HotColdSplitting.cpp 26.2 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744
//===- HotColdSplitting.cpp -- Outline Cold Regions -------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
///
/// \file
/// The goal of hot/cold splitting is to improve the memory locality of code.
/// The splitting pass does this by identifying cold blocks and moving them into
/// separate functions.
///
/// When the splitting pass finds a cold block (referred to as "the sink"), it
/// grows a maximal cold region around that block. The maximal region contains
/// all blocks (post-)dominated by the sink [*]. In theory, these blocks are as
/// cold as the sink. Once a region is found, it's split out of the original
/// function provided it's profitable to do so.
///
/// [*] In practice, there is some added complexity because some blocks are not
/// safe to extract.
///
/// TODO: Use the PM to get domtrees, and preserve BFI/BPI.
/// TODO: Reorder outlined functions.
///
//===----------------------------------------------------------------------===//

#include "llvm/Transforms/IPO/HotColdSplitting.h"
#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/BlockFrequencyInfo.h"
#include "llvm/Analysis/BranchProbabilityInfo.h"
#include "llvm/Analysis/CFG.h"
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
#include "llvm/Analysis/PostDominators.h"
#include "llvm/Analysis/ProfileSummaryInfo.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/CallSite.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DiagnosticInfo.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/PassManager.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Use.h"
#include "llvm/IR/User.h"
#include "llvm/IR/Value.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/Support/BlockFrequency.h"
#include "llvm/Support/BranchProbability.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/IPO.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/Cloning.h"
#include "llvm/Transforms/Utils/CodeExtractor.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Transforms/Utils/ValueMapper.h"
#include <algorithm>
#include <cassert>

#define DEBUG_TYPE "hotcoldsplit"

STATISTIC(NumColdRegionsFound, "Number of cold regions found.");
STATISTIC(NumColdRegionsOutlined, "Number of cold regions outlined.");

using namespace llvm;

static cl::opt<bool> EnableStaticAnalyis("hot-cold-static-analysis",
                              cl::init(true), cl::Hidden);

static cl::opt<int>
    SplittingThreshold("hotcoldsplit-threshold", cl::init(2), cl::Hidden,
                       cl::desc("Base penalty for splitting cold code (as a "
                                "multiple of TCC_Basic)"));

namespace {
// Same as blockEndsInUnreachable in CodeGen/BranchFolding.cpp. Do not modify
// this function unless you modify the MBB version as well.
//
/// A no successor, non-return block probably ends in unreachable and is cold.
/// Also consider a block that ends in an indirect branch to be a return block,
/// since many targets use plain indirect branches to return.
bool blockEndsInUnreachable(const BasicBlock &BB) {
  if (!succ_empty(&BB))
    return false;
  if (BB.empty())
    return true;
  const Instruction *I = BB.getTerminator();
  return !(isa<ReturnInst>(I) || isa<IndirectBrInst>(I));
}

bool unlikelyExecuted(BasicBlock &BB) {
  // Exception handling blocks are unlikely executed.
  if (BB.isEHPad() || isa<ResumeInst>(BB.getTerminator()))
    return true;

  // The block is cold if it calls/invokes a cold function. However, do not
  // mark sanitizer traps as cold.
  for (Instruction &I : BB)
    if (auto CS = CallSite(&I))
      if (CS.hasFnAttr(Attribute::Cold) && !CS->getMetadata("nosanitize"))
        return true;

  // The block is cold if it has an unreachable terminator, unless it's
  // preceded by a call to a (possibly warm) noreturn call (e.g. longjmp).
  if (blockEndsInUnreachable(BB)) {
    if (auto *CI =
            dyn_cast_or_null<CallInst>(BB.getTerminator()->getPrevNode()))
      if (CI->hasFnAttr(Attribute::NoReturn))
        return false;
    return true;
  }

  return false;
}

/// Check whether it's safe to outline \p BB.
static bool mayExtractBlock(const BasicBlock &BB) {
  // EH pads are unsafe to outline because doing so breaks EH type tables. It
  // follows that invoke instructions cannot be extracted, because CodeExtractor
  // requires unwind destinations to be within the extraction region.
  //
  // Resumes that are not reachable from a cleanup landing pad are considered to
  // be unreachable. It’s not safe to split them out either.
  auto Term = BB.getTerminator();
  return !BB.hasAddressTaken() && !BB.isEHPad() && !isa<InvokeInst>(Term) &&
         !isa<ResumeInst>(Term);
}

