RecordLayoutBuilder.cpp
132 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
//=== RecordLayoutBuilder.cpp - Helper class for building record layouts ---==//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "clang/AST/RecordLayout.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/ASTDiagnostic.h"
#include "clang/AST/Attr.h"
#include "clang/AST/CXXInheritance.h"
#include "clang/AST/Decl.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/DeclObjC.h"
#include "clang/AST/Expr.h"
#include "clang/Basic/TargetInfo.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/Support/Format.h"
#include "llvm/Support/MathExtras.h"
using namespace clang;
namespace {
/// BaseSubobjectInfo - Represents a single base subobject in a complete class.
/// For a class hierarchy like
///
/// class A { };
/// class B : A { };
/// class C : A, B { };
///
/// The BaseSubobjectInfo graph for C will have three BaseSubobjectInfo
/// instances, one for B and two for A.
///
/// If a base is virtual, it will only have one BaseSubobjectInfo allocated.
struct BaseSubobjectInfo {
/// Class - The class for this base info.
const CXXRecordDecl *Class;
/// IsVirtual - Whether the BaseInfo represents a virtual base or not.
bool IsVirtual;
/// Bases - Information about the base subobjects.
SmallVector<BaseSubobjectInfo*, 4> Bases;
/// PrimaryVirtualBaseInfo - Holds the base info for the primary virtual base
/// of this base info (if one exists).
BaseSubobjectInfo *PrimaryVirtualBaseInfo;
// FIXME: Document.
const BaseSubobjectInfo *Derived;
};
/// Externally provided layout. Typically used when the AST source, such
/// as DWARF, lacks all the information that was available at compile time, such
/// as alignment attributes on fields and pragmas in effect.
struct ExternalLayout {
ExternalLayout() : Size(0), Align(0) {}
/// Overall record size in bits.
uint64_t Size;
/// Overall record alignment in bits.
uint64_t Align;
/// Record field offsets in bits.
llvm::DenseMap<const FieldDecl *, uint64_t> FieldOffsets;
/// Direct, non-virtual base offsets.
llvm::DenseMap<const CXXRecordDecl *, CharUnits> BaseOffsets;
/// Virtual base offsets.
llvm::DenseMap<const CXXRecordDecl *, CharUnits> VirtualBaseOffsets;
/// Get the offset of the given field. The external source must provide
/// entries for all fields in the record.
uint64_t getExternalFieldOffset(const FieldDecl *FD) {
assert(FieldOffsets.count(FD) &&
"Field does not have an external offset");
return FieldOffsets[FD];
}
bool getExternalNVBaseOffset(const CXXRecordDecl *RD, CharUnits &BaseOffset) {
auto Known = BaseOffsets.find(RD);
if (Known == BaseOffsets.end())
return false;
BaseOffset = Known->second;
return true;
}
bool getExternalVBaseOffset(const CXXRecordDecl *RD, CharUnits &BaseOffset) {
auto Known = VirtualBaseOffsets.find(RD);
if (Known == VirtualBaseOffsets.end())
return false;
BaseOffset = Known->second;
return true;
}
};
/// EmptySubobjectMap - Keeps track of which empty subobjects exist at different
/// offsets while laying out a C++ class.
class EmptySubobjectMap {
const ASTContext &Context;
uint64_t CharWidth;
/// Class - The class whose empty entries we're keeping track of.
const CXXRecordDecl *Class;
/// EmptyClassOffsets - A map from offsets to empty record decls.
typedef llvm::TinyPtrVector<const CXXRecordDecl *> ClassVectorTy;
typedef llvm::DenseMap<CharUnits, ClassVectorTy> EmptyClassOffsetsMapTy;
EmptyClassOffsetsMapTy EmptyClassOffsets;
/// MaxEmptyClassOffset - The highest offset known to contain an empty
/// base subobject.
CharUnits MaxEmptyClassOffset;
/// ComputeEmptySubobjectSizes - Compute the size of the largest base or
/// member subobject that is empty.
void ComputeEmptySubobjectSizes();
void AddSubobjectAtOffset(const CXXRecordDecl *RD, CharUnits Offset);
void UpdateEmptyBaseSubobjects(const BaseSubobjectInfo *Info,
CharUnits Offset, bool PlacingEmptyBase);
void UpdateEmptyFieldSubobjects(const CXXRecordDecl *RD,
const CXXRecordDecl *Class, CharUnits Offset,
bool PlacingOverlappingField);
void UpdateEmptyFieldSubobjects(const FieldDecl *FD, CharUnits Offset,
bool PlacingOverlappingField);
/// AnyEmptySubobjectsBeyondOffset - Returns whether there are any empty
/// subobjects beyond the given offset.
bool AnyEmptySubobjectsBeyondOffset(CharUnits Offset) const {
return Offset <= MaxEmptyClassOffset;
}
CharUnits
getFieldOffset(const ASTRecordLayout &Layout, unsigned FieldNo) const {
uint64_t FieldOffset = Layout.getFieldOffset(FieldNo);
assert(FieldOffset % CharWidth == 0 &&
"Field offset not at char boundary!");
return Context.toCharUnitsFromBits(FieldOffset);
}
protected:
bool CanPlaceSubobjectAtOffset(const CXXRecordDecl *RD,
CharUnits Offset) const;
bool CanPlaceBaseSubobjectAtOffset(const BaseSubobjectInfo *Info,
CharUnits Offset);
bool CanPlaceFieldSubobjectAtOffset(const CXXRecordDecl *RD,
const CXXRecordDecl *Class,
CharUnits Offset) const;
bool CanPlaceFieldSubobjectAtOffset(const FieldDecl *FD,
CharUnits Offset) const;
public:
/// This holds the size of the largest empty subobject (either a base
/// or a member). Will be zero if the record being built doesn't contain
/// any empty classes.
CharUnits SizeOfLargestEmptySubobject;
EmptySubobjectMap(const ASTContext &Context, const CXXRecordDecl *Class)
: Context(Context), CharWidth(Context.getCharWidth()), Class(Class) {
ComputeEmptySubobjectSizes();
}
/// CanPlaceBaseAtOffset - Return whether the given base class can be placed
/// at the given offset.
/// Returns false if placing the record will result in two components
/// (direct or indirect) of the same type having the same offset.
bool CanPlaceBaseAtOffset(const BaseSubobjectInfo *Info,
CharUnits Offset);
/// CanPlaceFieldAtOffset - Return whether a field can be placed at the given
/// offset.
bool CanPlaceFieldAtOffset(const FieldDecl *FD, CharUnits Offset);
};
void EmptySubobjectMap::ComputeEmptySubobjectSizes() {
// Check the bases.
for (const CXXBaseSpecifier &Base : Class->bases()) {
const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
CharUnits EmptySize;
const ASTRecordLayout &Layout = Context.getASTRecordLayout(BaseDecl);
if (BaseDecl->isEmpty()) {
// If the class decl is empty, get its size.
EmptySize = Layout.getSize();
} else {
// Otherwise, we get the largest empty subobject for the decl.
EmptySize = Layout.getSizeOfLargestEmptySubobject();
}
if (EmptySize > SizeOfLargestEmptySubobject)
SizeOfLargestEmptySubobject = EmptySize;
}
// Check the fields.
for (const FieldDecl *FD : Class->fields()) {
const RecordType *RT =
Context.getBaseElementType(FD->getType())->getAs<RecordType>();
// We only care about record types.
if (!RT)
continue;
CharUnits EmptySize;
const CXXRecordDecl *MemberDecl = RT->getAsCXXRecordDecl();
const ASTRecordLayout &Layout = Context.getASTRecordLayout(MemberDecl);
if (MemberDecl->isEmpty()) {
// If the class decl is empty, get its size.
EmptySize = Layout.getSize();
} else {
// Otherwise, we get the largest empty subobject for the decl.
EmptySize = Layout.getSizeOfLargestEmptySubobject();
}
if (EmptySize > SizeOfLargestEmptySubobject)
SizeOfLargestEmptySubobject = EmptySize;
}
}
bool
EmptySubobjectMap::CanPlaceSubobjectAtOffset(const CXXRecordDecl *RD,
CharUnits Offset) const {
// We only need to check empty bases.
if (!RD->isEmpty())
return true;
EmptyClassOffsetsMapTy::const_iterator I = EmptyClassOffsets.find(Offset);
if (I == EmptyClassOffsets.end())
return true;
const ClassVectorTy &Classes = I->second;
if (llvm::find(Classes, RD) == Classes.end())
return true;
// There is already an empty class of the same type at this offset.
return false;
}
void EmptySubobjectMap::AddSubobjectAtOffset(const CXXRecordDecl *RD,
CharUnits Offset) {
// We only care about empty bases.
if (!RD->isEmpty())
return;
// If we have empty structures inside a union, we can assign both
// the same offset. Just avoid pushing them twice in the list.
ClassVectorTy &Classes = EmptyClassOffsets[Offset];
if (llvm::is_contained(Classes, RD))
return;
Classes.push_back(RD);
// Update the empty class offset.
if (Offset > MaxEmptyClassOffset)
MaxEmptyClassOffset = Offset;
}
bool
EmptySubobjectMap::CanPlaceBaseSubobjectAtOffset(const BaseSubobjectInfo *Info,
CharUnits Offset) {
// We don't have to keep looking past the maximum offset that's known to
// contain an empty class.
if (!AnyEmptySubobjectsBeyondOffset(Offset))
return true;
if (!CanPlaceSubobjectAtOffset(Info->Class, Offset))
return false;
// Traverse all non-virtual bases.
const ASTRecordLayout &Layout = Context.getASTRecordLayout(Info->Class);
for (const BaseSubobjectInfo *Base : Info->Bases) {
if (Base->IsVirtual)
continue;
CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(Base->Class);
if (!CanPlaceBaseSubobjectAtOffset(Base, BaseOffset))
return false;
}
if (Info->PrimaryVirtualBaseInfo) {
BaseSubobjectInfo *PrimaryVirtualBaseInfo = Info->PrimaryVirtualBaseInfo;
if (Info == PrimaryVirtualBaseInfo->Derived) {
if (!CanPlaceBaseSubobjectAtOffset(PrimaryVirtualBaseInfo, Offset))
return false;
}
}
// Traverse all member variables.
unsigned FieldNo = 0;
for (CXXRecordDecl::field_iterator I = Info->Class->field_begin(),
E = Info->Class->field_end(); I != E; ++I, ++FieldNo) {
if (I->isBitField())
continue;
CharUnits FieldOffset = Offset + getFieldOffset(Layout, FieldNo);
if (!CanPlaceFieldSubobjectAtOffset(*I, FieldOffset))
return false;
}
return true;
}
void EmptySubobjectMap::UpdateEmptyBaseSubobjects(const BaseSubobjectInfo *Info,
CharUnits Offset,
bool PlacingEmptyBase) {
if (!PlacingEmptyBase && Offset >= SizeOfLargestEmptySubobject) {
// We know that the only empty subobjects that can conflict with empty
// subobject of non-empty bases, are empty bases that can be placed at
// offset zero. Because of this, we only need to keep track of empty base
// subobjects with offsets less than the size of the largest empty
// subobject for our class.
return;
}
AddSubobjectAtOffset(Info->Class, Offset);
// Traverse all non-virtual bases.
const ASTRecordLayout &Layout = Context.getASTRecordLayout(Info->Class);
for (const BaseSubobjectInfo *Base : Info->Bases) {
if (Base->IsVirtual)
continue;
CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(Base->Class);
UpdateEmptyBaseSubobjects(Base, BaseOffset, PlacingEmptyBase);
}
if (Info->PrimaryVirtualBaseInfo) {
BaseSubobjectInfo *PrimaryVirtualBaseInfo = Info->PrimaryVirtualBaseInfo;
if (Info == PrimaryVirtualBaseInfo->Derived)
UpdateEmptyBaseSubobjects(PrimaryVirtualBaseInfo, Offset,
PlacingEmptyBase);
}
// Traverse all member variables.
unsigned FieldNo = 0;
for (CXXRecordDecl::field_iterator I = Info->Class->field_begin(),
E = Info->Class->field_end(); I != E; ++I, ++FieldNo) {
if (I->isBitField())
continue;
CharUnits FieldOffset = Offset + getFieldOffset(Layout, FieldNo);
UpdateEmptyFieldSubobjects(*I, FieldOffset, PlacingEmptyBase);
}
}
bool EmptySubobjectMap::CanPlaceBaseAtOffset(const BaseSubobjectInfo *Info,
CharUnits Offset) {
// If we know this class doesn't have any empty subobjects we don't need to
// bother checking.
if (SizeOfLargestEmptySubobject.isZero())
return true;
if (!CanPlaceBaseSubobjectAtOffset(Info, Offset))
return false;
// We are able to place the base at this offset. Make sure to update the
// empty base subobject map.
