<F2_sfcmpge,   setge,          i1, F32>;
def: OpR_RR_pat<F2_sfcmpeq,   setoeq,         i1, F32>;
def: OpR_RR_pat<F2_sfcmpgt,   setogt,         i1, F32>;
def: OpR_RR_pat<F2_sfcmpge,   setoge,         i1, F32>;
def: OpR_RR_pat<F2_sfcmpgt,   RevCmp<setolt>, i1, F32>;
def: OpR_RR_pat<F2_sfcmpge,   RevCmp<setole>, i1, F32>;
def: OpR_RR_pat<F2_sfcmpgt,   RevCmp<setlt>,  i1, F32>;
def: OpR_RR_pat<F2_sfcmpge,   RevCmp<setle>,  i1, F32>;
def: OpR_RR_pat<F2_sfcmpuo,   setuo,          i1, F32>;

def: OpR_RR_pat<F2_dfcmpeq,   seteq,          i1, F64>;
def: OpR_RR_pat<F2_dfcmpgt,   setgt,          i1, F64>;
def: OpR_RR_pat<F2_dfcmpge,   setge,          i1, F64>;
def: OpR_RR_pat<F2_dfcmpeq,   setoeq,         i1, F64>;
def: OpR_RR_pat<F2_dfcmpgt,   setogt,         i1, F64>;
def: OpR_RR_pat<F2_dfcmpge,   setoge,         i1, F64>;
def: OpR_RR_pat<F2_dfcmpgt,   RevCmp<setolt>, i1, F64>;
def: OpR_RR_pat<F2_dfcmpge,   RevCmp<setole>, i1, F64>;
def: OpR_RR_pat<F2_dfcmpgt,   RevCmp<setlt>,  i1, F64>;
def: OpR_RR_pat<F2_dfcmpge,   RevCmp<setle>,  i1, F64>;
def: OpR_RR_pat<F2_dfcmpuo,   setuo,          i1, F64>;

// Avoid C4_cmpneqi, C4_cmpltei, C4_cmplteui, since they cannot form compounds.

def: Pat<(i1 (setne I32:$Rs, anyimm:$u5)),
         (C2_not (C2_cmpeqi I32:$Rs, imm:$u5))>;
def: Pat<(i1 (setle I32:$Rs, anyimm:$u5)),
         (C2_not (C2_cmpgti I32:$Rs, imm:$u5))>;
def: Pat<(i1 (setule I32:$Rs, anyimm:$u5)),
         (C2_not (C2_cmpgtui I32:$Rs, imm:$u5))>;

class OpmR_RR_pat<PatFrag Output, PatFrag Op, ValueType ResType,
                  PatFrag RsPred, PatFrag RtPred = RsPred>
  : Pat<(ResType (Op RsPred:$Rs, RtPred:$Rt)),
        (Output RsPred:$Rs, RtPred:$Rt)>;

class Outn<InstHexagon MI>
  : OutPatFrag<(ops node:$Rs, node:$Rt),
               (C2_not (MI $Rs, $Rt))>;

def: OpmR_RR_pat<Outn<C2_cmpeq>,    setne,          i1,   I32>;
def: OpmR_RR_pat<Outn<C2_cmpgt>,    setle,          i1,   I32>;
def: OpmR_RR_pat<Outn<C2_cmpgtu>,   setule,         i1,   I32>;
def: OpmR_RR_pat<Outn<C2_cmpgt>,    RevCmp<setge>,  i1,   I32>;
def: OpmR_RR_pat<Outn<C2_cmpgtu>,   RevCmp<setuge>, i1,   I32>;
def: OpmR_RR_pat<Outn<C2_cmpeqp>,   setne,          i1,   I64>;
def: OpmR_RR_pat<Outn<C2_cmpgtp>,   setle,          i1,   I64>;
def: OpmR_RR_pat<Outn<C2_cmpgtup>,  setule,         i1,   I64>;
def: OpmR_RR_pat<Outn<C2_cmpgtp>,   RevCmp<setge>,  i1,   I64>;
def: OpmR_RR_pat<Outn<C2_cmpgtup>,  RevCmp<setuge>, i1,   I64>;
def: OpmR_RR_pat<Outn<A2_vcmpbeq>,  setne,          v8i1, V8I8>;
def: OpmR_RR_pat<Outn<A4_vcmpbgt>,  setle,          v8i1, V8I8>;
def: OpmR_RR_pat<Outn<A2_vcmpbgtu>, setule,         v8i1, V8I8>;
def: OpmR_RR_pat<Outn<A4_vcmpbgt>,  RevCmp<setge>,  v8i1, V8I8>;
def: OpmR_RR_pat<Outn<A2_vcmpbgtu>, RevCmp<setuge>, v8i1, V8I8>;
def: OpmR_RR_pat<Outn<A2_vcmpheq>,  setne,          v4i1, V4I16>;
def: OpmR_RR_pat<Outn<A2_vcmphgt>,  setle,          v4i1, V4I16>;
def: OpmR_RR_pat<Outn<A2_vcmphgtu>, setule,         v4i1, V4I16>;
def: OpmR_RR_pat<Outn<A2_vcmphgt>,  RevCmp<setge>,  v4i1, V4I16>;
def: OpmR_RR_pat<Outn<A2_vcmphgtu>, RevCmp<setuge>, v4i1, V4I16>;
def: OpmR_RR_pat<Outn<A2_vcmpweq>,  setne,          v2i1, V2I32>;
def: OpmR_RR_pat<Outn<A2_vcmpwgt>,  setle,          v2i1, V2I32>;
def: OpmR_RR_pat<Outn<A2_vcmpwgtu>, setule,         v2i1, V2I32>;
def: OpmR_RR_pat<Outn<A2_vcmpwgt>,  RevCmp<setge>,  v2i1, V2I32>;
def: OpmR_RR_pat<Outn<A2_vcmpwgtu>, RevCmp<setuge>, v2i1, V2I32>;

let AddedComplexity = 100 in {
  def: Pat<(i1 (seteq (and (xor I32:$Rs, I32:$Rt), 255), 0)),
           (A4_cmpbeq IntRegs:$Rs, IntRegs:$Rt)>;
  def: Pat<(i1 (setne (and (xor I32:$Rs, I32:$Rt), 255), 0)),
           (C2_not (A4_cmpbeq IntRegs:$Rs, IntRegs:$Rt))>;
  def: Pat<(i1 (seteq (and (xor I32:$Rs, I32:$Rt), 65535), 0)),
           (A4_cmpheq IntRegs:$Rs, IntRegs:$Rt)>;
  def: Pat<(i1 (setne (and (xor I32:$Rs, I32:$Rt), 65535), 0)),
           (C2_not (A4_cmpheq IntRegs:$Rs, IntRegs:$Rt))>;
}

// PatFrag for AsserZext which takes the original type as a parameter.
def SDTAssertZext: SDTypeProfile<1, 2, [SDTCisInt<0>, SDTCisSameAs<0,1>]>;
def AssertZextSD: SDNode<"ISD::AssertZext", SDTAssertZext>;
class AssertZext<ValueType T>: PatFrag<(ops node:$A), (AssertZextSD $A, T)>;

multiclass Cmpb_pat<InstHexagon MI, PatFrag Op, PatFrag AssertExt,
                      PatLeaf ImmPred, int Mask> {
  def: Pat<(i1 (Op (and I32:$Rs, Mask), ImmPred:$I)),
           (MI I32:$Rs, imm:$I)>;
  def: Pat<(i1 (Op (AssertExt I32:$Rs), ImmPred:$I)),
           (MI I32:$Rs, imm:$I)>;
}

multiclass CmpbN_pat<InstHexagon MI, PatFrag Op, PatFrag AssertExt,
                     PatLeaf ImmPred, int Mask> {
  def: Pat<(i1 (Op (and I32:$Rs, Mask), ImmPred:$I)),
           (C2_not (MI I32:$Rs, imm:$I))>;
  def: Pat<(i1 (Op (AssertExt I32:$Rs), ImmPred:$I)),
           (C2_not (MI I32:$Rs, imm:$I))>;
}

multiclass CmpbND_pat<InstHexagon MI, PatFrag Op, PatFrag AssertExt,
                      PatLeaf ImmPred, int Mask> {
  def: Pat<(i1 (Op (and I32:$Rs, Mask), ImmPred:$I)),
           (C2_not (MI I32:$Rs, (UDEC1 imm:$I)))>;
  def: Pat<(i1 (Op (AssertExt I32:$Rs), ImmPred:$I)),
           (C2_not (MI I32:$Rs, (UDEC1 imm:$I)))>;
}

let AddedComplexity = 200 in {
  defm: Cmpb_pat  <A4_cmpbeqi,  seteq,  AssertZext<i8>,  IsUGT<8,31>,  255>;
  defm: CmpbN_pat <A4_cmpbeqi,  setne,  AssertZext<i8>,  IsUGT<8,31>,  255>;
  defm: Cmpb_pat  <A4_cmpbgtui, setugt, AssertZext<i8>,  IsUGT<32,31>, 255>;
  defm: CmpbN_pat <A4_cmpbgtui, setule, AssertZext<i8>,  IsUGT<32,31>, 255>;
  defm: Cmpb_pat  <A4_cmphgtui, setugt, AssertZext<i16>, IsUGT<32,31>, 65535>;
  defm: CmpbN_pat <A4_cmphgtui, setule, AssertZext<i16>, IsUGT<32,31>, 65535>;
  defm: CmpbND_pat<A4_cmpbgtui, setult, AssertZext<i8>,  IsUGT<32,32>, 255>;
  defm: CmpbND_pat<A4_cmphgtui, setult, AssertZext<i16>, IsUGT<32,32>, 65535>;
}

def: Pat<(i32 (zext (i1 (seteq I32:$Rs, I32:$Rt)))),
         (A4_rcmpeq I32:$Rs, I32:$Rt)>;
def: Pat<(i32 (zext (i1 (setne I32:$Rs, I32:$Rt)))),
         (A4_rcmpneq I32:$Rs, I32:$Rt)>;
def: Pat<(i32 (zext (i1 (seteq I32:$Rs, anyimm:$s8)))),
         (A4_rcmpeqi I32:$Rs, imm:$s8)>;
def: Pat<(i32 (zext (i1 (setne I32:$Rs, anyimm:$s8)))),
         (A4_rcmpneqi I32:$Rs, imm:$s8)>;

def: Pat<(i1 (seteq I1:$Ps, (i1 -1))), (I1:$Ps)>;
def: Pat<(i1 (setne I1:$Ps, (i1 -1))), (C2_not I1:$Ps)>;
def: Pat<(i1 (seteq I1:$Ps, I1:$Pt)),  (C2_xor I1:$Ps, (C2_not I1:$Pt))>;
def: Pat<(i1 (setne I1:$Ps, I1:$Pt)),  (C2_xor I1:$Ps, I1:$Pt)>;

// Floating-point comparisons with checks for ordered/unordered status.

class T3<InstHexagon MI1, InstHexagon MI2, InstHexagon MI3>
  : OutPatFrag<(ops node:$Rs, node:$Rt),
               (MI1 (MI2 $Rs, $Rt), (MI3 $Rs, $Rt))>;

class Cmpuf<InstHexagon MI>:  T3<C2_or,  F2_sfcmpuo, MI>;
class Cmpud<InstHexagon MI>:  T3<C2_or,  F2_dfcmpuo, MI>;

class Cmpufn<InstHexagon MI>: T3<C2_orn, F2_sfcmpuo, MI>;
class Cmpudn<InstHexagon MI>: T3<C2_orn, F2_dfcmpuo, MI>;

def: OpmR_RR_pat<Cmpuf<F2_sfcmpeq>,  setueq,         i1, F32>;
def: OpmR_RR_pat<Cmpuf<F2_sfcmpge>,  setuge,         i1, F32>;
def: OpmR_RR_pat<Cmpuf<F2_sfcmpgt>,  setugt,         i1, F32>;
def: OpmR_RR_pat<Cmpuf<F2_sfcmpge>,  RevCmp<setule>, i1, F32>;
def: OpmR_RR_pat<Cmpuf<F2_sfcmpgt>,  RevCmp<setult>, i1, F32>;
def: OpmR_RR_pat<Cmpufn<F2_sfcmpeq>, setune,         i1, F32>;

def: OpmR_RR_pat<Cmpud<F2_dfcmpeq>,  setueq,         i1, F64>;
def: OpmR_RR_pat<Cmpud<F2_dfcmpge>,  setuge,         i1, F64>;
def: OpmR_RR_pat<Cmpud<F2_dfcmpgt>,  setugt,         i1, F64>;
def: OpmR_RR_pat<Cmpud<F2_dfcmpge>,  RevCmp<setule>, i1, F64>;
def: OpmR_RR_pat<Cmpud<F2_dfcmpgt>,  RevCmp<setult>, i1, F64>;
def: OpmR_RR_pat<Cmpudn<F2_dfcmpeq>, setune,         i1, F64>;

def: OpmR_RR_pat<Outn<F2_sfcmpeq>, setone, i1, F32>;
def: OpmR_RR_pat<Outn<F2_sfcmpeq>, setne,  i1, F32>;

def: OpmR_RR_pat<Outn<F2_dfcmpeq>, setone, i1, F64>;
def: OpmR_RR_pat<Outn<F2_dfcmpeq>, setne,  i1, F64>;

def: OpmR_RR_pat<Outn<F2_sfcmpuo>, seto,   i1, F32>;
def: OpmR_RR_pat<Outn<F2_dfcmpuo>, seto,   i1, F64>;


// --(6) Select ----------------------------------------------------------
//

def: Pat<(select I1:$Pu, I32:$Rs, I32:$Rt),
         (C2_mux I1:$Pu, I32:$Rs, I32:$Rt)>;
def: Pat<(select I1:$Pu, anyimm:$s8, I32:$Rs),
         (C2_muxri I1:$Pu, imm:$s8, I32:$Rs)>;
def: Pat<(select I1:$Pu, I32:$Rs, anyimm:$s8),
         (C2_muxir I1:$Pu, I32:$Rs, imm:$s8)>;
def: Pat<(select I1:$Pu, anyimm:$s8, s8_0ImmPred:$S8),
         (C2_muxii I1:$Pu, imm:$s8, imm:$S8)>;

def: Pat<(select (not I1:$Pu), I32:$Rs, I32:$Rt),
         (C2_mux I1:$Pu, I32:$Rt, I32:$Rs)>;
def: Pat<(select (not I1:$Pu), s8_0ImmPred:$S8, anyimm:$s8),
         (C2_muxii I1:$Pu, imm:$s8, imm:$S8)>;
def: Pat<(select (not I1:$Pu), anyimm:$s8, I32:$Rs),
         (C2_muxir I1:$Pu, I32:$Rs, imm:$s8)>;
def: Pat<(select (not I1:$Pu), I32:$Rs, anyimm:$s8),
         (C2_muxri I1:$Pu, imm:$s8, I32:$Rs)>;

// Map from a 64-bit select to an emulated 64-bit mux.
// Hexagon does not support 64-bit MUXes; so emulate with combines.
def: Pat<(select I1:$Pu, I64:$Rs, I64:$Rt),
         (Combinew (C2_mux I1:$Pu, (HiReg $Rs), (HiReg $Rt)),
                   (C2_mux I1:$Pu, (LoReg $Rs), (LoReg $Rt)))>;

def: Pat<(select I1:$Pu, F32:$Rs, f32ImmPred:$I),
         (C2_muxir I1:$Pu, F32:$Rs, (ftoi $I))>;
def: Pat<(select I1:$Pu, f32ImmPred:$I, F32:$Rt),
         (C2_muxri I1:$Pu, (ftoi $I), F32:$Rt)>;
def: Pat<(select I1:$Pu, F32:$Rs, F32:$Rt),
         (C2_mux I1:$Pu, F32:$Rs, F32:$Rt)>;
def: Pat<(select I1:$Pu, F64:$Rs, F64:$Rt),
         (Combinew (C2_mux I1:$Pu, (HiReg $Rs), (HiReg $Rt)),
                   (C2_mux I1:$Pu, (LoReg $Rs), (LoReg $Rt)))>;

def: Pat<(select (i1 (setult F32:$Ra, F32:$Rb)), F32:$Rs, F32:$Rt),
         (C2_mux (F2_sfcmpgt F32:$Rb, F32:$Ra), F32:$Rs, F32:$Rt)>;
def: Pat<(select (i1 (setult F64:$Ra, F64:$Rb)), F64:$Rs, F64:$Rt),
         (C2_vmux (F2_dfcmpgt F64:$Rb, F64:$Ra), F64:$Rs, F64:$Rt)>;

def: Pat<(select (not I1:$Pu), f32ImmPred:$I, F32:$Rs),
         (C2_muxir I1:$Pu, F32:$Rs, (ftoi $I))>;
def: Pat<(select (not I1:$Pu), F32:$Rt, f32ImmPred:$I),
         (C2_muxri I1:$Pu, (ftoi $I), F32:$Rt)>;

def: Pat<(vselect V8I1:$Pu, V8I8:$Rs, V8I8:$Rt),
         (C2_vmux V8I1:$Pu, V8I8:$Rs, V8I8:$Rt)>;
def: Pat<(vselect V4I1:$Pu, V4I16:$Rs, V4I16:$Rt),
         (C2_vmux V4I1:$Pu, V4I16:$Rs, V4I16:$Rt)>;
def: Pat<(vselect V2I1:$Pu, V2I32:$Rs, V2I32:$Rt),
         (C2_vmux V2I1:$Pu, V2I32:$Rs, V2I32:$Rt)>;

def: Pat<(vselect (pnot V8I1:$Pu), V8I8:$Rs, V8I8:$Rt),
         (C2_vmux V8I1:$Pu, V8I8:$Rt, V8I8:$Rs)>;
def: Pat<(vselect (pnot V4I1:$Pu), V4I16:$Rs, V4I16:$Rt),
         (C2_vmux V4I1:$Pu, V4I16:$Rt, V4I16:$Rs)>;
def: Pat<(vselect (pnot V2I1:$Pu), V2I32:$Rs, V2I32:$Rt),
         (C2_vmux V2I1:$Pu, V2I32:$Rt, V2I32:$Rs)>;


// From LegalizeDAG.cpp: (Pu ? Pv : Pw) <=> (Pu & Pv) | (!Pu & Pw).
def: Pat<(select I1:$Pu, I1:$Pv, I1:$Pw),
         (C2_or (C2_and  I1:$Pu, I1:$Pv),
                (C2_andn I1:$Pw, I1:$Pu))>;


def IsPosHalf : PatLeaf<(i32 IntRegs:$a), [{
  return isPositiveHalfWord(N);
}]>;

multiclass SelMinMax16_pats<PatFrag CmpOp, InstHexagon InstA,
                            InstHexagon InstB> {
  def: Pat<(sext_inreg (select (i1 (CmpOp IsPosHalf:$Rs, IsPosHalf:$Rt)),
                               IsPosHalf:$Rs, IsPosHalf:$Rt), i16),
           (InstA IntRegs:$Rs, IntRegs:$Rt)>;
  def: Pat<(sext_inreg (select (i1 (CmpOp IsPosHalf:$Rs, IsPosHalf:$Rt)),
                               IsPosHalf:$Rt, IsPosHalf:$Rs), i16),
           (InstB IntRegs:$Rs, IntRegs:$Rt)>;
}

let AddedComplexity = 200 in {
  defm: SelMinMax16_pats<setge,  A2_max,  A2_min>;
  defm: SelMinMax16_pats<setgt,  A2_max,  A2_min>;
  defm: SelMinMax16_pats<setle,  A2_min,  A2_max>;
  defm: SelMinMax16_pats<setlt,  A2_min,  A2_max>;
  defm: SelMinMax16_pats<setuge, A2_maxu, A2_minu>;
  defm: SelMinMax16_pats<setugt, A2_maxu, A2_minu>;
  defm: SelMinMax16_pats<setule, A2_minu, A2_maxu>;
  defm: SelMinMax16_pats<setult, A2_minu, A2_maxu>;
}

let AddedComplexity = 200 in {
  defm: MinMax_pats<A2_min,   A2_max,   select,  setgt, i1, I32>;
  defm: MinMax_pats<A2_min,   A2_max,   select,  setge, i1, I32>;
  defm: MinMax_pats<A2_max,   A2_min,   select,  setlt, i1, I32>;
  defm: MinMax_pats<A2_max,   A2_min,   select,  setle, i1, I32>;
  defm: MinMax_pats<A2_minu,  A2_maxu,  select, setugt, i1, I32>;
  defm: MinMax_pats<A2_minu,  A2_maxu,  select, setuge, i1, I32>;
  defm: MinMax_pats<A2_maxu,  A2_minu,  select, setult, i1, I32>;
  defm: MinMax_pats<A2_maxu,  A2_minu,  select, setule, i1, I32>;

  defm: MinMax_pats<A2_minp,  A2_maxp,  select,  setgt, i1, I64>;
  defm: MinMax_pats<A2_minp,  A2_maxp,  select,  setge, i1, I64>;
  defm: MinMax_pats<A2_maxp,  A2_minp,  select,  setlt, i1, I64>;
  defm: MinMax_pats<A2_maxp,  A2_minp,  select,  setle, i1, I64>;
  defm: MinMax_pats<A2_minup, A2_maxup, select, setugt, i1, I64>;
  defm: MinMax_pats<A2_minup, A2_maxup, select, setuge, i1, I64>;
  defm: MinMax_pats<A2_maxup, A2_minup, select, setult, i1, I64>;
  defm: MinMax_pats<A2_maxup, A2_minup, select, setule, i1, I64>;
}

let AddedComplexity = 100 in {
  defm: MinMax_pats<F2_sfmin, F2_sfmax, select, setogt, i1, F32>;
  defm: MinMax_pats<F2_sfmin, F2_sfmax, select, setoge, i1, F32>;
  defm: MinMax_pats<F2_sfmax, F2_sfmin, select, setolt, i1, F32>;
  defm: MinMax_pats<F2_sfmax, F2_sfmin, select, setole, i1, F32>;
}

defm: MinMax_pats<A2_vminb,  A2_vmaxb,  vselect,  setgt,  v8i1,  V8I8>;
defm: MinMax_pats<A2_vminb,  A2_vmaxb,  vselect,  setge,  v8i1,  V8I8>;
defm: MinMax_pats<A2_vminh,  A2_vmaxh,  vselect,  setgt,  v4i1, V4I16>;
defm: MinMax_pats<A2_vminh,  A2_vmaxh,  vselect,  setge,  v4i1, V4I16>;
defm: MinMax_pats<A2_vminw,  A2_vmaxw,  vselect,  setgt,  v2i1, V2I32>;
defm: MinMax_pats<A2_vminw,  A2_vmaxw,  vselect,  setge,  v2i1, V2I32>;
defm: MinMax_pats<A2_vminub, A2_vmaxub, vselect, setugt,  v8i1,  V8I8>;
defm: MinMax_pats<A2_vminub, A2_vmaxub, vselect, setuge,  v8i1,  V8I8>;
defm: MinMax_pats<A2_vminuh, A2_vmaxuh, vselect, setugt,  v4i1, V4I16>;
defm: MinMax_pats<A2_vminuh, A2_vmaxuh, vselect, setuge,  v4i1, V4I16>;
defm: MinMax_pats<A2_vminuw, A2_vmaxuw, vselect, setugt,  v2i1, V2I32>;
defm: MinMax_pats<A2_vminuw, A2_vmaxuw, vselect, setuge,  v2i1, V2I32>;

