Evaluator.cpp 28.1 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731
//===- Evaluator.cpp - LLVM IR evaluator ----------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Function evaluator for LLVM IR.
//
//===----------------------------------------------------------------------===//

#include "llvm/Transforms/Utils/Evaluator.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Analysis/ConstantFolding.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/CallSite.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GlobalAlias.h"
#include "llvm/IR/GlobalValue.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/Operator.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/User.h"
#include "llvm/IR/Value.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include <iterator>

#define DEBUG_TYPE "evaluator"

using namespace llvm;

static inline bool
isSimpleEnoughValueToCommit(Constant *C,
                            SmallPtrSetImpl<Constant *> &SimpleConstants,
                            const DataLayout &DL);

/// Return true if the specified constant can be handled by the code generator.
/// We don't want to generate something like:
///   void *X = &X/42;
/// because the code generator doesn't have a relocation that can handle that.
///
/// This function should be called if C was not found (but just got inserted)
/// in SimpleConstants to avoid having to rescan the same constants all the
/// time.
static bool
isSimpleEnoughValueToCommitHelper(Constant *C,
                                  SmallPtrSetImpl<Constant *> &SimpleConstants,
                                  const DataLayout &DL) {
  // Simple global addresses are supported, do not allow dllimport or
  // thread-local globals.
  if (auto *GV = dyn_cast<GlobalValue>(C))
    return !GV->hasDLLImportStorageClass() && !GV->isThreadLocal();

  // Simple integer, undef, constant aggregate zero, etc are all supported.
  if (C->getNumOperands() == 0 || isa<BlockAddress>(C))
    return true;

  // Aggregate values are safe if all their elements are.
  if (isa<ConstantAggregate>(C)) {
    for (Value *Op : C->operands())
      if (!isSimpleEnoughValueToCommit(cast<Constant>(Op), SimpleConstants, DL))
        return false;
    return true;
  }

  // We don't know exactly what relocations are allowed in constant expressions,
  // so we allow &global+constantoffset, which is safe and uniformly supported
  // across targets.
  ConstantExpr *CE = cast<ConstantExpr>(C);
  switch (CE->getOpcode()) {
  case Instruction::BitCast:
    // Bitcast is fine if the casted value is fine.
    return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, DL);

  case Instruction::IntToPtr:
  case Instruction::PtrToInt:
    // int <=> ptr is fine if the int type is the same size as the
    // pointer type.
    if (DL.getTypeSizeInBits(CE->getType()) !=
        DL.getTypeSizeInBits(CE->getOperand(0)->getType()))
      return false;
    return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, DL);

  // GEP is fine if it is simple + constant offset.
  case Instruction::GetElementPtr:
    for (unsigned i = 1, e = CE->getNumOperands(); i != e; ++i)
      if (!isa<ConstantInt>(CE->getOperand(i)))
        return false;
    return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, DL);

  case Instruction::Add:
    // We allow simple+cst.
    if (!isa<ConstantInt>(CE->getOperand(1)))
      return false;
    return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, DL);
  }
  return false;
}

static inline bool
isSimpleEnoughValueToCommit(Constant *C,
                            SmallPtrSetImpl<Constant *> &SimpleConstants,
                            const DataLayout &DL) {
  // If we already checked this constant, we win.
  if (!SimpleConstants.insert(C).second)
    return true;
  // Check the constant.
  return isSimpleEnoughValueToCommitHelper(C, SimpleConstants, DL);
}

/// Return true if this constant is simple enough for us to understand.  In
/// particular, if it is a cast to anything other than from one pointer type to
/// another pointer type, we punt.  We basically just support direct accesses to
/// globals and GEP's of globals.  This should be kept up to date with
/// CommitValueTo.
static bool isSimpleEnoughPointerToCommit(Constant *C) {
  // Conservatively, avoid aggregate types. This is because we don't
  // want to worry about them partially overlapping other stores.
  if (!cast<PointerType>(C->getType())->getElementType()->isSingleValueType())
    return false;

  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(C))
    // Do not allow weak/*_odr/linkonce linkage or external globals.
    return GV->hasUniqueInitializer();