UpdateEmptyBaseSubobjects(Info, Offset, Info->Class->isEmpty());
return true;
}
bool
EmptySubobjectMap::CanPlaceFieldSubobjectAtOffset(const CXXRecordDecl *RD,
const CXXRecordDecl *Class,
CharUnits Offset) const {
// We don't have to keep looking past the maximum offset that's known to
// contain an empty class.
if (!AnyEmptySubobjectsBeyondOffset(Offset))
return true;
if (!CanPlaceSubobjectAtOffset(RD, Offset))
return false;
const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
// Traverse all non-virtual bases.
for (const CXXBaseSpecifier &Base : RD->bases()) {
if (Base.isVirtual())
continue;
const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(BaseDecl);
if (!CanPlaceFieldSubobjectAtOffset(BaseDecl, Class, BaseOffset))
return false;
}
if (RD == Class) {
// This is the most derived class, traverse virtual bases as well.
for (const CXXBaseSpecifier &Base : RD->vbases()) {
const CXXRecordDecl *VBaseDecl = Base.getType()->getAsCXXRecordDecl();
CharUnits VBaseOffset = Offset + Layout.getVBaseClassOffset(VBaseDecl);
if (!CanPlaceFieldSubobjectAtOffset(VBaseDecl, Class, VBaseOffset))
return false;
}
}
// Traverse all member variables.
unsigned FieldNo = 0;
for (CXXRecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
I != E; ++I, ++FieldNo) {
if (I->isBitField())
continue;
CharUnits FieldOffset = Offset + getFieldOffset(Layout, FieldNo);
if (!CanPlaceFieldSubobjectAtOffset(*I, FieldOffset))
return false;
}
return true;
}
bool
EmptySubobjectMap::CanPlaceFieldSubobjectAtOffset(const FieldDecl *FD,
CharUnits Offset) const {
// We don't have to keep looking past the maximum offset that's known to
// contain an empty class.
if (!AnyEmptySubobjectsBeyondOffset(Offset))
return true;
QualType T = FD->getType();
if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
return CanPlaceFieldSubobjectAtOffset(RD, RD, Offset);
// If we have an array type we need to look at every element.
if (const ConstantArrayType *AT = Context.getAsConstantArrayType(T)) {
QualType ElemTy = Context.getBaseElementType(AT);
const RecordType *RT = ElemTy->getAs<RecordType>();
if (!RT)
return true;
const CXXRecordDecl *RD = RT->getAsCXXRecordDecl();
const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
uint64_t NumElements = Context.getConstantArrayElementCount(AT);
CharUnits ElementOffset = Offset;
for (uint64_t I = 0; I != NumElements; ++I) {
// We don't have to keep looking past the maximum offset that's known to
// contain an empty class.
if (!AnyEmptySubobjectsBeyondOffset(ElementOffset))
return true;
if (!CanPlaceFieldSubobjectAtOffset(RD, RD, ElementOffset))
return false;
ElementOffset += Layout.getSize();
}
}
return true;
}
bool
EmptySubobjectMap::CanPlaceFieldAtOffset(const FieldDecl *FD,
CharUnits Offset) {
if (!CanPlaceFieldSubobjectAtOffset(FD, Offset))
return false;
// We are able to place the member variable at this offset.
// Make sure to update the empty field subobject map.
UpdateEmptyFieldSubobjects(FD, Offset, FD->hasAttr<NoUniqueAddressAttr>());
return true;
}
void EmptySubobjectMap::UpdateEmptyFieldSubobjects(
const CXXRecordDecl *RD, const CXXRecordDecl *Class, CharUnits Offset,
bool PlacingOverlappingField) {
// We know that the only empty subobjects that can conflict with empty
// field subobjects are subobjects of empty bases and potentially-overlapping
// fields that can be placed at offset zero. Because of this, we only need to
// keep track of empty field subobjects with offsets less than the size of
// the largest empty subobject for our class.
//
// (Proof: we will only consider placing a subobject at offset zero or at
// >= the current dsize. The only cases where the earlier subobject can be
// placed beyond the end of dsize is if it's an empty base or a
// potentially-overlapping field.)
if (!PlacingOverlappingField && Offset >= SizeOfLargestEmptySubobject)
return;
AddSubobjectAtOffset(RD, Offset);
const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
// Traverse all non-virtual bases.
for (const CXXBaseSpecifier &Base : RD->bases()) {
if (Base.isVirtual())
continue;
const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(BaseDecl);
UpdateEmptyFieldSubobjects(BaseDecl, Class, BaseOffset,
PlacingOverlappingField);
}
if (RD == Class) {
// This is the most derived class, traverse virtual bases as well.
for (const CXXBaseSpecifier &Base : RD->vbases()) {
const CXXRecordDecl *VBaseDecl = Base.getType()->getAsCXXRecordDecl();
CharUnits VBaseOffset = Offset + Layout.getVBaseClassOffset(VBaseDecl);
UpdateEmptyFieldSubobjects(VBaseDecl, Class, VBaseOffset,
PlacingOverlappingField);
}
}
// Traverse all member variables.
unsigned FieldNo = 0;
for (CXXRecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
I != E; ++I, ++FieldNo) {
if (I->isBitField())
continue;
CharUnits FieldOffset = Offset + getFieldOffset(Layout, FieldNo);
UpdateEmptyFieldSubobjects(*I, FieldOffset, PlacingOverlappingField);
}
}
void EmptySubobjectMap::UpdateEmptyFieldSubobjects(
const FieldDecl *FD, CharUnits Offset, bool PlacingOverlappingField) {
QualType T = FD->getType();
if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) {
UpdateEmptyFieldSubobjects(RD, RD, Offset, PlacingOverlappingField);
return;
}
// If we have an array type we need to update every element.
if (const ConstantArrayType *AT = Context.getAsConstantArrayType(T)) {
QualType ElemTy = Context.getBaseElementType(AT);
const RecordType *RT = ElemTy->getAs<RecordType>();
if (!RT)
return;
const CXXRecordDecl *RD = RT->getAsCXXRecordDecl();
const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
uint64_t NumElements = Context.getConstantArrayElementCount(AT);
CharUnits ElementOffset = Offset;
for (uint64_t I = 0; I != NumElements; ++I) {
// We know that the only empty subobjects that can conflict with empty
// field subobjects are subobjects of empty bases that can be placed at
// offset zero. Because of this, we only need to keep track of empty field
// subobjects with offsets less than the size of the largest empty
// subobject for our class.
if (!PlacingOverlappingField &&
ElementOffset >= SizeOfLargestEmptySubobject)
return;
UpdateEmptyFieldSubobjects(RD, RD, ElementOffset,
PlacingOverlappingField);
ElementOffset += Layout.getSize();
}
}
}
typedef llvm::SmallPtrSet<const CXXRecordDecl*, 4> ClassSetTy;
class ItaniumRecordLayoutBuilder {
protected:
// FIXME: Remove this and make the appropriate fields public.
friend class clang::ASTContext;
const ASTContext &Context;
EmptySubobjectMap *EmptySubobjects;
/// Size - The current size of the record layout.
uint64_t Size;
/// Alignment - The current alignment of the record layout.
CharUnits Alignment;
/// The alignment if attribute packed is not used.
CharUnits UnpackedAlignment;
/// \brief The maximum of the alignments of top-level members.
CharUnits UnadjustedAlignment;
SmallVector<uint64_t, 16> FieldOffsets;
/// Whether the external AST source has provided a layout for this
/// record.
unsigned UseExternalLayout : 1;
/// Whether we need to infer alignment, even when we have an
/// externally-provided layout.
unsigned InferAlignment : 1;
/// Packed - Whether the record is packed or not.
unsigned Packed : 1;
unsigned IsUnion : 1;
unsigned IsMac68kAlign : 1;
unsigned IsMsStruct : 1;
/// UnfilledBitsInLastUnit - If the last field laid out was a bitfield,
/// this contains the number of bits in the last unit that can be used for
/// an adjacent bitfield if necessary. The unit in question is usually
/// a byte, but larger units are used if IsMsStruct.
unsigned char UnfilledBitsInLastUnit;
/// LastBitfieldTypeSize - If IsMsStruct, represents the size of the type
/// of the previous field if it was a bitfield.
unsigned char LastBitfieldTypeSize;
/// MaxFieldAlignment - The maximum allowed field alignment. This is set by
/// #pragma pack.
CharUnits MaxFieldAlignment;
/// DataSize - The data size of the record being laid out.
uint64_t DataSize;
CharUnits NonVirtualSize;
CharUnits NonVirtualAlignment;
/// If we've laid out a field but not included its tail padding in Size yet,
/// this is the size up to the end of that field.
CharUnits PaddedFieldSize;
/// PrimaryBase - the primary base class (if one exists) of the class
/// we're laying out.
const CXXRecordDecl *PrimaryBase;
/// PrimaryBaseIsVirtual - Whether the primary base of the class we're laying
/// out is virtual.
bool PrimaryBaseIsVirtual;
/// HasOwnVFPtr - Whether the class provides its own vtable/vftbl
/// pointer, as opposed to inheriting one from a primary base class.
bool HasOwnVFPtr;
/// the flag of field offset changing due to packed attribute.
bool HasPackedField;
typedef llvm::DenseMap<const CXXRecordDecl *, CharUnits> BaseOffsetsMapTy;
/// Bases - base classes and their offsets in the record.
BaseOffsetsMapTy Bases;
// VBases - virtual base classes and their offsets in the record.
ASTRecordLayout::VBaseOffsetsMapTy VBases;
/// IndirectPrimaryBases - Virtual base classes, direct or indirect, that are
/// primary base classes for some other direct or indirect base class.
CXXIndirectPrimaryBaseSet IndirectPrimaryBases;
/// FirstNearlyEmptyVBase - The first nearly empty virtual base class in
/// inheritance graph order. Used for determining the primary base class.
const CXXRecordDecl *FirstNearlyEmptyVBase;
/// VisitedVirtualBases - A set of all the visited virtual bases, used to
/// avoid visiting virtual bases more than once.
llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBases;
/// Valid if UseExternalLayout is true.
