HexagonTargetTransformInfo.cpp
11.7 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
//===- HexagonTargetTransformInfo.cpp - Hexagon specific TTI pass ---------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
/// \file
/// This file implements a TargetTransformInfo analysis pass specific to the
/// Hexagon target machine. It uses the target's detailed information to provide
/// more precise answers to certain TTI queries, while letting the target
/// independent and default TTI implementations handle the rest.
///
//===----------------------------------------------------------------------===//
#include "HexagonTargetTransformInfo.h"
#include "HexagonSubtarget.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/CodeGen/ValueTypes.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/User.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Transforms/Utils/UnrollLoop.h"
using namespace llvm;
#define DEBUG_TYPE "hexagontti"
static cl::opt<bool> HexagonAutoHVX("hexagon-autohvx", cl::init(false),
cl::Hidden, cl::desc("Enable loop vectorizer for HVX"));
static cl::opt<bool> EmitLookupTables("hexagon-emit-lookup-tables",
cl::init(true), cl::Hidden,
cl::desc("Control lookup table emission on Hexagon target"));
// Constant "cost factor" to make floating point operations more expensive
// in terms of vectorization cost. This isn't the best way, but it should
// do. Ultimately, the cost should use cycles.
static const unsigned FloatFactor = 4;
bool HexagonTTIImpl::useHVX() const {
return ST.useHVXOps() && HexagonAutoHVX;
}
bool HexagonTTIImpl::isTypeForHVX(Type *VecTy) const {
assert(VecTy->isVectorTy());
if (cast<VectorType>(VecTy)->isScalable())
return false;
// Avoid types like <2 x i32*>.
if (!cast<VectorType>(VecTy)->getElementType()->isIntegerTy())
return false;
EVT VecVT = EVT::getEVT(VecTy);
if (!VecVT.isSimple() || VecVT.getSizeInBits() <= 64)
return false;
if (ST.isHVXVectorType(VecVT.getSimpleVT()))
return true;
auto Action = TLI.getPreferredVectorAction(VecVT.getSimpleVT());
return Action == TargetLoweringBase::TypeWidenVector;
}
unsigned HexagonTTIImpl::getTypeNumElements(Type *Ty) const {
if (Ty->isVectorTy())
return Ty->getVectorNumElements();
assert((Ty->isIntegerTy() || Ty->isFloatingPointTy()) &&
"Expecting scalar type");
return 1;
}
TargetTransformInfo::PopcntSupportKind
HexagonTTIImpl::getPopcntSupport(unsigned IntTyWidthInBit) const {
// Return fast hardware support as every input < 64 bits will be promoted
// to 64 bits.
return TargetTransformInfo::PSK_FastHardware;
}
// The Hexagon target can unroll loops with run-time trip counts.
void HexagonTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
TTI::UnrollingPreferences &UP) {
UP.Runtime = UP.Partial = true;
// Only try to peel innermost loops with small runtime trip counts.
if (L && L->empty() && canPeel(L) &&
SE.getSmallConstantTripCount(L) == 0 &&
SE.getSmallConstantMaxTripCount(L) > 0 &&
SE.getSmallConstantMaxTripCount(L) <= 5) {
UP.PeelCount = 2;
}
}
bool HexagonTTIImpl::shouldFavorPostInc() const {
return true;
}
/// --- Vector TTI begin ---
unsigned HexagonTTIImpl::getNumberOfRegisters(bool Vector) const {
if (Vector)
return useHVX() ? 32 : 0;
return 32;
}
unsigned HexagonTTIImpl::getMaxInterleaveFactor(unsigned VF) {
return useHVX() ? 2 : 0;
}
unsigned HexagonTTIImpl::getRegisterBitWidth(bool Vector) const {
return Vector ? getMinVectorRegisterBitWidth() : 32;
}
unsigned HexagonTTIImpl::getMinVectorRegisterBitWidth() const {
return useHVX() ? ST.getVectorLength()*8 : 0;
}
unsigned HexagonTTIImpl::getMinimumVF(unsigned ElemWidth) const {
