SimplifyIndVar.cpp 34 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957
//===-- SimplifyIndVar.cpp - Induction variable simplification ------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements induction variable simplification. It does
// not define any actual pass or policy, but provides a single function to
// simplify a loop's induction variables based on ScalarEvolution.
//
//===----------------------------------------------------------------------===//

#include "llvm/Transforms/Utils/SimplifyIndVar.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/ScalarEvolutionExpander.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Utils/Local.h"

using namespace llvm;

#define DEBUG_TYPE "indvars"

STATISTIC(NumElimIdentity, "Number of IV identities eliminated");
STATISTIC(NumElimOperand,  "Number of IV operands folded into a use");
STATISTIC(NumFoldedUser, "Number of IV users folded into a constant");
STATISTIC(NumElimRem     , "Number of IV remainder operations eliminated");
STATISTIC(
    NumSimplifiedSDiv,
    "Number of IV signed division operations converted to unsigned division");
STATISTIC(
    NumSimplifiedSRem,
    "Number of IV signed remainder operations converted to unsigned remainder");
STATISTIC(NumElimCmp     , "Number of IV comparisons eliminated");

namespace {
  /// This is a utility for simplifying induction variables
  /// based on ScalarEvolution. It is the primary instrument of the
  /// IndvarSimplify pass, but it may also be directly invoked to cleanup after
  /// other loop passes that preserve SCEV.
  class SimplifyIndvar {
    Loop             *L;
    LoopInfo         *LI;
    ScalarEvolution  *SE;
    DominatorTree    *DT;
    SCEVExpander     &Rewriter;
    SmallVectorImpl<WeakTrackingVH> &DeadInsts;

    bool Changed;

  public:
    SimplifyIndvar(Loop *Loop, ScalarEvolution *SE, DominatorTree *DT,
                   LoopInfo *LI, SCEVExpander &Rewriter,
                   SmallVectorImpl<WeakTrackingVH> &Dead)
        : L(Loop), LI(LI), SE(SE), DT(DT), Rewriter(Rewriter), DeadInsts(Dead),
          Changed(false) {
      assert(LI && "IV simplification requires LoopInfo");
    }

    bool hasChanged() const { return Changed; }

    /// Iteratively perform simplification on a worklist of users of the
    /// specified induction variable. This is the top-level driver that applies
    /// all simplifications to users of an IV.
    void simplifyUsers(PHINode *CurrIV, IVVisitor *V = nullptr);

    Value *foldIVUser(Instruction *UseInst, Instruction *IVOperand);

    bool eliminateIdentitySCEV(Instruction *UseInst, Instruction *IVOperand);
    bool replaceIVUserWithLoopInvariant(Instruction *UseInst);

    bool eliminateOverflowIntrinsic(WithOverflowInst *WO);
    bool eliminateSaturatingIntrinsic(SaturatingInst *SI);
    bool eliminateTrunc(TruncInst *TI);
    bool eliminateIVUser(Instruction *UseInst, Instruction *IVOperand);
    bool makeIVComparisonInvariant(ICmpInst *ICmp, Value *IVOperand);
    void eliminateIVComparison(ICmpInst *ICmp, Value *IVOperand);
    void simplifyIVRemainder(BinaryOperator *Rem, Value *IVOperand,
                             bool IsSigned);
    void replaceRemWithNumerator(BinaryOperator *Rem);
    void replaceRemWithNumeratorOrZero(BinaryOperator *Rem);
    void replaceSRemWithURem(BinaryOperator *Rem);
    bool eliminateSDiv(BinaryOperator *SDiv);
    bool strengthenOverflowingOperation(BinaryOperator *OBO, Value *IVOperand);
    bool strengthenRightShift(BinaryOperator *BO, Value *IVOperand);
  };
}

/// Fold an IV operand into its use.  This removes increments of an
/// aligned IV when used by a instruction that ignores the low bits.
///
/// IVOperand is guaranteed SCEVable, but UseInst may not be.
///
/// Return the operand of IVOperand for this induction variable if IVOperand can
/// be folded (in case more folding opportunities have been exposed).
/// Otherwise return null.
Value *SimplifyIndvar::foldIVUser(Instruction *UseInst, Instruction *IVOperand) {
  Value *IVSrc = nullptr;
  const unsigned OperIdx = 0;
  const SCEV *FoldedExpr = nullptr;
  bool MustDropExactFlag = false;
  switch (UseInst->getOpcode()) {
  default:
    return nullptr;
  case Instruction::UDiv:
  case Instruction::LShr:
    // We're only interested in the case where we know something about
    // the numerator and have a constant denominator.
    if (IVOperand != UseInst->getOperand(OperIdx) ||
        !isa<ConstantInt>(UseInst->getOperand(1)))
      return nullptr;

    // Attempt to fold a binary operator with constant operand.
    // e.g. ((I + 1) >> 2) => I >> 2
    if (!isa<BinaryOperator>(IVOperand)
        || !isa<ConstantInt>(IVOperand->getOperand(1)))
      return nullptr;