ExternalLayout External;
ItaniumRecordLayoutBuilder(const ASTContext &Context,
EmptySubobjectMap *EmptySubobjects)
: Context(Context), EmptySubobjects(EmptySubobjects), Size(0),
Alignment(CharUnits::One()), UnpackedAlignment(CharUnits::One()),
UnadjustedAlignment(CharUnits::One()),
UseExternalLayout(false), InferAlignment(false), Packed(false),
IsUnion(false), IsMac68kAlign(false), IsMsStruct(false),
UnfilledBitsInLastUnit(0), LastBitfieldTypeSize(0),
MaxFieldAlignment(CharUnits::Zero()), DataSize(0),
NonVirtualSize(CharUnits::Zero()),
NonVirtualAlignment(CharUnits::One()),
PaddedFieldSize(CharUnits::Zero()), PrimaryBase(nullptr),
PrimaryBaseIsVirtual(false), HasOwnVFPtr(false),
HasPackedField(false), FirstNearlyEmptyVBase(nullptr) {}
void Layout(const RecordDecl *D);
void Layout(const CXXRecordDecl *D);
void Layout(const ObjCInterfaceDecl *D);
void LayoutFields(const RecordDecl *D);
void LayoutField(const FieldDecl *D, bool InsertExtraPadding);
void LayoutWideBitField(uint64_t FieldSize, uint64_t TypeSize,
bool FieldPacked, const FieldDecl *D);
void LayoutBitField(const FieldDecl *D);
TargetCXXABI getCXXABI() const {
return Context.getTargetInfo().getCXXABI();
}
/// BaseSubobjectInfoAllocator - Allocator for BaseSubobjectInfo objects.
llvm::SpecificBumpPtrAllocator<BaseSubobjectInfo> BaseSubobjectInfoAllocator;
typedef llvm::DenseMap<const CXXRecordDecl *, BaseSubobjectInfo *>
BaseSubobjectInfoMapTy;
/// VirtualBaseInfo - Map from all the (direct or indirect) virtual bases
/// of the class we're laying out to their base subobject info.
BaseSubobjectInfoMapTy VirtualBaseInfo;
/// NonVirtualBaseInfo - Map from all the direct non-virtual bases of the
/// class we're laying out to their base subobject info.
BaseSubobjectInfoMapTy NonVirtualBaseInfo;
/// ComputeBaseSubobjectInfo - Compute the base subobject information for the
/// bases of the given class.
void ComputeBaseSubobjectInfo(const CXXRecordDecl *RD);
/// ComputeBaseSubobjectInfo - Compute the base subobject information for a
/// single class and all of its base classes.
BaseSubobjectInfo *ComputeBaseSubobjectInfo(const CXXRecordDecl *RD,
bool IsVirtual,
BaseSubobjectInfo *Derived);
/// DeterminePrimaryBase - Determine the primary base of the given class.
void DeterminePrimaryBase(const CXXRecordDecl *RD);
void SelectPrimaryVBase(const CXXRecordDecl *RD);
void EnsureVTablePointerAlignment(CharUnits UnpackedBaseAlign);
/// LayoutNonVirtualBases - Determines the primary base class (if any) and
/// lays it out. Will then proceed to lay out all non-virtual base clasess.
void LayoutNonVirtualBases(const CXXRecordDecl *RD);
/// LayoutNonVirtualBase - Lays out a single non-virtual base.
void LayoutNonVirtualBase(const BaseSubobjectInfo *Base);
void AddPrimaryVirtualBaseOffsets(const BaseSubobjectInfo *Info,
CharUnits Offset);
/// LayoutVirtualBases - Lays out all the virtual bases.
void LayoutVirtualBases(const CXXRecordDecl *RD,
const CXXRecordDecl *MostDerivedClass);
/// LayoutVirtualBase - Lays out a single virtual base.
void LayoutVirtualBase(const BaseSubobjectInfo *Base);
/// LayoutBase - Will lay out a base and return the offset where it was
/// placed, in chars.
CharUnits LayoutBase(const BaseSubobjectInfo *Base);
/// InitializeLayout - Initialize record layout for the given record decl.
void InitializeLayout(const Decl *D);
/// FinishLayout - Finalize record layout. Adjust record size based on the
/// alignment.
void FinishLayout(const NamedDecl *D);
void UpdateAlignment(CharUnits NewAlignment, CharUnits UnpackedNewAlignment);
void UpdateAlignment(CharUnits NewAlignment) {
UpdateAlignment(NewAlignment, NewAlignment);
}
/// Retrieve the externally-supplied field offset for the given
/// field.
///
/// \param Field The field whose offset is being queried.
/// \param ComputedOffset The offset that we've computed for this field.
uint64_t updateExternalFieldOffset(const FieldDecl *Field,
uint64_t ComputedOffset);
void CheckFieldPadding(uint64_t Offset, uint64_t UnpaddedOffset,
uint64_t UnpackedOffset, unsigned UnpackedAlign,
bool isPacked, const FieldDecl *D);
DiagnosticBuilder Diag(SourceLocation Loc, unsigned DiagID);
CharUnits getSize() const {
assert(Size % Context.getCharWidth() == 0);
return Context.toCharUnitsFromBits(Size);
}
uint64_t getSizeInBits() const { return Size; }
void setSize(CharUnits NewSize) { Size = Context.toBits(NewSize); }
void setSize(uint64_t NewSize) { Size = NewSize; }
CharUnits getAligment() const { return Alignment; }
CharUnits getDataSize() const {
assert(DataSize % Context.getCharWidth() == 0);
return Context.toCharUnitsFromBits(DataSize);
}
uint64_t getDataSizeInBits() const { return DataSize; }
void setDataSize(CharUnits NewSize) { DataSize = Context.toBits(NewSize); }
void setDataSize(uint64_t NewSize) { DataSize = NewSize; }
ItaniumRecordLayoutBuilder(const ItaniumRecordLayoutBuilder &) = delete;
void operator=(const ItaniumRecordLayoutBuilder &) = delete;
};
} // end anonymous namespace
void ItaniumRecordLayoutBuilder::SelectPrimaryVBase(const CXXRecordDecl *RD) {
for (const auto &I : RD->bases()) {
assert(!I.getType()->isDependentType() &&
"Cannot layout class with dependent bases.");
const CXXRecordDecl *Base = I.getType()->getAsCXXRecordDecl();
// Check if this is a nearly empty virtual base.
if (I.isVirtual() && Context.isNearlyEmpty(Base)) {
// If it's not an indirect primary base, then we've found our primary
// base.
if (!IndirectPrimaryBases.count(Base)) {
PrimaryBase = Base;
PrimaryBaseIsVirtual = true;
return;
}
// Is this the first nearly empty virtual base?
if (!FirstNearlyEmptyVBase)
FirstNearlyEmptyVBase = Base;
}
SelectPrimaryVBase(Base);
if (PrimaryBase)
return;
}
}
/// DeterminePrimaryBase - Determine the primary base of the given class.
void ItaniumRecordLayoutBuilder::DeterminePrimaryBase(const CXXRecordDecl *RD) {
// If the class isn't dynamic, it won't have a primary base.
if (!RD->isDynamicClass())
return;
// Compute all the primary virtual bases for all of our direct and
// indirect bases, and record all their primary virtual base classes.
RD->getIndirectPrimaryBases(IndirectPrimaryBases);
// If the record has a dynamic base class, attempt to choose a primary base
// class. It is the first (in direct base class order) non-virtual dynamic
// base class, if one exists.
for (const auto &I : RD->bases()) {
// Ignore virtual bases.
if (I.isVirtual())
continue;
const CXXRecordDecl *Base = I.getType()->getAsCXXRecordDecl();
if (Base->isDynamicClass()) {
// We found it.
PrimaryBase = Base;
PrimaryBaseIsVirtual = false;
return;
}
}
// Under the Itanium ABI, if there is no non-virtual primary base class,
// try to compute the primary virtual base. The primary virtual base is
// the first nearly empty virtual base that is not an indirect primary
// virtual base class, if one exists.
if (RD->getNumVBases() != 0) {
SelectPrimaryVBase(RD);
if (PrimaryBase)
return;
}
// Otherwise, it is the first indirect primary base class, if one exists.
if (FirstNearlyEmptyVBase) {
PrimaryBase = FirstNearlyEmptyVBase;
PrimaryBaseIsVirtual = true;
return;
}
assert(!PrimaryBase && "Should not get here with a primary base!");
}
BaseSubobjectInfo *ItaniumRecordLayoutBuilder::ComputeBaseSubobjectInfo(
const CXXRecordDecl *RD, bool IsVirtual, BaseSubobjectInfo *Derived) {
BaseSubobjectInfo *Info;
if (IsVirtual) {
// Check if we already have info about this virtual base.
BaseSubobjectInfo *&InfoSlot = VirtualBaseInfo[RD];
if (InfoSlot) {
assert(InfoSlot->Class == RD && "Wrong class for virtual base info!");
return InfoSlot;
}
// We don't, create it.
InfoSlot = new (BaseSubobjectInfoAllocator.Allocate()) BaseSubobjectInfo;
Info = InfoSlot;
} else {
Info = new (BaseSubobjectInfoAllocator.Allocate()) BaseSubobjectInfo;
}
Info->Class = RD;
Info->IsVirtual = IsVirtual;
Info->Derived = nullptr;
Info->PrimaryVirtualBaseInfo = nullptr;
const CXXRecordDecl *PrimaryVirtualBase = nullptr;
BaseSubobjectInfo *PrimaryVirtualBaseInfo = nullptr;
// Check if this base has a primary virtual base.
if (RD->getNumVBases()) {
const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
if (Layout.isPrimaryBaseVirtual()) {
// This base does have a primary virtual base.
PrimaryVirtualBase = Layout.getPrimaryBase();
assert(PrimaryVirtualBase && "Didn't have a primary virtual base!");
// Now check if we have base subobject info about this primary base.
PrimaryVirtualBaseInfo = VirtualBaseInfo.lookup(PrimaryVirtualBase);
if (PrimaryVirtualBaseInfo) {
if (PrimaryVirtualBaseInfo->Derived) {
// We did have info about this primary base, and it turns out that it
// has already been claimed as a primary virtual base for another
// base.
PrimaryVirtualBase = nullptr;
} else {
// We can claim this base as our primary base.
Info->PrimaryVirtualBaseInfo = PrimaryVirtualBaseInfo;
PrimaryVirtualBaseInfo->Derived = Info;
}
}
}
}
// Now go through all direct bases.
for (const auto &I : RD->bases()) {
bool IsVirtual = I.isVirtual();
const CXXRecordDecl *BaseDecl = I.getType()->getAsCXXRecordDecl();
Info->Bases.push_back(ComputeBaseSubobjectInfo(BaseDecl, IsVirtual, Info));
}
if (PrimaryVirtualBase && !PrimaryVirtualBaseInfo) {
// Traversing the bases must have created the base info for our primary
// virtual base.
PrimaryVirtualBaseInfo = VirtualBaseInfo.lookup(PrimaryVirtualBase);
assert(PrimaryVirtualBaseInfo &&
"Did not create a primary virtual base!");
// Claim the primary virtual base as our primary virtual base.
Info->PrimaryVirtualBaseInfo = PrimaryVirtualBaseInfo;
PrimaryVirtualBaseInfo->Derived = Info;
}
return Info;
}
void ItaniumRecordLayoutBuilder::ComputeBaseSubobjectInfo(
const CXXRecordDecl *RD) {
for (const auto &I : RD->bases()) {
bool IsVirtual = I.isVirtual();
const CXXRecordDecl *BaseDecl = I.getType()->getAsCXXRecordDecl();
// Compute the base subobject info for this base.