// --(7) Insert/extract --------------------------------------------------
//

def SDTHexagonINSERT:
  SDTypeProfile<1, 4, [SDTCisSameAs<0, 1>, SDTCisSameAs<0, 2>,
                       SDTCisInt<0>, SDTCisVT<3, i32>, SDTCisVT<4, i32>]>;
def HexagonINSERT:    SDNode<"HexagonISD::INSERT",   SDTHexagonINSERT>;

let AddedComplexity = 10 in {
  def: Pat<(HexagonINSERT I32:$Rs, I32:$Rt, u5_0ImmPred:$u1, u5_0ImmPred:$u2),
           (S2_insert I32:$Rs, I32:$Rt, imm:$u1, imm:$u2)>;
  def: Pat<(HexagonINSERT I64:$Rs, I64:$Rt, u6_0ImmPred:$u1, u6_0ImmPred:$u2),
           (S2_insertp I64:$Rs, I64:$Rt, imm:$u1, imm:$u2)>;
}
def: Pat<(HexagonINSERT I32:$Rs, I32:$Rt, I32:$Width, I32:$Off),
         (S2_insert_rp I32:$Rs, I32:$Rt, (Combinew $Width, $Off))>;
def: Pat<(HexagonINSERT I64:$Rs, I64:$Rt, I32:$Width, I32:$Off),
         (S2_insertp_rp I64:$Rs, I64:$Rt, (Combinew $Width, $Off))>;

def SDTHexagonEXTRACTU
  : SDTypeProfile<1, 3, [SDTCisSameAs<0, 1>, SDTCisInt<0>, SDTCisInt<1>,
                  SDTCisVT<2, i32>, SDTCisVT<3, i32>]>;
def HexagonEXTRACTU:   SDNode<"HexagonISD::EXTRACTU",   SDTHexagonEXTRACTU>;

let AddedComplexity = 10 in {
  def: Pat<(HexagonEXTRACTU I32:$Rs, u5_0ImmPred:$u5, u5_0ImmPred:$U5),
           (S2_extractu I32:$Rs, imm:$u5, imm:$U5)>;
  def: Pat<(HexagonEXTRACTU I64:$Rs, u6_0ImmPred:$u6, u6_0ImmPred:$U6),
           (S2_extractup I64:$Rs, imm:$u6, imm:$U6)>;
}
def: Pat<(HexagonEXTRACTU I32:$Rs, I32:$Width, I32:$Off),
         (S2_extractu_rp I32:$Rs, (Combinew $Width, $Off))>;
def: Pat<(HexagonEXTRACTU I64:$Rs, I32:$Width, I32:$Off),
         (S2_extractup_rp I64:$Rs, (Combinew $Width, $Off))>;

def SDTHexagonVSPLAT:
  SDTypeProfile<1, 1, [SDTCisVec<0>, SDTCisVT<1, i32>]>;

def HexagonVSPLAT: SDNode<"HexagonISD::VSPLAT", SDTHexagonVSPLAT>;

def: Pat<(v4i8  (HexagonVSPLAT I32:$Rs)), (S2_vsplatrb I32:$Rs)>;
def: Pat<(v4i16 (HexagonVSPLAT I32:$Rs)), (S2_vsplatrh I32:$Rs)>;
def: Pat<(v2i32 (HexagonVSPLAT s8_0ImmPred:$s8)),
         (A2_combineii imm:$s8, imm:$s8)>;
def: Pat<(v2i32 (HexagonVSPLAT I32:$Rs)), (Combinew I32:$Rs, I32:$Rs)>;

let AddedComplexity = 10 in
def: Pat<(v8i8 (HexagonVSPLAT I32:$Rs)), (S6_vsplatrbp I32:$Rs)>,
     Requires<[HasV62]>;
def: Pat<(v8i8 (HexagonVSPLAT I32:$Rs)),
         (Combinew (S2_vsplatrb I32:$Rs), (S2_vsplatrb I32:$Rs))>;


// --(8) Shift/permute ---------------------------------------------------
//

def SDTHexagonI64I32I32: SDTypeProfile<1, 2,
  [SDTCisVT<0, i64>, SDTCisVT<1, i32>, SDTCisSameAs<1, 2>]>;

def HexagonCOMBINE:  SDNode<"HexagonISD::COMBINE",  SDTHexagonI64I32I32>;

def: Pat<(HexagonCOMBINE I32:$Rs, I32:$Rt), (Combinew $Rs, $Rt)>;

// The complexity of the combines involving immediates should be greater
// than the complexity of the combine with two registers.
let AddedComplexity = 50 in {
  def: Pat<(HexagonCOMBINE I32:$Rs, anyimm:$s8),
           (A4_combineri IntRegs:$Rs, imm:$s8)>;
  def: Pat<(HexagonCOMBINE anyimm:$s8, I32:$Rs),
           (A4_combineir imm:$s8, IntRegs:$Rs)>;
}

// The complexity of the combine with two immediates should be greater than
// the complexity of a combine involving a register.
let AddedComplexity = 75 in {
  def: Pat<(HexagonCOMBINE s8_0ImmPred:$s8, anyimm:$u6),
           (A4_combineii imm:$s8, imm:$u6)>;
  def: Pat<(HexagonCOMBINE anyimm:$s8, s8_0ImmPred:$S8),
           (A2_combineii imm:$s8, imm:$S8)>;
}

def: Pat<(bswap I32:$Rs),  (A2_swiz I32:$Rs)>;
def: Pat<(bswap I64:$Rss), (Combinew (A2_swiz (LoReg $Rss)),
                                     (A2_swiz (HiReg $Rss)))>;

def: Pat<(shl s6_0ImmPred:$s6, I32:$Rt),  (S4_lsli imm:$s6, I32:$Rt)>;
def: Pat<(shl I32:$Rs, (i32 16)),         (A2_aslh I32:$Rs)>;
def: Pat<(sra I32:$Rs, (i32 16)),         (A2_asrh I32:$Rs)>;

def: OpR_RI_pat<S2_asr_i_r,  Sra, i32,   I32,   u5_0ImmPred>;
def: OpR_RI_pat<S2_lsr_i_r,  Srl, i32,   I32,   u5_0ImmPred>;
def: OpR_RI_pat<S2_asl_i_r,  Shl, i32,   I32,   u5_0ImmPred>;
def: OpR_RI_pat<S2_asr_i_p,  Sra, i64,   I64,   u6_0ImmPred>;
def: OpR_RI_pat<S2_lsr_i_p,  Srl, i64,   I64,   u6_0ImmPred>;
def: OpR_RI_pat<S2_asl_i_p,  Shl, i64,   I64,   u6_0ImmPred>;
def: OpR_RI_pat<S2_asr_i_vh, Sra, v4i16, V4I16, u4_0ImmPred>;
def: OpR_RI_pat<S2_lsr_i_vh, Srl, v4i16, V4I16, u4_0ImmPred>;
def: OpR_RI_pat<S2_asl_i_vh, Shl, v4i16, V4I16, u4_0ImmPred>;
def: OpR_RI_pat<S2_asr_i_vh, Sra, v2i32, V2I32, u5_0ImmPred>;
def: OpR_RI_pat<S2_lsr_i_vh, Srl, v2i32, V2I32, u5_0ImmPred>;
def: OpR_RI_pat<S2_asl_i_vh, Shl, v2i32, V2I32, u5_0ImmPred>;

def: OpR_RR_pat<S2_asr_r_r, Sra, i32, I32, I32>;
def: OpR_RR_pat<S2_lsr_r_r, Srl, i32, I32, I32>;
def: OpR_RR_pat<S2_asl_r_r, Shl, i32, I32, I32>;
def: OpR_RR_pat<S2_asr_r_p, Sra, i64, I64, I32>;
def: OpR_RR_pat<S2_lsr_r_p, Srl, i64, I64, I32>;
def: OpR_RR_pat<S2_asl_r_p, Shl, i64, I64, I32>;

// Funnel shifts.
def IsMul8_U3: PatLeaf<(i32 imm), [{
  uint64_t V = N->getZExtValue();
  return V % 8 == 0 && isUInt<3>(V / 8);
}]>;

def Divu8: SDNodeXForm<imm, [{
  return CurDAG->getTargetConstant(N->getZExtValue() / 8, SDLoc(N), MVT::i32);
}]>;

// Funnel shift-left.
def FShl32i: OutPatFrag<(ops node:$Rs, node:$Rt, node:$S),
  (HiReg (S2_asl_i_p (Combinew $Rs, $Rt), $S))>;
def FShl32r: OutPatFrag<(ops node:$Rs, node:$Rt, node:$Ru),
  (HiReg (S2_asl_r_p (Combinew $Rs, $Rt), $Ru))>;

def FShl64i: OutPatFrag<(ops node:$Rs, node:$Rt, node:$S),
  (S2_lsr_i_p_or (S2_asl_i_p $Rt, $S),  $Rs, (Subi<64> $S))>;
def FShl64r: OutPatFrag<(ops node:$Rs, node:$Rt, node:$Ru),
  (S2_lsr_r_p_or (S2_asl_r_p $Rt, $Ru), $Rs, (A2_subri 64, $Ru))>;

// Combined SDNodeXForm: (Divu8 (Subi<64> $S))
def Divu64_8: SDNodeXForm<imm, [{
  return CurDAG->getTargetConstant((64 - N->getSExtValue()) / 8,
                                   SDLoc(N), MVT::i32);
}]>;

// Special cases:
let AddedComplexity = 100 in {
  def: Pat<(fshl I32:$Rs, I32:$Rt, (i32 16)),
           (A2_combine_hl I32:$Rs, I32:$Rt)>;
  def: Pat<(fshl I64:$Rs, I64:$Rt, IsMul8_U3:$S),
           (S2_valignib I64:$Rs, I64:$Rt, (Divu64_8 $S))>;
}

let Predicates = [HasV60], AddedComplexity = 50 in {
  def: OpR_RI_pat<S6_rol_i_r, Rol, i32, I32, u5_0ImmPred>;
  def: OpR_RI_pat<S6_rol_i_p, Rol, i64, I64, u6_0ImmPred>;
}
let AddedComplexity = 30 in {
  def: Pat<(rotl I32:$Rs, u5_0ImmPred:$S),          (FShl32i $Rs, $Rs, imm:$S)>;
  def: Pat<(rotl I64:$Rs, u6_0ImmPred:$S),          (FShl64i $Rs, $Rs, imm:$S)>;
  def: Pat<(fshl I32:$Rs, I32:$Rt, u5_0ImmPred:$S), (FShl32i $Rs, $Rt, imm:$S)>;
  def: Pat<(fshl I64:$Rs, I64:$Rt, u6_0ImmPred:$S), (FShl64i $Rs, $Rt, imm:$S)>;
}
def: Pat<(rotl I32:$Rs, I32:$Rt),           (FShl32r $Rs, $Rs, $Rt)>;
def: Pat<(rotl I64:$Rs, I32:$Rt),           (FShl64r $Rs, $Rs, $Rt)>;
def: Pat<(fshl I32:$Rs, I32:$Rt, I32:$Ru),  (FShl32r $Rs, $Rt, $Ru)>;
def: Pat<(fshl I64:$Rs, I64:$Rt, I32:$Ru),  (FShl64r $Rs, $Rt, $Ru)>;

// Funnel shift-right.
def FShr32i: OutPatFrag<(ops node:$Rs, node:$Rt, node:$S),
  (LoReg (S2_lsr_i_p (Combinew $Rs, $Rt), $S))>;
def FShr32r: OutPatFrag<(ops node:$Rs, node:$Rt, node:$Ru),
  (LoReg (S2_lsr_r_p (Combinew $Rs, $Rt), $Ru))>;

def FShr64i: OutPatFrag<(ops node:$Rs, node:$Rt, node:$S),
  (S2_asl_i_p_or (S2_lsr_i_p $Rt, $S),  $Rs, (Subi<64> $S))>;
def FShr64r: OutPatFrag<(ops node:$Rs, node:$Rt, node:$Ru),
  (S2_asl_r_p_or (S2_lsr_r_p $Rt, $Ru), $Rs, (A2_subri 64, $Ru))>;

// Special cases:
let AddedComplexity = 100 in {
  def: Pat<(fshr I32:$Rs, I32:$Rt, (i32 16)),
           (A2_combine_hl I32:$Rs, I32:$Rt)>;
  def: Pat<(fshr I64:$Rs, I64:$Rt, IsMul8_U3:$S),
           (S2_valignib I64:$Rs, I64:$Rt, (Divu8 $S))>;
}

let Predicates = [HasV60], AddedComplexity = 50 in {
  def: Pat<(rotr I32:$Rs, u5_0ImmPred:$S), (S6_rol_i_r I32:$Rs, (Subi<32> $S))>;
  def: Pat<(rotr I64:$Rs, u6_0ImmPred:$S), (S6_rol_i_p I64:$Rs, (Subi<64> $S))>;
}
let AddedComplexity = 30 in {
  def: Pat<(rotr I32:$Rs, u5_0ImmPred:$S),          (FShr32i $Rs, $Rs, imm:$S)>;
  def: Pat<(rotr I64:$Rs, u6_0ImmPred:$S),          (FShr64i $Rs, $Rs, imm:$S)>;
  def: Pat<(fshr I32:$Rs, I32:$Rt, u5_0ImmPred:$S), (FShr32i $Rs, $Rt, imm:$S)>;
  def: Pat<(fshr I64:$Rs, I64:$Rt, u6_0ImmPred:$S), (FShr64i $Rs, $Rt, imm:$S)>;
}
def: Pat<(rotr I32:$Rs, I32:$Rt),           (FShr32r $Rs, $Rs, $Rt)>;
def: Pat<(rotr I64:$Rs, I32:$Rt),           (FShr64r $Rs, $Rs, $Rt)>;
def: Pat<(fshr I32:$Rs, I32:$Rt, I32:$Ru),  (FShr32r $Rs, $Rt, $Ru)>;
def: Pat<(fshr I64:$Rs, I64:$Rt, I32:$Ru),  (FShr64r $Rs, $Rt, $Ru)>;


def: Pat<(sra (add (sra I32:$Rs, u5_0ImmPred:$u5), 1), (i32 1)),
         (S2_asr_i_r_rnd I32:$Rs, imm:$u5)>;
def: Pat<(sra (add (sra I64:$Rs, u6_0ImmPred:$u6), 1), (i32 1)),
         (S2_asr_i_p_rnd I64:$Rs, imm:$u6)>;

// Prefer S2_addasl_rrri over S2_asl_i_r_acc.
let AddedComplexity = 120 in
def: Pat<(add I32:$Rt, (shl I32:$Rs, u3_0ImmPred:$u3)),
         (S2_addasl_rrri IntRegs:$Rt, IntRegs:$Rs, imm:$u3)>;

let AddedComplexity = 100 in {
  def: AccRRI_pat<S2_asr_i_r_acc,   Add, Su<Sra>, I32, u5_0ImmPred>;
  def: AccRRI_pat<S2_asr_i_r_nac,   Sub, Su<Sra>, I32, u5_0ImmPred>;
  def: AccRRI_pat<S2_asr_i_r_and,   And, Su<Sra>, I32, u5_0ImmPred>;
  def: AccRRI_pat<S2_asr_i_r_or,    Or,  Su<Sra>, I32, u5_0ImmPred>;

  def: AccRRI_pat<S2_asr_i_p_acc,   Add, Su<Sra>, I64, u6_0ImmPred>;
  def: AccRRI_pat<S2_asr_i_p_nac,   Sub, Su<Sra>, I64, u6_0ImmPred>;
  def: AccRRI_pat<S2_asr_i_p_and,   And, Su<Sra>, I64, u6_0ImmPred>;
  def: AccRRI_pat<S2_asr_i_p_or,    Or,  Su<Sra>, I64, u6_0ImmPred>;

  def: AccRRI_pat<S2_lsr_i_r_acc,   Add, Su<Srl>, I32, u5_0ImmPred>;
  def: AccRRI_pat<S2_lsr_i_r_nac,   Sub, Su<Srl>, I32, u5_0ImmPred>;
  def: AccRRI_pat<S2_lsr_i_r_and,   And, Su<Srl>, I32, u5_0ImmPred>;
  def: AccRRI_pat<S2_lsr_i_r_or,    Or,  Su<Srl>, I32, u5_0ImmPred>;
  def: AccRRI_pat<S2_lsr_i_r_xacc,  Xor, Su<Srl>, I32, u5_0ImmPred>;

  def: AccRRI_pat<S2_lsr_i_p_acc,   Add, Su<Srl>, I64, u6_0ImmPred>;
  def: AccRRI_pat<S2_lsr_i_p_nac,   Sub, Su<Srl>, I64, u6_0ImmPred>;
  def: AccRRI_pat<S2_lsr_i_p_and,   And, Su<Srl>, I64, u6_0ImmPred>;
  def: AccRRI_pat<S2_lsr_i_p_or,    Or,  Su<Srl>, I64, u6_0ImmPred>;
  def: AccRRI_pat<S2_lsr_i_p_xacc,  Xor, Su<Srl>, I64, u6_0ImmPred>;

  def: AccRRI_pat<S2_asl_i_r_acc,   Add, Su<Shl>, I32, u5_0ImmPred>;
  def: AccRRI_pat<S2_asl_i_r_nac,   Sub, Su<Shl>, I32, u5_0ImmPred>;
  def: AccRRI_pat<S2_asl_i_r_and,   And, Su<Shl>, I32, u5_0ImmPred>;
  def: AccRRI_pat<S2_asl_i_r_or,    Or,  Su<Shl>, I32, u5_0ImmPred>;
  def: AccRRI_pat<S2_asl_i_r_xacc,  Xor, Su<Shl>, I32, u5_0ImmPred>;

  def: AccRRI_pat<S2_asl_i_p_acc,   Add, Su<Shl>, I64, u6_0ImmPred>;
  def: AccRRI_pat<S2_asl_i_p_nac,   Sub, Su<Shl>, I64, u6_0ImmPred>;
  def: AccRRI_pat<S2_asl_i_p_and,   And, Su<Shl>, I64, u6_0ImmPred>;
  def: AccRRI_pat<S2_asl_i_p_or,    Or,  Su<Shl>, I64, u6_0ImmPred>;
  def: AccRRI_pat<S2_asl_i_p_xacc,  Xor, Su<Shl>, I64, u6_0ImmPred>;

  let Predicates = [HasV60] in {
    def: AccRRI_pat<S6_rol_i_r_acc,   Add, Su<Rol>, I32, u5_0ImmPred>;
    def: AccRRI_pat<S6_rol_i_r_nac,   Sub, Su<Rol>, I32, u5_0ImmPred>;
    def: AccRRI_pat<S6_rol_i_r_and,   And, Su<Rol>, I32, u5_0ImmPred>;
    def: AccRRI_pat<S6_rol_i_r_or,    Or,  Su<Rol>, I32, u5_0ImmPred>;
    def: AccRRI_pat<S6_rol_i_r_xacc,  Xor, Su<Rol>, I32, u5_0ImmPred>;

    def: AccRRI_pat<S6_rol_i_p_acc,   Add, Su<Rol>, I64, u6_0ImmPred>;
    def: AccRRI_pat<S6_rol_i_p_nac,   Sub, Su<Rol>, I64, u6_0ImmPred>;
    def: AccRRI_pat<S6_rol_i_p_and,   And, Su<Rol>, I64, u6_0ImmPred>;
    def: AccRRI_pat<S6_rol_i_p_or,    Or,  Su<Rol>, I64, u6_0ImmPred>;
    def: AccRRI_pat<S6_rol_i_p_xacc,  Xor, Su<Rol>, I64, u6_0ImmPred>;
  }
}

let AddedComplexity = 100 in {
  def: AccRRR_pat<S2_asr_r_r_acc,   Add, Su<Sra>, I32, I32, I32>;
  def: AccRRR_pat<S2_asr_r_r_nac,   Sub, Su<Sra>, I32, I32, I32>;
  def: AccRRR_pat<S2_asr_r_r_and,   And, Su<Sra>, I32, I32, I32>;
  def: AccRRR_pat<S2_asr_r_r_or,    Or,  Su<Sra>, I32, I32, I32>;

  def: AccRRR_pat<S2_asr_r_p_acc,   Add, Su<Sra>, I64, I64, I32>;
  def: AccRRR_pat<S2_asr_r_p_nac,   Sub, Su<Sra>, I64, I64, I32>;
  def: AccRRR_pat<S2_asr_r_p_and,   And, Su<Sra>, I64, I64, I32>;
  def: AccRRR_pat<S2_asr_r_p_or,    Or,  Su<Sra>, I64, I64, I32>;
  def: AccRRR_pat<S2_asr_r_p_xor,   Xor, Su<Sra>, I64, I64, I32>;

  def: AccRRR_pat<S2_lsr_r_r_acc,   Add, Su<Srl>, I32, I32, I32>;
  def: AccRRR_pat<S2_lsr_r_r_nac,   Sub, Su<Srl>, I32, I32, I32>;
  def: AccRRR_pat<S2_lsr_r_r_and,   And, Su<Srl>, I32, I32, I32>;
  def: AccRRR_pat<S2_lsr_r_r_or,    Or,  Su<Srl>, I32, I32, I32>;

  def: AccRRR_pat<S2_lsr_r_p_acc,   Add, Su<Srl>, I64, I64, I32>;
  def: AccRRR_pat<S2_lsr_r_p_nac,   Sub, Su<Srl>, I64, I64, I32>;
  def: AccRRR_pat<S2_lsr_r_p_and,   And, Su<Srl>, I64, I64, I32>;
  def: AccRRR_pat<S2_lsr_r_p_or,    Or,  Su<Srl>, I64, I64, I32>;
  def: AccRRR_pat<S2_lsr_r_p_xor,   Xor, Su<Srl>, I64, I64, I32>;

  def: AccRRR_pat<S2_asl_r_r_acc,   Add, Su<Shl>, I32, I32, I32>;
  def: AccRRR_pat<S2_asl_r_r_nac,   Sub, Su<Shl>, I32, I32, I32>;
  def: AccRRR_pat<S2_asl_r_r_and,   And, Su<Shl>, I32, I32, I32>;
  def: AccRRR_pat<S2_asl_r_r_or,    Or,  Su<Shl>, I32, I32, I32>;

  def: AccRRR_pat<S2_asl_r_p_acc,   Add, Su<Shl>, I64, I64, I32>;
  def: AccRRR_pat<S2_asl_r_p_nac,   Sub, Su<Shl>, I64, I64, I32>;
  def: AccRRR_pat<S2_asl_r_p_and,   And, Su<Shl>, I64, I64, I32>;
  def: AccRRR_pat<S2_asl_r_p_or,    Or,  Su<Shl>, I64, I64, I32>;
  def: AccRRR_pat<S2_asl_r_p_xor,   Xor, Su<Shl>, I64, I64, I32>;
}


class OpshIRI_pat<InstHexagon MI, PatFrag Op, PatFrag ShOp,
                  PatFrag RegPred, PatFrag ImmPred>
  : Pat<(Op anyimm:$u8, (ShOp RegPred:$Rs, ImmPred:$U5)),
        (MI anyimm:$u8, RegPred:$Rs, imm:$U5)>;

let AddedComplexity = 200 in {
  def: OpshIRI_pat<S4_addi_asl_ri,  Add, Su<Shl>, I32, u5_0ImmPred>;
  def: OpshIRI_pat<S4_addi_lsr_ri,  Add, Su<Srl>, I32, u5_0ImmPred>;
  def: OpshIRI_pat<S4_subi_asl_ri,  Sub, Su<Shl>, I32, u5_0ImmPred>;
  def: OpshIRI_pat<S4_subi_lsr_ri,  Sub, Su<Srl>, I32, u5_0ImmPred>;
  def: OpshIRI_pat<S4_andi_asl_ri,  And, Su<Shl>, I32, u5_0ImmPred>;
  def: OpshIRI_pat<S4_andi_lsr_ri,  And, Su<Srl>, I32, u5_0ImmPred>;
  def: OpshIRI_pat<S4_ori_asl_ri,   Or,  Su<Shl>, I32, u5_0ImmPred>;
  def: OpshIRI_pat<S4_ori_lsr_ri,   Or,  Su<Srl>, I32, u5_0ImmPred>;
}