    IVSrc = IVOperand->getOperand(0);
    // IVSrc must be the (SCEVable) IV, since the other operand is const.
    assert(SE->isSCEVable(IVSrc->getType()) && "Expect SCEVable IV operand");

    ConstantInt *D = cast<ConstantInt>(UseInst->getOperand(1));
    if (UseInst->getOpcode() == Instruction::LShr) {
      // Get a constant for the divisor. See createSCEV.
      uint32_t BitWidth = cast<IntegerType>(UseInst->getType())->getBitWidth();
      if (D->getValue().uge(BitWidth))
        return nullptr;

      D = ConstantInt::get(UseInst->getContext(),
                           APInt::getOneBitSet(BitWidth, D->getZExtValue()));
    }
    FoldedExpr = SE->getUDivExpr(SE->getSCEV(IVSrc), SE->getSCEV(D));
    // We might have 'exact' flag set at this point which will no longer be
    // correct after we make the replacement.
    if (UseInst->isExact() &&
        SE->getSCEV(IVSrc) != SE->getMulExpr(FoldedExpr, SE->getSCEV(D)))
      MustDropExactFlag = true;
  }
  // We have something that might fold it's operand. Compare SCEVs.
  if (!SE->isSCEVable(UseInst->getType()))
    return nullptr;

  // Bypass the operand if SCEV can prove it has no effect.
  if (SE->getSCEV(UseInst) != FoldedExpr)
    return nullptr;

  LLVM_DEBUG(dbgs() << "INDVARS: Eliminated IV operand: " << *IVOperand
                    << " -> " << *UseInst << '\n');

  UseInst->setOperand(OperIdx, IVSrc);
  assert(SE->getSCEV(UseInst) == FoldedExpr && "bad SCEV with folded oper");

  if (MustDropExactFlag)
    UseInst->dropPoisonGeneratingFlags();

  ++NumElimOperand;
  Changed = true;
  if (IVOperand->use_empty())
    DeadInsts.emplace_back(IVOperand);
  return IVSrc;
}

bool SimplifyIndvar::makeIVComparisonInvariant(ICmpInst *ICmp,
                                               Value *IVOperand) {
  unsigned IVOperIdx = 0;
  ICmpInst::Predicate Pred = ICmp->getPredicate();
  if (IVOperand != ICmp->getOperand(0)) {
    // Swapped
    assert(IVOperand == ICmp->getOperand(1) && "Can't find IVOperand");
    IVOperIdx = 1;
    Pred = ICmpInst::getSwappedPredicate(Pred);
  }

  // Get the SCEVs for the ICmp operands (in the specific context of the
  // current loop)
  const Loop *ICmpLoop = LI->getLoopFor(ICmp->getParent());
  const SCEV *S = SE->getSCEVAtScope(ICmp->getOperand(IVOperIdx), ICmpLoop);
  const SCEV *X = SE->getSCEVAtScope(ICmp->getOperand(1 - IVOperIdx), ICmpLoop);

  ICmpInst::Predicate InvariantPredicate;
  const SCEV *InvariantLHS, *InvariantRHS;

  auto *PN = dyn_cast<PHINode>(IVOperand);
  if (!PN)
    return false;
  if (!SE->isLoopInvariantPredicate(Pred, S, X, L, InvariantPredicate,
                                    InvariantLHS, InvariantRHS))
    return false;

  // Rewrite the comparison to a loop invariant comparison if it can be done
  // cheaply, where cheaply means "we don't need to emit any new
  // instructions".

  SmallDenseMap<const SCEV*, Value*> CheapExpansions;
  CheapExpansions[S] = ICmp->getOperand(IVOperIdx);
  CheapExpansions[X] = ICmp->getOperand(1 - IVOperIdx);

  // TODO: Support multiple entry loops?  (We currently bail out of these in
  // the IndVarSimplify pass)
  if (auto *BB = L->getLoopPredecessor()) {
    const int Idx = PN->getBasicBlockIndex(BB);
    if (Idx >= 0) {
      Value *Incoming = PN->getIncomingValue(Idx);
      const SCEV *IncomingS = SE->getSCEV(Incoming);
      CheapExpansions[IncomingS] = Incoming;
    }
  }
  Value *NewLHS = CheapExpansions[InvariantLHS];
  Value *NewRHS = CheapExpansions[InvariantRHS];

  if (!NewLHS)
    if (auto *ConstLHS = dyn_cast<SCEVConstant>(InvariantLHS))
      NewLHS = ConstLHS->getValue();
  if (!NewRHS)
    if (auto *ConstRHS = dyn_cast<SCEVConstant>(InvariantRHS))
      NewRHS = ConstRHS->getValue();

  if (!NewLHS || !NewRHS)
    // We could not find an existing value to replace either LHS or RHS.
    // Generating new instructions has subtler tradeoffs, so avoid doing that
    // for now.
    return false;

  LLVM_DEBUG(dbgs() << "INDVARS: Simplified comparison: " << *ICmp << '\n');
  ICmp->setPredicate(InvariantPredicate);
  ICmp->setOperand(0, NewLHS);
  ICmp->setOperand(1, NewRHS);
  return true;
}