/// Mark \p F cold. Based on this assumption, also optimize it for minimum size.
/// If \p UpdateEntryCount is true (set when this is a new split function and
/// module has profile data), set entry count to 0 to ensure treated as cold.
/// Return true if the function is changed.
static bool markFunctionCold(Function &F, bool UpdateEntryCount = false) {
  assert(!F.hasOptNone() && "Can't mark this cold");
  bool Changed = false;
  if (!F.hasFnAttribute(Attribute::Cold)) {
    F.addFnAttr(Attribute::Cold);
    Changed = true;
  }
  if (!F.hasFnAttribute(Attribute::MinSize)) {
    F.addFnAttr(Attribute::MinSize);
    Changed = true;
  }
  if (UpdateEntryCount) {
    // Set the entry count to 0 to ensure it is placed in the unlikely text
    // section when function sections are enabled.
    F.setEntryCount(0);
    Changed = true;
  }

  return Changed;
}

class HotColdSplittingLegacyPass : public ModulePass {
public:
  static char ID;
  HotColdSplittingLegacyPass() : ModulePass(ID) {
    initializeHotColdSplittingLegacyPassPass(*PassRegistry::getPassRegistry());
  }

  void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.addRequired<BlockFrequencyInfoWrapperPass>();
    AU.addRequired<ProfileSummaryInfoWrapperPass>();
    AU.addRequired<TargetTransformInfoWrapperPass>();
    AU.addUsedIfAvailable<AssumptionCacheTracker>();
  }

  bool runOnModule(Module &M) override;
};

} // end anonymous namespace

/// Check whether \p F is inherently cold.
bool HotColdSplitting::isFunctionCold(const Function &F) const {
  if (F.hasFnAttribute(Attribute::Cold))
    return true;

  if (F.getCallingConv() == CallingConv::Cold)
    return true;

  if (PSI->isFunctionEntryCold(&F))
    return true;

  return false;
}

// Returns false if the function should not be considered for hot-cold split
// optimization.
bool HotColdSplitting::shouldOutlineFrom(const Function &F) const {
  if (F.hasFnAttribute(Attribute::AlwaysInline))
    return false;

  if (F.hasFnAttribute(Attribute::NoInline))
    return false;

  // A function marked `noreturn` may contain unreachable terminators: these
  // should not be considered cold, as the function may be a trampoline.
  if (F.hasFnAttribute(Attribute::NoReturn))
    return false;

  if (F.hasFnAttribute(Attribute::SanitizeAddress) ||
      F.hasFnAttribute(Attribute::SanitizeHWAddress) ||
      F.hasFnAttribute(Attribute::SanitizeThread) ||
      F.hasFnAttribute(Attribute::SanitizeMemory))
    return false;

  return true;
}

/// Get the benefit score of outlining \p Region.
static int getOutliningBenefit(ArrayRef<BasicBlock *> Region,
                               TargetTransformInfo &TTI) {
  // Sum up the code size costs of non-terminator instructions. Tight coupling
  // with \ref getOutliningPenalty is needed to model the costs of terminators.
  int Benefit = 0;
  for (BasicBlock *BB : Region)
    for (Instruction &I : BB->instructionsWithoutDebug())
      if (&I != BB->getTerminator())
        Benefit +=
            TTI.getInstructionCost(&I, TargetTransformInfo::TCK_CodeSize);

  return Benefit;
}

/// Get the penalty score for outlining \p Region.
static int getOutliningPenalty(ArrayRef<BasicBlock *> Region,
                               unsigned NumInputs, unsigned NumOutputs) {
  int Penalty = SplittingThreshold;
  LLVM_DEBUG(dbgs() << "Applying penalty for splitting: " << Penalty << "\n");