// Prefer this pattern to S2_asl_i_p_or for the special case of joining
// two 32-bit words into a 64-bit word.
let AddedComplexity = 200 in
def: Pat<(or (shl (Aext64 I32:$a), (i32 32)), (Zext64 I32:$b)),
         (Combinew I32:$a, I32:$b)>;

def: Pat<(or (or (or (shl (Zext64 (and I32:$b, (i32 65535))), (i32 16)),
                     (Zext64 (and I32:$a, (i32 65535)))),
                 (shl (Aext64 (and I32:$c, (i32 65535))), (i32 32))),
             (shl (Aext64 I32:$d), (i32 48))),
         (Combinew (A2_combine_ll I32:$d, I32:$c),
                   (A2_combine_ll I32:$b, I32:$a))>;

let AddedComplexity = 200 in {
  def: Pat<(or (shl I32:$Rt, (i32 16)), (and I32:$Rs, (i32 65535))),
           (A2_combine_ll I32:$Rt, I32:$Rs)>;
  def: Pat<(or (shl I32:$Rt, (i32 16)), (srl I32:$Rs, (i32 16))),
           (A2_combine_lh I32:$Rt, I32:$Rs)>;
  def: Pat<(or (and I32:$Rt, (i32 268431360)), (and I32:$Rs, (i32 65535))),
           (A2_combine_hl I32:$Rt, I32:$Rs)>;
  def: Pat<(or (and I32:$Rt, (i32 268431360)), (srl I32:$Rs, (i32 16))),
           (A2_combine_hh I32:$Rt, I32:$Rs)>;
}

def SDTHexagonVShift
  : SDTypeProfile<1, 2, [SDTCisSameAs<0, 1>, SDTCisVec<0>, SDTCisVT<2, i32>]>;

def HexagonVASL: SDNode<"HexagonISD::VASL", SDTHexagonVShift>;
def HexagonVASR: SDNode<"HexagonISD::VASR", SDTHexagonVShift>;
def HexagonVLSR: SDNode<"HexagonISD::VLSR", SDTHexagonVShift>;

def: OpR_RI_pat<S2_asl_i_vw, pf2<HexagonVASL>, v2i32, V2I32, u5_0ImmPred>;
def: OpR_RI_pat<S2_asl_i_vh, pf2<HexagonVASL>, v4i16, V4I16, u4_0ImmPred>;
def: OpR_RI_pat<S2_asr_i_vw, pf2<HexagonVASR>, v2i32, V2I32, u5_0ImmPred>;
def: OpR_RI_pat<S2_asr_i_vh, pf2<HexagonVASR>, v4i16, V4I16, u4_0ImmPred>;
def: OpR_RI_pat<S2_lsr_i_vw, pf2<HexagonVLSR>, v2i32, V2I32, u5_0ImmPred>;
def: OpR_RI_pat<S2_lsr_i_vh, pf2<HexagonVLSR>, v4i16, V4I16, u4_0ImmPred>;

def: OpR_RR_pat<S2_asl_r_vw, pf2<HexagonVASL>, v2i32, V2I32, I32>;
def: OpR_RR_pat<S2_asl_r_vh, pf2<HexagonVASL>, v4i16, V4I16, I32>;
def: OpR_RR_pat<S2_asr_r_vw, pf2<HexagonVASR>, v2i32, V2I32, I32>;
def: OpR_RR_pat<S2_asr_r_vh, pf2<HexagonVASR>, v4i16, V4I16, I32>;
def: OpR_RR_pat<S2_lsr_r_vw, pf2<HexagonVLSR>, v2i32, V2I32, I32>;
def: OpR_RR_pat<S2_lsr_r_vh, pf2<HexagonVLSR>, v4i16, V4I16, I32>;

def: Pat<(sra V2I32:$b, (v2i32 (HexagonVSPLAT u5_0ImmPred:$c))),
         (S2_asr_i_vw V2I32:$b, imm:$c)>;
def: Pat<(srl V2I32:$b, (v2i32 (HexagonVSPLAT u5_0ImmPred:$c))),
         (S2_lsr_i_vw V2I32:$b, imm:$c)>;
def: Pat<(shl V2I32:$b, (v2i32 (HexagonVSPLAT u5_0ImmPred:$c))),
         (S2_asl_i_vw V2I32:$b, imm:$c)>;
def: Pat<(sra V4I16:$b, (v4i16 (HexagonVSPLAT u4_0ImmPred:$c))),
         (S2_asr_i_vh V4I16:$b, imm:$c)>;
def: Pat<(srl V4I16:$b, (v4i16 (HexagonVSPLAT u4_0ImmPred:$c))),
         (S2_lsr_i_vh V4I16:$b, imm:$c)>;
def: Pat<(shl V4I16:$b, (v4i16 (HexagonVSPLAT u4_0ImmPred:$c))),
         (S2_asl_i_vh V4I16:$b, imm:$c)>;

def: Pat<(HexagonVASR V2I16:$Rs, u4_0ImmPred:$S),
         (LoReg (S2_asr_i_vh (ToAext64 $Rs), imm:$S))>;
def: Pat<(HexagonVASL V2I16:$Rs, u4_0ImmPred:$S),
         (LoReg (S2_asl_i_vh (ToAext64 $Rs), imm:$S))>;
def: Pat<(HexagonVLSR V2I16:$Rs, u4_0ImmPred:$S),
         (LoReg (S2_lsr_i_vh (ToAext64 $Rs), imm:$S))>;
def: Pat<(HexagonVASR V2I16:$Rs, I32:$Rt),
         (LoReg (S2_asr_i_vh (ToAext64 $Rs), I32:$Rt))>;
def: Pat<(HexagonVASL V2I16:$Rs, I32:$Rt),
         (LoReg (S2_asl_i_vh (ToAext64 $Rs), I32:$Rt))>;
def: Pat<(HexagonVLSR V2I16:$Rs, I32:$Rt),
         (LoReg (S2_lsr_i_vh (ToAext64 $Rs), I32:$Rt))>;


// --(9) Arithmetic/bitwise ----------------------------------------------
//

def: Pat<(abs  I32:$Rs), (A2_abs   I32:$Rs)>;
def: Pat<(abs  I64:$Rs), (A2_absp  I64:$Rs)>;
def: Pat<(not  I32:$Rs), (A2_subri -1, I32:$Rs)>;
def: Pat<(not  I64:$Rs), (A2_notp  I64:$Rs)>;
def: Pat<(ineg I64:$Rs), (A2_negp  I64:$Rs)>;

def: Pat<(fabs F32:$Rs), (S2_clrbit_i    F32:$Rs, 31)>;
def: Pat<(fneg F32:$Rs), (S2_togglebit_i F32:$Rs, 31)>;

def: Pat<(fabs F64:$Rs),
         (Combinew (S2_clrbit_i (HiReg $Rs), 31),
                   (i32 (LoReg $Rs)))>;
def: Pat<(fneg F64:$Rs),
         (Combinew (S2_togglebit_i (HiReg $Rs), 31),
                   (i32 (LoReg $Rs)))>;

def: Pat<(add I32:$Rs, anyimm:$s16),   (A2_addi   I32:$Rs,  imm:$s16)>;
def: Pat<(or  I32:$Rs, anyimm:$s10),   (A2_orir   I32:$Rs,  imm:$s10)>;
def: Pat<(and I32:$Rs, anyimm:$s10),   (A2_andir  I32:$Rs,  imm:$s10)>;
def: Pat<(sub anyimm:$s10, I32:$Rs),   (A2_subri  imm:$s10, I32:$Rs)>;

def: OpR_RR_pat<A2_add,       Add,        i32,   I32>;
def: OpR_RR_pat<A2_sub,       Sub,        i32,   I32>;
def: OpR_RR_pat<A2_and,       And,        i32,   I32>;
def: OpR_RR_pat<A2_or,        Or,         i32,   I32>;
def: OpR_RR_pat<A2_xor,       Xor,        i32,   I32>;
def: OpR_RR_pat<A2_addp,      Add,        i64,   I64>;
def: OpR_RR_pat<A2_subp,      Sub,        i64,   I64>;
def: OpR_RR_pat<A2_andp,      And,        i64,   I64>;
def: OpR_RR_pat<A2_orp,       Or,         i64,   I64>;
def: OpR_RR_pat<A2_xorp,      Xor,        i64,   I64>;
def: OpR_RR_pat<A4_andnp,     Not2<And>,  i64,   I64>;
def: OpR_RR_pat<A4_ornp,      Not2<Or>,   i64,   I64>;

def: OpR_RR_pat<A2_svaddh,    Add,        v2i16, V2I16>;
def: OpR_RR_pat<A2_svsubh,    Sub,        v2i16, V2I16>;

def: OpR_RR_pat<A2_vaddub,    Add,        v8i8,  V8I8>;
def: OpR_RR_pat<A2_vaddh,     Add,        v4i16, V4I16>;
def: OpR_RR_pat<A2_vaddw,     Add,        v2i32, V2I32>;
def: OpR_RR_pat<A2_vsubub,    Sub,        v8i8,  V8I8>;
def: OpR_RR_pat<A2_vsubh,     Sub,        v4i16, V4I16>;
def: OpR_RR_pat<A2_vsubw,     Sub,        v2i32, V2I32>;

def: OpR_RR_pat<A2_and,       And,        v4i8,  V4I8>;
def: OpR_RR_pat<A2_xor,       Xor,        v4i8,  V4I8>;
def: OpR_RR_pat<A2_or,        Or,         v4i8,  V4I8>;
def: OpR_RR_pat<A2_and,       And,        v2i16, V2I16>;
def: OpR_RR_pat<A2_xor,       Xor,        v2i16, V2I16>;
def: OpR_RR_pat<A2_or,        Or,         v2i16, V2I16>;
def: OpR_RR_pat<A2_andp,      And,        v8i8,  V8I8>;
def: OpR_RR_pat<A2_orp,       Or,         v8i8,  V8I8>;
def: OpR_RR_pat<A2_xorp,      Xor,        v8i8,  V8I8>;
def: OpR_RR_pat<A2_andp,      And,        v4i16, V4I16>;
def: OpR_RR_pat<A2_orp,       Or,         v4i16, V4I16>;
def: OpR_RR_pat<A2_xorp,      Xor,        v4i16, V4I16>;
def: OpR_RR_pat<A2_andp,      And,        v2i32, V2I32>;
def: OpR_RR_pat<A2_orp,       Or,         v2i32, V2I32>;
def: OpR_RR_pat<A2_xorp,      Xor,        v2i32, V2I32>;

def: OpR_RR_pat<M2_mpyi,      Mul,        i32,   I32>;
def: OpR_RR_pat<M2_mpy_up,    pf2<mulhs>, i32,   I32>;
def: OpR_RR_pat<M2_mpyu_up,   pf2<mulhu>, i32,   I32>;
def: OpR_RI_pat<M2_mpysip,    Mul,        i32,   I32, u32_0ImmPred>;
def: OpR_RI_pat<M2_mpysmi,    Mul,        i32,   I32, s32_0ImmPred>;

// Arithmetic on predicates.
def: OpR_RR_pat<C2_xor,       Add,        i1,    I1>;
def: OpR_RR_pat<C2_xor,       Add,        v2i1,  V2I1>;
def: OpR_RR_pat<C2_xor,       Add,        v4i1,  V4I1>;
def: OpR_RR_pat<C2_xor,       Add,        v8i1,  V8I1>;
def: OpR_RR_pat<C2_xor,       Sub,        i1,    I1>;
def: OpR_RR_pat<C2_xor,       Sub,        v2i1,  V2I1>;
def: OpR_RR_pat<C2_xor,       Sub,        v4i1,  V4I1>;
def: OpR_RR_pat<C2_xor,       Sub,        v8i1,  V8I1>;
def: OpR_RR_pat<C2_and,       Mul,        i1,    I1>;
def: OpR_RR_pat<C2_and,       Mul,        v2i1,  V2I1>;
def: OpR_RR_pat<C2_and,       Mul,        v4i1,  V4I1>;
def: OpR_RR_pat<C2_and,       Mul,        v8i1,  V8I1>;

def: OpR_RR_pat<F2_sfadd,     pf2<fadd>,    f32, F32>;
def: OpR_RR_pat<F2_sfsub,     pf2<fsub>,    f32, F32>;
def: OpR_RR_pat<F2_sfmpy,     pf2<fmul>,    f32, F32>;
def: OpR_RR_pat<F2_sfmin,     pf2<fminnum>, f32, F32>;
def: OpR_RR_pat<F2_sfmax,     pf2<fmaxnum>, f32, F32>;

let Predicates = [HasV66] in {
  def: OpR_RR_pat<F2_dfadd,     pf2<fadd>,    f64, F64>;
  def: OpR_RR_pat<F2_dfsub,     pf2<fsub>,    f64, F64>;
}

// In expressions like a0*b0 + a1*b1 + ..., prefer to generate multiply-add,
// over add-add with individual multiplies as inputs.
let AddedComplexity = 10 in {
  def: AccRRI_pat<M2_macsip,    Add, Su<Mul>, I32, u32_0ImmPred>;
  def: AccRRI_pat<M2_macsin,    Sub, Su<Mul>, I32, u32_0ImmPred>;
  def: AccRRR_pat<M2_maci,      Add, Su<Mul>, I32, I32, I32>;
  let Predicates = [HasV66] in
  def: AccRRR_pat<M2_mnaci,     Sub, Su<Mul>, I32, I32, I32>;
}

def: AccRRI_pat<M2_naccii,    Sub, Su<Add>, I32, s32_0ImmPred>;
def: AccRRI_pat<M2_accii,     Add, Su<Add>, I32, s32_0ImmPred>;
def: AccRRR_pat<M2_acci,      Add, Su<Add>, I32, I32, I32>;

// Mulh for vectors
//
def: Pat<(v2i32 (mulhu V2I32:$Rss, V2I32:$Rtt)),
         (Combinew (M2_mpyu_up (HiReg $Rss), (HiReg $Rtt)),
                   (M2_mpyu_up (LoReg $Rss), (LoReg $Rtt)))>;

def: Pat<(v2i32 (mulhs V2I32:$Rs, V2I32:$Rt)),
         (Combinew (M2_mpy_up (HiReg $Rs), (HiReg $Rt)),
                   (M2_mpy_up (LoReg $Rt), (LoReg $Rt)))>;

def Mulhub:
  OutPatFrag<(ops node:$Rss, node:$Rtt),
             (Combinew (S2_vtrunohb (M5_vmpybuu (HiReg $Rss), (HiReg $Rtt))),
                       (S2_vtrunohb (M5_vmpybuu (LoReg $Rss), (LoReg $Rtt))))>;

// Equivalent of byte-wise arithmetic shift right by 7 in v8i8.
def Asr7:
  OutPatFrag<(ops node:$Rss), (C2_mask (C2_not (A4_vcmpbgti $Rss, 0)))>;

def: Pat<(v8i8 (mulhu V8I8:$Rss, V8I8:$Rtt)),
         (Mulhub $Rss, $Rtt)>;

def: Pat<(v8i8 (mulhs V8I8:$Rss, V8I8:$Rtt)),
         (A2_vsubub
           (Mulhub $Rss, $Rtt),
           (A2_vaddub (A2_andp V8I8:$Rss, (Asr7 $Rtt)),
                      (A2_andp V8I8:$Rtt, (Asr7 $Rss))))>;

def Mpysh:
  OutPatFrag<(ops node:$Rs, node:$Rt), (M2_vmpy2s_s0 $Rs, $Rt)>;
def Mpyshh:
  OutPatFrag<(ops node:$Rss, node:$Rtt), (Mpysh (HiReg $Rss), (HiReg $Rtt))>;
def Mpyshl:
  OutPatFrag<(ops node:$Rss, node:$Rtt), (Mpysh (LoReg $Rss), (LoReg $Rtt))>;

def Mulhsh:
  OutPatFrag<(ops node:$Rss, node:$Rtt),
             (Combinew (A2_combine_hh (HiReg (Mpyshh $Rss, $Rtt)),
                                      (LoReg (Mpyshh $Rss, $Rtt))),
                       (A2_combine_hh (HiReg (Mpyshl $Rss, $Rtt)),
                                      (LoReg (Mpyshl $Rss, $Rtt))))>;

def: Pat<(v4i16 (mulhs V4I16:$Rss, V4I16:$Rtt)), (Mulhsh $Rss, $Rtt)>;

def: Pat<(v4i16 (mulhu V4I16:$Rss, V4I16:$Rtt)),
         (A2_vaddh
           (Mulhsh $Rss, $Rtt),
           (A2_vaddh (A2_andp V4I16:$Rss, (S2_asr_i_vh $Rtt, 15)),
                     (A2_andp V4I16:$Rtt, (S2_asr_i_vh $Rss, 15))))>;


def: Pat<(ineg (mul I32:$Rs, u8_0ImmPred:$u8)),
         (M2_mpysin IntRegs:$Rs, imm:$u8)>;

def n8_0ImmPred: PatLeaf<(i32 imm), [{
  int64_t V = N->getSExtValue();
  return -255 <= V && V <= 0;
}]>;

// Change the sign of the immediate for Rd=-mpyi(Rs,#u8)
def: Pat<(mul I32:$Rs, n8_0ImmPred:$n8),
         (M2_mpysin I32:$Rs, (NegImm8 imm:$n8))>;

def: Pat<(add Sext64:$Rs, I64:$Rt),
         (A2_addsp (LoReg Sext64:$Rs), I64:$Rt)>;

def: AccRRR_pat<M4_and_and,   And, Su_ni1<And>,  I32,  I32,  I32>;
def: AccRRR_pat<M4_and_or,    And, Su_ni1<Or>,   I32,  I32,  I32>;
def: AccRRR_pat<M4_and_xor,   And, Su<Xor>,      I32,  I32,  I32>;
def: AccRRR_pat<M4_or_and,    Or,  Su_ni1<And>,  I32,  I32,  I32>;
def: AccRRR_pat<M4_or_or,     Or,  Su_ni1<Or>,   I32,  I32,  I32>;
def: AccRRR_pat<M4_or_xor,    Or,  Su<Xor>,      I32,  I32,  I32>;
def: AccRRR_pat<M4_xor_and,   Xor, Su_ni1<And>,  I32,  I32,  I32>;
def: AccRRR_pat<M4_xor_or,    Xor, Su_ni1<Or>,   I32,  I32,  I32>;
def: AccRRR_pat<M2_xor_xacc,  Xor, Su<Xor>,      I32,  I32,  I32>;
def: AccRRR_pat<M4_xor_xacc,  Xor, Su<Xor>,      I64,  I64,  I64>;

// For dags like (or (and (not _), _), (shl _, _)) where the "or" with
// one argument matches the patterns below, and with the other argument
// matches S2_asl_r_r_or, etc, prefer the patterns below.
let AddedComplexity = 110 in {  // greater than S2_asl_r_r_and/or/xor.
  def: AccRRR_pat<M4_and_andn,  And, Su<Not2<And>>, I32,  I32,  I32>;
  def: AccRRR_pat<M4_or_andn,   Or,  Su<Not2<And>>, I32,  I32,  I32>;
  def: AccRRR_pat<M4_xor_andn,  Xor, Su<Not2<And>>, I32,  I32,  I32>;
}