BaseSubobjectInfo *Info = ComputeBaseSubobjectInfo(BaseDecl, IsVirtual,
nullptr);
if (IsVirtual) {
// ComputeBaseInfo has already added this base for us.
assert(VirtualBaseInfo.count(BaseDecl) &&
"Did not add virtual base!");
} else {
// Add the base info to the map of non-virtual bases.
assert(!NonVirtualBaseInfo.count(BaseDecl) &&
"Non-virtual base already exists!");
NonVirtualBaseInfo.insert(std::make_pair(BaseDecl, Info));
}
}
}
void ItaniumRecordLayoutBuilder::EnsureVTablePointerAlignment(
CharUnits UnpackedBaseAlign) {
CharUnits BaseAlign = Packed ? CharUnits::One() : UnpackedBaseAlign;
// The maximum field alignment overrides base align.
if (!MaxFieldAlignment.isZero()) {
BaseAlign = std::min(BaseAlign, MaxFieldAlignment);
UnpackedBaseAlign = std::min(UnpackedBaseAlign, MaxFieldAlignment);
}
// Round up the current record size to pointer alignment.
setSize(getSize().alignTo(BaseAlign));
// Update the alignment.
UpdateAlignment(BaseAlign, UnpackedBaseAlign);
}
void ItaniumRecordLayoutBuilder::LayoutNonVirtualBases(
const CXXRecordDecl *RD) {
// Then, determine the primary base class.
DeterminePrimaryBase(RD);
// Compute base subobject info.
ComputeBaseSubobjectInfo(RD);
// If we have a primary base class, lay it out.
if (PrimaryBase) {
if (PrimaryBaseIsVirtual) {
// If the primary virtual base was a primary virtual base of some other
// base class we'll have to steal it.
BaseSubobjectInfo *PrimaryBaseInfo = VirtualBaseInfo.lookup(PrimaryBase);
PrimaryBaseInfo->Derived = nullptr;
// We have a virtual primary base, insert it as an indirect primary base.
IndirectPrimaryBases.insert(PrimaryBase);
assert(!VisitedVirtualBases.count(PrimaryBase) &&
"vbase already visited!");
VisitedVirtualBases.insert(PrimaryBase);
LayoutVirtualBase(PrimaryBaseInfo);
} else {
BaseSubobjectInfo *PrimaryBaseInfo =
NonVirtualBaseInfo.lookup(PrimaryBase);
assert(PrimaryBaseInfo &&
"Did not find base info for non-virtual primary base!");
LayoutNonVirtualBase(PrimaryBaseInfo);
}
// If this class needs a vtable/vf-table and didn't get one from a
// primary base, add it in now.
} else if (RD->isDynamicClass()) {
assert(DataSize == 0 && "Vtable pointer must be at offset zero!");
CharUnits PtrWidth =
Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerWidth(0));
CharUnits PtrAlign =
Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerAlign(0));
EnsureVTablePointerAlignment(PtrAlign);
HasOwnVFPtr = true;
setSize(getSize() + PtrWidth);
setDataSize(getSize());
}
// Now lay out the non-virtual bases.
for (const auto &I : RD->bases()) {
// Ignore virtual bases.
if (I.isVirtual())
continue;
const CXXRecordDecl *BaseDecl = I.getType()->getAsCXXRecordDecl();
// Skip the primary base, because we've already laid it out. The
// !PrimaryBaseIsVirtual check is required because we might have a
// non-virtual base of the same type as a primary virtual base.
if (BaseDecl == PrimaryBase && !PrimaryBaseIsVirtual)
continue;
// Lay out the base.
BaseSubobjectInfo *BaseInfo = NonVirtualBaseInfo.lookup(BaseDecl);
assert(BaseInfo && "Did not find base info for non-virtual base!");
LayoutNonVirtualBase(BaseInfo);
}
}
void ItaniumRecordLayoutBuilder::LayoutNonVirtualBase(
const BaseSubobjectInfo *Base) {
// Layout the base.
CharUnits Offset = LayoutBase(Base);
// Add its base class offset.
assert(!Bases.count(Base->Class) && "base offset already exists!");
Bases.insert(std::make_pair(Base->Class, Offset));
AddPrimaryVirtualBaseOffsets(Base, Offset);
}
void ItaniumRecordLayoutBuilder::AddPrimaryVirtualBaseOffsets(
const BaseSubobjectInfo *Info, CharUnits Offset) {
// This base isn't interesting, it has no virtual bases.
if (!Info->Class->getNumVBases())
return;
// First, check if we have a virtual primary base to add offsets for.
if (Info->PrimaryVirtualBaseInfo) {
assert(Info->PrimaryVirtualBaseInfo->IsVirtual &&
"Primary virtual base is not virtual!");
if (Info->PrimaryVirtualBaseInfo->Derived == Info) {
// Add the offset.
assert(!VBases.count(Info->PrimaryVirtualBaseInfo->Class) &&
"primary vbase offset already exists!");
VBases.insert(std::make_pair(Info->PrimaryVirtualBaseInfo->Class,
ASTRecordLayout::VBaseInfo(Offset, false)));
// Traverse the primary virtual base.
AddPrimaryVirtualBaseOffsets(Info->PrimaryVirtualBaseInfo, Offset);
}
}
// Now go through all direct non-virtual bases.
const ASTRecordLayout &Layout = Context.getASTRecordLayout(Info->Class);
for (const BaseSubobjectInfo *Base : Info->Bases) {
if (Base->IsVirtual)
continue;
CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(Base->Class);
AddPrimaryVirtualBaseOffsets(Base, BaseOffset);
}
}
void ItaniumRecordLayoutBuilder::LayoutVirtualBases(
const CXXRecordDecl *RD, const CXXRecordDecl *MostDerivedClass) {
const CXXRecordDecl *PrimaryBase;
bool PrimaryBaseIsVirtual;
if (MostDerivedClass == RD) {
PrimaryBase = this->PrimaryBase;
PrimaryBaseIsVirtual = this->PrimaryBaseIsVirtual;
} else {
const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
PrimaryBase = Layout.getPrimaryBase();
PrimaryBaseIsVirtual = Layout.isPrimaryBaseVirtual();
}
for (const CXXBaseSpecifier &Base : RD->bases()) {
assert(!Base.getType()->isDependentType() &&
"Cannot layout class with dependent bases.");
const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
if (Base.isVirtual()) {
if (PrimaryBase != BaseDecl || !PrimaryBaseIsVirtual) {
bool IndirectPrimaryBase = IndirectPrimaryBases.count(BaseDecl);
// Only lay out the virtual base if it's not an indirect primary base.
if (!IndirectPrimaryBase) {
// Only visit virtual bases once.
if (!VisitedVirtualBases.insert(BaseDecl).second)
continue;
const BaseSubobjectInfo *BaseInfo = VirtualBaseInfo.lookup(BaseDecl);
assert(BaseInfo && "Did not find virtual base info!");
LayoutVirtualBase(BaseInfo);
}
}
}
if (!BaseDecl->getNumVBases()) {
// This base isn't interesting since it doesn't have any virtual bases.
continue;
}
LayoutVirtualBases(BaseDecl, MostDerivedClass);
}
}
void ItaniumRecordLayoutBuilder::LayoutVirtualBase(
const BaseSubobjectInfo *Base) {
assert(!Base->Derived && "Trying to lay out a primary virtual base!");
// Layout the base.
CharUnits Offset = LayoutBase(Base);
// Add its base class offset.
assert(!VBases.count(Base->Class) && "vbase offset already exists!");
VBases.insert(std::make_pair(Base->Class,
ASTRecordLayout::VBaseInfo(Offset, false)));
AddPrimaryVirtualBaseOffsets(Base, Offset);
}
CharUnits
ItaniumRecordLayoutBuilder::LayoutBase(const BaseSubobjectInfo *Base) {
const ASTRecordLayout &Layout = Context.getASTRecordLayout(Base->Class);
CharUnits Offset;
// Query the external layout to see if it provides an offset.
bool HasExternalLayout = false;
if (UseExternalLayout) {
// FIXME: This appears to be reversed.
if (Base->IsVirtual)
HasExternalLayout = External.getExternalNVBaseOffset(Base->Class, Offset);
else
HasExternalLayout = External.getExternalVBaseOffset(Base->Class, Offset);
}
// Clang <= 6 incorrectly applied the 'packed' attribute to base classes.
// Per GCC's documentation, it only applies to non-static data members.
CharUnits UnpackedBaseAlign = Layout.getNonVirtualAlignment();
CharUnits BaseAlign =
(Packed && ((Context.getLangOpts().getClangABICompat() <=
LangOptions::ClangABI::Ver6) ||
Context.getTargetInfo().getTriple().isPS4()))
? CharUnits::One()
: UnpackedBaseAlign;
// If we have an empty base class, try to place it at offset 0.
if (Base->Class->isEmpty() &&
(!HasExternalLayout || Offset == CharUnits::Zero()) &&
EmptySubobjects->CanPlaceBaseAtOffset(Base, CharUnits::Zero())) {
setSize(std::max(getSize(), Layout.getSize()));
UpdateAlignment(BaseAlign, UnpackedBaseAlign);
return CharUnits::Zero();
}
// The maximum field alignment overrides base align.
if (!MaxFieldAlignment.isZero()) {
BaseAlign = std::min(BaseAlign, MaxFieldAlignment);
UnpackedBaseAlign = std::min(UnpackedBaseAlign, MaxFieldAlignment);
}
if (!HasExternalLayout) {
// Round up the current record size to the base's alignment boundary.
Offset = getDataSize().alignTo(BaseAlign);
// Try to place the base.
while (!EmptySubobjects->CanPlaceBaseAtOffset(Base, Offset))
Offset += BaseAlign;
} else {
bool Allowed = EmptySubobjects->CanPlaceBaseAtOffset(Base, Offset);
(void)Allowed;
assert(Allowed && "Base subobject externally placed at overlapping offset");
if (InferAlignment && Offset < getDataSize().alignTo(BaseAlign)) {
// The externally-supplied base offset is before the base offset we
// computed. Assume that the structure is packed.
Alignment = CharUnits::One();
InferAlignment = false;
}
}
if (!Base->Class->isEmpty()) {
// Update the data size.
setDataSize(Offset + Layout.getNonVirtualSize());
setSize(std::max(getSize(), getDataSize()));
} else
setSize(std::max(getSize(), Offset + Layout.getSize()));
// Remember max struct/class alignment.
UpdateAlignment(BaseAlign, UnpackedBaseAlign);
return Offset;
}
void ItaniumRecordLayoutBuilder::InitializeLayout(const Decl *D) {
if (const RecordDecl *RD = dyn_cast<RecordDecl>(D)) {
IsUnion = RD->isUnion();
IsMsStruct = RD->isMsStruct(Context);
}
Packed = D->hasAttr<PackedAttr>();
// Honor the default struct packing maximum alignment flag.
if (unsigned DefaultMaxFieldAlignment = Context.getLangOpts().PackStruct) {
MaxFieldAlignment = CharUnits::fromQuantity(DefaultMaxFieldAlignment);
}
// mac68k alignment supersedes maximum field alignment and attribute aligned,
// and forces all structures to have 2-byte alignment. The IBM docs on it
// allude to additional (more complicated) semantics, especially with regard
// to bit-fields, but gcc appears not to follow that.
if (D->hasAttr<AlignMac68kAttr>()) {
IsMac68kAlign = true;
MaxFieldAlignment = CharUnits::fromQuantity(2);
Alignment = CharUnits::fromQuantity(2);
} else {
if (const MaxFieldAlignmentAttr *MFAA = D->getAttr<MaxFieldAlignmentAttr>())
MaxFieldAlignment = Context.toCharUnitsFromBits(MFAA->getAlignment());
if (unsigned MaxAlign = D->getMaxAlignment())
UpdateAlignment(Context.toCharUnitsFromBits(MaxAlign));
}
// If there is an external AST source, ask it for the various offsets.
if (const RecordDecl *RD = dyn_cast<RecordDecl>(D))
if (ExternalASTSource *Source = Context.getExternalSource()) {
UseExternalLayout = Source->layoutRecordType(
RD, External.Size, External.Align, External.FieldOffsets,
External.BaseOffsets, External.VirtualBaseOffsets);
// Update based on external alignment.
if (UseExternalLayout) {
if (External.Align > 0) {
Alignment = Context.toCharUnitsFromBits(External.Align);
} else {
// The external source didn't have alignment information; infer it.
