ArrayRefTest.cpp
9.01 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
//===- llvm/unittest/ADT/ArrayRefTest.cpp - ArrayRef unit tests -----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "llvm/ADT/ArrayRef.h"
#include "llvm/Support/Allocator.h"
#include "llvm/Support/raw_ostream.h"
#include "gtest/gtest.h"
#include <limits>
#include <vector>
using namespace llvm;
// Check that the ArrayRef-of-pointer converting constructor only allows adding
// cv qualifiers (not removing them, or otherwise changing the type)
static_assert(
std::is_convertible<ArrayRef<int *>, ArrayRef<const int *>>::value,
"Adding const");
static_assert(
std::is_convertible<ArrayRef<int *>, ArrayRef<volatile int *>>::value,
"Adding volatile");
static_assert(!std::is_convertible<ArrayRef<int *>, ArrayRef<float *>>::value,
"Changing pointer of one type to a pointer of another");
static_assert(
!std::is_convertible<ArrayRef<const int *>, ArrayRef<int *>>::value,
"Removing const");
static_assert(
!std::is_convertible<ArrayRef<volatile int *>, ArrayRef<int *>>::value,
"Removing volatile");
// Check that we can't accidentally assign a temporary location to an ArrayRef.
// (Unfortunately we can't make use of the same thing with constructors.)
static_assert(
!std::is_assignable<ArrayRef<int *>&, int *>::value,
"Assigning from single prvalue element");
static_assert(
!std::is_assignable<ArrayRef<int *>&, int * &&>::value,
"Assigning from single xvalue element");
static_assert(
std::is_assignable<ArrayRef<int *>&, int * &>::value,
"Assigning from single lvalue element");
static_assert(
!std::is_assignable<ArrayRef<int *>&, std::initializer_list<int *>>::value,
"Assigning from an initializer list");
namespace {
TEST(ArrayRefTest, AllocatorCopy) {
BumpPtrAllocator Alloc;
static const uint16_t Words1[] = { 1, 4, 200, 37 };
ArrayRef<uint16_t> Array1 = makeArrayRef(Words1, 4);
static const uint16_t Words2[] = { 11, 4003, 67, 64000, 13 };
ArrayRef<uint16_t> Array2 = makeArrayRef(Words2, 5);
ArrayRef<uint16_t> Array1c = Array1.copy(Alloc);
ArrayRef<uint16_t> Array2c = Array2.copy(Alloc);
EXPECT_TRUE(Array1.equals(Array1c));
EXPECT_NE(Array1.data(), Array1c.data());
EXPECT_TRUE(Array2.equals(Array2c));
EXPECT_NE(Array2.data(), Array2c.data());
// Check that copy can cope with uninitialized memory.
struct NonAssignable {
const char *Ptr;
NonAssignable(const char *Ptr) : Ptr(Ptr) {}
NonAssignable(const NonAssignable &RHS) = default;
void operator=(const NonAssignable &RHS) { assert(RHS.Ptr != nullptr); }
bool operator==(const NonAssignable &RHS) const { return Ptr == RHS.Ptr; }
} Array3Src[] = {"hello", "world"};
ArrayRef<NonAssignable> Array3Copy = makeArrayRef(Array3Src).copy(Alloc);
EXPECT_EQ(makeArrayRef(Array3Src), Array3Copy);
EXPECT_NE(makeArrayRef(Array3Src).data(), Array3Copy.data());
}
// This test is pure UB given the ArrayRef<> implementation.
// You are not allowed to produce non-null pointers given null base pointer.
TEST(ArrayRefTest, DISABLED_SizeTSizedOperations) {
ArrayRef<char> AR(nullptr, std::numeric_limits<ptrdiff_t>::max());
// Check that drop_back accepts size_t-sized numbers.
EXPECT_EQ(1U, AR.drop_back(AR.size() - 1).size());
// Check that drop_front accepts size_t-sized numbers.
EXPECT_EQ(1U, AR.drop_front(AR.size() - 1).size());
// Check that slice accepts size_t-sized numbers.