  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
    // Handle a constantexpr gep.
    if (CE->getOpcode() == Instruction::GetElementPtr &&
        isa<GlobalVariable>(CE->getOperand(0)) &&
        cast<GEPOperator>(CE)->isInBounds()) {
      GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
      // Do not allow weak/*_odr/linkonce/dllimport/dllexport linkage or
      // external globals.
      if (!GV->hasUniqueInitializer())
        return false;

      // The first index must be zero.
      ConstantInt *CI = dyn_cast<ConstantInt>(*std::next(CE->op_begin()));
      if (!CI || !CI->isZero()) return false;

      // The remaining indices must be compile-time known integers within the
      // notional bounds of the corresponding static array types.
      if (!CE->isGEPWithNoNotionalOverIndexing())
        return false;

      return ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE);

    // A constantexpr bitcast from a pointer to another pointer is a no-op,
    // and we know how to evaluate it by moving the bitcast from the pointer
    // operand to the value operand.
    } else if (CE->getOpcode() == Instruction::BitCast &&
               isa<GlobalVariable>(CE->getOperand(0))) {
      // Do not allow weak/*_odr/linkonce/dllimport/dllexport linkage or
      // external globals.
      return cast<GlobalVariable>(CE->getOperand(0))->hasUniqueInitializer();
    }
  }

  return false;
}

/// Apply 'Func' to Ptr. If this returns nullptr, introspect the pointer's
/// type and walk down through the initial elements to obtain additional
/// pointers to try. Returns the first non-null return value from Func, or
/// nullptr if the type can't be introspected further.
static Constant *
evaluateBitcastFromPtr(Constant *Ptr, const DataLayout &DL,
                       const TargetLibraryInfo *TLI,
                       std::function<Constant *(Constant *)> Func) {
  Constant *Val;
  while (!(Val = Func(Ptr))) {
    // If Ty is a struct, we can convert the pointer to the struct
    // into a pointer to its first member.
    // FIXME: This could be extended to support arrays as well.
    Type *Ty = cast<PointerType>(Ptr->getType())->getElementType();
    if (!isa<StructType>(Ty))
      break;

    IntegerType *IdxTy = IntegerType::get(Ty->getContext(), 32);
    Constant *IdxZero = ConstantInt::get(IdxTy, 0, false);
    Constant *const IdxList[] = {IdxZero, IdxZero};

    Ptr = ConstantExpr::getGetElementPtr(Ty, Ptr, IdxList);
    if (auto *FoldedPtr = ConstantFoldConstant(Ptr, DL, TLI))
      Ptr = FoldedPtr;
  }
  return Val;
}

static Constant *getInitializer(Constant *C) {
  auto *GV = dyn_cast<GlobalVariable>(C);
  return GV && GV->hasDefinitiveInitializer() ? GV->getInitializer() : nullptr;
}

/// Return the value that would be computed by a load from P after the stores
/// reflected by 'memory' have been performed.  If we can't decide, return null.
Constant *Evaluator::ComputeLoadResult(Constant *P) {
  // If this memory location has been recently stored, use the stored value: it
  // is the most up-to-date.
  auto findMemLoc = [this](Constant *Ptr) {
    DenseMap<Constant *, Constant *>::const_iterator I =
        MutatedMemory.find(Ptr);
    return I != MutatedMemory.end() ? I->second : nullptr;
  };

  if (Constant *Val = findMemLoc(P))
    return Val;

  // Access it.
  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(P)) {
    if (GV->hasDefinitiveInitializer())
      return GV->getInitializer();
    return nullptr;
  }