/// SimplifyIVUsers helper for eliminating useless
/// comparisons against an induction variable.
void SimplifyIndvar::eliminateIVComparison(ICmpInst *ICmp, Value *IVOperand) {
  unsigned IVOperIdx = 0;
  ICmpInst::Predicate Pred = ICmp->getPredicate();
  ICmpInst::Predicate OriginalPred = Pred;
  if (IVOperand != ICmp->getOperand(0)) {
    // Swapped
    assert(IVOperand == ICmp->getOperand(1) && "Can't find IVOperand");
    IVOperIdx = 1;
    Pred = ICmpInst::getSwappedPredicate(Pred);
  }

  // Get the SCEVs for the ICmp operands (in the specific context of the
  // current loop)
  const Loop *ICmpLoop = LI->getLoopFor(ICmp->getParent());
  const SCEV *S = SE->getSCEVAtScope(ICmp->getOperand(IVOperIdx), ICmpLoop);
  const SCEV *X = SE->getSCEVAtScope(ICmp->getOperand(1 - IVOperIdx), ICmpLoop);

  // If the condition is always true or always false, replace it with
  // a constant value.
  if (SE->isKnownPredicate(Pred, S, X)) {
    ICmp->replaceAllUsesWith(ConstantInt::getTrue(ICmp->getContext()));
    DeadInsts.emplace_back(ICmp);
    LLVM_DEBUG(dbgs() << "INDVARS: Eliminated comparison: " << *ICmp << '\n');
  } else if (SE->isKnownPredicate(ICmpInst::getInversePredicate(Pred), S, X)) {
    ICmp->replaceAllUsesWith(ConstantInt::getFalse(ICmp->getContext()));
    DeadInsts.emplace_back(ICmp);
    LLVM_DEBUG(dbgs() << "INDVARS: Eliminated comparison: " << *ICmp << '\n');
  } else if (makeIVComparisonInvariant(ICmp, IVOperand)) {
    // fallthrough to end of function
  } else if (ICmpInst::isSigned(OriginalPred) &&
             SE->isKnownNonNegative(S) && SE->isKnownNonNegative(X)) {
    // If we were unable to make anything above, all we can is to canonicalize
    // the comparison hoping that it will open the doors for other
    // optimizations. If we find out that we compare two non-negative values,
    // we turn the instruction's predicate to its unsigned version. Note that
    // we cannot rely on Pred here unless we check if we have swapped it.
    assert(ICmp->getPredicate() == OriginalPred && "Predicate changed?");
    LLVM_DEBUG(dbgs() << "INDVARS: Turn to unsigned comparison: " << *ICmp
                      << '\n');
    ICmp->setPredicate(ICmpInst::getUnsignedPredicate(OriginalPred));
  } else
    return;

  ++NumElimCmp;
  Changed = true;
}

bool SimplifyIndvar::eliminateSDiv(BinaryOperator *SDiv) {
  // Get the SCEVs for the ICmp operands.
  auto *N = SE->getSCEV(SDiv->getOperand(0));
  auto *D = SE->getSCEV(SDiv->getOperand(1));

  // Simplify unnecessary loops away.
  const Loop *L = LI->getLoopFor(SDiv->getParent());
  N = SE->getSCEVAtScope(N, L);
  D = SE->getSCEVAtScope(D, L);

  // Replace sdiv by udiv if both of the operands are non-negative
  if (SE->isKnownNonNegative(N) && SE->isKnownNonNegative(D)) {
    auto *UDiv = BinaryOperator::Create(
        BinaryOperator::UDiv, SDiv->getOperand(0), SDiv->getOperand(1),
        SDiv->getName() + ".udiv", SDiv);
    UDiv->setIsExact(SDiv->isExact());
    SDiv->replaceAllUsesWith(UDiv);
    LLVM_DEBUG(dbgs() << "INDVARS: Simplified sdiv: " << *SDiv << '\n');
    ++NumSimplifiedSDiv;
    Changed = true;
    DeadInsts.push_back(SDiv);
    return true;
  }

  return false;
}

// i %s n -> i %u n if i >= 0 and n >= 0
void SimplifyIndvar::replaceSRemWithURem(BinaryOperator *Rem) {
  auto *N = Rem->getOperand(0), *D = Rem->getOperand(1);
  auto *URem = BinaryOperator::Create(BinaryOperator::URem, N, D,
                                      Rem->getName() + ".urem", Rem);
  Rem->replaceAllUsesWith(URem);
  LLVM_DEBUG(dbgs() << "INDVARS: Simplified srem: " << *Rem << '\n');
  ++NumSimplifiedSRem;
  Changed = true;
  DeadInsts.emplace_back(Rem);
}

// i % n  -->  i  if i is in [0,n).
void SimplifyIndvar::replaceRemWithNumerator(BinaryOperator *Rem) {
  Rem->replaceAllUsesWith(Rem->getOperand(0));
  LLVM_DEBUG(dbgs() << "INDVARS: Simplified rem: " << *Rem << '\n');
  ++NumElimRem;
  Changed = true;
  DeadInsts.emplace_back(Rem);
}