InferAlignment = true;
}
}
}
}
void ItaniumRecordLayoutBuilder::Layout(const RecordDecl *D) {
InitializeLayout(D);
LayoutFields(D);
// Finally, round the size of the total struct up to the alignment of the
// struct itself.
FinishLayout(D);
}
void ItaniumRecordLayoutBuilder::Layout(const CXXRecordDecl *RD) {
InitializeLayout(RD);
// Lay out the vtable and the non-virtual bases.
LayoutNonVirtualBases(RD);
LayoutFields(RD);
NonVirtualSize = Context.toCharUnitsFromBits(
llvm::alignTo(getSizeInBits(), Context.getTargetInfo().getCharAlign()));
NonVirtualAlignment = Alignment;
// Lay out the virtual bases and add the primary virtual base offsets.
LayoutVirtualBases(RD, RD);
// Finally, round the size of the total struct up to the alignment
// of the struct itself.
FinishLayout(RD);
#ifndef NDEBUG
// Check that we have base offsets for all bases.
for (const CXXBaseSpecifier &Base : RD->bases()) {
if (Base.isVirtual())
continue;
const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
assert(Bases.count(BaseDecl) && "Did not find base offset!");
}
// And all virtual bases.
for (const CXXBaseSpecifier &Base : RD->vbases()) {
const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
assert(VBases.count(BaseDecl) && "Did not find base offset!");
}
#endif
}
void ItaniumRecordLayoutBuilder::Layout(const ObjCInterfaceDecl *D) {
if (ObjCInterfaceDecl *SD = D->getSuperClass()) {
const ASTRecordLayout &SL = Context.getASTObjCInterfaceLayout(SD);
UpdateAlignment(SL.getAlignment());
// We start laying out ivars not at the end of the superclass
// structure, but at the next byte following the last field.
setDataSize(SL.getDataSize());
setSize(getDataSize());
}
InitializeLayout(D);
// Layout each ivar sequentially.
for (const ObjCIvarDecl *IVD = D->all_declared_ivar_begin(); IVD;
IVD = IVD->getNextIvar())
LayoutField(IVD, false);
// Finally, round the size of the total struct up to the alignment of the
// struct itself.
FinishLayout(D);
}
void ItaniumRecordLayoutBuilder::LayoutFields(const RecordDecl *D) {
// Layout each field, for now, just sequentially, respecting alignment. In
// the future, this will need to be tweakable by targets.
bool InsertExtraPadding = D->mayInsertExtraPadding(/*EmitRemark=*/true);
bool HasFlexibleArrayMember = D->hasFlexibleArrayMember();
for (auto I = D->field_begin(), End = D->field_end(); I != End; ++I) {
auto Next(I);
++Next;
LayoutField(*I,
InsertExtraPadding && (Next != End || !HasFlexibleArrayMember));
}
}
// Rounds the specified size to have it a multiple of the char size.
static uint64_t
roundUpSizeToCharAlignment(uint64_t Size,
const ASTContext &Context) {
uint64_t CharAlignment = Context.getTargetInfo().getCharAlign();
return llvm::alignTo(Size, CharAlignment);
}
void ItaniumRecordLayoutBuilder::LayoutWideBitField(uint64_t FieldSize,
uint64_t TypeSize,
bool FieldPacked,
const FieldDecl *D) {
assert(Context.getLangOpts().CPlusPlus &&
"Can only have wide bit-fields in C++!");
// Itanium C++ ABI 2.4:
// If sizeof(T)*8 < n, let T' be the largest integral POD type with
// sizeof(T')*8 <= n.
QualType IntegralPODTypes[] = {
Context.UnsignedCharTy, Context.UnsignedShortTy, Context.UnsignedIntTy,
Context.UnsignedLongTy, Context.UnsignedLongLongTy
};
QualType Type;
for (const QualType &QT : IntegralPODTypes) {
uint64_t Size = Context.getTypeSize(QT);
if (Size > FieldSize)
break;
Type = QT;
}
assert(!Type.isNull() && "Did not find a type!");
CharUnits TypeAlign = Context.getTypeAlignInChars(Type);
// We're not going to use any of the unfilled bits in the last byte.
UnfilledBitsInLastUnit = 0;
LastBitfieldTypeSize = 0;
uint64_t FieldOffset;
uint64_t UnpaddedFieldOffset = getDataSizeInBits() - UnfilledBitsInLastUnit;
if (IsUnion) {
uint64_t RoundedFieldSize = roundUpSizeToCharAlignment(FieldSize,
Context);
setDataSize(std::max(getDataSizeInBits(), RoundedFieldSize));
FieldOffset = 0;
} else {
// The bitfield is allocated starting at the next offset aligned
// appropriately for T', with length n bits.
FieldOffset = llvm::alignTo(getDataSizeInBits(), Context.toBits(TypeAlign));
uint64_t NewSizeInBits = FieldOffset + FieldSize;
setDataSize(
llvm::alignTo(NewSizeInBits, Context.getTargetInfo().getCharAlign()));
UnfilledBitsInLastUnit = getDataSizeInBits() - NewSizeInBits;
}
// Place this field at the current location.
FieldOffsets.push_back(FieldOffset);
CheckFieldPadding(FieldOffset, UnpaddedFieldOffset, FieldOffset,
Context.toBits(TypeAlign), FieldPacked, D);
// Update the size.
setSize(std::max(getSizeInBits(), getDataSizeInBits()));
// Remember max struct/class alignment.
UpdateAlignment(TypeAlign);
}
void ItaniumRecordLayoutBuilder::LayoutBitField(const FieldDecl *D) {
bool FieldPacked = Packed || D->hasAttr<PackedAttr>();
uint64_t FieldSize = D->getBitWidthValue(Context);
TypeInfo FieldInfo = Context.getTypeInfo(D->getType());
uint64_t TypeSize = FieldInfo.Width;
unsigned FieldAlign = FieldInfo.Align;
// UnfilledBitsInLastUnit is the difference between the end of the
// last allocated bitfield (i.e. the first bit offset available for
// bitfields) and the end of the current data size in bits (i.e. the
// first bit offset available for non-bitfields). The current data
// size in bits is always a multiple of the char size; additionally,
// for ms_struct records it's also a multiple of the
// LastBitfieldTypeSize (if set).
// The struct-layout algorithm is dictated by the platform ABI,
// which in principle could use almost any rules it likes. In
// practice, UNIXy targets tend to inherit the algorithm described
// in the System V generic ABI. The basic bitfield layout rule in
// System V is to place bitfields at the next available bit offset
// where the entire bitfield would fit in an aligned storage unit of
// the declared type; it's okay if an earlier or later non-bitfield
// is allocated in the same storage unit. However, some targets
// (those that !useBitFieldTypeAlignment(), e.g. ARM APCS) don't
// require this storage unit to be aligned, and therefore always put
// the bitfield at the next available bit offset.
// ms_struct basically requests a complete replacement of the
// platform ABI's struct-layout algorithm, with the high-level goal
// of duplicating MSVC's layout. For non-bitfields, this follows
// the standard algorithm. The basic bitfield layout rule is to
// allocate an entire unit of the bitfield's declared type
// (e.g. 'unsigned long'), then parcel it up among successive
// bitfields whose declared types have the same size, making a new
// unit as soon as the last can no longer store the whole value.
// Since it completely replaces the platform ABI's algorithm,
// settings like !useBitFieldTypeAlignment() do not apply.
// A zero-width bitfield forces the use of a new storage unit for
// later bitfields. In general, this occurs by rounding up the
// current size of the struct as if the algorithm were about to
// place a non-bitfield of the field's formal type. Usually this
// does not change the alignment of the struct itself, but it does
// on some targets (those that useZeroLengthBitfieldAlignment(),
// e.g. ARM). In ms_struct layout, zero-width bitfields are
// ignored unless they follow a non-zero-width bitfield.
// A field alignment restriction (e.g. from #pragma pack) or
// specification (e.g. from __attribute__((aligned))) changes the
// formal alignment of the field. For System V, this alters the
// required alignment of the notional storage unit that must contain
// the bitfield. For ms_struct, this only affects the placement of
// new storage units. In both cases, the effect of #pragma pack is
// ignored on zero-width bitfields.
// On System V, a packed field (e.g. from #pragma pack or
// __attribute__((packed))) always uses the next available bit
// offset.
// In an ms_struct struct, the alignment of a fundamental type is
// always equal to its size. This is necessary in order to mimic
// the i386 alignment rules on targets which might not fully align
// all types (e.g. Darwin PPC32, where alignof(long long) == 4).
// First, some simple bookkeeping to perform for ms_struct structs.
if (IsMsStruct) {
// The field alignment for integer types is always the size.
FieldAlign = TypeSize;
// If the previous field was not a bitfield, or was a bitfield
// with a different storage unit size, or if this field doesn't fit into
// the current storage unit, we're done with that storage unit.
if (LastBitfieldTypeSize != TypeSize ||
UnfilledBitsInLastUnit < FieldSize) {
// Also, ignore zero-length bitfields after non-bitfields.
if (!LastBitfieldTypeSize && !FieldSize)
FieldAlign = 1;
UnfilledBitsInLastUnit = 0;
LastBitfieldTypeSize = 0;
}
}
// If the field is wider than its declared type, it follows
// different rules in all cases.
if (FieldSize > TypeSize) {
LayoutWideBitField(FieldSize, TypeSize, FieldPacked, D);
return;
}
// Compute the next available bit offset.
uint64_t FieldOffset =
IsUnion ? 0 : (getDataSizeInBits() - UnfilledBitsInLastUnit);
// Handle targets that don't honor bitfield type alignment.
if (!IsMsStruct && !Context.getTargetInfo().useBitFieldTypeAlignment()) {
// Some such targets do honor it on zero-width bitfields.
if (FieldSize == 0 &&
Context.getTargetInfo().useZeroLengthBitfieldAlignment()) {
// The alignment to round up to is the max of the field's natural
// alignment and a target-specific fixed value (sometimes zero).
unsigned ZeroLengthBitfieldBoundary =
Context.getTargetInfo().getZeroLengthBitfieldBoundary();
FieldAlign = std::max(FieldAlign, ZeroLengthBitfieldBoundary);
// If that doesn't apply, just ignore the field alignment.