// S4_addaddi and S4_subaddi don't have tied operands, so give them
// a bit of preference.
let AddedComplexity = 30 in {
  def: Pat<(add I32:$Rs, (Su<Add> I32:$Ru, anyimm:$s6)),
           (S4_addaddi IntRegs:$Rs, IntRegs:$Ru, imm:$s6)>;
  def: Pat<(add anyimm:$s6, (Su<Add> I32:$Rs, I32:$Ru)),
           (S4_addaddi IntRegs:$Rs, IntRegs:$Ru, imm:$s6)>;
  def: Pat<(add I32:$Rs, (Su<Sub> anyimm:$s6, I32:$Ru)),
           (S4_subaddi IntRegs:$Rs, imm:$s6, IntRegs:$Ru)>;
  def: Pat<(sub (Su<Add> I32:$Rs, anyimm:$s6), I32:$Ru),
           (S4_subaddi IntRegs:$Rs, imm:$s6, IntRegs:$Ru)>;
  def: Pat<(add (Su<Sub> I32:$Rs, I32:$Ru), anyimm:$s6),
           (S4_subaddi IntRegs:$Rs, imm:$s6, IntRegs:$Ru)>;
}

def: Pat<(or I32:$Ru, (Su<And> I32:$Rx, anyimm:$s10)),
         (S4_or_andix IntRegs:$Ru, IntRegs:$Rx, imm:$s10)>;
def: Pat<(or I32:$Rx, (Su<And> I32:$Rs, anyimm:$s10)),
         (S4_or_andi IntRegs:$Rx, IntRegs:$Rs, imm:$s10)>;
def: Pat<(or I32:$Rx, (Su<Or> I32:$Rs, anyimm:$s10)),
         (S4_or_ori IntRegs:$Rx, IntRegs:$Rs, imm:$s10)>;


def: Pat<(i32 (trunc (sra (Su<Mul> Sext64:$Rs, Sext64:$Rt), (i32 32)))),
         (M2_mpy_up (LoReg Sext64:$Rs), (LoReg Sext64:$Rt))>;
def: Pat<(i32 (trunc (srl (Su<Mul> Sext64:$Rs, Sext64:$Rt), (i32 32)))),
         (M2_mpy_up (LoReg Sext64:$Rs), (LoReg Sext64:$Rt))>;

def: Pat<(mul (Zext64 I32:$Rs), (Zext64 I32:$Rt)),
         (M2_dpmpyuu_s0 I32:$Rs, I32:$Rt)>;
def: Pat<(mul (Aext64 I32:$Rs), (Aext64 I32:$Rt)),
         (M2_dpmpyuu_s0 I32:$Rs, I32:$Rt)>;
def: Pat<(mul Sext64:$Rs, Sext64:$Rt),
         (M2_dpmpyss_s0 (LoReg Sext64:$Rs), (LoReg Sext64:$Rt))>;

def: Pat<(add I64:$Rx, (Su<Mul> Sext64:$Rs, Sext64:$Rt)),
         (M2_dpmpyss_acc_s0 I64:$Rx, (LoReg Sext64:$Rs), (LoReg Sext64:$Rt))>;
def: Pat<(sub I64:$Rx, (Su<Mul> Sext64:$Rs, Sext64:$Rt)),
         (M2_dpmpyss_nac_s0 I64:$Rx, (LoReg Sext64:$Rs), (LoReg Sext64:$Rt))>;
def: Pat<(add I64:$Rx, (Su<Mul> (Aext64 I32:$Rs), (Aext64 I32:$Rt))),
         (M2_dpmpyuu_acc_s0 I64:$Rx, I32:$Rs, I32:$Rt)>;
def: Pat<(add I64:$Rx, (Su<Mul> (Zext64 I32:$Rs), (Zext64 I32:$Rt))),
         (M2_dpmpyuu_acc_s0 I64:$Rx, I32:$Rs, I32:$Rt)>;
def: Pat<(sub I64:$Rx, (Su<Mul> (Aext64 I32:$Rs), (Aext64 I32:$Rt))),
         (M2_dpmpyuu_nac_s0 I64:$Rx, I32:$Rs, I32:$Rt)>;
def: Pat<(sub I64:$Rx, (Su<Mul> (Zext64 I32:$Rs), (Zext64 I32:$Rt))),
         (M2_dpmpyuu_nac_s0 I64:$Rx, I32:$Rs, I32:$Rt)>;

// Add halfword.
def: Pat<(sext_inreg (add I32:$Rt, I32:$Rs), i16),
         (A2_addh_l16_ll I32:$Rt, I32:$Rs)>;
def: Pat<(sra (add (shl I32:$Rt, (i32 16)), I32:$Rs), (i32 16)),
         (A2_addh_l16_hl I32:$Rt, I32:$Rs)>;
def: Pat<(shl (add I32:$Rt, I32:$Rs), (i32 16)),
         (A2_addh_h16_ll I32:$Rt, I32:$Rs)>;

// Subtract halfword.
def: Pat<(sext_inreg (sub I32:$Rt, I32:$Rs), i16),
         (A2_subh_l16_ll I32:$Rt, I32:$Rs)>;
def: Pat<(sra (add (shl I32:$Rt, (i32 16)), I32:$Rs), (i32 16)),
         (A2_addh_l16_hl I32:$Rt, I32:$Rs)>;
def: Pat<(shl (sub I32:$Rt, I32:$Rs), (i32 16)),
         (A2_subh_h16_ll I32:$Rt, I32:$Rs)>;

def: Pat<(mul I64:$Rss, I64:$Rtt),
         (Combinew
           (M2_maci (M2_maci (HiReg (M2_dpmpyuu_s0 (LoReg $Rss), (LoReg $Rtt))),
                             (LoReg $Rss),
                             (HiReg $Rtt)),
                    (LoReg $Rtt),
                    (HiReg $Rss)),
           (i32 (LoReg (M2_dpmpyuu_s0 (LoReg $Rss), (LoReg $Rtt)))))>;

def MulHU : OutPatFrag<(ops node:$Rss, node:$Rtt),
  (A2_addp
    (M2_dpmpyuu_acc_s0
      (S2_lsr_i_p
        (A2_addp
          (M2_dpmpyuu_acc_s0
            (S2_lsr_i_p (M2_dpmpyuu_s0 (LoReg $Rss), (LoReg $Rtt)), 32),
            (HiReg $Rss),
            (LoReg $Rtt)),
          (A4_combineir 0, (LoReg (M2_dpmpyuu_s0 (LoReg $Rss), (HiReg $Rtt))))),
        32),
      (HiReg $Rss),
      (HiReg $Rtt)),
    (S2_lsr_i_p (M2_dpmpyuu_s0 (LoReg $Rss), (HiReg $Rtt)), 32))>;

// Multiply 64-bit unsigned and use upper result.
def : Pat <(mulhu I64:$Rss, I64:$Rtt), (MulHU $Rss, $Rtt)>;

// Multiply 64-bit signed and use upper result.
//
// For two signed 64-bit integers A and B, let A' and B' denote A and B
// with the sign bit cleared. Then A = -2^63*s(A) + A', where s(A) is the
// sign bit of A (and identically for B). With this notation, the signed
// product A*B can be written as:
//   AB = (-2^63 s(A) + A') * (-2^63 s(B) + B')
//      = 2^126 s(A)s(B) - 2^63 [s(A)B'+s(B)A'] + A'B'
//      = 2^126 s(A)s(B) + 2^63 [s(A)B'+s(B)A'] + A'B' - 2*2^63 [s(A)B'+s(B)A']
//      = (unsigned product AB) - 2^64 [s(A)B'+s(B)A']

// Clear the sign bit in a 64-bit register.
def ClearSign : OutPatFrag<(ops node:$Rss),
  (Combinew (S2_clrbit_i (HiReg $Rss), 31), (i32 (LoReg $Rss)))>;

def : Pat <(mulhs I64:$Rss, I64:$Rtt),
  (A2_subp
    (MulHU $Rss, $Rtt),
    (A2_addp
      (A2_andp (S2_asr_i_p $Rss, 63), (ClearSign $Rtt)),
      (A2_andp (S2_asr_i_p $Rtt, 63), (ClearSign $Rss))))>;

// Prefer these instructions over M2_macsip/M2_macsin: the macsi* instructions
// will put the immediate addend into a register, while these instructions will
// use it directly. Such a construct does not appear in the middle of a gep,
// where M2_macsip would be preferable.
let AddedComplexity = 20 in {
  def: Pat<(add (Su<Mul> I32:$Rs, u6_0ImmPred:$U6), anyimm:$u6),
           (M4_mpyri_addi imm:$u6, IntRegs:$Rs, imm:$U6)>;
  def: Pat<(add (Su<Mul> I32:$Rs, I32:$Rt), anyimm:$u6),
           (M4_mpyrr_addi imm:$u6, IntRegs:$Rs, IntRegs:$Rt)>;
}

// Keep these instructions less preferable to M2_macsip/M2_macsin.
def: Pat<(add I32:$Ru, (Su<Mul> I32:$Rs, u6_2ImmPred:$u6_2)),
         (M4_mpyri_addr_u2 IntRegs:$Ru, imm:$u6_2, IntRegs:$Rs)>;
def: Pat<(add I32:$Ru, (Su<Mul> I32:$Rs, anyimm:$u6)),
         (M4_mpyri_addr IntRegs:$Ru, IntRegs:$Rs, imm:$u6)>;
def: Pat<(add I32:$Ru, (Su<Mul> I32:$Ry, I32:$Rs)),
         (M4_mpyrr_addr IntRegs:$Ru, IntRegs:$Ry, IntRegs:$Rs)>;


def: Pat<(fma F32:$Rs, F32:$Rt, F32:$Rx),
         (F2_sffma F32:$Rx, F32:$Rs, F32:$Rt)>;
def: Pat<(fma (fneg F32:$Rs), F32:$Rt, F32:$Rx),
         (F2_sffms F32:$Rx, F32:$Rs, F32:$Rt)>;
def: Pat<(fma F32:$Rs, (fneg F32:$Rt), F32:$Rx),
         (F2_sffms F32:$Rx, F32:$Rs, F32:$Rt)>;


def: Pat<(mul V2I32:$Rs, V2I32:$Rt),
         (PS_vmulw V2I32:$Rs, V2I32:$Rt)>;
def: Pat<(add V2I32:$Rx, (mul V2I32:$Rs, V2I32:$Rt)),
         (PS_vmulw_acc V2I32:$Rx, V2I32:$Rs, V2I32:$Rt)>;

// Add/subtract two v4i8: Hexagon does not have an insn for this one, so
// we use the double add v8i8, and use only the low part of the result.
def: Pat<(add V4I8:$Rs, V4I8:$Rt),
         (LoReg (A2_vaddub (ToAext64 $Rs), (ToAext64 $Rt)))>;
def: Pat<(sub V4I8:$Rs, V4I8:$Rt),
         (LoReg (A2_vsubub (ToAext64 $Rs), (ToAext64 $Rt)))>;

// Use M2_vmpy2s_s0 for half-word vector multiply. It multiplies two
// half-words, and saturates the result to a 32-bit value, except the
// saturation never happens (it can only occur with scaling).
def: Pat<(v2i16 (mul V2I16:$Rs, V2I16:$Rt)),
         (LoReg (S2_vtrunewh (A2_combineii 0, 0),
                             (M2_vmpy2s_s0 V2I16:$Rs, V2I16:$Rt)))>;
def: Pat<(v4i16 (mul V4I16:$Rs, V4I16:$Rt)),
         (S2_vtrunewh (M2_vmpy2s_s0 (HiReg $Rs), (HiReg $Rt)),
                      (M2_vmpy2s_s0 (LoReg $Rs), (LoReg $Rt)))>;

// Multiplies two v4i8 vectors.
def: Pat<(v4i8 (mul V4I8:$Rs, V4I8:$Rt)),
         (S2_vtrunehb (M5_vmpybuu V4I8:$Rs, V4I8:$Rt))>;

// Multiplies two v8i8 vectors.
def: Pat<(v8i8 (mul V8I8:$Rs, V8I8:$Rt)),
         (Combinew (S2_vtrunehb (M5_vmpybuu (HiReg $Rs), (HiReg $Rt))),
                   (S2_vtrunehb (M5_vmpybuu (LoReg $Rs), (LoReg $Rt))))>;


// --(10) Bit ------------------------------------------------------------
//

// Count leading zeros.
def: Pat<(i32 (ctlz I32:$Rs)),                (S2_cl0 I32:$Rs)>;
def: Pat<(i32 (trunc (ctlz I64:$Rss))),       (S2_cl0p I64:$Rss)>;

// Count trailing zeros.
def: Pat<(i32 (cttz I32:$Rs)),                (S2_ct0 I32:$Rs)>;
def: Pat<(i32 (trunc (cttz I64:$Rss))),       (S2_ct0p I64:$Rss)>;

// Count leading ones.
def: Pat<(i32 (ctlz (not I32:$Rs))),          (S2_cl1 I32:$Rs)>;
def: Pat<(i32 (trunc (ctlz (not I64:$Rss)))), (S2_cl1p I64:$Rss)>;

// Count trailing ones.
def: Pat<(i32 (cttz (not I32:$Rs))),           (S2_ct1 I32:$Rs)>;
def: Pat<(i32 (trunc (cttz (not I64:$Rss)))), (S2_ct1p I64:$Rss)>;

// Define leading/trailing patterns that require zero-extensions to 64 bits.
def: Pat<(i64 (ctlz I64:$Rss)),               (ToZext64 (S2_cl0p I64:$Rss))>;
def: Pat<(i64 (cttz I64:$Rss)),               (ToZext64 (S2_ct0p I64:$Rss))>;
def: Pat<(i64 (ctlz (not I64:$Rss))),         (ToZext64 (S2_cl1p I64:$Rss))>;
def: Pat<(i64 (cttz (not I64:$Rss))),         (ToZext64 (S2_ct1p I64:$Rss))>;

def: Pat<(i64 (ctpop I64:$Rss)),  (ToZext64 (S5_popcountp I64:$Rss))>;
def: Pat<(i32 (ctpop I32:$Rs)),   (S5_popcountp (A4_combineir 0, I32:$Rs))>;

def: Pat<(bitreverse I32:$Rs),    (S2_brev I32:$Rs)>;
def: Pat<(bitreverse I64:$Rss),   (S2_brevp I64:$Rss)>;

let AddedComplexity = 20 in { // Complexity greater than and/or/xor
  def: Pat<(and I32:$Rs, IsNPow2_32:$V),
           (S2_clrbit_i IntRegs:$Rs, (LogN2_32 $V))>;
  def: Pat<(or I32:$Rs, IsPow2_32:$V),
           (S2_setbit_i IntRegs:$Rs, (Log2_32 $V))>;
  def: Pat<(xor I32:$Rs, IsPow2_32:$V),
           (S2_togglebit_i IntRegs:$Rs, (Log2_32 $V))>;

  def: Pat<(and I32:$Rs, (not (shl 1, I32:$Rt))),
           (S2_clrbit_r IntRegs:$Rs, IntRegs:$Rt)>;
  def: Pat<(or I32:$Rs, (shl 1, I32:$Rt)),
           (S2_setbit_r IntRegs:$Rs, IntRegs:$Rt)>;
  def: Pat<(xor I32:$Rs, (shl 1, I32:$Rt)),
           (S2_togglebit_r IntRegs:$Rs, IntRegs:$Rt)>;
}

// Clr/set/toggle bit for 64-bit values with immediate bit index.
let AddedComplexity = 20 in { // Complexity greater than and/or/xor
  def: Pat<(and I64:$Rss, IsNPow2_64L:$V),
           (Combinew (i32 (HiReg $Rss)),
                     (S2_clrbit_i (LoReg $Rss), (LogN2_64 $V)))>;
  def: Pat<(and I64:$Rss, IsNPow2_64H:$V),
           (Combinew (S2_clrbit_i (HiReg $Rss), (UDEC32 (i32 (LogN2_64 $V)))),
                     (i32 (LoReg $Rss)))>;

  def: Pat<(or I64:$Rss, IsPow2_64L:$V),
           (Combinew (i32 (HiReg $Rss)),
                     (S2_setbit_i (LoReg $Rss), (Log2_64 $V)))>;
  def: Pat<(or I64:$Rss, IsPow2_64H:$V),
           (Combinew (S2_setbit_i (HiReg $Rss), (UDEC32 (i32 (Log2_64 $V)))),
                     (i32 (LoReg $Rss)))>;

  def: Pat<(xor I64:$Rss, IsPow2_64L:$V),
           (Combinew (i32 (HiReg $Rss)),
                     (S2_togglebit_i (LoReg $Rss), (Log2_64 $V)))>;
  def: Pat<(xor I64:$Rss, IsPow2_64H:$V),
           (Combinew (S2_togglebit_i (HiReg $Rss), (UDEC32 (i32 (Log2_64 $V)))),
                     (i32 (LoReg $Rss)))>;
}


let AddedComplexity = 20 in { // Complexity greater than cmp reg-imm.
  def: Pat<(i1 (setne (and (shl 1, u5_0ImmPred:$u5), I32:$Rs), 0)),
           (S2_tstbit_i IntRegs:$Rs, imm:$u5)>;
  def: Pat<(i1 (setne (and (shl 1, I32:$Rt), I32:$Rs), 0)),
           (S2_tstbit_r IntRegs:$Rs, IntRegs:$Rt)>;
  def: Pat<(i1 (trunc I32:$Rs)),
           (S2_tstbit_i IntRegs:$Rs, 0)>;
  def: Pat<(i1 (trunc I64:$Rs)),
           (S2_tstbit_i (LoReg DoubleRegs:$Rs), 0)>;
}

def: Pat<(and (srl I32:$Rs, u5_0ImmPred:$u5), 1),
         (I1toI32 (S2_tstbit_i I32:$Rs, imm:$u5))>;
def: Pat<(and (srl I64:$Rss, IsULE<32,31>:$u6), 1),
         (ToZext64 (I1toI32 (S2_tstbit_i (LoReg $Rss), imm:$u6)))>;
def: Pat<(and (srl I64:$Rss, IsUGT<32,31>:$u6), 1),
         (ToZext64 (I1toI32 (S2_tstbit_i (HiReg $Rss), (UDEC32 $u6))))>;

def: Pat<(and (not (srl I32:$Rs, u5_0ImmPred:$u5)), 1),
         (I1toI32 (S4_ntstbit_i I32:$Rs, imm:$u5))>;
def: Pat<(and (not (srl I64:$Rss, IsULE<32,31>:$u6)), 1),
         (ToZext64 (I1toI32 (S4_ntstbit_i (LoReg $Rss), imm:$u6)))>;
def: Pat<(and (not (srl I64:$Rss, IsUGT<32,31>:$u6)), 1),
         (ToZext64 (I1toI32 (S4_ntstbit_i (HiReg $Rss), (UDEC32 $u6))))>;

let AddedComplexity = 20 in { // Complexity greater than compare reg-imm.
  def: Pat<(i1 (seteq (and I32:$Rs, u6_0ImmPred:$u6), 0)),
           (C2_bitsclri IntRegs:$Rs, imm:$u6)>;
  def: Pat<(i1 (seteq (and I32:$Rs, I32:$Rt), 0)),
           (C2_bitsclr IntRegs:$Rs, IntRegs:$Rt)>;
}

let AddedComplexity = 10 in   // Complexity greater than compare reg-reg.
def: Pat<(i1 (seteq (and I32:$Rs, I32:$Rt), IntRegs:$Rt)),
         (C2_bitsset IntRegs:$Rs, IntRegs:$Rt)>;

def SDTTestBit:
  SDTypeProfile<1, 2, [SDTCisVT<0, i1>, SDTCisVT<1, i32>, SDTCisVT<2, i32>]>;
def HexagonTSTBIT: SDNode<"HexagonISD::TSTBIT", SDTTestBit>;

def: Pat<(HexagonTSTBIT I32:$Rs, u5_0ImmPred:$u5),
         (S2_tstbit_i I32:$Rs, imm:$u5)>;
def: Pat<(HexagonTSTBIT I32:$Rs, I32:$Rt),
         (S2_tstbit_r I32:$Rs, I32:$Rt)>;

// Add extra complexity to prefer these instructions over bitsset/bitsclr.
// The reason is that tstbit/ntstbit can be folded into a compound instruction:
//   if ([!]tstbit(...)) jump ...
let AddedComplexity = 20 in {   // Complexity greater than cmp reg-imm.
  def: Pat<(i1 (seteq (and I32:$Rs, IsPow2_32:$u5), 0)),
           (S4_ntstbit_i I32:$Rs, (Log2_32 imm:$u5))>;
  def: Pat<(i1 (setne (and I32:$Rs, IsPow2_32:$u5), 0)),
           (S2_tstbit_i I32:$Rs, (Log2_32 imm:$u5))>;
  def: Pat<(i1 (seteq (and (shl 1, I32:$Rt), I32:$Rs), 0)),
           (S4_ntstbit_r I32:$Rs, I32:$Rt)>;
  def: Pat<(i1 (setne (and (shl 1, I32:$Rt), I32:$Rs), 0)),
           (S2_tstbit_r I32:$Rs, I32:$Rt)>;
}

def: Pat<(i1 (seteq (and I64:$Rs, IsPow2_64L:$u6), 0)),
         (S4_ntstbit_i (LoReg $Rs), (Log2_64 $u6))>;
def: Pat<(i1 (seteq (and I64:$Rs, IsPow2_64H:$u6), 0)),
         (S4_ntstbit_i (HiReg $Rs), (UDEC32 (i32 (Log2_64 $u6))))>;
def: Pat<(i1 (setne (and I64:$Rs, IsPow2_64L:$u6), 0)),
         (S2_tstbit_i (LoReg $Rs), (Log2_64 imm:$u6))>;
def: Pat<(i1 (setne (and I64:$Rs, IsPow2_64H:$u6), 0)),
         (S2_tstbit_i (HiReg $Rs), (UDEC32 (i32 (Log2_64 imm:$u6))))>;

// Do not increase complexity of these patterns. In the DAG, "cmp i8" may be
// represented as a compare against "value & 0xFF", which is an exact match
// for cmpb (same for cmph). The patterns below do not contain any additional
// complexity that would make them preferable, and if they were actually used
// instead of cmpb/cmph, they would result in a compare against register that
// is loaded with the byte/half mask (i.e. 0xFF or 0xFFFF).
def: Pat<(i1 (setne (and I32:$Rs, u6_0ImmPred:$u6), 0)),
         (C4_nbitsclri I32:$Rs, imm:$u6)>;
def: Pat<(i1 (setne (and I32:$Rs, I32:$Rt), 0)),
         (C4_nbitsclr I32:$Rs, I32:$Rt)>;
def: Pat<(i1 (setne (and I32:$Rs, I32:$Rt), I32:$Rt)),
         (C4_nbitsset I32:$Rs, I32:$Rt)>;

// Special patterns to address certain cases where the "top-down" matching
// algorithm would cause suboptimal selection.

let AddedComplexity = 100 in {
  // Avoid A4_rcmp[n]eqi in these cases:
  def: Pat<(i32 (zext (i1 (seteq (and (shl 1, I32:$Rt), I32:$Rs), 0)))),
           (I1toI32 (S4_ntstbit_r IntRegs:$Rs, IntRegs:$Rt))>;
  def: Pat<(i32 (zext (i1 (setne (and (shl 1, I32:$Rt), I32:$Rs), 0)))),
           (I1toI32 (S2_tstbit_r IntRegs:$Rs, IntRegs:$Rt))>;
  def: Pat<(i32 (zext (i1 (seteq (and I32:$Rs, IsPow2_32:$u5), 0)))),
           (I1toI32 (S4_ntstbit_i I32:$Rs, (Log2_32 imm:$u5)))>;
  def: Pat<(i32 (zext (i1 (setne (and I32:$Rs, IsPow2_32:$u5), 0)))),
           (I1toI32 (S2_tstbit_i I32:$Rs, (Log2_32 imm:$u5)))>;
  def: Pat<(i32 (zext (i1 (seteq (and (shl 1, I32:$Rt), I32:$Rs), 0)))),
           (I1toI32 (S4_ntstbit_r I32:$Rs, I32:$Rt))>;
  def: Pat<(i32 (zext (i1 (setne (and (shl 1, I32:$Rt), I32:$Rs), 0)))),
           (I1toI32 (S2_tstbit_r I32:$Rs, I32:$Rt))>;
}

// --(11) PIC ------------------------------------------------------------
//

def SDT_HexagonAtGot
  : SDTypeProfile<1, 3, [SDTCisVT<0, i32>, SDTCisVT<1, i32>, SDTCisVT<2, i32>]>;
def SDT_HexagonAtPcrel
  : SDTypeProfile<1, 1, [SDTCisVT<0, i32>, SDTCisVT<1, i32>]>;

// AT_GOT address-of-GOT, address-of-global, offset-in-global
def HexagonAtGot       : SDNode<"HexagonISD::AT_GOT", SDT_HexagonAtGot>;
// AT_PCREL address-of-global
def HexagonAtPcrel     : SDNode<"HexagonISD::AT_PCREL", SDT_HexagonAtPcrel>;

def: Pat<(HexagonAtGot I32:$got, I32:$addr, (i32 0)),
         (L2_loadri_io I32:$got, imm:$addr)>;
def: Pat<(HexagonAtGot I32:$got, I32:$addr, s30_2ImmPred:$off),
         (A2_addi (L2_loadri_io I32:$got, imm:$addr), imm:$off)>;
def: Pat<(HexagonAtPcrel I32:$addr),
         (C4_addipc imm:$addr)>;

// The HVX load patterns also match AT_PCREL directly. Make sure that
// if the selection of this opcode changes, it's updated in all places.