// (i+1) % n  -->  (i+1)==n?0:(i+1)  if i is in [0,n).
void SimplifyIndvar::replaceRemWithNumeratorOrZero(BinaryOperator *Rem) {
  auto *T = Rem->getType();
  auto *N = Rem->getOperand(0), *D = Rem->getOperand(1);
  ICmpInst *ICmp = new ICmpInst(Rem, ICmpInst::ICMP_EQ, N, D);
  SelectInst *Sel =
      SelectInst::Create(ICmp, ConstantInt::get(T, 0), N, "iv.rem", Rem);
  Rem->replaceAllUsesWith(Sel);
  LLVM_DEBUG(dbgs() << "INDVARS: Simplified rem: " << *Rem << '\n');
  ++NumElimRem;
  Changed = true;
  DeadInsts.emplace_back(Rem);
}

/// SimplifyIVUsers helper for eliminating useless remainder operations
/// operating on an induction variable or replacing srem by urem.
void SimplifyIndvar::simplifyIVRemainder(BinaryOperator *Rem, Value *IVOperand,
                                         bool IsSigned) {
  auto *NValue = Rem->getOperand(0);
  auto *DValue = Rem->getOperand(1);
  // We're only interested in the case where we know something about
  // the numerator, unless it is a srem, because we want to replace srem by urem
  // in general.
  bool UsedAsNumerator = IVOperand == NValue;
  if (!UsedAsNumerator && !IsSigned)
    return;

  const SCEV *N = SE->getSCEV(NValue);

  // Simplify unnecessary loops away.
  const Loop *ICmpLoop = LI->getLoopFor(Rem->getParent());
  N = SE->getSCEVAtScope(N, ICmpLoop);

  bool IsNumeratorNonNegative = !IsSigned || SE->isKnownNonNegative(N);

  // Do not proceed if the Numerator may be negative
  if (!IsNumeratorNonNegative)
    return;

  const SCEV *D = SE->getSCEV(DValue);
  D = SE->getSCEVAtScope(D, ICmpLoop);

  if (UsedAsNumerator) {
    auto LT = IsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
    if (SE->isKnownPredicate(LT, N, D)) {
      replaceRemWithNumerator(Rem);
      return;
    }

    auto *T = Rem->getType();
    const auto *NLessOne = SE->getMinusSCEV(N, SE->getOne(T));
    if (SE->isKnownPredicate(LT, NLessOne, D)) {
      replaceRemWithNumeratorOrZero(Rem);
      return;
    }
  }

  // Try to replace SRem with URem, if both N and D are known non-negative.
  // Since we had already check N, we only need to check D now
  if (!IsSigned || !SE->isKnownNonNegative(D))
    return;

  replaceSRemWithURem(Rem);
}

static bool willNotOverflow(ScalarEvolution *SE, Instruction::BinaryOps BinOp,
                            bool Signed, const SCEV *LHS, const SCEV *RHS) {
  const SCEV *(ScalarEvolution::*Operation)(const SCEV *, const SCEV *,
                                            SCEV::NoWrapFlags, unsigned);
  switch (BinOp) {
  default:
    llvm_unreachable("Unsupported binary op");
  case Instruction::Add:
    Operation = &ScalarEvolution::getAddExpr;
    break;
  case Instruction::Sub:
    Operation = &ScalarEvolution::getMinusSCEV;
    break;
  case Instruction::Mul:
    Operation = &ScalarEvolution::getMulExpr;
    break;
  }

  const SCEV *(ScalarEvolution::*Extension)(const SCEV *, Type *, unsigned) =
      Signed ? &ScalarEvolution::getSignExtendExpr
             : &ScalarEvolution::getZeroExtendExpr;

  // Check ext(LHS op RHS) == ext(LHS) op ext(RHS)
  auto *NarrowTy = cast<IntegerType>(LHS->getType());
  auto *WideTy =
    IntegerType::get(NarrowTy->getContext(), NarrowTy->getBitWidth() * 2);

  const SCEV *A =
      (SE->*Extension)((SE->*Operation)(LHS, RHS, SCEV::FlagAnyWrap, 0),
                       WideTy, 0);
  const SCEV *B =
      (SE->*Operation)((SE->*Extension)(LHS, WideTy, 0),
                       (SE->*Extension)(RHS, WideTy, 0), SCEV::FlagAnyWrap, 0);
  return A == B;
}

bool SimplifyIndvar::eliminateOverflowIntrinsic(WithOverflowInst *WO) {
  const SCEV *LHS = SE->getSCEV(WO->getLHS());
  const SCEV *RHS = SE->getSCEV(WO->getRHS());
  if (!willNotOverflow(SE, WO->getBinaryOp(), WO->isSigned(), LHS, RHS))
    return false;

  // Proved no overflow, nuke the overflow check and, if possible, the overflow
  // intrinsic as well.