  // If the splitting threshold is set at or below zero, skip the usual
  // profitability check.
  if (SplittingThreshold <= 0)
    return Penalty;

  // The typical code size cost for materializing an argument for the outlined
  // call.
  LLVM_DEBUG(dbgs() << "Applying penalty for: " << NumInputs << " inputs\n");
  const int CostForArgMaterialization = TargetTransformInfo::TCC_Basic;
  Penalty += CostForArgMaterialization * NumInputs;

  // The typical code size cost for an output alloca, its associated store, and
  // its associated reload.
  LLVM_DEBUG(dbgs() << "Applying penalty for: " << NumOutputs << " outputs\n");
  const int CostForRegionOutput = 3 * TargetTransformInfo::TCC_Basic;
  Penalty += CostForRegionOutput * NumOutputs;

  // Find the number of distinct exit blocks for the region. Use a conservative
  // check to determine whether control returns from the region.
  bool NoBlocksReturn = true;
  SmallPtrSet<BasicBlock *, 2> SuccsOutsideRegion;
  for (BasicBlock *BB : Region) {
    // If a block has no successors, only assume it does not return if it's
    // unreachable.
    if (succ_empty(BB)) {
      NoBlocksReturn &= isa<UnreachableInst>(BB->getTerminator());
      continue;
    }

    for (BasicBlock *SuccBB : successors(BB)) {
      if (find(Region, SuccBB) == Region.end()) {
        NoBlocksReturn = false;
        SuccsOutsideRegion.insert(SuccBB);
      }
    }
  }

  // Apply a `noreturn` bonus.
  if (NoBlocksReturn) {
    LLVM_DEBUG(dbgs() << "Applying bonus for: " << Region.size()
                      << " non-returning terminators\n");
    Penalty -= Region.size();
  }

  // Apply a penalty for having more than one successor outside of the region.
  // This penalty accounts for the switch needed in the caller.
  if (!SuccsOutsideRegion.empty()) {
    LLVM_DEBUG(dbgs() << "Applying penalty for: " << SuccsOutsideRegion.size()
                      << " non-region successors\n");
    Penalty += (SuccsOutsideRegion.size() - 1) * TargetTransformInfo::TCC_Basic;
  }

  return Penalty;
}

Function *HotColdSplitting::extractColdRegion(
    const BlockSequence &Region, const CodeExtractorAnalysisCache &CEAC,
    DominatorTree &DT, BlockFrequencyInfo *BFI, TargetTransformInfo &TTI,
    OptimizationRemarkEmitter &ORE, AssumptionCache *AC, unsigned Count) {
  assert(!Region.empty());

  // TODO: Pass BFI and BPI to update profile information.
  CodeExtractor CE(Region, &DT, /* AggregateArgs */ false, /* BFI */ nullptr,
                   /* BPI */ nullptr, AC, /* AllowVarArgs */ false,
                   /* AllowAlloca */ false,
                   /* Suffix */ "cold." + std::to_string(Count));

  // Perform a simple cost/benefit analysis to decide whether or not to permit
  // splitting.
  SetVector<Value *> Inputs, Outputs, Sinks;
  CE.findInputsOutputs(Inputs, Outputs, Sinks);
  int OutliningBenefit = getOutliningBenefit(Region, TTI);
  int OutliningPenalty =
      getOutliningPenalty(Region, Inputs.size(), Outputs.size());
  LLVM_DEBUG(dbgs() << "Split profitability: benefit = " << OutliningBenefit
                    << ", penalty = " << OutliningPenalty << "\n");
  if (OutliningBenefit <= OutliningPenalty)
    return nullptr;