  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(P)) {
    switch (CE->getOpcode()) {
    // Handle a constantexpr getelementptr.
    case Instruction::GetElementPtr:
      if (auto *I = getInitializer(CE->getOperand(0)))
        return ConstantFoldLoadThroughGEPConstantExpr(I, CE);
      break;
    // Handle a constantexpr bitcast.
    case Instruction::BitCast:
      // We're evaluating a load through a pointer that was bitcast to a
      // different type. See if the "from" pointer has recently been stored.
      // If it hasn't, we may still be able to find a stored pointer by
      // introspecting the type.
      Constant *Val =
          evaluateBitcastFromPtr(CE->getOperand(0), DL, TLI, findMemLoc);
      if (!Val)
        Val = getInitializer(CE->getOperand(0));
      if (Val)
        return ConstantFoldLoadThroughBitcast(
            Val, P->getType()->getPointerElementType(), DL);
      break;
    }
  }

  return nullptr;  // don't know how to evaluate.
}

static Function *getFunction(Constant *C) {
  if (auto *Fn = dyn_cast<Function>(C))
    return Fn;

  if (auto *Alias = dyn_cast<GlobalAlias>(C))
    if (auto *Fn = dyn_cast<Function>(Alias->getAliasee()))
      return Fn;
  return nullptr;
}

Function *
Evaluator::getCalleeWithFormalArgs(CallSite &CS,
                                   SmallVector<Constant *, 8> &Formals) {
  auto *V = CS.getCalledValue();
  if (auto *Fn = getFunction(getVal(V)))
    return getFormalParams(CS, Fn, Formals) ? Fn : nullptr;

  auto *CE = dyn_cast<ConstantExpr>(V);
  if (!CE || CE->getOpcode() != Instruction::BitCast ||
      !getFormalParams(CS, getFunction(CE->getOperand(0)), Formals))
    return nullptr;

  return dyn_cast<Function>(
      ConstantFoldLoadThroughBitcast(CE, CE->getOperand(0)->getType(), DL));
}

bool Evaluator::getFormalParams(CallSite &CS, Function *F,
                                SmallVector<Constant *, 8> &Formals) {
  if (!F)
    return false;

  auto *FTy = F->getFunctionType();
  if (FTy->getNumParams() > CS.getNumArgOperands()) {
    LLVM_DEBUG(dbgs() << "Too few arguments for function.\n");
    return false;
  }

  auto ArgI = CS.arg_begin();
  for (auto ParI = FTy->param_begin(), ParE = FTy->param_end(); ParI != ParE;
       ++ParI) {
    auto *ArgC = ConstantFoldLoadThroughBitcast(getVal(*ArgI), *ParI, DL);
    if (!ArgC) {
      LLVM_DEBUG(dbgs() << "Can not convert function argument.\n");
      return false;
    }
    Formals.push_back(ArgC);
    ++ArgI;
  }
  return true;
}

/// If call expression contains bitcast then we may need to cast
/// evaluated return value to a type of the call expression.
Constant *Evaluator::castCallResultIfNeeded(Value *CallExpr, Constant *RV) {
  ConstantExpr *CE = dyn_cast<ConstantExpr>(CallExpr);
  if (!RV || !CE || CE->getOpcode() != Instruction::BitCast)
    return RV;

  if (auto *FT =
          dyn_cast<FunctionType>(CE->getType()->getPointerElementType())) {
    RV = ConstantFoldLoadThroughBitcast(RV, FT->getReturnType(), DL);
    if (!RV)
      LLVM_DEBUG(dbgs() << "Failed to fold bitcast call expr\n");
  }
  return RV;
}

/// Evaluate all instructions in block BB, returning true if successful, false
/// if we can't evaluate it.  NewBB returns the next BB that control flows into,
/// or null upon return.
bool Evaluator::EvaluateBlock(BasicBlock::iterator CurInst,
                              BasicBlock *&NextBB) {
  // This is the main evaluation loop.
  while (true) {
    Constant *InstResult = nullptr;

    LLVM_DEBUG(dbgs() << "Evaluating Instruction: " << *CurInst << "\n");

    if (StoreInst *SI = dyn_cast<StoreInst>(CurInst)) {
      if (!SI->isSimple()) {
        LLVM_DEBUG(dbgs() << "Store is not simple! Can not evaluate.\n");
        return false;  // no volatile/atomic accesses.
      }
      Constant *Ptr = getVal(SI->getOperand(1));
      if (auto *FoldedPtr = ConstantFoldConstant(Ptr, DL, TLI)) {
        LLVM_DEBUG(dbgs() << "Folding constant ptr expression: " << *Ptr);
        Ptr = FoldedPtr;
        LLVM_DEBUG(dbgs() << "; To: " << *Ptr << "\n");
      }
      if (!isSimpleEnoughPointerToCommit(Ptr)) {
        // If this is too complex for us to commit, reject it.
        LLVM_DEBUG(
            dbgs() << "Pointer is too complex for us to evaluate store.");
        return false;
      }