// --(12) Load -----------------------------------------------------------
//

def extloadv2i8: PatFrag<(ops node:$ptr), (extload node:$ptr), [{
  return cast<LoadSDNode>(N)->getMemoryVT() == MVT::v2i8;
}]>;
def extloadv4i8: PatFrag<(ops node:$ptr), (extload node:$ptr), [{
  return cast<LoadSDNode>(N)->getMemoryVT() == MVT::v4i8;
}]>;

def zextloadv2i8: PatFrag<(ops node:$ptr), (zextload node:$ptr), [{
  return cast<LoadSDNode>(N)->getMemoryVT() == MVT::v2i8;
}]>;
def zextloadv4i8: PatFrag<(ops node:$ptr), (zextload node:$ptr), [{
  return cast<LoadSDNode>(N)->getMemoryVT() == MVT::v4i8;
}]>;

def sextloadv2i8: PatFrag<(ops node:$ptr), (sextload node:$ptr), [{
  return cast<LoadSDNode>(N)->getMemoryVT() == MVT::v2i8;
}]>;
def sextloadv4i8: PatFrag<(ops node:$ptr), (sextload node:$ptr), [{
  return cast<LoadSDNode>(N)->getMemoryVT() == MVT::v4i8;
}]>;

// Patterns to select load-indexed: Rs + Off.
// - frameindex [+ imm],
multiclass Loadxfi_pat<PatFrag Load, ValueType VT, PatLeaf ImmPred,
                       InstHexagon MI> {
  def: Pat<(VT (Load (add (i32 AddrFI:$fi), ImmPred:$Off))),
           (VT (MI AddrFI:$fi, imm:$Off))>;
  def: Pat<(VT (Load (IsOrAdd (i32 AddrFI:$fi), ImmPred:$Off))),
           (VT (MI AddrFI:$fi, imm:$Off))>;
  def: Pat<(VT (Load AddrFI:$fi)), (VT (MI AddrFI:$fi, 0))>;
}

// Patterns to select load-indexed: Rs + Off.
// - base reg [+ imm]
multiclass Loadxgi_pat<PatFrag Load, ValueType VT, PatLeaf ImmPred,
                       InstHexagon MI> {
  def: Pat<(VT (Load (add I32:$Rs, ImmPred:$Off))),
           (VT (MI IntRegs:$Rs, imm:$Off))>;
  def: Pat<(VT (Load (IsOrAdd I32:$Rs, ImmPred:$Off))),
           (VT (MI IntRegs:$Rs, imm:$Off))>;
  def: Pat<(VT (Load I32:$Rs)), (VT (MI IntRegs:$Rs, 0))>;
}

// Patterns to select load-indexed: Rs + Off. Combines Loadxfi + Loadxgi.
multiclass Loadxi_pat<PatFrag Load, ValueType VT, PatLeaf ImmPred,
                      InstHexagon MI> {
  defm: Loadxfi_pat<Load, VT, ImmPred, MI>;
  defm: Loadxgi_pat<Load, VT, ImmPred, MI>;
}

// Patterns to select load reg indexed: Rs + Off with a value modifier.
// - frameindex [+ imm]
multiclass Loadxfim_pat<PatFrag Load, ValueType VT, PatFrag ValueMod,
                        PatLeaf ImmPred, InstHexagon MI> {
  def: Pat<(VT (Load (add (i32 AddrFI:$fi), ImmPred:$Off))),
           (VT (ValueMod (MI AddrFI:$fi, imm:$Off)))>;
  def: Pat<(VT (Load (IsOrAdd (i32 AddrFI:$fi), ImmPred:$Off))),
           (VT (ValueMod (MI AddrFI:$fi, imm:$Off)))>;
  def: Pat<(VT (Load AddrFI:$fi)), (VT (ValueMod (MI AddrFI:$fi, 0)))>;
}

// Patterns to select load reg indexed: Rs + Off with a value modifier.
// - base reg [+ imm]
multiclass Loadxgim_pat<PatFrag Load, ValueType VT, PatFrag ValueMod,
                        PatLeaf ImmPred, InstHexagon MI> {
  def: Pat<(VT (Load (add I32:$Rs, ImmPred:$Off))),
           (VT (ValueMod (MI IntRegs:$Rs, imm:$Off)))>;
  def: Pat<(VT (Load (IsOrAdd I32:$Rs, ImmPred:$Off))),
           (VT (ValueMod (MI IntRegs:$Rs, imm:$Off)))>;
  def: Pat<(VT (Load I32:$Rs)), (VT (ValueMod (MI IntRegs:$Rs, 0)))>;
}

// Patterns to select load reg indexed: Rs + Off with a value modifier.
// Combines Loadxfim + Loadxgim.
multiclass Loadxim_pat<PatFrag Load, ValueType VT, PatFrag ValueMod,
                       PatLeaf ImmPred, InstHexagon MI> {
  defm: Loadxfim_pat<Load, VT, ValueMod, ImmPred, MI>;
  defm: Loadxgim_pat<Load, VT, ValueMod, ImmPred, MI>;
}

// Pattern to select load reg reg-indexed: Rs + Rt<<u2.
class Loadxr_shl_pat<PatFrag Load, ValueType VT, InstHexagon MI>
  : Pat<(VT (Load (add I32:$Rs, (i32 (shl I32:$Rt, u2_0ImmPred:$u2))))),
        (VT (MI IntRegs:$Rs, IntRegs:$Rt, imm:$u2))>;

// Pattern to select load reg reg-indexed: Rs + Rt<<0.
class Loadxr_add_pat<PatFrag Load, ValueType VT, InstHexagon MI>
  : Pat<(VT (Load (add I32:$Rs, I32:$Rt))),
        (VT (MI IntRegs:$Rs, IntRegs:$Rt, 0))>;

// Pattern to select load reg reg-indexed: Rs + Rt<<u2 with value modifier.
class Loadxrm_shl_pat<PatFrag Load, ValueType VT, PatFrag ValueMod,
                      InstHexagon MI>
  : Pat<(VT (Load (add I32:$Rs, (i32 (shl I32:$Rt, u2_0ImmPred:$u2))))),
        (VT (ValueMod (MI IntRegs:$Rs, IntRegs:$Rt, imm:$u2)))>;

// Pattern to select load reg reg-indexed: Rs + Rt<<0 with value modifier.
class Loadxrm_add_pat<PatFrag Load, ValueType VT, PatFrag ValueMod,
                      InstHexagon MI>
  : Pat<(VT (Load (add I32:$Rs, I32:$Rt))),
        (VT (ValueMod (MI IntRegs:$Rs, IntRegs:$Rt, 0)))>;

// Pattern to select load long-offset reg-indexed: Addr + Rt<<u2.
// Don't match for u2==0, instead use reg+imm for those cases.
class Loadxu_pat<PatFrag Load, ValueType VT, PatFrag ImmPred, InstHexagon MI>
  : Pat<(VT (Load (add (shl IntRegs:$Rt, u2_0ImmPred:$u2), ImmPred:$Addr))),
        (VT (MI IntRegs:$Rt, imm:$u2, ImmPred:$Addr))>;

class Loadxum_pat<PatFrag Load, ValueType VT, PatFrag ImmPred, PatFrag ValueMod,
                  InstHexagon MI>
  : Pat<(VT (Load (add (shl IntRegs:$Rt, u2_0ImmPred:$u2), ImmPred:$Addr))),
        (VT (ValueMod (MI IntRegs:$Rt, imm:$u2, ImmPred:$Addr)))>;

// Pattern to select load absolute.
class Loada_pat<PatFrag Load, ValueType VT, PatFrag Addr, InstHexagon MI>
  : Pat<(VT (Load Addr:$addr)), (MI Addr:$addr)>;

// Pattern to select load absolute with value modifier.
class Loadam_pat<PatFrag Load, ValueType VT, PatFrag Addr, PatFrag ValueMod,
                 InstHexagon MI>
  : Pat<(VT (Load Addr:$addr)), (ValueMod (MI Addr:$addr))>;


let AddedComplexity = 20 in {
  defm: Loadxi_pat<extloadi1,       i32,   anyimm0, L2_loadrub_io>;
  defm: Loadxi_pat<extloadi8,       i32,   anyimm0, L2_loadrub_io>;
  defm: Loadxi_pat<extloadi16,      i32,   anyimm1, L2_loadruh_io>;
  defm: Loadxi_pat<extloadv2i8,     v2i16, anyimm1, L2_loadbzw2_io>;
  defm: Loadxi_pat<extloadv4i8,     v4i16, anyimm2, L2_loadbzw4_io>;
  defm: Loadxi_pat<sextloadi8,      i32,   anyimm0, L2_loadrb_io>;
  defm: Loadxi_pat<sextloadi16,     i32,   anyimm1, L2_loadrh_io>;
  defm: Loadxi_pat<sextloadv2i8,    v2i16, anyimm1, L2_loadbsw2_io>;
  defm: Loadxi_pat<sextloadv4i8,    v4i16, anyimm2, L2_loadbzw4_io>;
  defm: Loadxi_pat<zextloadi1,      i32,   anyimm0, L2_loadrub_io>;
  defm: Loadxi_pat<zextloadi8,      i32,   anyimm0, L2_loadrub_io>;
  defm: Loadxi_pat<zextloadi16,     i32,   anyimm1, L2_loadruh_io>;
  defm: Loadxi_pat<zextloadv2i8,    v2i16, anyimm1, L2_loadbzw2_io>;
  defm: Loadxi_pat<zextloadv4i8,    v4i16, anyimm2, L2_loadbzw4_io>;
  defm: Loadxi_pat<load,            i32,   anyimm2, L2_loadri_io>;
  defm: Loadxi_pat<load,            v2i16, anyimm2, L2_loadri_io>;
  defm: Loadxi_pat<load,            v4i8,  anyimm2, L2_loadri_io>;
  defm: Loadxi_pat<load,            i64,   anyimm3, L2_loadrd_io>;
  defm: Loadxi_pat<load,            v2i32, anyimm3, L2_loadrd_io>;
  defm: Loadxi_pat<load,            v4i16, anyimm3, L2_loadrd_io>;
  defm: Loadxi_pat<load,            v8i8,  anyimm3, L2_loadrd_io>;
  defm: Loadxi_pat<load,            f32,   anyimm2, L2_loadri_io>;
  defm: Loadxi_pat<load,            f64,   anyimm3, L2_loadrd_io>;
  // No sextloadi1.

  defm: Loadxi_pat<atomic_load_8 ,  i32, anyimm0, L2_loadrub_io>;
  defm: Loadxi_pat<atomic_load_16,  i32, anyimm1, L2_loadruh_io>;
  defm: Loadxi_pat<atomic_load_32,  i32, anyimm2, L2_loadri_io>;
  defm: Loadxi_pat<atomic_load_64,  i64, anyimm3, L2_loadrd_io>;
}

let AddedComplexity = 30 in {
  defm: Loadxim_pat<extloadi1,    i64, ToAext64, anyimm0, L2_loadrub_io>;
  defm: Loadxim_pat<extloadi8,    i64, ToAext64, anyimm0, L2_loadrub_io>;
  defm: Loadxim_pat<extloadi16,   i64, ToAext64, anyimm1, L2_loadruh_io>;
  defm: Loadxim_pat<extloadi32,   i64, ToAext64, anyimm2, L2_loadri_io>;
  defm: Loadxim_pat<zextloadi1,   i64, ToZext64, anyimm0, L2_loadrub_io>;
  defm: Loadxim_pat<zextloadi8,   i64, ToZext64, anyimm0, L2_loadrub_io>;
  defm: Loadxim_pat<zextloadi16,  i64, ToZext64, anyimm1, L2_loadruh_io>;
  defm: Loadxim_pat<zextloadi32,  i64, ToZext64, anyimm2, L2_loadri_io>;
  defm: Loadxim_pat<sextloadi8,   i64, ToSext64, anyimm0, L2_loadrb_io>;
  defm: Loadxim_pat<sextloadi16,  i64, ToSext64, anyimm1, L2_loadrh_io>;
  defm: Loadxim_pat<sextloadi32,  i64, ToSext64, anyimm2, L2_loadri_io>;
}

let AddedComplexity  = 60 in {
  def: Loadxu_pat<extloadi8,    i32,   anyimm0, L4_loadrub_ur>;
  def: Loadxu_pat<extloadi16,   i32,   anyimm1, L4_loadruh_ur>;
  def: Loadxu_pat<extloadv2i8,  v2i16, anyimm1, L4_loadbzw2_ur>;
  def: Loadxu_pat<extloadv4i8,  v4i16, anyimm2, L4_loadbzw4_ur>;
  def: Loadxu_pat<sextloadi8,   i32,   anyimm0, L4_loadrb_ur>;
  def: Loadxu_pat<sextloadi16,  i32,   anyimm1, L4_loadrh_ur>;
  def: Loadxu_pat<sextloadv2i8, v2i16, anyimm1, L4_loadbsw2_ur>;
  def: Loadxu_pat<sextloadv4i8, v4i16, anyimm2, L4_loadbzw4_ur>;
  def: Loadxu_pat<zextloadi8,   i32,   anyimm0, L4_loadrub_ur>;
  def: Loadxu_pat<zextloadi16,  i32,   anyimm1, L4_loadruh_ur>;
  def: Loadxu_pat<zextloadv2i8, v2i16, anyimm1, L4_loadbzw2_ur>;
  def: Loadxu_pat<zextloadv4i8, v4i16, anyimm2, L4_loadbzw4_ur>;
  def: Loadxu_pat<load,         i32,   anyimm2, L4_loadri_ur>;
  def: Loadxu_pat<load,         v2i16, anyimm2, L4_loadri_ur>;
  def: Loadxu_pat<load,         v4i8,  anyimm2, L4_loadri_ur>;
  def: Loadxu_pat<load,         i64,   anyimm3, L4_loadrd_ur>;
  def: Loadxu_pat<load,         v2i32, anyimm3, L4_loadrd_ur>;
  def: Loadxu_pat<load,         v4i16, anyimm3, L4_loadrd_ur>;
  def: Loadxu_pat<load,         v8i8,  anyimm3, L4_loadrd_ur>;
  def: Loadxu_pat<load,         f32,   anyimm2, L4_loadri_ur>;
  def: Loadxu_pat<load,         f64,   anyimm3, L4_loadrd_ur>;

  def: Loadxum_pat<sextloadi8,  i64, anyimm0, ToSext64, L4_loadrb_ur>;
  def: Loadxum_pat<zextloadi8,  i64, anyimm0, ToZext64, L4_loadrub_ur>;
  def: Loadxum_pat<extloadi8,   i64, anyimm0, ToAext64, L4_loadrub_ur>;
  def: Loadxum_pat<sextloadi16, i64, anyimm1, ToSext64, L4_loadrh_ur>;
  def: Loadxum_pat<zextloadi16, i64, anyimm1, ToZext64, L4_loadruh_ur>;
  def: Loadxum_pat<extloadi16,  i64, anyimm1, ToAext64, L4_loadruh_ur>;
  def: Loadxum_pat<sextloadi32, i64, anyimm2, ToSext64, L4_loadri_ur>;
  def: Loadxum_pat<zextloadi32, i64, anyimm2, ToZext64, L4_loadri_ur>;
  def: Loadxum_pat<extloadi32,  i64, anyimm2, ToAext64, L4_loadri_ur>;
}

let AddedComplexity = 40 in {
  def: Loadxr_shl_pat<extloadi8,     i32,   L4_loadrub_rr>;
  def: Loadxr_shl_pat<zextloadi8,    i32,   L4_loadrub_rr>;
  def: Loadxr_shl_pat<sextloadi8,    i32,   L4_loadrb_rr>;
  def: Loadxr_shl_pat<extloadi16,    i32,   L4_loadruh_rr>;
  def: Loadxr_shl_pat<zextloadi16,   i32,   L4_loadruh_rr>;
  def: Loadxr_shl_pat<sextloadi16,   i32,   L4_loadrh_rr>;
  def: Loadxr_shl_pat<load,          i32,   L4_loadri_rr>;
  def: Loadxr_shl_pat<load,          v2i16, L4_loadri_rr>;
  def: Loadxr_shl_pat<load,          v4i8,  L4_loadri_rr>;
  def: Loadxr_shl_pat<load,          i64,   L4_loadrd_rr>;
  def: Loadxr_shl_pat<load,          v2i32, L4_loadrd_rr>;
  def: Loadxr_shl_pat<load,          v4i16, L4_loadrd_rr>;
  def: Loadxr_shl_pat<load,          v8i8,  L4_loadrd_rr>;
  def: Loadxr_shl_pat<load,          f32,   L4_loadri_rr>;
  def: Loadxr_shl_pat<load,          f64,   L4_loadrd_rr>;
}

let AddedComplexity = 20 in {
  def: Loadxr_add_pat<extloadi8,     i32,   L4_loadrub_rr>;
  def: Loadxr_add_pat<zextloadi8,    i32,   L4_loadrub_rr>;
  def: Loadxr_add_pat<sextloadi8,    i32,   L4_loadrb_rr>;
  def: Loadxr_add_pat<extloadi16,    i32,   L4_loadruh_rr>;
  def: Loadxr_add_pat<zextloadi16,   i32,   L4_loadruh_rr>;
  def: Loadxr_add_pat<sextloadi16,   i32,   L4_loadrh_rr>;
  def: Loadxr_add_pat<load,          i32,   L4_loadri_rr>;
  def: Loadxr_add_pat<load,          v2i16, L4_loadri_rr>;
  def: Loadxr_add_pat<load,          v4i8,  L4_loadri_rr>;
  def: Loadxr_add_pat<load,          i64,   L4_loadrd_rr>;
  def: Loadxr_add_pat<load,          v2i32, L4_loadrd_rr>;
  def: Loadxr_add_pat<load,          v4i16, L4_loadrd_rr>;
  def: Loadxr_add_pat<load,          v8i8,  L4_loadrd_rr>;
  def: Loadxr_add_pat<load,          f32,   L4_loadri_rr>;
  def: Loadxr_add_pat<load,          f64,   L4_loadrd_rr>;
}

let AddedComplexity = 40 in {
  def: Loadxrm_shl_pat<extloadi8,    i64, ToAext64, L4_loadrub_rr>;
  def: Loadxrm_shl_pat<zextloadi8,   i64, ToZext64, L4_loadrub_rr>;
  def: Loadxrm_shl_pat<sextloadi8,   i64, ToSext64, L4_loadrb_rr>;
  def: Loadxrm_shl_pat<extloadi16,   i64, ToAext64, L4_loadruh_rr>;
  def: Loadxrm_shl_pat<zextloadi16,  i64, ToZext64, L4_loadruh_rr>;
  def: Loadxrm_shl_pat<sextloadi16,  i64, ToSext64, L4_loadrh_rr>;
  def: Loadxrm_shl_pat<extloadi32,   i64, ToAext64, L4_loadri_rr>;
  def: Loadxrm_shl_pat<zextloadi32,  i64, ToZext64, L4_loadri_rr>;
  def: Loadxrm_shl_pat<sextloadi32,  i64, ToSext64, L4_loadri_rr>;
}

let AddedComplexity = 20 in {
  def: Loadxrm_add_pat<extloadi8,    i64, ToAext64, L4_loadrub_rr>;
  def: Loadxrm_add_pat<zextloadi8,   i64, ToZext64, L4_loadrub_rr>;
  def: Loadxrm_add_pat<sextloadi8,   i64, ToSext64, L4_loadrb_rr>;
  def: Loadxrm_add_pat<extloadi16,   i64, ToAext64, L4_loadruh_rr>;
  def: Loadxrm_add_pat<zextloadi16,  i64, ToZext64, L4_loadruh_rr>;
  def: Loadxrm_add_pat<sextloadi16,  i64, ToSext64, L4_loadrh_rr>;
  def: Loadxrm_add_pat<extloadi32,   i64, ToAext64, L4_loadri_rr>;
  def: Loadxrm_add_pat<zextloadi32,  i64, ToZext64, L4_loadri_rr>;
  def: Loadxrm_add_pat<sextloadi32,  i64, ToSext64, L4_loadri_rr>;
}