EXPECT_EQ(1U, AR.slice(AR.size() - 1).size());
EXPECT_EQ(AR.size() - 1, AR.slice(1, AR.size() - 1).size());
}
TEST(ArrayRefTest, DropBack) {
static const int TheNumbers[] = {4, 8, 15, 16, 23, 42};
ArrayRef<int> AR1(TheNumbers);
ArrayRef<int> AR2(TheNumbers, AR1.size() - 1);
EXPECT_TRUE(AR1.drop_back().equals(AR2));
}
TEST(ArrayRefTest, DropFront) {
static const int TheNumbers[] = {4, 8, 15, 16, 23, 42};
ArrayRef<int> AR1(TheNumbers);
ArrayRef<int> AR2(&TheNumbers[2], AR1.size() - 2);
EXPECT_TRUE(AR1.drop_front(2).equals(AR2));
}
TEST(ArrayRefTest, DropWhile) {
static const int TheNumbers[] = {1, 3, 5, 8, 10, 11};
ArrayRef<int> AR1(TheNumbers);
ArrayRef<int> Expected = AR1.drop_front(3);
EXPECT_EQ(Expected, AR1.drop_while([](const int &N) { return N % 2 == 1; }));
EXPECT_EQ(AR1, AR1.drop_while([](const int &N) { return N < 0; }));
EXPECT_EQ(ArrayRef<int>(),
AR1.drop_while([](const int &N) { return N > 0; }));
}
TEST(ArrayRefTest, DropUntil) {
static const int TheNumbers[] = {1, 3, 5, 8, 10, 11};
ArrayRef<int> AR1(TheNumbers);
ArrayRef<int> Expected = AR1.drop_front(3);
EXPECT_EQ(Expected, AR1.drop_until([](const int &N) { return N % 2 == 0; }));
EXPECT_EQ(ArrayRef<int>(),
AR1.drop_until([](const int &N) { return N < 0; }));
EXPECT_EQ(AR1, AR1.drop_until([](const int &N) { return N > 0; }));
}
TEST(ArrayRefTest, TakeBack) {
static const int TheNumbers[] = {4, 8, 15, 16, 23, 42};
ArrayRef<int> AR1(TheNumbers);
ArrayRef<int> AR2(AR1.end() - 1, 1);
EXPECT_TRUE(AR1.take_back().equals(AR2));
}
TEST(ArrayRefTest, TakeFront) {
static const int TheNumbers[] = {4, 8, 15, 16, 23, 42};
ArrayRef<int> AR1(TheNumbers);
ArrayRef<int> AR2(AR1.data(), 2);
EXPECT_TRUE(AR1.take_front(2).equals(AR2));
}
TEST(ArrayRefTest, TakeWhile) {
static const int TheNumbers[] = {1, 3, 5, 8, 10, 11};
ArrayRef<int> AR1(TheNumbers);
ArrayRef<int> Expected = AR1.take_front(3);
EXPECT_EQ(Expected, AR1.take_while([](const int &N) { return N % 2 == 1; }));
EXPECT_EQ(ArrayRef<int>(),
AR1.take_while([](const int &N) { return N < 0; }));
EXPECT_EQ(AR1, AR1.take_while([](const int &N) { return N > 0; }));
}
TEST(ArrayRefTest, TakeUntil) {
static const int TheNumbers[] = {1, 3, 5, 8, 10, 11};
ArrayRef<int> AR1(TheNumbers);
ArrayRef<int> Expected = AR1.take_front(3);
EXPECT_EQ(Expected, AR1.take_until([](const int &N) { return N % 2 == 0; }));
EXPECT_EQ(AR1, AR1.take_until([](const int &N) { return N < 0; }));
EXPECT_EQ(ArrayRef<int>(),
AR1.take_until([](const int &N) { return N > 0; }));
}
TEST(ArrayRefTest, Equals) {
static const int A1[] = {1, 2, 3, 4, 5, 6, 7, 8};
ArrayRef<int> AR1(A1);
EXPECT_TRUE(AR1.equals({1, 2, 3, 4, 5, 6, 7, 8}));