  BinaryOperator *NewResult = BinaryOperator::Create(
      WO->getBinaryOp(), WO->getLHS(), WO->getRHS(), "", WO);

  if (WO->isSigned())
    NewResult->setHasNoSignedWrap(true);
  else
    NewResult->setHasNoUnsignedWrap(true);

  SmallVector<ExtractValueInst *, 4> ToDelete;

  for (auto *U : WO->users()) {
    if (auto *EVI = dyn_cast<ExtractValueInst>(U)) {
      if (EVI->getIndices()[0] == 1)
        EVI->replaceAllUsesWith(ConstantInt::getFalse(WO->getContext()));
      else {
        assert(EVI->getIndices()[0] == 0 && "Only two possibilities!");
        EVI->replaceAllUsesWith(NewResult);
      }
      ToDelete.push_back(EVI);
    }
  }

  for (auto *EVI : ToDelete)
    EVI->eraseFromParent();

  if (WO->use_empty())
    WO->eraseFromParent();

  return true;
}

bool SimplifyIndvar::eliminateSaturatingIntrinsic(SaturatingInst *SI) {
  const SCEV *LHS = SE->getSCEV(SI->getLHS());
  const SCEV *RHS = SE->getSCEV(SI->getRHS());
  if (!willNotOverflow(SE, SI->getBinaryOp(), SI->isSigned(), LHS, RHS))
    return false;

  BinaryOperator *BO = BinaryOperator::Create(
      SI->getBinaryOp(), SI->getLHS(), SI->getRHS(), SI->getName(), SI);
  if (SI->isSigned())
    BO->setHasNoSignedWrap();
  else
    BO->setHasNoUnsignedWrap();

  SI->replaceAllUsesWith(BO);
  DeadInsts.emplace_back(SI);
  Changed = true;
  return true;
}

bool SimplifyIndvar::eliminateTrunc(TruncInst *TI) {
  // It is always legal to replace
  //   icmp <pred> i32 trunc(iv), n
  // with
  //   icmp <pred> i64 sext(trunc(iv)), sext(n), if pred is signed predicate.
  // Or with
  //   icmp <pred> i64 zext(trunc(iv)), zext(n), if pred is unsigned predicate.
  // Or with either of these if pred is an equality predicate.
  //
  // If we can prove that iv == sext(trunc(iv)) or iv == zext(trunc(iv)) for
  // every comparison which uses trunc, it means that we can replace each of
  // them with comparison of iv against sext/zext(n). We no longer need trunc
  // after that.
  //
  // TODO: Should we do this if we can widen *some* comparisons, but not all
  // of them? Sometimes it is enough to enable other optimizations, but the
  // trunc instruction will stay in the loop.
  Value *IV = TI->getOperand(0);
  Type *IVTy = IV->getType();
  const SCEV *IVSCEV = SE->getSCEV(IV);
  const SCEV *TISCEV = SE->getSCEV(TI);

  // Check if iv == zext(trunc(iv)) and if iv == sext(trunc(iv)). If so, we can
  // get rid of trunc
  bool DoesSExtCollapse = false;
  bool DoesZExtCollapse = false;
  if (IVSCEV == SE->getSignExtendExpr(TISCEV, IVTy))
    DoesSExtCollapse = true;
  if (IVSCEV == SE->getZeroExtendExpr(TISCEV, IVTy))
    DoesZExtCollapse = true;

  // If neither sext nor zext does collapse, it is not profitable to do any
  // transform. Bail.
  if (!DoesSExtCollapse && !DoesZExtCollapse)
    return false;

  // Collect users of the trunc that look like comparisons against invariants.
  // Bail if we find something different.
  SmallVector<ICmpInst *, 4> ICmpUsers;
  for (auto *U : TI->users()) {
    // We don't care about users in unreachable blocks.
    if (isa<Instruction>(U) &&
        !DT->isReachableFromEntry(cast<Instruction>(U)->getParent()))
      continue;
    ICmpInst *ICI = dyn_cast<ICmpInst>(U);
    if (!ICI) return false;
    assert(L->contains(ICI->getParent()) && "LCSSA form broken?");
    if (!(ICI->getOperand(0) == TI && L->isLoopInvariant(ICI->getOperand(1))) &&
        !(ICI->getOperand(1) == TI && L->isLoopInvariant(ICI->getOperand(0))))
      return false;
    // If we cannot get rid of trunc, bail.
    if (ICI->isSigned() && !DoesSExtCollapse)
      return false;
    if (ICI->isUnsigned() && !DoesZExtCollapse)
      return false;
    // For equality, either signed or unsigned works.
    ICmpUsers.push_back(ICI);
  }