      Constant *Val = getVal(SI->getOperand(0));

      // If this might be too difficult for the backend to handle (e.g. the addr
      // of one global variable divided by another) then we can't commit it.
      if (!isSimpleEnoughValueToCommit(Val, SimpleConstants, DL)) {
        LLVM_DEBUG(dbgs() << "Store value is too complex to evaluate store. "
                          << *Val << "\n");
        return false;
      }

      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr)) {
        if (CE->getOpcode() == Instruction::BitCast) {
          LLVM_DEBUG(dbgs()
                     << "Attempting to resolve bitcast on constant ptr.\n");
          // If we're evaluating a store through a bitcast, then we need
          // to pull the bitcast off the pointer type and push it onto the
          // stored value. In order to push the bitcast onto the stored value,
          // a bitcast from the pointer's element type to Val's type must be
          // legal. If it's not, we can try introspecting the type to find a
          // legal conversion.

          auto castValTy = [&](Constant *P) -> Constant * {
            Type *Ty = cast<PointerType>(P->getType())->getElementType();
            if (Constant *FV = ConstantFoldLoadThroughBitcast(Val, Ty, DL)) {
              Ptr = P;
              return FV;
            }
            return nullptr;
          };

          Constant *NewVal =
              evaluateBitcastFromPtr(CE->getOperand(0), DL, TLI, castValTy);
          if (!NewVal) {
            LLVM_DEBUG(dbgs() << "Failed to bitcast constant ptr, can not "
                                 "evaluate.\n");
            return false;
          }

          Val = NewVal;
          LLVM_DEBUG(dbgs() << "Evaluated bitcast: " << *Val << "\n");
        }
      }

      MutatedMemory[Ptr] = Val;
    } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CurInst)) {
      InstResult = ConstantExpr::get(BO->getOpcode(),
                                     getVal(BO->getOperand(0)),
                                     getVal(BO->getOperand(1)));
      LLVM_DEBUG(dbgs() << "Found a BinaryOperator! Simplifying: "
                        << *InstResult << "\n");
    } else if (CmpInst *CI = dyn_cast<CmpInst>(CurInst)) {
      InstResult = ConstantExpr::getCompare(CI->getPredicate(),
                                            getVal(CI->getOperand(0)),
                                            getVal(CI->getOperand(1)));
      LLVM_DEBUG(dbgs() << "Found a CmpInst! Simplifying: " << *InstResult
                        << "\n");
    } else if (CastInst *CI = dyn_cast<CastInst>(CurInst)) {
      InstResult = ConstantExpr::getCast(CI->getOpcode(),
                                         getVal(CI->getOperand(0)),
                                         CI->getType());
      LLVM_DEBUG(dbgs() << "Found a Cast! Simplifying: " << *InstResult
                        << "\n");
    } else if (SelectInst *SI = dyn_cast<SelectInst>(CurInst)) {
      InstResult = ConstantExpr::getSelect(getVal(SI->getOperand(0)),
                                           getVal(SI->getOperand(1)),
                                           getVal(SI->getOperand(2)));
      LLVM_DEBUG(dbgs() << "Found a Select! Simplifying: " << *InstResult
                        << "\n");
    } else if (auto *EVI = dyn_cast<ExtractValueInst>(CurInst)) {
      InstResult = ConstantExpr::getExtractValue(
          getVal(EVI->getAggregateOperand()), EVI->getIndices());
      LLVM_DEBUG(dbgs() << "Found an ExtractValueInst! Simplifying: "
                        << *InstResult << "\n");
    } else if (auto *IVI = dyn_cast<InsertValueInst>(CurInst)) {
      InstResult = ConstantExpr::getInsertValue(
          getVal(IVI->getAggregateOperand()),
          getVal(IVI->getInsertedValueOperand()), IVI->getIndices());
      LLVM_DEBUG(dbgs() << "Found an InsertValueInst! Simplifying: "
                        << *InstResult << "\n");
    } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(CurInst)) {
      Constant *P = getVal(GEP->getOperand(0));
      SmallVector<Constant*, 8> GEPOps;
      for (User::op_iterator i = GEP->op_begin() + 1, e = GEP->op_end();
           i != e; ++i)
        GEPOps.push_back(getVal(*i));
      InstResult =
          ConstantExpr::getGetElementPtr(GEP->getSourceElementType(), P, GEPOps,
                                         cast<GEPOperator>(GEP)->isInBounds());
      LLVM_DEBUG(dbgs() << "Found a GEP! Simplifying: " << *InstResult << "\n");
    } else if (LoadInst *LI = dyn_cast<LoadInst>(CurInst)) {
      if (!LI->isSimple()) {
        LLVM_DEBUG(
            dbgs() << "Found a Load! Not a simple load, can not evaluate.\n");
        return false;  // no volatile/atomic accesses.
      }