EXPECT_FALSE(AR1.equals({8, 1, 2, 4, 5, 6, 6, 7}));
EXPECT_FALSE(AR1.equals({2, 4, 5, 6, 6, 7, 8, 1}));
EXPECT_FALSE(AR1.equals({0, 1, 2, 4, 5, 6, 6, 7}));
EXPECT_FALSE(AR1.equals({1, 2, 42, 4, 5, 6, 7, 8}));
EXPECT_FALSE(AR1.equals({42, 2, 3, 4, 5, 6, 7, 8}));
EXPECT_FALSE(AR1.equals({1, 2, 3, 4, 5, 6, 7, 42}));
EXPECT_FALSE(AR1.equals({1, 2, 3, 4, 5, 6, 7}));
EXPECT_FALSE(AR1.equals({1, 2, 3, 4, 5, 6, 7, 8, 9}));
ArrayRef<int> AR1a = AR1.drop_back();
EXPECT_TRUE(AR1a.equals({1, 2, 3, 4, 5, 6, 7}));
EXPECT_FALSE(AR1a.equals({1, 2, 3, 4, 5, 6, 7, 8}));
ArrayRef<int> AR1b = AR1a.slice(2, 4);
EXPECT_TRUE(AR1b.equals({3, 4, 5, 6}));
EXPECT_FALSE(AR1b.equals({2, 3, 4, 5, 6}));
EXPECT_FALSE(AR1b.equals({3, 4, 5, 6, 7}));
}
TEST(ArrayRefTest, EmptyEquals) {
EXPECT_TRUE(ArrayRef<unsigned>() == ArrayRef<unsigned>());
}
TEST(ArrayRefTest, ConstConvert) {
int buf[4];
for (int i = 0; i < 4; ++i)
buf[i] = i;
static int *A[] = {&buf[0], &buf[1], &buf[2], &buf[3]};
ArrayRef<const int *> a((ArrayRef<int *>(A)));
a = ArrayRef<int *>(A);
}
static std::vector<int> ReturnTest12() { return {1, 2}; }
static void ArgTest12(ArrayRef<int> A) {
EXPECT_EQ(2U, A.size());
EXPECT_EQ(1, A[0]);
EXPECT_EQ(2, A[1]);
}
TEST(ArrayRefTest, InitializerList) {
std::initializer_list<int> init_list = { 0, 1, 2, 3, 4 };
ArrayRef<int> A = init_list;
for (int i = 0; i < 5; ++i)
EXPECT_EQ(i, A[i]);
std::vector<int> B = ReturnTest12();
A = B;
EXPECT_EQ(1, A[0]);
EXPECT_EQ(2, A[1]);
ArgTest12({1, 2});
}
TEST(ArrayRefTest, EmptyInitializerList) {
ArrayRef<int> A = {};
EXPECT_TRUE(A.empty());
A = {};
EXPECT_TRUE(A.empty());
}
// Test that makeArrayRef works on ArrayRef (no-op)
TEST(ArrayRefTest, makeArrayRef) {
static const int A1[] = {1, 2, 3, 4, 5, 6, 7, 8};
// No copy expected for non-const ArrayRef (true no-op)
ArrayRef<int> AR1(A1);
ArrayRef<int> &AR1Ref = makeArrayRef(AR1);
EXPECT_EQ(&AR1, &AR1Ref);
// A copy is expected for non-const ArrayRef (thin copy)
const ArrayRef<int> AR2(A1);
const ArrayRef<int> &AR2Ref = makeArrayRef(AR2);
EXPECT_NE(&AR2Ref, &AR2);
EXPECT_TRUE(AR2.equals(AR2Ref));
}
TEST(ArrayRefTest, OwningArrayRef) {
static const int A1[] = {0, 1};
OwningArrayRef<int> A(makeArrayRef(A1));
OwningArrayRef<int> B(std::move(A));
EXPECT_EQ(A.data(), nullptr);
}
TEST(ArrayRefTest, makeArrayRefFromStdArray) {
std::array<int, 5> A1{{42, -5, 0, 1000000, -1000000}};
ArrayRef<int> A2 = makeArrayRef(A1);
EXPECT_EQ(A1.size(), A2.size());
for (std::size_t i = 0; i < A1.size(); ++i) {
EXPECT_EQ(A1[i], A2[i]);
}
}
static_assert(is_trivially_copyable<ArrayRef<int>>::value,
"trivially copyable");
} // end anonymous namespace