// Absolute address

let AddedComplexity  = 60 in {
  def: Loada_pat<zextloadi1,      i32,   anyimm0, PS_loadrubabs>;
  def: Loada_pat<sextloadi8,      i32,   anyimm0, PS_loadrbabs>;
  def: Loada_pat<extloadi8,       i32,   anyimm0, PS_loadrubabs>;
  def: Loada_pat<zextloadi8,      i32,   anyimm0, PS_loadrubabs>;
  def: Loada_pat<sextloadi16,     i32,   anyimm1, PS_loadrhabs>;
  def: Loada_pat<extloadi16,      i32,   anyimm1, PS_loadruhabs>;
  def: Loada_pat<zextloadi16,     i32,   anyimm1, PS_loadruhabs>;
  def: Loada_pat<load,            i32,   anyimm2, PS_loadriabs>;
  def: Loada_pat<load,            v2i16, anyimm2, PS_loadriabs>;
  def: Loada_pat<load,            v4i8,  anyimm2, PS_loadriabs>;
  def: Loada_pat<load,            i64,   anyimm3, PS_loadrdabs>;
  def: Loada_pat<load,            v2i32, anyimm3, PS_loadrdabs>;
  def: Loada_pat<load,            v4i16, anyimm3, PS_loadrdabs>;
  def: Loada_pat<load,            v8i8,  anyimm3, PS_loadrdabs>;
  def: Loada_pat<load,            f32,   anyimm2, PS_loadriabs>;
  def: Loada_pat<load,            f64,   anyimm3, PS_loadrdabs>;

  def: Loada_pat<atomic_load_8,   i32, anyimm0, PS_loadrubabs>;
  def: Loada_pat<atomic_load_16,  i32, anyimm1, PS_loadruhabs>;
  def: Loada_pat<atomic_load_32,  i32, anyimm2, PS_loadriabs>;
  def: Loada_pat<atomic_load_64,  i64, anyimm3, PS_loadrdabs>;
}

let AddedComplexity  = 30 in {
  def: Loadam_pat<extloadi8,      i64, anyimm0, ToAext64, PS_loadrubabs>;
  def: Loadam_pat<sextloadi8,     i64, anyimm0, ToSext64, PS_loadrbabs>;
  def: Loadam_pat<zextloadi8,     i64, anyimm0, ToZext64, PS_loadrubabs>;
  def: Loadam_pat<extloadi16,     i64, anyimm1, ToAext64, PS_loadruhabs>;
  def: Loadam_pat<sextloadi16,    i64, anyimm1, ToSext64, PS_loadrhabs>;
  def: Loadam_pat<zextloadi16,    i64, anyimm1, ToZext64, PS_loadruhabs>;
  def: Loadam_pat<extloadi32,     i64, anyimm2, ToAext64, PS_loadriabs>;
  def: Loadam_pat<sextloadi32,    i64, anyimm2, ToSext64, PS_loadriabs>;
  def: Loadam_pat<zextloadi32,    i64, anyimm2, ToZext64, PS_loadriabs>;

  def: Loadam_pat<load,           i1,  anyimm0, I32toI1,  PS_loadrubabs>;
  def: Loadam_pat<zextloadi1,     i64, anyimm0, ToZext64, PS_loadrubabs>;
}

// GP-relative address

let AddedComplexity  = 100 in {
  def: Loada_pat<extloadi1,       i32,   addrgp,  L2_loadrubgp>;
  def: Loada_pat<zextloadi1,      i32,   addrgp,  L2_loadrubgp>;
  def: Loada_pat<extloadi8,       i32,   addrgp,  L2_loadrubgp>;
  def: Loada_pat<sextloadi8,      i32,   addrgp,  L2_loadrbgp>;
  def: Loada_pat<zextloadi8,      i32,   addrgp,  L2_loadrubgp>;
  def: Loada_pat<extloadi16,      i32,   addrgp,  L2_loadruhgp>;
  def: Loada_pat<sextloadi16,     i32,   addrgp,  L2_loadrhgp>;
  def: Loada_pat<zextloadi16,     i32,   addrgp,  L2_loadruhgp>;
  def: Loada_pat<load,            i32,   addrgp,  L2_loadrigp>;
  def: Loada_pat<load,            v2i16, addrgp,  L2_loadrigp>;
  def: Loada_pat<load,            v4i8,  addrgp,  L2_loadrigp>;
  def: Loada_pat<load,            i64,   addrgp,  L2_loadrdgp>;
  def: Loada_pat<load,            v2i32, addrgp,  L2_loadrdgp>;
  def: Loada_pat<load,            v4i16, addrgp,  L2_loadrdgp>;
  def: Loada_pat<load,            v8i8,  addrgp,  L2_loadrdgp>;
  def: Loada_pat<load,            f32,   addrgp,  L2_loadrigp>;
  def: Loada_pat<load,            f64,   addrgp,  L2_loadrdgp>;

  def: Loada_pat<atomic_load_8,   i32, addrgp,  L2_loadrubgp>;
  def: Loada_pat<atomic_load_16,  i32, addrgp,  L2_loadruhgp>;
  def: Loada_pat<atomic_load_32,  i32, addrgp,  L2_loadrigp>;
  def: Loada_pat<atomic_load_64,  i64, addrgp,  L2_loadrdgp>;
}

let AddedComplexity  = 70 in {
  def: Loadam_pat<extloadi8,      i64, addrgp,  ToAext64, L2_loadrubgp>;
  def: Loadam_pat<sextloadi8,     i64, addrgp,  ToSext64, L2_loadrbgp>;
  def: Loadam_pat<zextloadi8,     i64, addrgp,  ToZext64, L2_loadrubgp>;
  def: Loadam_pat<extloadi16,     i64, addrgp,  ToAext64, L2_loadruhgp>;
  def: Loadam_pat<sextloadi16,    i64, addrgp,  ToSext64, L2_loadrhgp>;
  def: Loadam_pat<zextloadi16,    i64, addrgp,  ToZext64, L2_loadruhgp>;
  def: Loadam_pat<extloadi32,     i64, addrgp,  ToAext64, L2_loadrigp>;
  def: Loadam_pat<sextloadi32,    i64, addrgp,  ToSext64, L2_loadrigp>;
  def: Loadam_pat<zextloadi32,    i64, addrgp,  ToZext64, L2_loadrigp>;

  def: Loadam_pat<load,           i1,  addrgp,  I32toI1,  L2_loadrubgp>;
  def: Loadam_pat<zextloadi1,     i64, addrgp,  ToZext64, L2_loadrubgp>;
}


// Sign-extending loads of i1 need to replicate the lowest bit throughout
// the 32-bit value. Since the loaded value can only be 0 or 1, 0-v should
// do the trick.
let AddedComplexity = 20 in
def: Pat<(i32 (sextloadi1 I32:$Rs)),
         (A2_subri 0, (L2_loadrub_io IntRegs:$Rs, 0))>;

// Patterns for loads of i1:
def: Pat<(i1 (load AddrFI:$fi)),
         (C2_tfrrp (L2_loadrub_io AddrFI:$fi, 0))>;
def: Pat<(i1 (load (add I32:$Rs, anyimm0:$Off))),
         (C2_tfrrp (L2_loadrub_io IntRegs:$Rs, imm:$Off))>;
def: Pat<(i1 (load I32:$Rs)),
         (C2_tfrrp (L2_loadrub_io IntRegs:$Rs, 0))>;


// --(13) Store ----------------------------------------------------------
//

class Storepi_pat<PatFrag Store, PatFrag Value, PatFrag Offset, InstHexagon MI>
  : Pat<(Store Value:$Rt, I32:$Rx, Offset:$s4),
        (MI I32:$Rx, imm:$s4, Value:$Rt)>;

def: Storepi_pat<post_truncsti8,  I32, s4_0ImmPred, S2_storerb_pi>;
def: Storepi_pat<post_truncsti16, I32, s4_1ImmPred, S2_storerh_pi>;
def: Storepi_pat<post_store,      I32, s4_2ImmPred, S2_storeri_pi>;
def: Storepi_pat<post_store,      I64, s4_3ImmPred, S2_storerd_pi>;

// Patterns for generating stores, where the address takes different forms:
// - frameindex,
// - frameindex + offset,
// - base + offset,
// - simple (base address without offset).
// These would usually be used together (via Storexi_pat defined below), but
// in some cases one may want to apply different properties (such as
// AddedComplexity) to the individual patterns.
class Storexi_fi_pat<PatFrag Store, PatFrag Value, InstHexagon MI>
  : Pat<(Store Value:$Rs, AddrFI:$fi), (MI AddrFI:$fi, 0, Value:$Rs)>;

multiclass Storexi_fi_add_pat<PatFrag Store, PatFrag Value, PatFrag ImmPred,
                              InstHexagon MI> {
  def: Pat<(Store Value:$Rs, (add (i32 AddrFI:$fi), ImmPred:$Off)),
           (MI AddrFI:$fi, imm:$Off, Value:$Rs)>;
  def: Pat<(Store Value:$Rs, (IsOrAdd (i32 AddrFI:$fi), ImmPred:$Off)),
           (MI AddrFI:$fi, imm:$Off, Value:$Rs)>;
}

multiclass Storexi_add_pat<PatFrag Store, PatFrag Value, PatFrag ImmPred,
                           InstHexagon MI> {
  def: Pat<(Store Value:$Rt, (add I32:$Rs, ImmPred:$Off)),
           (MI IntRegs:$Rs, imm:$Off, Value:$Rt)>;
  def: Pat<(Store Value:$Rt, (IsOrAdd I32:$Rs, ImmPred:$Off)),
           (MI IntRegs:$Rs, imm:$Off, Value:$Rt)>;
}

class Storexi_base_pat<PatFrag Store, PatFrag Value, InstHexagon MI>
  : Pat<(Store Value:$Rt, I32:$Rs),
        (MI IntRegs:$Rs, 0, Value:$Rt)>;

// Patterns for generating stores, where the address takes different forms,
// and where the value being stored is transformed through the value modifier
// ValueMod.  The address forms are same as above.
class Storexim_fi_pat<PatFrag Store, PatFrag Value, PatFrag ValueMod,
                      InstHexagon MI>
  : Pat<(Store Value:$Rs, AddrFI:$fi),
        (MI AddrFI:$fi, 0, (ValueMod Value:$Rs))>;

multiclass Storexim_fi_add_pat<PatFrag Store, PatFrag Value, PatFrag ImmPred,
                               PatFrag ValueMod, InstHexagon MI> {
  def: Pat<(Store Value:$Rs, (add (i32 AddrFI:$fi), ImmPred:$Off)),
           (MI AddrFI:$fi, imm:$Off, (ValueMod Value:$Rs))>;
  def: Pat<(Store Value:$Rs, (IsOrAdd (i32 AddrFI:$fi), ImmPred:$Off)),
           (MI AddrFI:$fi, imm:$Off, (ValueMod Value:$Rs))>;
}

multiclass Storexim_add_pat<PatFrag Store, PatFrag Value, PatFrag ImmPred,
                            PatFrag ValueMod, InstHexagon MI> {
  def: Pat<(Store Value:$Rt, (add I32:$Rs, ImmPred:$Off)),
           (MI IntRegs:$Rs, imm:$Off, (ValueMod Value:$Rt))>;
  def: Pat<(Store Value:$Rt, (IsOrAdd I32:$Rs, ImmPred:$Off)),
           (MI IntRegs:$Rs, imm:$Off, (ValueMod Value:$Rt))>;
}

class Storexim_base_pat<PatFrag Store, PatFrag Value, PatFrag ValueMod,
                        InstHexagon MI>
  : Pat<(Store Value:$Rt, I32:$Rs),
        (MI IntRegs:$Rs, 0, (ValueMod Value:$Rt))>;

multiclass Storexi_pat<PatFrag Store, PatFrag Value, PatLeaf ImmPred,
                       InstHexagon MI> {
  defm: Storexi_fi_add_pat <Store, Value, ImmPred, MI>;
  def:  Storexi_fi_pat     <Store, Value,          MI>;
  defm: Storexi_add_pat    <Store, Value, ImmPred, MI>;
}

multiclass Storexim_pat<PatFrag Store, PatFrag Value, PatLeaf ImmPred,
                        PatFrag ValueMod, InstHexagon MI> {
  defm: Storexim_fi_add_pat <Store, Value, ImmPred, ValueMod, MI>;
  def:  Storexim_fi_pat     <Store, Value,          ValueMod, MI>;
  defm: Storexim_add_pat    <Store, Value, ImmPred, ValueMod, MI>;
}

// Reg<<S + Imm
class Storexu_shl_pat<PatFrag Store, PatFrag Value, PatFrag ImmPred, InstHexagon MI>
  : Pat<(Store Value:$Rt, (add (shl I32:$Ru, u2_0ImmPred:$u2), ImmPred:$A)),
        (MI IntRegs:$Ru, imm:$u2, ImmPred:$A, Value:$Rt)>;

// Reg<<S + Reg
class Storexr_shl_pat<PatFrag Store, PatFrag Value, InstHexagon MI>
  : Pat<(Store Value:$Ru, (add I32:$Rs, (shl I32:$Rt, u2_0ImmPred:$u2))),
        (MI IntRegs:$Rs, IntRegs:$Rt, imm:$u2, Value:$Ru)>;

// Reg + Reg
class Storexr_add_pat<PatFrag Store, PatFrag Value, InstHexagon MI>
  : Pat<(Store Value:$Ru, (add I32:$Rs, I32:$Rt)),
        (MI IntRegs:$Rs, IntRegs:$Rt, 0, Value:$Ru)>;

class Storea_pat<PatFrag Store, PatFrag Value, PatFrag Addr, InstHexagon MI>
  : Pat<(Store Value:$val, Addr:$addr), (MI Addr:$addr, Value:$val)>;

class Stoream_pat<PatFrag Store, PatFrag Value, PatFrag Addr, PatFrag ValueMod,
                  InstHexagon MI>
  : Pat<(Store Value:$val, Addr:$addr),
        (MI Addr:$addr, (ValueMod Value:$val))>;

// Regular stores in the DAG have two operands: value and address.
// Atomic stores also have two, but they are reversed: address, value.
// To use atomic stores with the patterns, they need to have their operands
// swapped. This relies on the knowledge that the F.Fragment uses names
// "ptr" and "val".
class AtomSt<PatFrag F>
  : PatFrag<(ops node:$val, node:$ptr), !head(F.Fragments), F.PredicateCode,
            F.OperandTransform> {
  let IsAtomic = F.IsAtomic;
  let MemoryVT = F.MemoryVT;
}


def IMM_BYTE : SDNodeXForm<imm, [{
  // -1 can be represented as 255, etc.
  // assigning to a byte restores our desired signed value.
  int8_t imm = N->getSExtValue();
  return CurDAG->getTargetConstant(imm, SDLoc(N), MVT::i32);
}]>;

def IMM_HALF : SDNodeXForm<imm, [{
  // -1 can be represented as 65535, etc.
  // assigning to a short restores our desired signed value.
  int16_t imm = N->getSExtValue();
  return CurDAG->getTargetConstant(imm, SDLoc(N), MVT::i32);
}]>;

def IMM_WORD : SDNodeXForm<imm, [{
  // -1 can be represented as 4294967295, etc.
  // Currently, it's not doing this. But some optimization
  // might convert -1 to a large +ve number.
  // assigning to a word restores our desired signed value.
  int32_t imm = N->getSExtValue();
  return CurDAG->getTargetConstant(imm, SDLoc(N), MVT::i32);
}]>;

def ToImmByte : OutPatFrag<(ops node:$R), (IMM_BYTE $R)>;
def ToImmHalf : OutPatFrag<(ops node:$R), (IMM_HALF $R)>;
def ToImmWord : OutPatFrag<(ops node:$R), (IMM_WORD $R)>;

// Even though the offset is not extendable in the store-immediate, we
// can still generate the fi# in the base address. If the final offset
// is not valid for the instruction, we will replace it with a scratch
// register.
class SmallStackStore<PatFrag Store>
  : PatFrag<(ops node:$Val, node:$Addr), (Store node:$Val, node:$Addr), [{
  return isSmallStackStore(cast<StoreSDNode>(N));
}]>;

// This is the complement of SmallStackStore.
class LargeStackStore<PatFrag Store>
  : PatFrag<(ops node:$Val, node:$Addr), (Store node:$Val, node:$Addr), [{
  return !isSmallStackStore(cast<StoreSDNode>(N));
}]>;

// Preferred addressing modes for various combinations of stored value
// and address computation.
// For stores where the address and value are both immediates, prefer
// store-immediate. The reason is that the constant-extender optimization
// can replace store-immediate with a store-register, but there is nothing
// to generate a store-immediate out of a store-register.
//
//         C     R     F    F+C   R+C   R+R   R<<S+C   R<<S+R
// --+-------+-----+-----+------+-----+-----+--------+--------
// C |   imm | imm | imm |  imm | imm |  rr |     ur |     rr
// R |  abs* |  io |  io |   io |  io |  rr |     ur |     rr
//
// (*) Absolute or GP-relative.
//
// Note that any expression can be matched by Reg. In particular, an immediate
// can always be placed in a register, so patterns checking for Imm should
// have a higher priority than the ones involving Reg that could also match.
// For example, *(p+4) could become r1=#4; memw(r0+r1<<#0) instead of the
// preferred memw(r0+#4). Similarly Reg+Imm or Reg+Reg should be tried before
// Reg alone.
//
// The order in which the different combinations are tried:
//
//         C     F     R    F+C   R+C   R+R   R<<S+C   R<<S+R
// --+-------+-----+-----+------+-----+-----+--------+--------
// C |     1 |   6 |   - |    5 |   9 |   - |      - |      -
// R |     2 |   8 |  12 |    7 |  10 |  11 |      3 |      4


// First, match the unusual case of doubleword store into Reg+Imm4, i.e.
// a store where the offset Imm4 is a multiple of 4, but not of 8. This
// implies that Reg is also a proper multiple of 4. To still generate a
// doubleword store, add 4 to Reg, and subtract 4 from the offset.

def s30_2ProperPred  : PatLeaf<(i32 imm), [{
  int64_t v = (int64_t)N->getSExtValue();
  return isShiftedInt<30,2>(v) && !isShiftedInt<29,3>(v);
}]>;
def RoundTo8 : SDNodeXForm<imm, [{
  int32_t Imm = N->getSExtValue();
  return CurDAG->getTargetConstant(Imm & -8, SDLoc(N), MVT::i32);
}]>;

let AddedComplexity = 150 in
def: Pat<(store I64:$Ru, (add I32:$Rs, s30_2ProperPred:$Off)),
         (S2_storerd_io (A2_addi I32:$Rs, 4), (RoundTo8 $Off), I64:$Ru)>;

class Storexi_abs_pat<PatFrag Store, PatFrag Value, InstHexagon MI>
  : Pat<(Store Value:$val, anyimm:$addr),
        (MI (ToI32 $addr), 0, Value:$val)>;
class Storexim_abs_pat<PatFrag Store, PatFrag Value, PatFrag ValueMod,
                       InstHexagon MI>
  : Pat<(Store Value:$val, anyimm:$addr),
        (MI (ToI32 $addr), 0, (ValueMod Value:$val))>;

let AddedComplexity = 140 in {
  def: Storexim_abs_pat<truncstorei8,  anyint, ToImmByte, S4_storeirb_io>;
  def: Storexim_abs_pat<truncstorei16, anyint, ToImmHalf, S4_storeirh_io>;
  def: Storexim_abs_pat<store,         anyint, ToImmWord, S4_storeiri_io>;

  def: Storexi_abs_pat<truncstorei8,  anyimm, S4_storeirb_io>;
  def: Storexi_abs_pat<truncstorei16, anyimm, S4_storeirh_io>;
  def: Storexi_abs_pat<store,         anyimm, S4_storeiri_io>;
}

// GP-relative address
let AddedComplexity = 120 in {
  def: Storea_pat<truncstorei8,               I32, addrgp, S2_storerbgp>;
  def: Storea_pat<truncstorei16,              I32, addrgp, S2_storerhgp>;
  def: Storea_pat<store,                      I32, addrgp, S2_storerigp>;
  def: Storea_pat<store,                     V4I8, addrgp, S2_storerigp>;
  def: Storea_pat<store,                    V2I16, addrgp, S2_storerigp>;
  def: Storea_pat<store,                      I64, addrgp, S2_storerdgp>;
  def: Storea_pat<store,                     V8I8, addrgp, S2_storerdgp>;
  def: Storea_pat<store,                    V4I16, addrgp, S2_storerdgp>;
  def: Storea_pat<store,                    V2I32, addrgp, S2_storerdgp>;
  def: Storea_pat<store,                      F32, addrgp, S2_storerigp>;
  def: Storea_pat<store,                      F64, addrgp, S2_storerdgp>;
  def: Storea_pat<AtomSt<atomic_store_8>,     I32, addrgp, S2_storerbgp>;
  def: Storea_pat<AtomSt<atomic_store_16>,    I32, addrgp, S2_storerhgp>;
  def: Storea_pat<AtomSt<atomic_store_32>,    I32, addrgp, S2_storerigp>;
  def: Storea_pat<AtomSt<atomic_store_32>,   V4I8, addrgp, S2_storerigp>;
  def: Storea_pat<AtomSt<atomic_store_32>,  V2I16, addrgp, S2_storerigp>;
  def: Storea_pat<AtomSt<atomic_store_64>,    I64, addrgp, S2_storerdgp>;
  def: Storea_pat<AtomSt<atomic_store_64>,   V8I8, addrgp, S2_storerdgp>;
  def: Storea_pat<AtomSt<atomic_store_64>,  V4I16, addrgp, S2_storerdgp>;
  def: Storea_pat<AtomSt<atomic_store_64>,  V2I32, addrgp, S2_storerdgp>;

  def: Stoream_pat<truncstorei8,  I64, addrgp, LoReg,    S2_storerbgp>;
  def: Stoream_pat<truncstorei16, I64, addrgp, LoReg,    S2_storerhgp>;
  def: Stoream_pat<truncstorei32, I64, addrgp, LoReg,    S2_storerigp>;
  def: Stoream_pat<store,         I1,  addrgp, I1toI32,  S2_storerbgp>;
}