  Function *OrigF = Region[0]->getParent();
  if (Function *OutF = CE.extractCodeRegion(CEAC)) {
    User *U = *OutF->user_begin();
    CallInst *CI = cast<CallInst>(U);
    CallSite CS(CI);
    NumColdRegionsOutlined++;
    if (TTI.useColdCCForColdCall(*OutF)) {
      OutF->setCallingConv(CallingConv::Cold);
      CS.setCallingConv(CallingConv::Cold);
    }
    CI->setIsNoInline();

    if (OrigF->hasSection())
      OutF->setSection(OrigF->getSection());

    markFunctionCold(*OutF, BFI != nullptr);

    LLVM_DEBUG(llvm::dbgs() << "Outlined Region: " << *OutF);
    ORE.emit([&]() {
      return OptimizationRemark(DEBUG_TYPE, "HotColdSplit",
                                &*Region[0]->begin())
             << ore::NV("Original", OrigF) << " split cold code into "
             << ore::NV("Split", OutF);
    });
    return OutF;
  }

  ORE.emit([&]() {
    return OptimizationRemarkMissed(DEBUG_TYPE, "ExtractFailed",
                                    &*Region[0]->begin())
           << "Failed to extract region at block "
           << ore::NV("Block", Region.front());
  });
  return nullptr;
}

/// A pair of (basic block, score).
using BlockTy = std::pair<BasicBlock *, unsigned>;

namespace {
/// A maximal outlining region. This contains all blocks post-dominated by a
/// sink block, the sink block itself, and all blocks dominated by the sink.
/// If sink-predecessors and sink-successors cannot be extracted in one region,
/// the static constructor returns a list of suitable extraction regions.
class OutliningRegion {
  /// A list of (block, score) pairs. A block's score is non-zero iff it's a
  /// viable sub-region entry point. Blocks with higher scores are better entry
  /// points (i.e. they are more distant ancestors of the sink block).
  SmallVector<BlockTy, 0> Blocks = {};

  /// The suggested entry point into the region. If the region has multiple
  /// entry points, all blocks within the region may not be reachable from this
  /// entry point.
  BasicBlock *SuggestedEntryPoint = nullptr;

  /// Whether the entire function is cold.
  bool EntireFunctionCold = false;

  /// If \p BB is a viable entry point, return \p Score. Return 0 otherwise.
  static unsigned getEntryPointScore(BasicBlock &BB, unsigned Score) {
    return mayExtractBlock(BB) ? Score : 0;
  }

  /// These scores should be lower than the score for predecessor blocks,
  /// because regions starting at predecessor blocks are typically larger.
  static constexpr unsigned ScoreForSuccBlock = 1;
  static constexpr unsigned ScoreForSinkBlock = 1;

  OutliningRegion(const OutliningRegion &) = delete;
  OutliningRegion &operator=(const OutliningRegion &) = delete;

public:
  OutliningRegion() = default;
  OutliningRegion(OutliningRegion &&) = default;
  OutliningRegion &operator=(OutliningRegion &&) = default;

  static std::vector<OutliningRegion> create(BasicBlock &SinkBB,
                                             const DominatorTree &DT,
                                             const PostDominatorTree &PDT) {
    std::vector<OutliningRegion> Regions;
    SmallPtrSet<BasicBlock *, 4> RegionBlocks;

    Regions.emplace_back();
    OutliningRegion *ColdRegion = &Regions.back();

    auto addBlockToRegion = [&](BasicBlock *BB, unsigned Score) {
      RegionBlocks.insert(BB);
      ColdRegion->Blocks.emplace_back(BB, Score);
    };

    // The ancestor farthest-away from SinkBB, and also post-dominated by it.
    unsigned SinkScore = getEntryPointScore(SinkBB, ScoreForSinkBlock);
    ColdRegion->SuggestedEntryPoint = (SinkScore > 0) ? &SinkBB : nullptr;
    unsigned BestScore = SinkScore;

    // Visit SinkBB's ancestors using inverse DFS.
    auto PredIt = ++idf_begin(&SinkBB);
    auto PredEnd = idf_end(&SinkBB);
    while (PredIt != PredEnd) {
      BasicBlock &PredBB = **PredIt;
      bool SinkPostDom = PDT.dominates(&SinkBB, &PredBB);