      Constant *Ptr = getVal(LI->getOperand(0));
      if (auto *FoldedPtr = ConstantFoldConstant(Ptr, DL, TLI)) {
        Ptr = FoldedPtr;
        LLVM_DEBUG(dbgs() << "Found a constant pointer expression, constant "
                             "folding: "
                          << *Ptr << "\n");
      }
      InstResult = ComputeLoadResult(Ptr);
      if (!InstResult) {
        LLVM_DEBUG(
            dbgs() << "Failed to compute load result. Can not evaluate load."
                      "\n");
        return false; // Could not evaluate load.
      }

      LLVM_DEBUG(dbgs() << "Evaluated load: " << *InstResult << "\n");
    } else if (AllocaInst *AI = dyn_cast<AllocaInst>(CurInst)) {
      if (AI->isArrayAllocation()) {
        LLVM_DEBUG(dbgs() << "Found an array alloca. Can not evaluate.\n");
        return false;  // Cannot handle array allocs.
      }
      Type *Ty = AI->getAllocatedType();
      AllocaTmps.push_back(std::make_unique<GlobalVariable>(
          Ty, false, GlobalValue::InternalLinkage, UndefValue::get(Ty),
          AI->getName(), /*TLMode=*/GlobalValue::NotThreadLocal,
          AI->getType()->getPointerAddressSpace()));
      InstResult = AllocaTmps.back().get();
      LLVM_DEBUG(dbgs() << "Found an alloca. Result: " << *InstResult << "\n");
    } else if (isa<CallInst>(CurInst) || isa<InvokeInst>(CurInst)) {
      CallSite CS(&*CurInst);

      // Debug info can safely be ignored here.
      if (isa<DbgInfoIntrinsic>(CS.getInstruction())) {
        LLVM_DEBUG(dbgs() << "Ignoring debug info.\n");
        ++CurInst;
        continue;
      }

      // Cannot handle inline asm.
      if (isa<InlineAsm>(CS.getCalledValue())) {
        LLVM_DEBUG(dbgs() << "Found inline asm, can not evaluate.\n");
        return false;
      }

      if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CS.getInstruction())) {
        if (MemSetInst *MSI = dyn_cast<MemSetInst>(II)) {
          if (MSI->isVolatile()) {
            LLVM_DEBUG(dbgs() << "Can not optimize a volatile memset "
                              << "intrinsic.\n");
            return false;
          }
          Constant *Ptr = getVal(MSI->getDest());
          Constant *Val = getVal(MSI->getValue());
          Constant *DestVal = ComputeLoadResult(getVal(Ptr));
          if (Val->isNullValue() && DestVal && DestVal->isNullValue()) {
            // This memset is a no-op.
            LLVM_DEBUG(dbgs() << "Ignoring no-op memset.\n");
            ++CurInst;
            continue;
          }
        }

        if (II->isLifetimeStartOrEnd()) {
          LLVM_DEBUG(dbgs() << "Ignoring lifetime intrinsic.\n");
          ++CurInst;
          continue;
        }