// Absolute address
let AddedComplexity = 110 in {
  def: Storea_pat<truncstorei8,               I32, anyimm0, PS_storerbabs>;
  def: Storea_pat<truncstorei16,              I32, anyimm1, PS_storerhabs>;
  def: Storea_pat<store,                      I32, anyimm2, PS_storeriabs>;
  def: Storea_pat<store,                     V4I8, anyimm2, PS_storeriabs>;
  def: Storea_pat<store,                    V2I16, anyimm2, PS_storeriabs>;
  def: Storea_pat<store,                      I64, anyimm3, PS_storerdabs>;
  def: Storea_pat<store,                     V8I8, anyimm3, PS_storerdabs>;
  def: Storea_pat<store,                    V4I16, anyimm3, PS_storerdabs>;
  def: Storea_pat<store,                    V2I32, anyimm3, PS_storerdabs>;
  def: Storea_pat<store,                      F32, anyimm2, PS_storeriabs>;
  def: Storea_pat<store,                      F64, anyimm3, PS_storerdabs>;
  def: Storea_pat<AtomSt<atomic_store_8>,     I32, anyimm0, PS_storerbabs>;
  def: Storea_pat<AtomSt<atomic_store_16>,    I32, anyimm1, PS_storerhabs>;
  def: Storea_pat<AtomSt<atomic_store_32>,    I32, anyimm2, PS_storeriabs>;
  def: Storea_pat<AtomSt<atomic_store_32>,   V4I8, anyimm2, PS_storeriabs>;
  def: Storea_pat<AtomSt<atomic_store_32>,  V2I16, anyimm2, PS_storeriabs>;
  def: Storea_pat<AtomSt<atomic_store_64>,    I64, anyimm3, PS_storerdabs>;
  def: Storea_pat<AtomSt<atomic_store_64>,   V8I8, anyimm3, PS_storerdabs>;
  def: Storea_pat<AtomSt<atomic_store_64>,  V4I16, anyimm3, PS_storerdabs>;
  def: Storea_pat<AtomSt<atomic_store_64>,  V2I32, anyimm3, PS_storerdabs>;

  def: Stoream_pat<truncstorei8,  I64, anyimm0, LoReg,    PS_storerbabs>;
  def: Stoream_pat<truncstorei16, I64, anyimm1, LoReg,    PS_storerhabs>;
  def: Stoream_pat<truncstorei32, I64, anyimm2, LoReg,    PS_storeriabs>;
  def: Stoream_pat<store,         I1,  anyimm0, I1toI32,  PS_storerbabs>;
}

// Reg<<S + Imm
let AddedComplexity = 100 in {
  def: Storexu_shl_pat<truncstorei8,    I32, anyimm0, S4_storerb_ur>;
  def: Storexu_shl_pat<truncstorei16,   I32, anyimm1, S4_storerh_ur>;
  def: Storexu_shl_pat<store,           I32, anyimm2, S4_storeri_ur>;
  def: Storexu_shl_pat<store,          V4I8, anyimm2, S4_storeri_ur>;
  def: Storexu_shl_pat<store,         V2I16, anyimm2, S4_storeri_ur>;
  def: Storexu_shl_pat<store,           I64, anyimm3, S4_storerd_ur>;
  def: Storexu_shl_pat<store,          V8I8, anyimm3, S4_storerd_ur>;
  def: Storexu_shl_pat<store,         V4I16, anyimm3, S4_storerd_ur>;
  def: Storexu_shl_pat<store,         V2I32, anyimm3, S4_storerd_ur>;
  def: Storexu_shl_pat<store,           F32, anyimm2, S4_storeri_ur>;
  def: Storexu_shl_pat<store,           F64, anyimm3, S4_storerd_ur>;

  def: Pat<(store I1:$Pu, (add (shl I32:$Rs, u2_0ImmPred:$u2), anyimm:$A)),
           (S4_storerb_ur IntRegs:$Rs, imm:$u2, imm:$A, (I1toI32 I1:$Pu))>;
}

// Reg<<S + Reg
let AddedComplexity = 90 in {
  def: Storexr_shl_pat<truncstorei8,    I32, S4_storerb_rr>;
  def: Storexr_shl_pat<truncstorei16,   I32, S4_storerh_rr>;
  def: Storexr_shl_pat<store,           I32, S4_storeri_rr>;
  def: Storexr_shl_pat<store,          V4I8, S4_storeri_rr>;
  def: Storexr_shl_pat<store,         V2I16, S4_storeri_rr>;
  def: Storexr_shl_pat<store,           I64, S4_storerd_rr>;
  def: Storexr_shl_pat<store,          V8I8, S4_storerd_rr>;
  def: Storexr_shl_pat<store,         V4I16, S4_storerd_rr>;
  def: Storexr_shl_pat<store,         V2I32, S4_storerd_rr>;
  def: Storexr_shl_pat<store,           F32, S4_storeri_rr>;
  def: Storexr_shl_pat<store,           F64, S4_storerd_rr>;

  def: Pat<(store I1:$Pu, (add (shl I32:$Rs, u2_0ImmPred:$u2), I32:$Rt)),
           (S4_storerb_ur IntRegs:$Rt, IntRegs:$Rs, imm:$u2, (I1toI32 I1:$Pu))>;
}

class SS_<PatFrag F> : SmallStackStore<F>;
class LS_<PatFrag F> : LargeStackStore<F>;

multiclass IMFA_<PatFrag S, PatFrag V, PatFrag O, PatFrag M, InstHexagon I> {
  defm: Storexim_fi_add_pat<S, V, O, M, I>;
}
multiclass IFA_<PatFrag S, PatFrag V, PatFrag O, InstHexagon I> {
  defm: Storexi_fi_add_pat<S, V, O, I>;
}

// Fi+Imm, store-immediate
let AddedComplexity = 80 in {
  defm: IMFA_<SS_<truncstorei8>,  anyint, u6_0ImmPred, ToImmByte, S4_storeirb_io>;
  defm: IMFA_<SS_<truncstorei16>, anyint, u6_1ImmPred, ToImmHalf, S4_storeirh_io>;
  defm: IMFA_<SS_<store>,         anyint, u6_2ImmPred, ToImmWord, S4_storeiri_io>;

  defm: IFA_<SS_<truncstorei8>,   anyimm, u6_0ImmPred, S4_storeirb_io>;
  defm: IFA_<SS_<truncstorei16>,  anyimm, u6_1ImmPred, S4_storeirh_io>;
  defm: IFA_<SS_<store>,          anyimm, u6_2ImmPred, S4_storeiri_io>;

  // For large-stack stores, generate store-register (prefer explicit Fi
  // in the address).
  defm: IMFA_<LS_<truncstorei8>,   anyimm, u6_0ImmPred, ToI32, S2_storerb_io>;
  defm: IMFA_<LS_<truncstorei16>,  anyimm, u6_1ImmPred, ToI32, S2_storerh_io>;
  defm: IMFA_<LS_<store>,          anyimm, u6_2ImmPred, ToI32, S2_storeri_io>;
}

// Fi, store-immediate
let AddedComplexity = 70 in {
  def: Storexim_fi_pat<SS_<truncstorei8>,  anyint, ToImmByte, S4_storeirb_io>;
  def: Storexim_fi_pat<SS_<truncstorei16>, anyint, ToImmHalf, S4_storeirh_io>;
  def: Storexim_fi_pat<SS_<store>,         anyint, ToImmWord, S4_storeiri_io>;

  def: Storexi_fi_pat<SS_<truncstorei8>,   anyimm, S4_storeirb_io>;
  def: Storexi_fi_pat<SS_<truncstorei16>,  anyimm, S4_storeirh_io>;
  def: Storexi_fi_pat<SS_<store>,          anyimm, S4_storeiri_io>;

  // For large-stack stores, generate store-register (prefer explicit Fi
  // in the address).
  def: Storexim_fi_pat<LS_<truncstorei8>,  anyimm, ToI32, S2_storerb_io>;
  def: Storexim_fi_pat<LS_<truncstorei16>, anyimm, ToI32, S2_storerh_io>;
  def: Storexim_fi_pat<LS_<store>,         anyimm, ToI32, S2_storeri_io>;
}

// Fi+Imm, Fi, store-register
let AddedComplexity = 60 in {
  defm: Storexi_fi_add_pat<truncstorei8,    I32, anyimm, S2_storerb_io>;
  defm: Storexi_fi_add_pat<truncstorei16,   I32, anyimm, S2_storerh_io>;
  defm: Storexi_fi_add_pat<store,           I32, anyimm, S2_storeri_io>;
  defm: Storexi_fi_add_pat<store,          V4I8, anyimm, S2_storeri_io>;
  defm: Storexi_fi_add_pat<store,         V2I16, anyimm, S2_storeri_io>;
  defm: Storexi_fi_add_pat<store,           I64, anyimm, S2_storerd_io>;
  defm: Storexi_fi_add_pat<store,          V8I8, anyimm, S2_storerd_io>;
  defm: Storexi_fi_add_pat<store,         V4I16, anyimm, S2_storerd_io>;
  defm: Storexi_fi_add_pat<store,         V2I32, anyimm, S2_storerd_io>;
  defm: Storexi_fi_add_pat<store,           F32, anyimm, S2_storeri_io>;
  defm: Storexi_fi_add_pat<store,           F64, anyimm, S2_storerd_io>;
  defm: Storexim_fi_add_pat<store, I1, anyimm, I1toI32, S2_storerb_io>;

  def: Storexi_fi_pat<truncstorei8,     I32, S2_storerb_io>;
  def: Storexi_fi_pat<truncstorei16,    I32, S2_storerh_io>;
  def: Storexi_fi_pat<store,            I32, S2_storeri_io>;
  def: Storexi_fi_pat<store,           V4I8, S2_storeri_io>;
  def: Storexi_fi_pat<store,          V2I16, S2_storeri_io>;
  def: Storexi_fi_pat<store,            I64, S2_storerd_io>;
  def: Storexi_fi_pat<store,           V8I8, S2_storerd_io>;
  def: Storexi_fi_pat<store,          V4I16, S2_storerd_io>;
  def: Storexi_fi_pat<store,          V2I32, S2_storerd_io>;
  def: Storexi_fi_pat<store,            F32, S2_storeri_io>;
  def: Storexi_fi_pat<store,            F64, S2_storerd_io>;
  def: Storexim_fi_pat<store, I1, I1toI32, S2_storerb_io>;
}


multiclass IMRA_<PatFrag S, PatFrag V, PatFrag O, PatFrag M, InstHexagon I> {
  defm: Storexim_add_pat<S, V, O, M, I>;
}
multiclass IRA_<PatFrag S, PatFrag V, PatFrag O, InstHexagon I> {
  defm: Storexi_add_pat<S, V, O, I>;
}

// Reg+Imm, store-immediate
let AddedComplexity = 50 in {
  defm: IMRA_<truncstorei8,   anyint, u6_0ImmPred, ToImmByte, S4_storeirb_io>;
  defm: IMRA_<truncstorei16,  anyint, u6_1ImmPred, ToImmHalf, S4_storeirh_io>;
  defm: IMRA_<store,          anyint, u6_2ImmPred, ToImmWord, S4_storeiri_io>;

  defm: IRA_<truncstorei8,    anyimm, u6_0ImmPred, S4_storeirb_io>;
  defm: IRA_<truncstorei16,   anyimm, u6_1ImmPred, S4_storeirh_io>;
  defm: IRA_<store,           anyimm, u6_2ImmPred, S4_storeiri_io>;
}

// Reg+Imm, store-register
let AddedComplexity = 40 in {
  defm: Storexi_pat<truncstorei8,     I32, anyimm0, S2_storerb_io>;
  defm: Storexi_pat<truncstorei16,    I32, anyimm1, S2_storerh_io>;
  defm: Storexi_pat<store,            I32, anyimm2, S2_storeri_io>;
  defm: Storexi_pat<store,           V4I8, anyimm2, S2_storeri_io>;
  defm: Storexi_pat<store,          V2I16, anyimm2, S2_storeri_io>;
  defm: Storexi_pat<store,            I64, anyimm3, S2_storerd_io>;
  defm: Storexi_pat<store,           V8I8, anyimm3, S2_storerd_io>;
  defm: Storexi_pat<store,          V4I16, anyimm3, S2_storerd_io>;
  defm: Storexi_pat<store,          V2I32, anyimm3, S2_storerd_io>;
  defm: Storexi_pat<store,            F32, anyimm2, S2_storeri_io>;
  defm: Storexi_pat<store,            F64, anyimm3, S2_storerd_io>;

  defm: Storexim_pat<truncstorei8,  I64, anyimm0, LoReg,   S2_storerb_io>;
  defm: Storexim_pat<truncstorei16, I64, anyimm1, LoReg,   S2_storerh_io>;
  defm: Storexim_pat<truncstorei32, I64, anyimm2, LoReg,   S2_storeri_io>;
  defm: Storexim_pat<store,         I1,  anyimm0, I1toI32, S2_storerb_io>;

  defm: Storexi_pat<AtomSt<atomic_store_8>,     I32, anyimm0, S2_storerb_io>;
  defm: Storexi_pat<AtomSt<atomic_store_16>,    I32, anyimm1, S2_storerh_io>;
  defm: Storexi_pat<AtomSt<atomic_store_32>,    I32, anyimm2, S2_storeri_io>;
  defm: Storexi_pat<AtomSt<atomic_store_32>,   V4I8, anyimm2, S2_storeri_io>;
  defm: Storexi_pat<AtomSt<atomic_store_32>,  V2I16, anyimm2, S2_storeri_io>;
  defm: Storexi_pat<AtomSt<atomic_store_64>,    I64, anyimm3, S2_storerd_io>;
  defm: Storexi_pat<AtomSt<atomic_store_64>,   V8I8, anyimm3, S2_storerd_io>;
  defm: Storexi_pat<AtomSt<atomic_store_64>,  V4I16, anyimm3, S2_storerd_io>;
  defm: Storexi_pat<AtomSt<atomic_store_64>,  V2I32, anyimm3, S2_storerd_io>;
}

// Reg+Reg
let AddedComplexity = 30 in {
  def: Storexr_add_pat<truncstorei8,    I32, S4_storerb_rr>;
  def: Storexr_add_pat<truncstorei16,   I32, S4_storerh_rr>;
  def: Storexr_add_pat<store,           I32, S4_storeri_rr>;
  def: Storexr_add_pat<store,          V4I8, S4_storeri_rr>;
  def: Storexr_add_pat<store,         V2I16, S4_storeri_rr>;
  def: Storexr_add_pat<store,           I64, S4_storerd_rr>;
  def: Storexr_add_pat<store,          V8I8, S4_storerd_rr>;
  def: Storexr_add_pat<store,         V4I16, S4_storerd_rr>;
  def: Storexr_add_pat<store,         V2I32, S4_storerd_rr>;
  def: Storexr_add_pat<store,           F32, S4_storeri_rr>;
  def: Storexr_add_pat<store,           F64, S4_storerd_rr>;

  def: Pat<(store I1:$Pu, (add I32:$Rs, I32:$Rt)),
           (S4_storerb_rr IntRegs:$Rs, IntRegs:$Rt, 0, (I1toI32 I1:$Pu))>;
}

// Reg, store-immediate
let AddedComplexity = 20 in {
  def: Storexim_base_pat<truncstorei8,  anyint, ToImmByte, S4_storeirb_io>;
  def: Storexim_base_pat<truncstorei16, anyint, ToImmHalf, S4_storeirh_io>;
  def: Storexim_base_pat<store,         anyint, ToImmWord, S4_storeiri_io>;

  def: Storexi_base_pat<truncstorei8,   anyimm, S4_storeirb_io>;
  def: Storexi_base_pat<truncstorei16,  anyimm, S4_storeirh_io>;
  def: Storexi_base_pat<store,          anyimm, S4_storeiri_io>;
}

// Reg, store-register
let AddedComplexity = 10 in {
  def: Storexi_base_pat<truncstorei8,     I32, S2_storerb_io>;
  def: Storexi_base_pat<truncstorei16,    I32, S2_storerh_io>;
  def: Storexi_base_pat<store,            I32, S2_storeri_io>;
  def: Storexi_base_pat<store,           V4I8, S2_storeri_io>;
  def: Storexi_base_pat<store,          V2I16, S2_storeri_io>;
  def: Storexi_base_pat<store,            I64, S2_storerd_io>;
  def: Storexi_base_pat<store,           V8I8, S2_storerd_io>;
  def: Storexi_base_pat<store,          V4I16, S2_storerd_io>;
  def: Storexi_base_pat<store,          V2I32, S2_storerd_io>;
  def: Storexi_base_pat<store,            F32, S2_storeri_io>;
  def: Storexi_base_pat<store,            F64, S2_storerd_io>;

  def: Storexim_base_pat<truncstorei8,  I64, LoReg,   S2_storerb_io>;
  def: Storexim_base_pat<truncstorei16, I64, LoReg,   S2_storerh_io>;
  def: Storexim_base_pat<truncstorei32, I64, LoReg,   S2_storeri_io>;
  def: Storexim_base_pat<store,         I1,  I1toI32, S2_storerb_io>;

  def: Storexi_base_pat<AtomSt<atomic_store_8>,     I32, S2_storerb_io>;
  def: Storexi_base_pat<AtomSt<atomic_store_16>,    I32, S2_storerh_io>;
  def: Storexi_base_pat<AtomSt<atomic_store_32>,    I32, S2_storeri_io>;
  def: Storexi_base_pat<AtomSt<atomic_store_32>,   V4I8, S2_storeri_io>;
  def: Storexi_base_pat<AtomSt<atomic_store_32>,  V2I16, S2_storeri_io>;
  def: Storexi_base_pat<AtomSt<atomic_store_64>,    I64, S2_storerd_io>;
  def: Storexi_base_pat<AtomSt<atomic_store_64>,   V8I8, S2_storerd_io>;
  def: Storexi_base_pat<AtomSt<atomic_store_64>,  V4I16, S2_storerd_io>;
  def: Storexi_base_pat<AtomSt<atomic_store_64>,  V2I32, S2_storerd_io>;
}


// --(14) Memop ----------------------------------------------------------
//

def m5_0Imm8Pred : PatLeaf<(i32 imm), [{
  int8_t V = N->getSExtValue();
  return -32 < V && V <= -1;
}]>;

def m5_0Imm16Pred : PatLeaf<(i32 imm), [{
  int16_t V = N->getSExtValue();
  return -32 < V && V <= -1;
}]>;

def m5_0ImmPred  : PatLeaf<(i32 imm), [{
  int64_t V = N->getSExtValue();
  return -31 <= V && V <= -1;
}]>;

def IsNPow2_8 : PatLeaf<(i32 imm), [{
  uint8_t NV = ~N->getZExtValue();
  return isPowerOf2_32(NV);
}]>;

def IsNPow2_16 : PatLeaf<(i32 imm), [{
  uint16_t NV = ~N->getZExtValue();
  return isPowerOf2_32(NV);
}]>;

def Log2_8 : SDNodeXForm<imm, [{
  uint8_t V = N->getZExtValue();
  return CurDAG->getTargetConstant(Log2_32(V), SDLoc(N), MVT::i32);
}]>;

def Log2_16 : SDNodeXForm<imm, [{
  uint16_t V = N->getZExtValue();
  return CurDAG->getTargetConstant(Log2_32(V), SDLoc(N), MVT::i32);
}]>;

def LogN2_8 : SDNodeXForm<imm, [{
  uint8_t NV = ~N->getZExtValue();
  return CurDAG->getTargetConstant(Log2_32(NV), SDLoc(N), MVT::i32);
}]>;

def LogN2_16 : SDNodeXForm<imm, [{
  uint16_t NV = ~N->getZExtValue();
  return CurDAG->getTargetConstant(Log2_32(NV), SDLoc(N), MVT::i32);
}]>;

def IdImm : SDNodeXForm<imm, [{ return SDValue(N, 0); }]>;

multiclass Memopxr_base_pat<PatFrag Load, PatFrag Store, SDNode Oper,
                            InstHexagon MI> {
  // Addr: i32
  def: Pat<(Store (Oper (Load I32:$Rs), I32:$A), I32:$Rs),
           (MI I32:$Rs, 0, I32:$A)>;
  // Addr: fi
  def: Pat<(Store (Oper (Load AddrFI:$Rs), I32:$A), AddrFI:$Rs),
           (MI AddrFI:$Rs, 0, I32:$A)>;
}

multiclass Memopxr_add_pat<PatFrag Load, PatFrag Store, PatFrag ImmPred,
                           SDNode Oper, InstHexagon MI> {
  // Addr: i32
  def: Pat<(Store (Oper (Load (add I32:$Rs, ImmPred:$Off)), I32:$A),
                  (add I32:$Rs, ImmPred:$Off)),
           (MI I32:$Rs, imm:$Off, I32:$A)>;
  def: Pat<(Store (Oper (Load (IsOrAdd I32:$Rs, ImmPred:$Off)), I32:$A),
                  (IsOrAdd I32:$Rs, ImmPred:$Off)),
           (MI I32:$Rs, imm:$Off, I32:$A)>;
  // Addr: fi
  def: Pat<(Store (Oper (Load (add AddrFI:$Rs, ImmPred:$Off)), I32:$A),
                  (add AddrFI:$Rs, ImmPred:$Off)),
           (MI AddrFI:$Rs, imm:$Off, I32:$A)>;
  def: Pat<(Store (Oper (Load (IsOrAdd AddrFI:$Rs, ImmPred:$Off)), I32:$A),
                  (IsOrAdd AddrFI:$Rs, ImmPred:$Off)),
           (MI AddrFI:$Rs, imm:$Off, I32:$A)>;
}

multiclass Memopxr_pat<PatFrag Load, PatFrag Store, PatFrag ImmPred,
                       SDNode Oper, InstHexagon MI> {
  let Predicates = [UseMEMOPS] in {
    defm: Memopxr_base_pat <Load, Store,          Oper, MI>;
    defm: Memopxr_add_pat  <Load, Store, ImmPred, Oper, MI>;
  }
}

let AddedComplexity = 200 in {
  // add reg
  defm: Memopxr_pat<extloadi8, truncstorei8, u6_0ImmPred, add,
        /*anyext*/  L4_add_memopb_io>;
  defm: Memopxr_pat<sextloadi8, truncstorei8, u6_0ImmPred, add,
        /*sext*/    L4_add_memopb_io>;
  defm: Memopxr_pat<zextloadi8, truncstorei8, u6_0ImmPred, add,
        /*zext*/    L4_add_memopb_io>;
  defm: Memopxr_pat<extloadi16, truncstorei16, u6_1ImmPred, add,
        /*anyext*/  L4_add_memoph_io>;
  defm: Memopxr_pat<sextloadi16, truncstorei16, u6_1ImmPred, add,
        /*sext*/    L4_add_memoph_io>;
  defm: Memopxr_pat<zextloadi16, truncstorei16, u6_1ImmPred, add,
        /*zext*/    L4_add_memoph_io>;
  defm: Memopxr_pat<load, store, u6_2ImmPred, add, L4_add_memopw_io>;