  auto CanUseZExt = [&](ICmpInst *ICI) {
    // Unsigned comparison can be widened as unsigned.
    if (ICI->isUnsigned())
      return true;
    // Is it profitable to do zext?
    if (!DoesZExtCollapse)
      return false;
    // For equality, we can safely zext both parts.
    if (ICI->isEquality())
      return true;
    // Otherwise we can only use zext when comparing two non-negative or two
    // negative values. But in practice, we will never pass DoesZExtCollapse
    // check for a negative value, because zext(trunc(x)) is non-negative. So
    // it only make sense to check for non-negativity here.
    const SCEV *SCEVOP1 = SE->getSCEV(ICI->getOperand(0));
    const SCEV *SCEVOP2 = SE->getSCEV(ICI->getOperand(1));
    return SE->isKnownNonNegative(SCEVOP1) && SE->isKnownNonNegative(SCEVOP2);
  };
  // Replace all comparisons against trunc with comparisons against IV.
  for (auto *ICI : ICmpUsers) {
    bool IsSwapped = L->isLoopInvariant(ICI->getOperand(0));
    auto *Op1 = IsSwapped ? ICI->getOperand(0) : ICI->getOperand(1);
    Instruction *Ext = nullptr;
    // For signed/unsigned predicate, replace the old comparison with comparison
    // of immediate IV against sext/zext of the invariant argument. If we can
    // use either sext or zext (i.e. we are dealing with equality predicate),
    // then prefer zext as a more canonical form.
    // TODO: If we see a signed comparison which can be turned into unsigned,
    // we can do it here for canonicalization purposes.
    ICmpInst::Predicate Pred = ICI->getPredicate();
    if (IsSwapped) Pred = ICmpInst::getSwappedPredicate(Pred);
    if (CanUseZExt(ICI)) {
      assert(DoesZExtCollapse && "Unprofitable zext?");
      Ext = new ZExtInst(Op1, IVTy, "zext", ICI);
      Pred = ICmpInst::getUnsignedPredicate(Pred);
    } else {
      assert(DoesSExtCollapse && "Unprofitable sext?");
      Ext = new SExtInst(Op1, IVTy, "sext", ICI);
      assert(Pred == ICmpInst::getSignedPredicate(Pred) && "Must be signed!");
    }
    bool Changed;
    L->makeLoopInvariant(Ext, Changed);
    (void)Changed;
    ICmpInst *NewICI = new ICmpInst(ICI, Pred, IV, Ext);
    ICI->replaceAllUsesWith(NewICI);
    DeadInsts.emplace_back(ICI);
  }

  // Trunc no longer needed.
  TI->replaceAllUsesWith(UndefValue::get(TI->getType()));
  DeadInsts.emplace_back(TI);
  return true;
}

/// Eliminate an operation that consumes a simple IV and has no observable
/// side-effect given the range of IV values.  IVOperand is guaranteed SCEVable,
/// but UseInst may not be.
bool SimplifyIndvar::eliminateIVUser(Instruction *UseInst,
                                     Instruction *IVOperand) {
  if (ICmpInst *ICmp = dyn_cast<ICmpInst>(UseInst)) {
    eliminateIVComparison(ICmp, IVOperand);
    return true;
  }
  if (BinaryOperator *Bin = dyn_cast<BinaryOperator>(UseInst)) {
    bool IsSRem = Bin->getOpcode() == Instruction::SRem;
    if (IsSRem || Bin->getOpcode() == Instruction::URem) {
      simplifyIVRemainder(Bin, IVOperand, IsSRem);
      return true;
    }

    if (Bin->getOpcode() == Instruction::SDiv)
      return eliminateSDiv(Bin);
  }

  if (auto *WO = dyn_cast<WithOverflowInst>(UseInst))
    if (eliminateOverflowIntrinsic(WO))
      return true;

  if (auto *SI = dyn_cast<SaturatingInst>(UseInst))
    if (eliminateSaturatingIntrinsic(SI))
      return true;

  if (auto *TI = dyn_cast<TruncInst>(UseInst))
    if (eliminateTrunc(TI))
      return true;

  if (eliminateIdentitySCEV(UseInst, IVOperand))
    return true;

  return false;
}

static Instruction *GetLoopInvariantInsertPosition(Loop *L, Instruction *Hint) {
  if (auto *BB = L->getLoopPreheader())
    return BB->getTerminator();

  return Hint;
}

/// Replace the UseInst with a constant if possible.
bool SimplifyIndvar::replaceIVUserWithLoopInvariant(Instruction *I) {
  if (!SE->isSCEVable(I->getType()))
    return false;

  // Get the symbolic expression for this instruction.
  const SCEV *S = SE->getSCEV(I);

  if (!SE->isLoopInvariant(S, L))
    return false;

  // Do not generate something ridiculous even if S is loop invariant.
  if (Rewriter.isHighCostExpansion(S, L, I))
    return false;

  auto *IP = GetLoopInvariantInsertPosition(L, I);
  auto *Invariant = Rewriter.expandCodeFor(S, I->getType(), IP);

  I->replaceAllUsesWith(Invariant);
  LLVM_DEBUG(dbgs() << "INDVARS: Replace IV user: " << *I
                    << " with loop invariant: " << *S << '\n');
  ++NumFoldedUser;
  Changed = true;
  DeadInsts.emplace_back(I);
  return true;
}

/// Eliminate any operation that SCEV can prove is an identity function.
bool SimplifyIndvar::eliminateIdentitySCEV(Instruction *UseInst,
                                           Instruction *IVOperand) {
  if (!SE->isSCEVable(UseInst->getType()) ||
      (UseInst->getType() != IVOperand->getType()) ||
      (SE->getSCEV(UseInst) != SE->getSCEV(IVOperand)))
    return false;