} else {
FieldAlign = 1;
}
}
// Remember the alignment we would have used if the field were not packed.
unsigned UnpackedFieldAlign = FieldAlign;
// Ignore the field alignment if the field is packed unless it has zero-size.
if (!IsMsStruct && FieldPacked && FieldSize != 0)
FieldAlign = 1;
// But, if there's an 'aligned' attribute on the field, honor that.
unsigned ExplicitFieldAlign = D->getMaxAlignment();
if (ExplicitFieldAlign) {
FieldAlign = std::max(FieldAlign, ExplicitFieldAlign);
UnpackedFieldAlign = std::max(UnpackedFieldAlign, ExplicitFieldAlign);
}
// But, if there's a #pragma pack in play, that takes precedent over
// even the 'aligned' attribute, for non-zero-width bitfields.
unsigned MaxFieldAlignmentInBits = Context.toBits(MaxFieldAlignment);
if (!MaxFieldAlignment.isZero() && FieldSize) {
UnpackedFieldAlign = std::min(UnpackedFieldAlign, MaxFieldAlignmentInBits);
if (FieldPacked)
FieldAlign = UnpackedFieldAlign;
else
FieldAlign = std::min(FieldAlign, MaxFieldAlignmentInBits);
}
// But, ms_struct just ignores all of that in unions, even explicit
// alignment attributes.
if (IsMsStruct && IsUnion) {
FieldAlign = UnpackedFieldAlign = 1;
}
// For purposes of diagnostics, we're going to simultaneously
// compute the field offsets that we would have used if we weren't
// adding any alignment padding or if the field weren't packed.
uint64_t UnpaddedFieldOffset = FieldOffset;
uint64_t UnpackedFieldOffset = FieldOffset;
// Check if we need to add padding to fit the bitfield within an
// allocation unit with the right size and alignment. The rules are
// somewhat different here for ms_struct structs.
if (IsMsStruct) {
// If it's not a zero-width bitfield, and we can fit the bitfield
// into the active storage unit (and we haven't already decided to
// start a new storage unit), just do so, regardless of any other
// other consideration. Otherwise, round up to the right alignment.
if (FieldSize == 0 || FieldSize > UnfilledBitsInLastUnit) {
FieldOffset = llvm::alignTo(FieldOffset, FieldAlign);
UnpackedFieldOffset =
llvm::alignTo(UnpackedFieldOffset, UnpackedFieldAlign);
UnfilledBitsInLastUnit = 0;
}
} else {
// #pragma pack, with any value, suppresses the insertion of padding.
bool AllowPadding = MaxFieldAlignment.isZero();
// Compute the real offset.
if (FieldSize == 0 ||
(AllowPadding &&
(FieldOffset & (FieldAlign-1)) + FieldSize > TypeSize)) {
FieldOffset = llvm::alignTo(FieldOffset, FieldAlign);
} else if (ExplicitFieldAlign &&
(MaxFieldAlignmentInBits == 0 ||
ExplicitFieldAlign <= MaxFieldAlignmentInBits) &&
Context.getTargetInfo().useExplicitBitFieldAlignment()) {
// TODO: figure it out what needs to be done on targets that don't honor
// bit-field type alignment like ARM APCS ABI.
FieldOffset = llvm::alignTo(FieldOffset, ExplicitFieldAlign);
}
// Repeat the computation for diagnostic purposes.
if (FieldSize == 0 ||
(AllowPadding &&
(UnpackedFieldOffset & (UnpackedFieldAlign-1)) + FieldSize > TypeSize))
UnpackedFieldOffset =
llvm::alignTo(UnpackedFieldOffset, UnpackedFieldAlign);
else if (ExplicitFieldAlign &&
(MaxFieldAlignmentInBits == 0 ||
ExplicitFieldAlign <= MaxFieldAlignmentInBits) &&
Context.getTargetInfo().useExplicitBitFieldAlignment())
UnpackedFieldOffset =
llvm::alignTo(UnpackedFieldOffset, ExplicitFieldAlign);
}
// If we're using external layout, give the external layout a chance
// to override this information.
if (UseExternalLayout)
FieldOffset = updateExternalFieldOffset(D, FieldOffset);
// Okay, place the bitfield at the calculated offset.
FieldOffsets.push_back(FieldOffset);
// Bookkeeping:
// Anonymous members don't affect the overall record alignment,
// except on targets where they do.
if (!IsMsStruct &&
!Context.getTargetInfo().useZeroLengthBitfieldAlignment() &&
!D->getIdentifier())
FieldAlign = UnpackedFieldAlign = 1;
// Diagnose differences in layout due to padding or packing.
if (!UseExternalLayout)
CheckFieldPadding(FieldOffset, UnpaddedFieldOffset, UnpackedFieldOffset,
UnpackedFieldAlign, FieldPacked, D);
// Update DataSize to include the last byte containing (part of) the bitfield.
// For unions, this is just a max operation, as usual.
if (IsUnion) {
// For ms_struct, allocate the entire storage unit --- unless this
// is a zero-width bitfield, in which case just use a size of 1.
uint64_t RoundedFieldSize;
if (IsMsStruct) {
RoundedFieldSize =
(FieldSize ? TypeSize : Context.getTargetInfo().getCharWidth());
// Otherwise, allocate just the number of bytes required to store
// the bitfield.
} else {
RoundedFieldSize = roundUpSizeToCharAlignment(FieldSize, Context);
}
setDataSize(std::max(getDataSizeInBits(), RoundedFieldSize));
// For non-zero-width bitfields in ms_struct structs, allocate a new
// storage unit if necessary.
} else if (IsMsStruct && FieldSize) {
// We should have cleared UnfilledBitsInLastUnit in every case
// where we changed storage units.
if (!UnfilledBitsInLastUnit) {
setDataSize(FieldOffset + TypeSize);
UnfilledBitsInLastUnit = TypeSize;
}
UnfilledBitsInLastUnit -= FieldSize;
LastBitfieldTypeSize = TypeSize;
// Otherwise, bump the data size up to include the bitfield,
// including padding up to char alignment, and then remember how
// bits we didn't use.
} else {
uint64_t NewSizeInBits = FieldOffset + FieldSize;
uint64_t CharAlignment = Context.getTargetInfo().getCharAlign();
setDataSize(llvm::alignTo(NewSizeInBits, CharAlignment));
UnfilledBitsInLastUnit = getDataSizeInBits() - NewSizeInBits;
// The only time we can get here for an ms_struct is if this is a
// zero-width bitfield, which doesn't count as anything for the
// purposes of unfilled bits.
LastBitfieldTypeSize = 0;
}
// Update the size.
setSize(std::max(getSizeInBits(), getDataSizeInBits()));
// Remember max struct/class alignment.
UnadjustedAlignment =
std::max(UnadjustedAlignment, Context.toCharUnitsFromBits(FieldAlign));
UpdateAlignment(Context.toCharUnitsFromBits(FieldAlign),
Context.toCharUnitsFromBits(UnpackedFieldAlign));
}
void ItaniumRecordLayoutBuilder::LayoutField(const FieldDecl *D,
bool InsertExtraPadding) {
if (D->isBitField()) {
LayoutBitField(D);
return;
}
uint64_t UnpaddedFieldOffset = getDataSizeInBits() - UnfilledBitsInLastUnit;
// Reset the unfilled bits.
UnfilledBitsInLastUnit = 0;
LastBitfieldTypeSize = 0;
auto *FieldClass = D->getType()->getAsCXXRecordDecl();
bool PotentiallyOverlapping = D->hasAttr<NoUniqueAddressAttr>() && FieldClass;
bool IsOverlappingEmptyField = PotentiallyOverlapping && FieldClass->isEmpty();
bool FieldPacked = Packed || D->hasAttr<PackedAttr>();
CharUnits FieldOffset = (IsUnion || IsOverlappingEmptyField)
? CharUnits::Zero()
: getDataSize();
CharUnits FieldSize;
CharUnits FieldAlign;
// The amount of this class's dsize occupied by the field.
// This is equal to FieldSize unless we're permitted to pack
// into the field's tail padding.
CharUnits EffectiveFieldSize;
if (D->getType()->isIncompleteArrayType()) {
// This is a flexible array member; we can't directly
// query getTypeInfo about these, so we figure it out here.
// Flexible array members don't have any size, but they
// have to be aligned appropriately for their element type.
EffectiveFieldSize = FieldSize = CharUnits::Zero();
const ArrayType* ATy = Context.getAsArrayType(D->getType());
FieldAlign = Context.getTypeAlignInChars(ATy->getElementType());
} else if (const ReferenceType *RT = D->getType()->getAs<ReferenceType>()) {
unsigned AS = Context.getTargetAddressSpace(RT->getPointeeType());
EffectiveFieldSize = FieldSize =
Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerWidth(AS));
FieldAlign =
Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerAlign(AS));
} else {
std::pair<CharUnits, CharUnits> FieldInfo =
Context.getTypeInfoInChars(D->getType());
EffectiveFieldSize = FieldSize = FieldInfo.first;
FieldAlign = FieldInfo.second;
// A potentially-overlapping field occupies its dsize or nvsize, whichever
// is larger.
if (PotentiallyOverlapping) {
const ASTRecordLayout &Layout = Context.getASTRecordLayout(FieldClass);
EffectiveFieldSize =
std::max(Layout.getNonVirtualSize(), Layout.getDataSize());
}
if (IsMsStruct) {
// If MS bitfield layout is required, figure out what type is being
// laid out and align the field to the width of that type.
// Resolve all typedefs down to their base type and round up the field
// alignment if necessary.
QualType T = Context.getBaseElementType(D->getType());
if (const BuiltinType *BTy = T->getAs<BuiltinType>()) {
CharUnits TypeSize = Context.getTypeSizeInChars(BTy);
if (!llvm::isPowerOf2_64(TypeSize.getQuantity())) {
assert(
!Context.getTargetInfo().getTriple().isWindowsMSVCEnvironment() &&
"Non PowerOf2 size in MSVC mode");
// Base types with sizes that aren't a power of two don't work
// with the layout rules for MS structs. This isn't an issue in
// MSVC itself since there are no such base data types there.
// On e.g. x86_32 mingw and linux, long double is 12 bytes though.
// Any structs involving that data type obviously can't be ABI
// compatible with MSVC regardless of how it is laid out.
// Since ms_struct can be mass enabled (via a pragma or via the
// -mms-bitfields command line parameter), this can trigger for
// structs that don't actually need MSVC compatibility, so we
// need to be able to sidestep the ms_struct layout for these types.
// Since the combination of -mms-bitfields together with structs
// like max_align_t (which contains a long double) for mingw is
// quite comon (and GCC handles it silently), just handle it
// silently there. For other targets that have ms_struct enabled
// (most probably via a pragma or attribute), trigger a diagnostic
// that defaults to an error.
if (!Context.getTargetInfo().getTriple().isWindowsGNUEnvironment())
Diag(D->getLocation(), diag::warn_npot_ms_struct);
}
if (TypeSize > FieldAlign &&
llvm::isPowerOf2_64(TypeSize.getQuantity()))
FieldAlign = TypeSize;
}
}
}
// The align if the field is not packed. This is to check if the attribute
// was unnecessary (-Wpacked).
CharUnits UnpackedFieldAlign = FieldAlign;
CharUnits UnpackedFieldOffset = FieldOffset;
if (FieldPacked)
FieldAlign = CharUnits::One();
CharUnits MaxAlignmentInChars =
Context.toCharUnitsFromBits(D->getMaxAlignment());
FieldAlign = std::max(FieldAlign, MaxAlignmentInChars);
UnpackedFieldAlign = std::max(UnpackedFieldAlign, MaxAlignmentInChars);
// The maximum field alignment overrides the aligned attribute.
if (!MaxFieldAlignment.isZero()) {
FieldAlign = std::min(FieldAlign, MaxFieldAlignment);
UnpackedFieldAlign = std::min(UnpackedFieldAlign, MaxFieldAlignment);
}
// Round up the current record size to the field's alignment boundary.