  // sub reg
  defm: Memopxr_pat<extloadi8, truncstorei8, u6_0ImmPred, sub,
        /*anyext*/  L4_sub_memopb_io>;
  defm: Memopxr_pat<sextloadi8, truncstorei8, u6_0ImmPred, sub,
        /*sext*/    L4_sub_memopb_io>;
  defm: Memopxr_pat<zextloadi8, truncstorei8, u6_0ImmPred, sub,
        /*zext*/    L4_sub_memopb_io>;
  defm: Memopxr_pat<extloadi16, truncstorei16, u6_1ImmPred, sub,
        /*anyext*/  L4_sub_memoph_io>;
  defm: Memopxr_pat<sextloadi16, truncstorei16, u6_1ImmPred, sub,
        /*sext*/    L4_sub_memoph_io>;
  defm: Memopxr_pat<zextloadi16, truncstorei16, u6_1ImmPred, sub,
        /*zext*/    L4_sub_memoph_io>;
  defm: Memopxr_pat<load, store, u6_2ImmPred, sub, L4_sub_memopw_io>;

  // and reg
  defm: Memopxr_pat<extloadi8, truncstorei8, u6_0ImmPred, and,
        /*anyext*/  L4_and_memopb_io>;
  defm: Memopxr_pat<sextloadi8, truncstorei8, u6_0ImmPred, and,
        /*sext*/    L4_and_memopb_io>;
  defm: Memopxr_pat<zextloadi8, truncstorei8, u6_0ImmPred, and,
        /*zext*/    L4_and_memopb_io>;
  defm: Memopxr_pat<extloadi16, truncstorei16, u6_1ImmPred, and,
        /*anyext*/  L4_and_memoph_io>;
  defm: Memopxr_pat<sextloadi16, truncstorei16, u6_1ImmPred, and,
        /*sext*/    L4_and_memoph_io>;
  defm: Memopxr_pat<zextloadi16, truncstorei16, u6_1ImmPred, and,
        /*zext*/    L4_and_memoph_io>;
  defm: Memopxr_pat<load, store, u6_2ImmPred, and, L4_and_memopw_io>;

  // or reg
  defm: Memopxr_pat<extloadi8, truncstorei8, u6_0ImmPred, or,
        /*anyext*/  L4_or_memopb_io>;
  defm: Memopxr_pat<sextloadi8, truncstorei8, u6_0ImmPred, or,
        /*sext*/    L4_or_memopb_io>;
  defm: Memopxr_pat<zextloadi8, truncstorei8, u6_0ImmPred, or,
        /*zext*/    L4_or_memopb_io>;
  defm: Memopxr_pat<extloadi16, truncstorei16, u6_1ImmPred, or,
        /*anyext*/  L4_or_memoph_io>;
  defm: Memopxr_pat<sextloadi16, truncstorei16, u6_1ImmPred, or,
        /*sext*/    L4_or_memoph_io>;
  defm: Memopxr_pat<zextloadi16, truncstorei16, u6_1ImmPred, or,
        /*zext*/    L4_or_memoph_io>;
  defm: Memopxr_pat<load, store, u6_2ImmPred, or, L4_or_memopw_io>;
}


multiclass Memopxi_base_pat<PatFrag Load, PatFrag Store, SDNode Oper,
                            PatFrag Arg, SDNodeXForm ArgMod, InstHexagon MI> {
  // Addr: i32
  def: Pat<(Store (Oper (Load I32:$Rs), Arg:$A), I32:$Rs),
           (MI I32:$Rs, 0, (ArgMod Arg:$A))>;
  // Addr: fi
  def: Pat<(Store (Oper (Load AddrFI:$Rs), Arg:$A), AddrFI:$Rs),
           (MI AddrFI:$Rs, 0, (ArgMod Arg:$A))>;
}

multiclass Memopxi_add_pat<PatFrag Load, PatFrag Store, PatFrag ImmPred,
                           SDNode Oper, PatFrag Arg, SDNodeXForm ArgMod,
                           InstHexagon MI> {
  // Addr: i32
  def: Pat<(Store (Oper (Load (add I32:$Rs, ImmPred:$Off)), Arg:$A),
                  (add I32:$Rs, ImmPred:$Off)),
           (MI I32:$Rs, imm:$Off, (ArgMod Arg:$A))>;
  def: Pat<(Store (Oper (Load (IsOrAdd I32:$Rs, ImmPred:$Off)), Arg:$A),
                  (IsOrAdd I32:$Rs, ImmPred:$Off)),
           (MI I32:$Rs, imm:$Off, (ArgMod Arg:$A))>;
  // Addr: fi
  def: Pat<(Store (Oper (Load (add AddrFI:$Rs, ImmPred:$Off)), Arg:$A),
                  (add AddrFI:$Rs, ImmPred:$Off)),
           (MI AddrFI:$Rs, imm:$Off, (ArgMod Arg:$A))>;
  def: Pat<(Store (Oper (Load (IsOrAdd AddrFI:$Rs, ImmPred:$Off)), Arg:$A),
                  (IsOrAdd AddrFI:$Rs, ImmPred:$Off)),
           (MI AddrFI:$Rs, imm:$Off, (ArgMod Arg:$A))>;
}

multiclass Memopxi_pat<PatFrag Load, PatFrag Store, PatFrag ImmPred,
                       SDNode Oper, PatFrag Arg, SDNodeXForm ArgMod,
                       InstHexagon MI> {
  let Predicates = [UseMEMOPS] in {
    defm: Memopxi_base_pat <Load, Store,          Oper, Arg, ArgMod, MI>;
    defm: Memopxi_add_pat  <Load, Store, ImmPred, Oper, Arg, ArgMod, MI>;
  }
}

let AddedComplexity = 220 in {
  // add imm
  defm: Memopxi_pat<extloadi8, truncstorei8, u6_0ImmPred, add, u5_0ImmPred,
        /*anyext*/  IdImm, L4_iadd_memopb_io>;
  defm: Memopxi_pat<sextloadi8, truncstorei8, u6_0ImmPred, add, u5_0ImmPred,
        /*sext*/    IdImm, L4_iadd_memopb_io>;
  defm: Memopxi_pat<zextloadi8, truncstorei8, u6_0ImmPred, add, u5_0ImmPred,
        /*zext*/    IdImm, L4_iadd_memopb_io>;
  defm: Memopxi_pat<extloadi16, truncstorei16, u6_1ImmPred, add, u5_0ImmPred,
        /*anyext*/  IdImm, L4_iadd_memoph_io>;
  defm: Memopxi_pat<extloadi16, truncstorei16, u6_1ImmPred, add, u5_0ImmPred,
        /*sext*/    IdImm, L4_iadd_memoph_io>;
  defm: Memopxi_pat<extloadi16, truncstorei16, u6_1ImmPred, add, u5_0ImmPred,
        /*zext*/    IdImm, L4_iadd_memoph_io>;
  defm: Memopxi_pat<load, store, u6_2ImmPred, add, u5_0ImmPred, IdImm,
                    L4_iadd_memopw_io>;
  defm: Memopxi_pat<extloadi8, truncstorei8, u6_0ImmPred, sub, m5_0Imm8Pred,
        /*anyext*/  NegImm8, L4_iadd_memopb_io>;
  defm: Memopxi_pat<sextloadi8, truncstorei8, u6_0ImmPred, sub, m5_0Imm8Pred,
        /*sext*/    NegImm8, L4_iadd_memopb_io>;
  defm: Memopxi_pat<zextloadi8, truncstorei8, u6_0ImmPred, sub, m5_0Imm8Pred,
        /*zext*/    NegImm8, L4_iadd_memopb_io>;
  defm: Memopxi_pat<extloadi16, truncstorei16, u6_1ImmPred, sub, m5_0Imm16Pred,
        /*anyext*/  NegImm16, L4_iadd_memoph_io>;
  defm: Memopxi_pat<sextloadi16, truncstorei16, u6_1ImmPred, sub, m5_0Imm16Pred,
        /*sext*/    NegImm16, L4_iadd_memoph_io>;
  defm: Memopxi_pat<zextloadi16, truncstorei16, u6_1ImmPred, sub, m5_0Imm16Pred,
        /*zext*/    NegImm16, L4_iadd_memoph_io>;
  defm: Memopxi_pat<load, store, u6_2ImmPred, sub, m5_0ImmPred, NegImm32,
                    L4_iadd_memopw_io>;

  // sub imm
  defm: Memopxi_pat<extloadi8, truncstorei8, u6_0ImmPred, sub, u5_0ImmPred,
        /*anyext*/  IdImm, L4_isub_memopb_io>;
  defm: Memopxi_pat<sextloadi8, truncstorei8, u6_0ImmPred, sub, u5_0ImmPred,
        /*sext*/    IdImm, L4_isub_memopb_io>;
  defm: Memopxi_pat<zextloadi8, truncstorei8, u6_0ImmPred, sub, u5_0ImmPred,
        /*zext*/    IdImm, L4_isub_memopb_io>;
  defm: Memopxi_pat<extloadi16, truncstorei16, u6_1ImmPred, sub, u5_0ImmPred,
        /*anyext*/  IdImm, L4_isub_memoph_io>;
  defm: Memopxi_pat<sextloadi16, truncstorei16, u6_1ImmPred, sub, u5_0ImmPred,
        /*sext*/    IdImm, L4_isub_memoph_io>;
  defm: Memopxi_pat<zextloadi16, truncstorei16, u6_1ImmPred, sub, u5_0ImmPred,
        /*zext*/    IdImm, L4_isub_memoph_io>;
  defm: Memopxi_pat<load, store, u6_2ImmPred, sub, u5_0ImmPred, IdImm,
                    L4_isub_memopw_io>;
  defm: Memopxi_pat<extloadi8, truncstorei8, u6_0ImmPred, add, m5_0Imm8Pred,
        /*anyext*/  NegImm8, L4_isub_memopb_io>;
  defm: Memopxi_pat<sextloadi8, truncstorei8, u6_0ImmPred, add, m5_0Imm8Pred,
        /*sext*/    NegImm8, L4_isub_memopb_io>;
  defm: Memopxi_pat<zextloadi8, truncstorei8, u6_0ImmPred, add, m5_0Imm8Pred,
        /*zext*/    NegImm8, L4_isub_memopb_io>;
  defm: Memopxi_pat<extloadi16, truncstorei16, u6_1ImmPred, add, m5_0Imm16Pred,
        /*anyext*/  NegImm16, L4_isub_memoph_io>;
  defm: Memopxi_pat<sextloadi16, truncstorei16, u6_1ImmPred, add, m5_0Imm16Pred,
        /*sext*/    NegImm16, L4_isub_memoph_io>;
  defm: Memopxi_pat<zextloadi16, truncstorei16, u6_1ImmPred, add, m5_0Imm16Pred,
        /*zext*/    NegImm16, L4_isub_memoph_io>;
  defm: Memopxi_pat<load, store, u6_2ImmPred, add, m5_0ImmPred, NegImm32,
                    L4_isub_memopw_io>;

  // clrbit imm
  defm: Memopxi_pat<extloadi8, truncstorei8, u6_0ImmPred, and, IsNPow2_8,
        /*anyext*/  LogN2_8, L4_iand_memopb_io>;
  defm: Memopxi_pat<sextloadi8, truncstorei8, u6_0ImmPred, and, IsNPow2_8,
        /*sext*/    LogN2_8, L4_iand_memopb_io>;
  defm: Memopxi_pat<zextloadi8, truncstorei8, u6_0ImmPred, and, IsNPow2_8,
        /*zext*/    LogN2_8, L4_iand_memopb_io>;
  defm: Memopxi_pat<extloadi16, truncstorei16, u6_1ImmPred, and, IsNPow2_16,
        /*anyext*/  LogN2_16, L4_iand_memoph_io>;
  defm: Memopxi_pat<sextloadi16, truncstorei16, u6_1ImmPred, and, IsNPow2_16,
        /*sext*/    LogN2_16, L4_iand_memoph_io>;
  defm: Memopxi_pat<zextloadi16, truncstorei16, u6_1ImmPred, and, IsNPow2_16,
        /*zext*/    LogN2_16, L4_iand_memoph_io>;
  defm: Memopxi_pat<load, store, u6_2ImmPred, and, IsNPow2_32,
		    LogN2_32, L4_iand_memopw_io>;

  // setbit imm
  defm: Memopxi_pat<extloadi8, truncstorei8, u6_0ImmPred, or, IsPow2_32,
        /*anyext*/  Log2_8, L4_ior_memopb_io>;
  defm: Memopxi_pat<sextloadi8, truncstorei8, u6_0ImmPred, or, IsPow2_32,
        /*sext*/    Log2_8, L4_ior_memopb_io>;
  defm: Memopxi_pat<zextloadi8, truncstorei8, u6_0ImmPred, or, IsPow2_32,
        /*zext*/    Log2_8, L4_ior_memopb_io>;
  defm: Memopxi_pat<extloadi16, truncstorei16, u6_1ImmPred, or, IsPow2_32,
        /*anyext*/  Log2_16, L4_ior_memoph_io>;
  defm: Memopxi_pat<sextloadi16, truncstorei16, u6_1ImmPred, or, IsPow2_32,
        /*sext*/    Log2_16, L4_ior_memoph_io>;
  defm: Memopxi_pat<zextloadi16, truncstorei16, u6_1ImmPred, or, IsPow2_32,
        /*zext*/    Log2_16, L4_ior_memoph_io>;
  defm: Memopxi_pat<load, store, u6_2ImmPred, or, IsPow2_32,
		    Log2_32, L4_ior_memopw_io>;
}


// --(15) Call -----------------------------------------------------------
//

// Pseudo instructions.
def SDT_SPCallSeqStart
  : SDCallSeqStart<[SDTCisVT<0, i32>, SDTCisVT<1, i32>]>;
def SDT_SPCallSeqEnd
  : SDCallSeqEnd<[SDTCisVT<0, i32>, SDTCisVT<1, i32>]>;

def callseq_start: SDNode<"ISD::CALLSEQ_START", SDT_SPCallSeqStart,
                          [SDNPHasChain, SDNPOutGlue]>;
def callseq_end:   SDNode<"ISD::CALLSEQ_END",   SDT_SPCallSeqEnd,
                          [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue]>;

def SDT_SPCall: SDTypeProfile<0, 1, [SDTCisVT<0, i32>]>;

def HexagonTCRet: SDNode<"HexagonISD::TC_RETURN", SDT_SPCall,
                         [SDNPHasChain,  SDNPOptInGlue, SDNPVariadic]>;
def callv3: SDNode<"HexagonISD::CALL", SDT_SPCall,
                   [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue, SDNPVariadic]>;
def callv3nr: SDNode<"HexagonISD::CALLnr", SDT_SPCall,
                     [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue, SDNPVariadic]>;

def: Pat<(callseq_start timm:$amt, timm:$amt2),
         (ADJCALLSTACKDOWN imm:$amt, imm:$amt2)>;
def: Pat<(callseq_end timm:$amt1, timm:$amt2),
         (ADJCALLSTACKUP imm:$amt1, imm:$amt2)>;

def: Pat<(HexagonTCRet tglobaladdr:$dst),   (PS_tailcall_i tglobaladdr:$dst)>;
def: Pat<(HexagonTCRet texternalsym:$dst),  (PS_tailcall_i texternalsym:$dst)>;
def: Pat<(HexagonTCRet I32:$dst),           (PS_tailcall_r I32:$dst)>;

def: Pat<(callv3 I32:$dst),                 (J2_callr I32:$dst)>;
def: Pat<(callv3 tglobaladdr:$dst),         (J2_call tglobaladdr:$dst)>;
def: Pat<(callv3 texternalsym:$dst),        (J2_call texternalsym:$dst)>;
def: Pat<(callv3 tglobaltlsaddr:$dst),      (J2_call tglobaltlsaddr:$dst)>;

def: Pat<(callv3nr I32:$dst),               (PS_callr_nr I32:$dst)>;
def: Pat<(callv3nr tglobaladdr:$dst),       (PS_call_nr tglobaladdr:$dst)>;
def: Pat<(callv3nr texternalsym:$dst),      (PS_call_nr texternalsym:$dst)>;

def retflag : SDNode<"HexagonISD::RET_FLAG", SDTNone,
                     [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>;
def eh_return: SDNode<"HexagonISD::EH_RETURN", SDTNone, [SDNPHasChain]>;

def: Pat<(retflag),   (PS_jmpret (i32 R31))>;
def: Pat<(eh_return), (EH_RETURN_JMPR (i32 R31))>;


// --(16) Branch ---------------------------------------------------------
//

def: Pat<(br      bb:$dst),         (J2_jump  b30_2Imm:$dst)>;
def: Pat<(brind   I32:$dst),        (J2_jumpr I32:$dst)>;

def: Pat<(brcond I1:$Pu, bb:$dst),
         (J2_jumpt I1:$Pu, bb:$dst)>;
def: Pat<(brcond (not I1:$Pu), bb:$dst),
         (J2_jumpf I1:$Pu, bb:$dst)>;
def: Pat<(brcond (i1 (setne I1:$Pu, -1)), bb:$dst),
         (J2_jumpf I1:$Pu, bb:$dst)>;
def: Pat<(brcond (i1 (seteq I1:$Pu, 0)), bb:$dst),
         (J2_jumpf I1:$Pu, bb:$dst)>;
def: Pat<(brcond (i1 (setne I1:$Pu, 0)), bb:$dst),
         (J2_jumpt I1:$Pu, bb:$dst)>;


// --(17) Misc -----------------------------------------------------------


// Generate code of the form 'C2_muxii(cmpbgtui(Rdd, C-1),0,1)'
// for C code of the form r = (c>='0' && c<='9') ? 1 : 0.
// The isdigit transformation relies on two 'clever' aspects:
// 1) The data type is unsigned which allows us to eliminate a zero test after
//    biasing the expression by 48. We are depending on the representation of
//    the unsigned types, and semantics.
// 2) The front end has converted <= 9 into < 10 on entry to LLVM.
//
// For the C code:
//   retval = (c >= '0' && c <= '9') ? 1 : 0;
// The code is transformed upstream of llvm into
//   retval = (c-48) < 10 ? 1 : 0;

def u7_0PosImmPred : ImmLeaf<i32, [{
  // True if the immediate fits in an 7-bit unsigned field and is positive.
  return Imm > 0 && isUInt<7>(Imm);
}]>;

let AddedComplexity = 139 in
def: Pat<(i32 (zext (i1 (setult (and I32:$Rs, 255), u7_0PosImmPred:$u7)))),
         (C2_muxii (A4_cmpbgtui IntRegs:$Rs, (UDEC1 imm:$u7)), 0, 1)>;

let AddedComplexity = 100 in
def: Pat<(or (or (shl (HexagonINSERT (i32 (zextloadi8 (add I32:$b, 2))),
                                     (i32 (extloadi8  (add I32:$b, 3))),
                                     24, 8),
                      (i32 16)),
                 (shl (i32 (zextloadi8 (add I32:$b, 1))), (i32 8))),
             (zextloadi8 I32:$b)),
         (A2_swiz (L2_loadri_io I32:$b, 0))>;


// We need custom lowering of ISD::PREFETCH into HexagonISD::DCFETCH
// because the SDNode ISD::PREFETCH has properties MayLoad and MayStore.
// We don't really want either one here.
def SDTHexagonDCFETCH: SDTypeProfile<0, 2, [SDTCisPtrTy<0>,SDTCisInt<1>]>;
def HexagonDCFETCH: SDNode<"HexagonISD::DCFETCH", SDTHexagonDCFETCH,
                           [SDNPHasChain]>;

def: Pat<(HexagonDCFETCH IntRegs:$Rs, u11_3ImmPred:$u11_3),
         (Y2_dcfetchbo IntRegs:$Rs, imm:$u11_3)>;
def: Pat<(HexagonDCFETCH (i32 (add IntRegs:$Rs, u11_3ImmPred:$u11_3)), (i32 0)),
         (Y2_dcfetchbo IntRegs:$Rs, imm:$u11_3)>;

def SDTHexagonALLOCA
  : SDTypeProfile<1, 2, [SDTCisVT<0, i32>, SDTCisVT<1, i32>]>;
def HexagonALLOCA
  : SDNode<"HexagonISD::ALLOCA", SDTHexagonALLOCA, [SDNPHasChain]>;

def: Pat<(HexagonALLOCA I32:$Rs, (i32 imm:$A)),
         (PS_alloca IntRegs:$Rs, imm:$A)>;

def HexagonBARRIER: SDNode<"HexagonISD::BARRIER", SDTNone, [SDNPHasChain]>;
def: Pat<(HexagonBARRIER), (Y2_barrier)>;

def: Pat<(trap), (PS_crash)>;

// Read cycle counter.
def SDTInt64Leaf: SDTypeProfile<1, 0, [SDTCisVT<0, i64>]>;
def HexagonREADCYCLE: SDNode<"HexagonISD::READCYCLE", SDTInt64Leaf,
  [SDNPHasChain]>;

def: Pat<(HexagonREADCYCLE), (A4_tfrcpp UPCYCLE)>;

// The declared return value of the store-locked intrinsics is i32, but
// the instructions actually define i1. To avoid register copies from
// IntRegs to PredRegs and back, fold the entire pattern checking the
// result against true/false.
let AddedComplexity = 100 in {
  def: Pat<(i1 (setne (int_hexagon_S2_storew_locked I32:$Rs, I32:$Rt), 0)),
           (S2_storew_locked I32:$Rs, I32:$Rt)>;
  def: Pat<(i1 (seteq (int_hexagon_S2_storew_locked I32:$Rs, I32:$Rt), 0)),
           (C2_not (S2_storew_locked I32:$Rs, I32:$Rt))>;
  def: Pat<(i1 (setne (int_hexagon_S4_stored_locked I32:$Rs, I64:$Rt), 0)),
           (S4_stored_locked I32:$Rs, I64:$Rt)>;
  def: Pat<(i1 (seteq (int_hexagon_S4_stored_locked I32:$Rs, I64:$Rt), 0)),
           (C2_not (S4_stored_locked I32:$Rs, I64:$Rt))>;
}