  // getSCEV(X) == getSCEV(Y) does not guarantee that X and Y are related in the
  // dominator tree, even if X is an operand to Y.  For instance, in
  //
  //     %iv = phi i32 {0,+,1}
  //     br %cond, label %left, label %merge
  //
  //   left:
  //     %X = add i32 %iv, 0
  //     br label %merge
  //
  //   merge:
  //     %M = phi (%X, %iv)
  //
  // getSCEV(%M) == getSCEV(%X) == {0,+,1}, but %X does not dominate %M, and
  // %M.replaceAllUsesWith(%X) would be incorrect.

  if (isa<PHINode>(UseInst))
    // If UseInst is not a PHI node then we know that IVOperand dominates
    // UseInst directly from the legality of SSA.
    if (!DT || !DT->dominates(IVOperand, UseInst))
      return false;

  if (!LI->replacementPreservesLCSSAForm(UseInst, IVOperand))
    return false;

  LLVM_DEBUG(dbgs() << "INDVARS: Eliminated identity: " << *UseInst << '\n');

  UseInst->replaceAllUsesWith(IVOperand);
  ++NumElimIdentity;
  Changed = true;
  DeadInsts.emplace_back(UseInst);
  return true;
}

/// Annotate BO with nsw / nuw if it provably does not signed-overflow /
/// unsigned-overflow.  Returns true if anything changed, false otherwise.
bool SimplifyIndvar::strengthenOverflowingOperation(BinaryOperator *BO,
                                                    Value *IVOperand) {
  // Fastpath: we don't have any work to do if `BO` is `nuw` and `nsw`.
  if (BO->hasNoUnsignedWrap() && BO->hasNoSignedWrap())
    return false;

  if (BO->getOpcode() != Instruction::Add &&
      BO->getOpcode() != Instruction::Sub &&
      BO->getOpcode() != Instruction::Mul)
    return false;

  const SCEV *LHS = SE->getSCEV(BO->getOperand(0));
  const SCEV *RHS = SE->getSCEV(BO->getOperand(1));
  bool Changed = false;

  if (!BO->hasNoUnsignedWrap() &&
      willNotOverflow(SE, BO->getOpcode(), /* Signed */ false, LHS, RHS)) {
    BO->setHasNoUnsignedWrap();
    SE->forgetValue(BO);
    Changed = true;
  }

  if (!BO->hasNoSignedWrap() &&
      willNotOverflow(SE, BO->getOpcode(), /* Signed */ true, LHS, RHS)) {
    BO->setHasNoSignedWrap();
    SE->forgetValue(BO);
    Changed = true;
  }

  return Changed;
}

/// Annotate the Shr in (X << IVOperand) >> C as exact using the
/// information from the IV's range. Returns true if anything changed, false
/// otherwise.
bool SimplifyIndvar::strengthenRightShift(BinaryOperator *BO,
                                          Value *IVOperand) {
  using namespace llvm::PatternMatch;

  if (BO->getOpcode() == Instruction::Shl) {
    bool Changed = false;
    ConstantRange IVRange = SE->getUnsignedRange(SE->getSCEV(IVOperand));
    for (auto *U : BO->users()) {
      const APInt *C;
      if (match(U,
                m_AShr(m_Shl(m_Value(), m_Specific(IVOperand)), m_APInt(C))) ||
          match(U,
                m_LShr(m_Shl(m_Value(), m_Specific(IVOperand)), m_APInt(C)))) {
        BinaryOperator *Shr = cast<BinaryOperator>(U);
        if (!Shr->isExact() && IVRange.getUnsignedMin().uge(*C)) {
          Shr->setIsExact(true);
          Changed = true;
        }
      }
    }
    return Changed;
  }

  return false;
}

/// Add all uses of Def to the current IV's worklist.
static void pushIVUsers(
  Instruction *Def, Loop *L,
  SmallPtrSet<Instruction*,16> &Simplified,
  SmallVectorImpl< std::pair<Instruction*,Instruction*> > &SimpleIVUsers) {

  for (User *U : Def->users()) {
    Instruction *UI = cast<Instruction>(U);

    // Avoid infinite or exponential worklist processing.
    // Also ensure unique worklist users.
    // If Def is a LoopPhi, it may not be in the Simplified set, so check for
    // self edges first.
    if (UI == Def)
      continue;

    // Only change the current Loop, do not change the other parts (e.g. other
    // Loops).
    if (!L->contains(UI))
      continue;

    // Do not push the same instruction more than once.
    if (!Simplified.insert(UI).second)
      continue;

    SimpleIVUsers.push_back(std::make_pair(UI, Def));
  }
}

/// Return true if this instruction generates a simple SCEV
/// expression in terms of that IV.
///
/// This is similar to IVUsers' isInteresting() but processes each instruction
/// non-recursively when the operand is already known to be a simpleIVUser.
///
static bool isSimpleIVUser(Instruction *I, const Loop *L, ScalarEvolution *SE) {
  if (!SE->isSCEVable(I->getType()))
    return false;