      // If the predecessor is cold and has no predecessors, the entire
      // function must be cold.
      if (SinkPostDom && pred_empty(&PredBB)) {
        ColdRegion->EntireFunctionCold = true;
        return Regions;
      }

      // If SinkBB does not post-dominate a predecessor, do not mark the
      // predecessor (or any of its predecessors) cold.
      if (!SinkPostDom || !mayExtractBlock(PredBB)) {
        PredIt.skipChildren();
        continue;
      }

      // Keep track of the post-dominated ancestor farthest away from the sink.
      // The path length is always >= 2, ensuring that predecessor blocks are
      // considered as entry points before the sink block.
      unsigned PredScore = getEntryPointScore(PredBB, PredIt.getPathLength());
      if (PredScore > BestScore) {
        ColdRegion->SuggestedEntryPoint = &PredBB;
        BestScore = PredScore;
      }

      addBlockToRegion(&PredBB, PredScore);
      ++PredIt;
    }

    // If the sink can be added to the cold region, do so. It's considered as
    // an entry point before any sink-successor blocks.
    //
    // Otherwise, split cold sink-successor blocks using a separate region.
    // This satisfies the requirement that all extraction blocks other than the
    // first have predecessors within the extraction region.
    if (mayExtractBlock(SinkBB)) {
      addBlockToRegion(&SinkBB, SinkScore);
    } else {
      Regions.emplace_back();
      ColdRegion = &Regions.back();
      BestScore = 0;
    }

    // Find all successors of SinkBB dominated by SinkBB using DFS.
    auto SuccIt = ++df_begin(&SinkBB);
    auto SuccEnd = df_end(&SinkBB);
    while (SuccIt != SuccEnd) {
      BasicBlock &SuccBB = **SuccIt;
      bool SinkDom = DT.dominates(&SinkBB, &SuccBB);

      // Don't allow the backwards & forwards DFSes to mark the same block.
      bool DuplicateBlock = RegionBlocks.count(&SuccBB);

      // If SinkBB does not dominate a successor, do not mark the successor (or
      // any of its successors) cold.
      if (DuplicateBlock || !SinkDom || !mayExtractBlock(SuccBB)) {
        SuccIt.skipChildren();
        continue;
      }

      unsigned SuccScore = getEntryPointScore(SuccBB, ScoreForSuccBlock);
      if (SuccScore > BestScore) {
        ColdRegion->SuggestedEntryPoint = &SuccBB;
        BestScore = SuccScore;
      }

      addBlockToRegion(&SuccBB, SuccScore);
      ++SuccIt;
    }

    return Regions;
  }

  /// Whether this region has nothing to extract.
  bool empty() const { return !SuggestedEntryPoint; }

  /// The blocks in this region.
  ArrayRef<std::pair<BasicBlock *, unsigned>> blocks() const { return Blocks; }

  /// Whether the entire function containing this region is cold.
  bool isEntireFunctionCold() const { return EntireFunctionCold; }

  /// Remove a sub-region from this region and return it as a block sequence.
  BlockSequence takeSingleEntrySubRegion(DominatorTree &DT) {
    assert(!empty() && !isEntireFunctionCold() && "Nothing to extract");

    // Remove blocks dominated by the suggested entry point from this region.
    // During the removal, identify the next best entry point into the region.
    // Ensure that the first extracted block is the suggested entry point.
    BlockSequence SubRegion = {SuggestedEntryPoint};
    BasicBlock *NextEntryPoint = nullptr;
    unsigned NextScore = 0;
    auto RegionEndIt = Blocks.end();
    auto RegionStartIt = remove_if(Blocks, [&](const BlockTy &Block) {
      BasicBlock *BB = Block.first;
      unsigned Score = Block.second;
      bool InSubRegion =
          BB == SuggestedEntryPoint || DT.dominates(SuggestedEntryPoint, BB);
      if (!InSubRegion && Score > NextScore) {
        NextEntryPoint = BB;
        NextScore = Score;
      }
      if (InSubRegion && BB != SuggestedEntryPoint)
        SubRegion.push_back(BB);
      return InSubRegion;
    });
    Blocks.erase(RegionStartIt, RegionEndIt);