FieldOffset = FieldOffset.alignTo(FieldAlign);
UnpackedFieldOffset = UnpackedFieldOffset.alignTo(UnpackedFieldAlign);
if (UseExternalLayout) {
FieldOffset = Context.toCharUnitsFromBits(
updateExternalFieldOffset(D, Context.toBits(FieldOffset)));
if (!IsUnion && EmptySubobjects) {
// Record the fact that we're placing a field at this offset.
bool Allowed = EmptySubobjects->CanPlaceFieldAtOffset(D, FieldOffset);
(void)Allowed;
assert(Allowed && "Externally-placed field cannot be placed here");
}
} else {
if (!IsUnion && EmptySubobjects) {
// Check if we can place the field at this offset.
while (!EmptySubobjects->CanPlaceFieldAtOffset(D, FieldOffset)) {
// We couldn't place the field at the offset. Try again at a new offset.
// We try offset 0 (for an empty field) and then dsize(C) onwards.
if (FieldOffset == CharUnits::Zero() &&
getDataSize() != CharUnits::Zero())
FieldOffset = getDataSize().alignTo(FieldAlign);
else
FieldOffset += FieldAlign;
}
}
}
// Place this field at the current location.
FieldOffsets.push_back(Context.toBits(FieldOffset));
if (!UseExternalLayout)
CheckFieldPadding(Context.toBits(FieldOffset), UnpaddedFieldOffset,
Context.toBits(UnpackedFieldOffset),
Context.toBits(UnpackedFieldAlign), FieldPacked, D);
if (InsertExtraPadding) {
CharUnits ASanAlignment = CharUnits::fromQuantity(8);
CharUnits ExtraSizeForAsan = ASanAlignment;
if (FieldSize % ASanAlignment)
ExtraSizeForAsan +=
ASanAlignment - CharUnits::fromQuantity(FieldSize % ASanAlignment);
EffectiveFieldSize = FieldSize = FieldSize + ExtraSizeForAsan;
}
// Reserve space for this field.
if (!IsOverlappingEmptyField) {
uint64_t EffectiveFieldSizeInBits = Context.toBits(EffectiveFieldSize);
if (IsUnion)
setDataSize(std::max(getDataSizeInBits(), EffectiveFieldSizeInBits));
else
setDataSize(FieldOffset + EffectiveFieldSize);
PaddedFieldSize = std::max(PaddedFieldSize, FieldOffset + FieldSize);
setSize(std::max(getSizeInBits(), getDataSizeInBits()));
} else {
setSize(std::max(getSizeInBits(),
(uint64_t)Context.toBits(FieldOffset + FieldSize)));
}
// Remember max struct/class alignment.
UnadjustedAlignment = std::max(UnadjustedAlignment, FieldAlign);
UpdateAlignment(FieldAlign, UnpackedFieldAlign);
}
void ItaniumRecordLayoutBuilder::FinishLayout(const NamedDecl *D) {
// In C++, records cannot be of size 0.
if (Context.getLangOpts().CPlusPlus && getSizeInBits() == 0) {
if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) {
// Compatibility with gcc requires a class (pod or non-pod)
// which is not empty but of size 0; such as having fields of
// array of zero-length, remains of Size 0
if (RD->isEmpty())
setSize(CharUnits::One());
}
else
setSize(CharUnits::One());
}
// If we have any remaining field tail padding, include that in the overall
// size.
setSize(std::max(getSizeInBits(), (uint64_t)Context.toBits(PaddedFieldSize)));
// Finally, round the size of the record up to the alignment of the
// record itself.
uint64_t UnpaddedSize = getSizeInBits() - UnfilledBitsInLastUnit;
uint64_t UnpackedSizeInBits =
llvm::alignTo(getSizeInBits(), Context.toBits(UnpackedAlignment));
uint64_t RoundedSize =
llvm::alignTo(getSizeInBits(), Context.toBits(Alignment));
if (UseExternalLayout) {
// If we're inferring alignment, and the external size is smaller than
// our size after we've rounded up to alignment, conservatively set the
// alignment to 1.
if (InferAlignment && External.Size < RoundedSize) {
Alignment = CharUnits::One();
InferAlignment = false;
}
setSize(External.Size);
return;
}
// Set the size to the final size.
setSize(RoundedSize);
unsigned CharBitNum = Context.getTargetInfo().getCharWidth();
if (const RecordDecl *RD = dyn_cast<RecordDecl>(D)) {
// Warn if padding was introduced to the struct/class/union.
if (getSizeInBits() > UnpaddedSize) {
unsigned PadSize = getSizeInBits() - UnpaddedSize;
bool InBits = true;
if (PadSize % CharBitNum == 0) {
PadSize = PadSize / CharBitNum;
InBits = false;
}
Diag(RD->getLocation(), diag::warn_padded_struct_size)
<< Context.getTypeDeclType(RD)
<< PadSize
<< (InBits ? 1 : 0); // (byte|bit)
}
// Warn if we packed it unnecessarily, when the unpacked alignment is not
// greater than the one after packing, the size in bits doesn't change and
// the offset of each field is identical.
if (Packed && UnpackedAlignment <= Alignment &&
UnpackedSizeInBits == getSizeInBits() && !HasPackedField)
Diag(D->getLocation(), diag::warn_unnecessary_packed)
<< Context.getTypeDeclType(RD);
}
}
void ItaniumRecordLayoutBuilder::UpdateAlignment(
CharUnits NewAlignment, CharUnits UnpackedNewAlignment) {
// The alignment is not modified when using 'mac68k' alignment or when
// we have an externally-supplied layout that also provides overall alignment.
if (IsMac68kAlign || (UseExternalLayout && !InferAlignment))
return;
if (NewAlignment > Alignment) {
assert(llvm::isPowerOf2_64(NewAlignment.getQuantity()) &&
"Alignment not a power of 2");
Alignment = NewAlignment;
}
if (UnpackedNewAlignment > UnpackedAlignment) {
assert(llvm::isPowerOf2_64(UnpackedNewAlignment.getQuantity()) &&
"Alignment not a power of 2");
UnpackedAlignment = UnpackedNewAlignment;
}
}
uint64_t
ItaniumRecordLayoutBuilder::updateExternalFieldOffset(const FieldDecl *Field,
uint64_t ComputedOffset) {
uint64_t ExternalFieldOffset = External.getExternalFieldOffset(Field);
if (InferAlignment && ExternalFieldOffset < ComputedOffset) {
// The externally-supplied field offset is before the field offset we
// computed. Assume that the structure is packed.
Alignment = CharUnits::One();
InferAlignment = false;
}
// Use the externally-supplied field offset.
return ExternalFieldOffset;
}
/// Get diagnostic %select index for tag kind for
/// field padding diagnostic message.
/// WARNING: Indexes apply to particular diagnostics only!
///
/// \returns diagnostic %select index.
static unsigned getPaddingDiagFromTagKind(TagTypeKind Tag) {
switch (Tag) {
case TTK_Struct: return 0;
case TTK_Interface: return 1;
case TTK_Class: return 2;
default: llvm_unreachable("Invalid tag kind for field padding diagnostic!");
}
}
void ItaniumRecordLayoutBuilder::CheckFieldPadding(
uint64_t Offset, uint64_t UnpaddedOffset, uint64_t UnpackedOffset,
unsigned UnpackedAlign, bool isPacked, const FieldDecl *D) {
// We let objc ivars without warning, objc interfaces generally are not used
// for padding tricks.
if (isa<ObjCIvarDecl>(D))
return;
// Don't warn about structs created without a SourceLocation. This can
// be done by clients of the AST, such as codegen.
if (D->getLocation().isInvalid())
return;
unsigned CharBitNum = Context.getTargetInfo().getCharWidth();
// Warn if padding was introduced to the struct/class.
if (!IsUnion && Offset > UnpaddedOffset) {
unsigned PadSize = Offset - UnpaddedOffset;
bool InBits = true;
if (PadSize % CharBitNum == 0) {
PadSize = PadSize / CharBitNum;
InBits = false;
}
if (D->getIdentifier())
Diag(D->getLocation(), diag::warn_padded_struct_field)
<< getPaddingDiagFromTagKind(D->getParent()->getTagKind())
<< Context.getTypeDeclType(D->getParent())
<< PadSize
<< (InBits ? 1 : 0) // (byte|bit)
<< D->getIdentifier();
else
Diag(D->getLocation(), diag::warn_padded_struct_anon_field)
<< getPaddingDiagFromTagKind(D->getParent()->getTagKind())
<< Context.getTypeDeclType(D->getParent())
<< PadSize
<< (InBits ? 1 : 0); // (byte|bit)
}
if (isPacked && Offset != UnpackedOffset) {
HasPackedField = true;
}
}
static const CXXMethodDecl *computeKeyFunction(ASTContext &Context,
const CXXRecordDecl *RD) {
// If a class isn't polymorphic it doesn't have a key function.
if (!RD->isPolymorphic())
return nullptr;
// A class that is not externally visible doesn't have a key function. (Or
// at least, there's no point to assigning a key function to such a class;
// this doesn't affect the ABI.)
if (!RD->isExternallyVisible())
return nullptr;
// Template instantiations don't have key functions per Itanium C++ ABI 5.2.6.
// Same behavior as GCC.
TemplateSpecializationKind TSK = RD->getTemplateSpecializationKind();
if (TSK == TSK_ImplicitInstantiation ||
TSK == TSK_ExplicitInstantiationDeclaration ||
TSK == TSK_ExplicitInstantiationDefinition)
return nullptr;
bool allowInlineFunctions =
Context.getTargetInfo().getCXXABI().canKeyFunctionBeInline();
for (const CXXMethodDecl *MD : RD->methods()) {
if (!MD->isVirtual())
continue;
if (MD->isPure())
continue;
// Ignore implicit member functions, they are always marked as inline, but
// they don't have a body until they're defined.
if (MD->isImplicit())
continue;
if (MD->isInlineSpecified())
continue;
if (MD->hasInlineBody())
continue;
// Ignore inline deleted or defaulted functions.
if (!MD->isUserProvided())
continue;
// In certain ABIs, ignore functions with out-of-line inline definitions.
if (!allowInlineFunctions) {
const FunctionDecl *Def;
if (MD->hasBody(Def) && Def->isInlineSpecified())
continue;
}
if (Context.getLangOpts().CUDA) {
// While compiler may see key method in this TU, during CUDA
// compilation we should ignore methods that are not accessible
// on this side of compilation.
if (Context.getLangOpts().CUDAIsDevice) {
// In device mode ignore methods without __device__ attribute.
if (!MD->hasAttr<CUDADeviceAttr>())
continue;
} else {
// In host mode ignore __device__-only methods.
if (!MD->hasAttr<CUDAHostAttr>() && MD->hasAttr<CUDADeviceAttr>())
continue;
}
}
// If the key function is dllimport but the class isn't, then the class has
// no key function. The DLL that exports the key function won't export the
// vtable in this case.
if (MD->hasAttr<DLLImportAttr>() && !RD->hasAttr<DLLImportAttr>())
return nullptr;
// We found it.
return MD;
}
return nullptr;
}
DiagnosticBuilder ItaniumRecordLayoutBuilder::Diag(SourceLocation Loc,
unsigned DiagID) {
return Context.getDiagnostics().Report(Loc, DiagID);
}
/// Does the target C++ ABI require us to skip over the tail-padding
/// of the given class (considering it as a base class) when allocating
/// objects?
static bool mustSkipTailPadding(TargetCXXABI ABI, const CXXRecordDecl *RD) {
switch (ABI.getTailPaddingUseRules()) {
case TargetCXXABI::AlwaysUseTailPadding:
return false;
case TargetCXXABI::UseTailPaddingUnlessPOD03:
// FIXME: To the extent that this is meant to cover the Itanium ABI
// rules, we should implement the restrictions about over-sized
// bitfields:
//
// http://itanium-cxx-abi.github.io/cxx-abi/abi.html#POD :
// In general, a type is considered a POD for the purposes of
// layout if it is a POD type (in the sense of ISO C++
// [basic.types]). However, a POD-struct or POD-union (in the
// sense of ISO C++ [class]) with a bitfield member whose
// declared width is wider than the declared type of the
// bitfield is not a POD for the purpose of layout. Similarly,
// an array type is not a POD for the purpose of layout if the
// element type of the array is not a POD for the purpose of
// layout.