  // Get the symbolic expression for this instruction.
  const SCEV *S = SE->getSCEV(I);

  // Only consider affine recurrences.
  const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S);
  if (AR && AR->getLoop() == L)
    return true;

  return false;
}

/// Iteratively perform simplification on a worklist of users
/// of the specified induction variable. Each successive simplification may push
/// more users which may themselves be candidates for simplification.
///
/// This algorithm does not require IVUsers analysis. Instead, it simplifies
/// instructions in-place during analysis. Rather than rewriting induction
/// variables bottom-up from their users, it transforms a chain of IVUsers
/// top-down, updating the IR only when it encounters a clear optimization
/// opportunity.
///
/// Once DisableIVRewrite is default, LSR will be the only client of IVUsers.
///
void SimplifyIndvar::simplifyUsers(PHINode *CurrIV, IVVisitor *V) {
  if (!SE->isSCEVable(CurrIV->getType()))
    return;

  // Instructions processed by SimplifyIndvar for CurrIV.
  SmallPtrSet<Instruction*,16> Simplified;

  // Use-def pairs if IV users waiting to be processed for CurrIV.
  SmallVector<std::pair<Instruction*, Instruction*>, 8> SimpleIVUsers;

  // Push users of the current LoopPhi. In rare cases, pushIVUsers may be
  // called multiple times for the same LoopPhi. This is the proper thing to
  // do for loop header phis that use each other.
  pushIVUsers(CurrIV, L, Simplified, SimpleIVUsers);

  while (!SimpleIVUsers.empty()) {
    std::pair<Instruction*, Instruction*> UseOper =
      SimpleIVUsers.pop_back_val();
    Instruction *UseInst = UseOper.first;

    // If a user of the IndVar is trivially dead, we prefer just to mark it dead
    // rather than try to do some complex analysis or transformation (such as
    // widening) basing on it.
    // TODO: Propagate TLI and pass it here to handle more cases.
    if (isInstructionTriviallyDead(UseInst, /* TLI */ nullptr)) {
      DeadInsts.emplace_back(UseInst);
      continue;
    }

    // Bypass back edges to avoid extra work.
    if (UseInst == CurrIV) continue;

    // Try to replace UseInst with a loop invariant before any other
    // simplifications.
    if (replaceIVUserWithLoopInvariant(UseInst))
      continue;

    Instruction *IVOperand = UseOper.second;
    for (unsigned N = 0; IVOperand; ++N) {
      assert(N <= Simplified.size() && "runaway iteration");

      Value *NewOper = foldIVUser(UseInst, IVOperand);
      if (!NewOper)
        break; // done folding
      IVOperand = dyn_cast<Instruction>(NewOper);
    }
    if (!IVOperand)
      continue;

    if (eliminateIVUser(UseInst, IVOperand)) {
      pushIVUsers(IVOperand, L, Simplified, SimpleIVUsers);
      continue;
    }

    if (BinaryOperator *BO = dyn_cast<BinaryOperator>(UseInst)) {
      if ((isa<OverflowingBinaryOperator>(BO) &&
           strengthenOverflowingOperation(BO, IVOperand)) ||
          (isa<ShlOperator>(BO) && strengthenRightShift(BO, IVOperand))) {
        // re-queue uses of the now modified binary operator and fall
        // through to the checks that remain.
        pushIVUsers(IVOperand, L, Simplified, SimpleIVUsers);
      }
    }

    CastInst *Cast = dyn_cast<CastInst>(UseInst);
    if (V && Cast) {
      V->visitCast(Cast);
      continue;
    }
    if (isSimpleIVUser(UseInst, L, SE)) {
      pushIVUsers(UseInst, L, Simplified, SimpleIVUsers);
    }
  }
}

namespace llvm {

void IVVisitor::anchor() { }

/// Simplify instructions that use this induction variable
/// by using ScalarEvolution to analyze the IV's recurrence.
bool simplifyUsersOfIV(PHINode *CurrIV, ScalarEvolution *SE, DominatorTree *DT,
                       LoopInfo *LI, SmallVectorImpl<WeakTrackingVH> &Dead,
                       SCEVExpander &Rewriter, IVVisitor *V) {
  SimplifyIndvar SIV(LI->getLoopFor(CurrIV->getParent()), SE, DT, LI, Rewriter,
                     Dead);
  SIV.simplifyUsers(CurrIV, V);
  return SIV.hasChanged();
}

/// Simplify users of induction variables within this
/// loop. This does not actually change or add IVs.
bool simplifyLoopIVs(Loop *L, ScalarEvolution *SE, DominatorTree *DT,
                     LoopInfo *LI, SmallVectorImpl<WeakTrackingVH> &Dead) {
  SCEVExpander Rewriter(*SE, SE->getDataLayout(), "indvars");
#ifndef NDEBUG
  Rewriter.setDebugType(DEBUG_TYPE);
#endif
  bool Changed = false;
  for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
    Changed |= simplifyUsersOfIV(cast<PHINode>(I), SE, DT, LI, Dead, Rewriter);
  }
  return Changed;
}

} // namespace llvm