return (8 * ST.getVectorLength()) / ElemWidth;
}
unsigned HexagonTTIImpl::getScalarizationOverhead(Type *Ty, bool Insert,
bool Extract) {
return BaseT::getScalarizationOverhead(Ty, Insert, Extract);
}
unsigned HexagonTTIImpl::getOperandsScalarizationOverhead(
ArrayRef<const Value*> Args, unsigned VF) {
return BaseT::getOperandsScalarizationOverhead(Args, VF);
}
unsigned HexagonTTIImpl::getCallInstrCost(Function *F, Type *RetTy,
ArrayRef<Type*> Tys) {
return BaseT::getCallInstrCost(F, RetTy, Tys);
}
unsigned HexagonTTIImpl::getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy,
ArrayRef<Value*> Args, FastMathFlags FMF, unsigned VF) {
return BaseT::getIntrinsicInstrCost(ID, RetTy, Args, FMF, VF);
}
unsigned HexagonTTIImpl::getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy,
ArrayRef<Type*> Tys, FastMathFlags FMF,
unsigned ScalarizationCostPassed) {
if (ID == Intrinsic::bswap) {
std::pair<int, MVT> LT = TLI.getTypeLegalizationCost(DL, RetTy);
return LT.first + 2;
}
return BaseT::getIntrinsicInstrCost(ID, RetTy, Tys, FMF,
ScalarizationCostPassed);
}
unsigned HexagonTTIImpl::getAddressComputationCost(Type *Tp,
ScalarEvolution *SE, const SCEV *S) {
return 0;
}
unsigned HexagonTTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src,
MaybeAlign Alignment,
unsigned AddressSpace,
const Instruction *I) {
assert(Opcode == Instruction::Load || Opcode == Instruction::Store);
if (Opcode == Instruction::Store)
return BaseT::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace, I);
if (Src->isVectorTy()) {
VectorType *VecTy = cast<VectorType>(Src);
unsigned VecWidth = VecTy->getBitWidth();
if (useHVX() && isTypeForHVX(VecTy)) {
unsigned RegWidth = getRegisterBitWidth(true);
assert(RegWidth && "Non-zero vector register width expected");
// Cost of HVX loads.
if (VecWidth % RegWidth == 0)
return VecWidth / RegWidth;
// Cost of constructing HVX vector from scalar loads
const Align RegAlign(RegWidth / 8);
if (!Alignment || *Alignment > RegAlign)
Alignment = RegAlign;
assert(Alignment);
unsigned AlignWidth = 8 * Alignment->value();
unsigned NumLoads = alignTo(VecWidth, AlignWidth) / AlignWidth;
return 3 * NumLoads;
}
// Non-HVX vectors.
// Add extra cost for floating point types.
unsigned Cost =
VecTy->getElementType()->isFloatingPointTy() ? FloatFactor : 1;
// At this point unspecified alignment is considered as Align::None().
const Align BoundAlignment = std::min(Alignment.valueOrOne(), Align(8));
unsigned AlignWidth = 8 * BoundAlignment.value();
unsigned NumLoads = alignTo(VecWidth, AlignWidth) / AlignWidth;
if (Alignment == Align(4) || Alignment == Align(8))
return Cost * NumLoads;
// Loads of less than 32 bits will need extra inserts to compose a vector.
assert(BoundAlignment <= Align(8));
unsigned LogA = Log2(BoundAlignment);
return (3 - LogA) * Cost * NumLoads;
}
return BaseT::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace, I);
}
unsigned HexagonTTIImpl::getMaskedMemoryOpCost(unsigned Opcode,
Type *Src, unsigned Alignment, unsigned AddressSpace) {
return BaseT::getMaskedMemoryOpCost(Opcode, Src, Alignment, AddressSpace);
}
unsigned HexagonTTIImpl::getShuffleCost(TTI::ShuffleKind Kind, Type *Tp,
int Index, Type *SubTp) {
return 1;
}
unsigned HexagonTTIImpl::getGatherScatterOpCost(unsigned Opcode, Type *DataTy,
Value *Ptr, bool VariableMask, unsigned Alignment) {
return BaseT::getGatherScatterOpCost(Opcode, DataTy, Ptr, VariableMask,
Alignment);
}
unsigned HexagonTTIImpl::getInterleavedMemoryOpCost(unsigned Opcode,
Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices,