    // Update the suggested entry point.
    SuggestedEntryPoint = NextEntryPoint;

    return SubRegion;
  }
};
} // namespace

bool HotColdSplitting::outlineColdRegions(Function &F, bool HasProfileSummary) {
  bool Changed = false;

  // The set of cold blocks.
  SmallPtrSet<BasicBlock *, 4> ColdBlocks;

  // The worklist of non-intersecting regions left to outline.
  SmallVector<OutliningRegion, 2> OutliningWorklist;

  // Set up an RPO traversal. Experimentally, this performs better (outlines
  // more) than a PO traversal, because we prevent region overlap by keeping
  // the first region to contain a block.
  ReversePostOrderTraversal<Function *> RPOT(&F);

  // Calculate domtrees lazily. This reduces compile-time significantly.
  std::unique_ptr<DominatorTree> DT;
  std::unique_ptr<PostDominatorTree> PDT;

  // Calculate BFI lazily (it's only used to query ProfileSummaryInfo). This
  // reduces compile-time significantly. TODO: When we *do* use BFI, we should
  // be able to salvage its domtrees instead of recomputing them.
  BlockFrequencyInfo *BFI = nullptr;
  if (HasProfileSummary)
    BFI = GetBFI(F);

  TargetTransformInfo &TTI = GetTTI(F);
  OptimizationRemarkEmitter &ORE = (*GetORE)(F);
  AssumptionCache *AC = LookupAC(F);

  // Find all cold regions.
  for (BasicBlock *BB : RPOT) {
    // This block is already part of some outlining region.
    if (ColdBlocks.count(BB))
      continue;

    bool Cold = (BFI && PSI->isColdBlock(BB, BFI)) ||
                (EnableStaticAnalyis && unlikelyExecuted(*BB));
    if (!Cold)
      continue;

    LLVM_DEBUG({
      dbgs() << "Found a cold block:\n";
      BB->dump();
    });

    if (!DT)
      DT = std::make_unique<DominatorTree>(F);
    if (!PDT)
      PDT = std::make_unique<PostDominatorTree>(F);

    auto Regions = OutliningRegion::create(*BB, *DT, *PDT);
    for (OutliningRegion &Region : Regions) {
      if (Region.empty())
        continue;

      if (Region.isEntireFunctionCold()) {
        LLVM_DEBUG(dbgs() << "Entire function is cold\n");
        return markFunctionCold(F);
      }

      // If this outlining region intersects with another, drop the new region.
      //
      // TODO: It's theoretically possible to outline more by only keeping the
      // largest region which contains a block, but the extra bookkeeping to do
      // this is tricky/expensive.
      bool RegionsOverlap = any_of(Region.blocks(), [&](const BlockTy &Block) {
        return !ColdBlocks.insert(Block.first).second;
      });
      if (RegionsOverlap)
        continue;

      OutliningWorklist.emplace_back(std::move(Region));
      ++NumColdRegionsFound;
    }
  }

  if (OutliningWorklist.empty())
    return Changed;

  // Outline single-entry cold regions, splitting up larger regions as needed.
  unsigned OutlinedFunctionID = 1;
  // Cache and recycle the CodeExtractor analysis to avoid O(n^2) compile-time.
  CodeExtractorAnalysisCache CEAC(F);
  do {
    OutliningRegion Region = OutliningWorklist.pop_back_val();
    assert(!Region.empty() && "Empty outlining region in worklist");
    do {
      BlockSequence SubRegion = Region.takeSingleEntrySubRegion(*DT);
      LLVM_DEBUG({
        dbgs() << "Hot/cold splitting attempting to outline these blocks:\n";
        for (BasicBlock *BB : SubRegion)
          BB->dump();
      });