        if (II->getIntrinsicID() == Intrinsic::invariant_start) {
          // We don't insert an entry into Values, as it doesn't have a
          // meaningful return value.
          if (!II->use_empty()) {
            LLVM_DEBUG(dbgs()
                       << "Found unused invariant_start. Can't evaluate.\n");
            return false;
          }
          ConstantInt *Size = cast<ConstantInt>(II->getArgOperand(0));
          Value *PtrArg = getVal(II->getArgOperand(1));
          Value *Ptr = PtrArg->stripPointerCasts();
          if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr)) {
            Type *ElemTy = GV->getValueType();
            if (!Size->isMinusOne() &&
                Size->getValue().getLimitedValue() >=
                    DL.getTypeStoreSize(ElemTy)) {
              Invariants.insert(GV);
              LLVM_DEBUG(dbgs() << "Found a global var that is an invariant: "
                                << *GV << "\n");
            } else {
              LLVM_DEBUG(dbgs()
                         << "Found a global var, but can not treat it as an "
                            "invariant.\n");
            }
          }
          // Continue even if we do nothing.
          ++CurInst;
          continue;
        } else if (II->getIntrinsicID() == Intrinsic::assume) {
          LLVM_DEBUG(dbgs() << "Skipping assume intrinsic.\n");
          ++CurInst;
          continue;
        } else if (II->getIntrinsicID() == Intrinsic::sideeffect) {
          LLVM_DEBUG(dbgs() << "Skipping sideeffect intrinsic.\n");
          ++CurInst;
          continue;
        }

        LLVM_DEBUG(dbgs() << "Unknown intrinsic. Can not evaluate.\n");
        return false;
      }

      // Resolve function pointers.
      SmallVector<Constant *, 8> Formals;
      Function *Callee = getCalleeWithFormalArgs(CS, Formals);
      if (!Callee || Callee->isInterposable()) {
        LLVM_DEBUG(dbgs() << "Can not resolve function pointer.\n");
        return false;  // Cannot resolve.
      }

      if (Callee->isDeclaration()) {
        // If this is a function we can constant fold, do it.
        if (Constant *C = ConstantFoldCall(cast<CallBase>(CS.getInstruction()),
                                           Callee, Formals, TLI)) {
          InstResult = castCallResultIfNeeded(CS.getCalledValue(), C);
          if (!InstResult)
            return false;
          LLVM_DEBUG(dbgs() << "Constant folded function call. Result: "
                            << *InstResult << "\n");
        } else {
          LLVM_DEBUG(dbgs() << "Can not constant fold function call.\n");
          return false;
        }
      } else {
        if (Callee->getFunctionType()->isVarArg()) {
          LLVM_DEBUG(dbgs() << "Can not constant fold vararg function call.\n");
          return false;
        }

        Constant *RetVal = nullptr;
        // Execute the call, if successful, use the return value.
        ValueStack.emplace_back();
        if (!EvaluateFunction(Callee, RetVal, Formals)) {
          LLVM_DEBUG(dbgs() << "Failed to evaluate function.\n");
          return false;
        }
        ValueStack.pop_back();
        InstResult = castCallResultIfNeeded(CS.getCalledValue(), RetVal);
        if (RetVal && !InstResult)
          return false;

        if (InstResult) {
          LLVM_DEBUG(dbgs() << "Successfully evaluated function. Result: "
                            << *InstResult << "\n\n");
        } else {
          LLVM_DEBUG(dbgs()
                     << "Successfully evaluated function. Result: 0\n\n");
        }
      }
    } else if (CurInst->isTerminator()) {
      LLVM_DEBUG(dbgs() << "Found a terminator instruction.\n");

      if (BranchInst *BI = dyn_cast<BranchInst>(CurInst)) {
        if (BI->isUnconditional()) {
          NextBB = BI->getSuccessor(0);
        } else {
          ConstantInt *Cond =
            dyn_cast<ConstantInt>(getVal(BI->getCondition()));
          if (!Cond) return false;  // Cannot determine.