unsigned Alignment, unsigned AddressSpace, bool UseMaskForCond,
bool UseMaskForGaps) {
if (Indices.size() != Factor || UseMaskForCond || UseMaskForGaps)
return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
Alignment, AddressSpace,
UseMaskForCond, UseMaskForGaps);
return getMemoryOpCost(Opcode, VecTy, MaybeAlign(Alignment), AddressSpace,
nullptr);
}
unsigned HexagonTTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
Type *CondTy, const Instruction *I) {
if (ValTy->isVectorTy()) {
std::pair<int, MVT> LT = TLI.getTypeLegalizationCost(DL, ValTy);
if (Opcode == Instruction::FCmp)
return LT.first + FloatFactor * getTypeNumElements(ValTy);
}
return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, I);
}
unsigned HexagonTTIImpl::getArithmeticInstrCost(
unsigned Opcode, Type *Ty, TTI::OperandValueKind Opd1Info,
TTI::OperandValueKind Opd2Info, TTI::OperandValueProperties Opd1PropInfo,
TTI::OperandValueProperties Opd2PropInfo, ArrayRef<const Value *> Args,
const Instruction *CxtI) {
if (Ty->isVectorTy()) {
std::pair<int, MVT> LT = TLI.getTypeLegalizationCost(DL, Ty);
if (LT.second.isFloatingPoint())
return LT.first + FloatFactor * getTypeNumElements(Ty);
}
return BaseT::getArithmeticInstrCost(Opcode, Ty, Opd1Info, Opd2Info,
Opd1PropInfo, Opd2PropInfo, Args, CxtI);
}
unsigned HexagonTTIImpl::getCastInstrCost(unsigned Opcode, Type *DstTy,
Type *SrcTy, const Instruction *I) {
if (SrcTy->isFPOrFPVectorTy() || DstTy->isFPOrFPVectorTy()) {
unsigned SrcN = SrcTy->isFPOrFPVectorTy() ? getTypeNumElements(SrcTy) : 0;
unsigned DstN = DstTy->isFPOrFPVectorTy() ? getTypeNumElements(DstTy) : 0;
std::pair<int, MVT> SrcLT = TLI.getTypeLegalizationCost(DL, SrcTy);
std::pair<int, MVT> DstLT = TLI.getTypeLegalizationCost(DL, DstTy);
return std::max(SrcLT.first, DstLT.first) + FloatFactor * (SrcN + DstN);
}
return 1;
}
unsigned HexagonTTIImpl::getVectorInstrCost(unsigned Opcode, Type *Val,
unsigned Index) {
Type *ElemTy = Val->isVectorTy() ? cast<VectorType>(Val)->getElementType()
: Val;
if (Opcode == Instruction::InsertElement) {
// Need two rotations for non-zero index.
unsigned Cost = (Index != 0) ? 2 : 0;
if (ElemTy->isIntegerTy(32))
return Cost;
// If it's not a 32-bit value, there will need to be an extract.
return Cost + getVectorInstrCost(Instruction::ExtractElement, Val, Index);
}
if (Opcode == Instruction::ExtractElement)
return 2;
return 1;
}
/// --- Vector TTI end ---
unsigned HexagonTTIImpl::getPrefetchDistance() const {
return ST.getL1PrefetchDistance();
}
unsigned HexagonTTIImpl::getCacheLineSize() const {
return ST.getL1CacheLineSize();
}
int HexagonTTIImpl::getUserCost(const User *U,
ArrayRef<const Value *> Operands) {
auto isCastFoldedIntoLoad = [this](const CastInst *CI) -> bool {
if (!CI->isIntegerCast())
return false;
// Only extensions from an integer type shorter than 32-bit to i32
// can be folded into the load.
const DataLayout &DL = getDataLayout();
unsigned SBW = DL.getTypeSizeInBits(CI->getSrcTy());
unsigned DBW = DL.getTypeSizeInBits(CI->getDestTy());
if (DBW != 32 || SBW >= DBW)
return false;
const LoadInst *LI = dyn_cast<const LoadInst>(CI->getOperand(0));
// Technically, this code could allow multiple uses of the load, and
// check if all the uses are the same extension operation, but this
// should be sufficient for most cases.
return LI && LI->hasOneUse();
};
if (const CastInst *CI = dyn_cast<const CastInst>(U))
if (isCastFoldedIntoLoad(CI))
return TargetTransformInfo::TCC_Free;
return BaseT::getUserCost(U, Operands);
}
bool HexagonTTIImpl::shouldBuildLookupTables() const {
return EmitLookupTables;
}