      Function *Outlined = extractColdRegion(SubRegion, CEAC, *DT, BFI, TTI,
                                             ORE, AC, OutlinedFunctionID);
      if (Outlined) {
        ++OutlinedFunctionID;
        Changed = true;
      }
    } while (!Region.empty());
  } while (!OutliningWorklist.empty());

  return Changed;
}

bool HotColdSplitting::run(Module &M) {
  bool Changed = false;
  bool HasProfileSummary = (M.getProfileSummary(/* IsCS */ false) != nullptr);
  for (auto It = M.begin(), End = M.end(); It != End; ++It) {
    Function &F = *It;

    // Do not touch declarations.
    if (F.isDeclaration())
      continue;

    // Do not modify `optnone` functions.
    if (F.hasOptNone())
      continue;

    // Detect inherently cold functions and mark them as such.
    if (isFunctionCold(F)) {
      Changed |= markFunctionCold(F);
      continue;
    }

    if (!shouldOutlineFrom(F)) {
      LLVM_DEBUG(llvm::dbgs() << "Skipping " << F.getName() << "\n");
      continue;
    }

    LLVM_DEBUG(llvm::dbgs() << "Outlining in " << F.getName() << "\n");
    Changed |= outlineColdRegions(F, HasProfileSummary);
  }
  return Changed;
}

bool HotColdSplittingLegacyPass::runOnModule(Module &M) {
  if (skipModule(M))
    return false;
  ProfileSummaryInfo *PSI =
      &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
  auto GTTI = [this](Function &F) -> TargetTransformInfo & {
    return this->getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
  };
  auto GBFI = [this](Function &F) {
    return &this->getAnalysis<BlockFrequencyInfoWrapperPass>(F).getBFI();
  };
  std::unique_ptr<OptimizationRemarkEmitter> ORE;
  std::function<OptimizationRemarkEmitter &(Function &)> GetORE =
      [&ORE](Function &F) -> OptimizationRemarkEmitter & {
    ORE.reset(new OptimizationRemarkEmitter(&F));
    return *ORE.get();
  };
  auto LookupAC = [this](Function &F) -> AssumptionCache * {
    if (auto *ACT = getAnalysisIfAvailable<AssumptionCacheTracker>())
      return ACT->lookupAssumptionCache(F);
    return nullptr;
  };

  return HotColdSplitting(PSI, GBFI, GTTI, &GetORE, LookupAC).run(M);
}

PreservedAnalyses
HotColdSplittingPass::run(Module &M, ModuleAnalysisManager &AM) {
  auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();

  auto LookupAC = [&FAM](Function &F) -> AssumptionCache * {
    return FAM.getCachedResult<AssumptionAnalysis>(F);
  };

  auto GBFI = [&FAM](Function &F) {
    return &FAM.getResult<BlockFrequencyAnalysis>(F);
  };

  std::function<TargetTransformInfo &(Function &)> GTTI =
      [&FAM](Function &F) -> TargetTransformInfo & {
    return FAM.getResult<TargetIRAnalysis>(F);
  };

  std::unique_ptr<OptimizationRemarkEmitter> ORE;
  std::function<OptimizationRemarkEmitter &(Function &)> GetORE =
      [&ORE](Function &F) -> OptimizationRemarkEmitter & {
    ORE.reset(new OptimizationRemarkEmitter(&F));
    return *ORE.get();
  };

  ProfileSummaryInfo *PSI = &AM.getResult<ProfileSummaryAnalysis>(M);

  if (HotColdSplitting(PSI, GBFI, GTTI, &GetORE, LookupAC).run(M))
    return PreservedAnalyses::none();
  return PreservedAnalyses::all();
}

char HotColdSplittingLegacyPass::ID = 0;
INITIALIZE_PASS_BEGIN(HotColdSplittingLegacyPass, "hotcoldsplit",
                      "Hot Cold Splitting", false, false)
INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
INITIALIZE_PASS_END(HotColdSplittingLegacyPass, "hotcoldsplit",
                    "Hot Cold Splitting", false, false)

ModulePass *llvm::createHotColdSplittingPass() {
  return new HotColdSplittingLegacyPass();
}