          NextBB = BI->getSuccessor(!Cond->getZExtValue());
        }
      } else if (SwitchInst *SI = dyn_cast<SwitchInst>(CurInst)) {
        ConstantInt *Val =
          dyn_cast<ConstantInt>(getVal(SI->getCondition()));
        if (!Val) return false;  // Cannot determine.
        NextBB = SI->findCaseValue(Val)->getCaseSuccessor();
      } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(CurInst)) {
        Value *Val = getVal(IBI->getAddress())->stripPointerCasts();
        if (BlockAddress *BA = dyn_cast<BlockAddress>(Val))
          NextBB = BA->getBasicBlock();
        else
          return false;  // Cannot determine.
      } else if (isa<ReturnInst>(CurInst)) {
        NextBB = nullptr;
      } else {
        // invoke, unwind, resume, unreachable.
        LLVM_DEBUG(dbgs() << "Can not handle terminator.");
        return false;  // Cannot handle this terminator.
      }

      // We succeeded at evaluating this block!
      LLVM_DEBUG(dbgs() << "Successfully evaluated block.\n");
      return true;
    } else {
      // Did not know how to evaluate this!
      LLVM_DEBUG(
          dbgs() << "Failed to evaluate block due to unhandled instruction."
                    "\n");
      return false;
    }

    if (!CurInst->use_empty()) {
      if (auto *FoldedInstResult = ConstantFoldConstant(InstResult, DL, TLI))
        InstResult = FoldedInstResult;

      setVal(&*CurInst, InstResult);
    }

    // If we just processed an invoke, we finished evaluating the block.
    if (InvokeInst *II = dyn_cast<InvokeInst>(CurInst)) {
      NextBB = II->getNormalDest();
      LLVM_DEBUG(dbgs() << "Found an invoke instruction. Finished Block.\n\n");
      return true;
    }

    // Advance program counter.
    ++CurInst;
  }
}

/// Evaluate a call to function F, returning true if successful, false if we
/// can't evaluate it.  ActualArgs contains the formal arguments for the
/// function.
bool Evaluator::EvaluateFunction(Function *F, Constant *&RetVal,
                                 const SmallVectorImpl<Constant*> &ActualArgs) {
  // Check to see if this function is already executing (recursion).  If so,
  // bail out.  TODO: we might want to accept limited recursion.
  if (is_contained(CallStack, F))
    return false;

  CallStack.push_back(F);

  // Initialize arguments to the incoming values specified.
  unsigned ArgNo = 0;
  for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); AI != E;
       ++AI, ++ArgNo)
    setVal(&*AI, ActualArgs[ArgNo]);

  // ExecutedBlocks - We only handle non-looping, non-recursive code.  As such,
  // we can only evaluate any one basic block at most once.  This set keeps
  // track of what we have executed so we can detect recursive cases etc.
  SmallPtrSet<BasicBlock*, 32> ExecutedBlocks;

  // CurBB - The current basic block we're evaluating.
  BasicBlock *CurBB = &F->front();

  BasicBlock::iterator CurInst = CurBB->begin();

  while (true) {
    BasicBlock *NextBB = nullptr; // Initialized to avoid compiler warnings.
    LLVM_DEBUG(dbgs() << "Trying to evaluate BB: " << *CurBB << "\n");

    if (!EvaluateBlock(CurInst, NextBB))
      return false;

    if (!NextBB) {
      // Successfully running until there's no next block means that we found
      // the return.  Fill it the return value and pop the call stack.
      ReturnInst *RI = cast<ReturnInst>(CurBB->getTerminator());
      if (RI->getNumOperands())
        RetVal = getVal(RI->getOperand(0));
      CallStack.pop_back();
      return true;
    }

    // Okay, we succeeded in evaluating this control flow.  See if we have
    // executed the new block before.  If so, we have a looping function,
    // which we cannot evaluate in reasonable time.
    if (!ExecutedBlocks.insert(NextBB).second)
      return false;  // looped!

    // Okay, we have never been in this block before.  Check to see if there
    // are any PHI nodes.  If so, evaluate them with information about where
    // we came from.
    PHINode *PN = nullptr;
    for (CurInst = NextBB->begin();
         (PN = dyn_cast<PHINode>(CurInst)); ++CurInst)
      setVal(PN, getVal(PN->getIncomingValueForBlock(CurBB)));

    // Advance to the next block.
    CurBB = NextBB;
  }
}