//
// Where references to the ISO C++ are made in this paragraph,
// the Technical Corrigendum 1 version of the standard is
// intended.
return RD->isPOD();
case TargetCXXABI::UseTailPaddingUnlessPOD11:
// This is equivalent to RD->getTypeForDecl().isCXX11PODType(),
// but with a lot of abstraction penalty stripped off. This does
// assume that these properties are set correctly even in C++98
// mode; fortunately, that is true because we want to assign
// consistently semantics to the type-traits intrinsics (or at
// least as many of them as possible).
return RD->isTrivial() && RD->isCXX11StandardLayout();
}
llvm_unreachable("bad tail-padding use kind");
}
static bool isMsLayout(const ASTContext &Context) {
return Context.getTargetInfo().getCXXABI().isMicrosoft();
}
// This section contains an implementation of struct layout that is, up to the
// included tests, compatible with cl.exe (2013). The layout produced is
// significantly different than those produced by the Itanium ABI. Here we note
// the most important differences.
//
// * The alignment of bitfields in unions is ignored when computing the
// alignment of the union.
// * The existence of zero-width bitfield that occurs after anything other than
// a non-zero length bitfield is ignored.
// * There is no explicit primary base for the purposes of layout. All bases
// with vfptrs are laid out first, followed by all bases without vfptrs.
// * The Itanium equivalent vtable pointers are split into a vfptr (virtual
// function pointer) and a vbptr (virtual base pointer). They can each be
// shared with a, non-virtual bases. These bases need not be the same. vfptrs
// always occur at offset 0. vbptrs can occur at an arbitrary offset and are
// placed after the lexicographically last non-virtual base. This placement
// is always before fields but can be in the middle of the non-virtual bases
// due to the two-pass layout scheme for non-virtual-bases.
// * Virtual bases sometimes require a 'vtordisp' field that is laid out before
// the virtual base and is used in conjunction with virtual overrides during
// construction and destruction. This is always a 4 byte value and is used as
// an alternative to constructor vtables.
// * vtordisps are allocated in a block of memory with size and alignment equal
// to the alignment of the completed structure (before applying __declspec(
// align())). The vtordisp always occur at the end of the allocation block,
// immediately prior to the virtual base.
// * vfptrs are injected after all bases and fields have been laid out. In
// order to guarantee proper alignment of all fields, the vfptr injection
// pushes all bases and fields back by the alignment imposed by those bases
// and fields. This can potentially add a significant amount of padding.
// vfptrs are always injected at offset 0.
// * vbptrs are injected after all bases and fields have been laid out. In
// order to guarantee proper alignment of all fields, the vfptr injection
// pushes all bases and fields back by the alignment imposed by those bases
// and fields. This can potentially add a significant amount of padding.
// vbptrs are injected immediately after the last non-virtual base as
// lexicographically ordered in the code. If this site isn't pointer aligned
// the vbptr is placed at the next properly aligned location. Enough padding
// is added to guarantee a fit.
// * The last zero sized non-virtual base can be placed at the end of the
// struct (potentially aliasing another object), or may alias with the first
// field, even if they are of the same type.
// * The last zero size virtual base may be placed at the end of the struct
// potentially aliasing another object.
// * The ABI attempts to avoid aliasing of zero sized bases by adding padding
// between bases or vbases with specific properties. The criteria for
// additional padding between two bases is that the first base is zero sized
// or ends with a zero sized subobject and the second base is zero sized or
// trails with a zero sized base or field (sharing of vfptrs can reorder the
// layout of the so the leading base is not always the first one declared).
// This rule does take into account fields that are not records, so padding
// will occur even if the last field is, e.g. an int. The padding added for
// bases is 1 byte. The padding added between vbases depends on the alignment
// of the object but is at least 4 bytes (in both 32 and 64 bit modes).
// * There is no concept of non-virtual alignment, non-virtual alignment and
// alignment are always identical.
// * There is a distinction between alignment and required alignment.
// __declspec(align) changes the required alignment of a struct. This
// alignment is _always_ obeyed, even in the presence of #pragma pack. A
// record inherits required alignment from all of its fields and bases.
// * __declspec(align) on bitfields has the effect of changing the bitfield's
// alignment instead of its required alignment. This is the only known way
// to make the alignment of a struct bigger than 8. Interestingly enough
// this alignment is also immune to the effects of #pragma pack and can be
// used to create structures with large alignment under #pragma pack.
// However, because it does not impact required alignment, such a structure,
// when used as a field or base, will not be aligned if #pragma pack is
// still active at the time of use.
//
// Known incompatibilities:
// * all: #pragma pack between fields in a record
// * 2010 and back: If the last field in a record is a bitfield, every object
// laid out after the record will have extra padding inserted before it. The
// extra padding will have size equal to the size of the storage class of the
// bitfield. 0 sized bitfields don't exhibit this behavior and the extra
// padding can be avoided by adding a 0 sized bitfield after the non-zero-
// sized bitfield.
// * 2012 and back: In 64-bit mode, if the alignment of a record is 16 or
// greater due to __declspec(align()) then a second layout phase occurs after
// The locations of the vf and vb pointers are known. This layout phase
// suffers from the "last field is a bitfield" bug in 2010 and results in
// _every_ field getting padding put in front of it, potentially including the
// vfptr, leaving the vfprt at a non-zero location which results in a fault if
// anything tries to read the vftbl. The second layout phase also treats
// bitfields as separate entities and gives them each storage rather than
// packing them. Additionally, because this phase appears to perform a
// (an unstable) sort on the members before laying them out and because merged
// bitfields have the same address, the bitfields end up in whatever order
// the sort left them in, a behavior we could never hope to replicate.
namespace {
struct MicrosoftRecordLayoutBuilder {
struct ElementInfo {
CharUnits Size;
CharUnits Alignment;
};
typedef llvm::DenseMap<const CXXRecordDecl *, CharUnits> BaseOffsetsMapTy;
MicrosoftRecordLayoutBuilder(const ASTContext &Context) : Context(Context) {}
private:
MicrosoftRecordLayoutBuilder(const MicrosoftRecordLayoutBuilder &) = delete;
void operator=(const MicrosoftRecordLayoutBuilder &) = delete;
public:
void layout(const RecordDecl *RD);
void cxxLayout(const CXXRecordDecl *RD);
/// Initializes size and alignment and honors some flags.
void initializeLayout(const RecordDecl *RD);
/// Initialized C++ layout, compute alignment and virtual alignment and
/// existence of vfptrs and vbptrs. Alignment is needed before the vfptr is
/// laid out.
void initializeCXXLayout(const CXXRecordDecl *RD);
void layoutNonVirtualBases(const CXXRecordDecl *RD);
void layoutNonVirtualBase(const CXXRecordDecl *RD,
const CXXRecordDecl *BaseDecl,
const ASTRecordLayout &BaseLayout,
const ASTRecordLayout *&PreviousBaseLayout);
void injectVFPtr(const CXXRecordDecl *RD);
void injectVBPtr(const CXXRecordDecl *RD);
/// Lays out the fields of the record. Also rounds size up to
/// alignment.
void layoutFields(const RecordDecl *RD);
void layoutField(const FieldDecl *FD);
void layoutBitField(const FieldDecl *FD);
/// Lays out a single zero-width bit-field in the record and handles
/// special cases associated with zero-width bit-fields.
void layoutZeroWidthBitField(const FieldDecl *FD);
void layoutVirtualBases(const CXXRecordDecl *RD);
void finalizeLayout(const RecordDecl *RD);
/// Gets the size and alignment of a base taking pragma pack and
/// __declspec(align) into account.
ElementInfo getAdjustedElementInfo(const ASTRecordLayout &Layout);
/// Gets the size and alignment of a field taking pragma pack and
/// __declspec(align) into account. It also updates RequiredAlignment as a
/// side effect because it is most convenient to do so here.
ElementInfo getAdjustedElementInfo(const FieldDecl *FD);
/// Places a field at an offset in CharUnits.
void placeFieldAtOffset(CharUnits FieldOffset) {
FieldOffsets.push_back(Context.toBits(FieldOffset));
}
/// Places a bitfield at a bit offset.
void placeFieldAtBitOffset(uint64_t FieldOffset) {
FieldOffsets.push_back(FieldOffset);
}
/// Compute the set of virtual bases for which vtordisps are required.
void computeVtorDispSet(
llvm::SmallPtrSetImpl<const CXXRecordDecl *> &HasVtorDispSet,
const CXXRecordDecl *RD) const;
const ASTContext &Context;
/// The size of the record being laid out.
CharUnits Size;
/// The non-virtual size of the record layout.
CharUnits NonVirtualSize;
/// The data size of the record layout.
CharUnits DataSize;
/// The current alignment of the record layout.
CharUnits Alignment;
/// The maximum allowed field alignment. This is set by #pragma pack.
CharUnits MaxFieldAlignment;
/// The alignment that this record must obey. This is imposed by
/// __declspec(align()) on the record itself or one of its fields or bases.
CharUnits RequiredAlignment;
/// The size of the allocation of the currently active bitfield.
/// This value isn't meaningful unless LastFieldIsNonZeroWidthBitfield
/// is true.
CharUnits CurrentBitfieldSize;
/// Offset to the virtual base table pointer (if one exists).
CharUnits VBPtrOffset;
/// Minimum record size possible.
CharUnits MinEmptyStructSize;
/// The size and alignment info of a pointer.
ElementInfo PointerInfo;
/// The primary base class (if one exists).
const CXXRecordDecl *PrimaryBase;
/// The class we share our vb-pointer with.
const CXXRecordDecl *SharedVBPtrBase;
/// The collection of field offsets.
SmallVector<uint64_t, 16> FieldOffsets;
/// Base classes and their offsets in the record.
BaseOffsetsMapTy Bases;
/// virtual base classes and their offsets in the record.
ASTRecordLayout::VBaseOffsetsMapTy VBases;
/// The number of remaining bits in our last bitfield allocation.
/// This value isn't meaningful unless LastFieldIsNonZeroWidthBitfield is
/// true.
unsigned RemainingBitsInField;
bool IsUnion : 1;
/// True if the last field laid out was a bitfield and was not 0
/// width.
bool LastFieldIsNonZeroWidthBitfield : 1;
/// True if the class has its own vftable pointer.
bool HasOwnVFPtr : 1;
/// True if the class has a vbtable pointer.
bool HasVBPtr : 1;
/// True if the last sub-object within the type is zero sized or the
/// object itself is zero sized. This *does not* count members that are not
/// records. Only used for MS-ABI.
bool EndsWithZeroSizedObject : 1;
/// True if this class is zero sized or first base is zero sized or
/// has this property. Only used for MS-ABI.
bool LeadsWithZeroSizedBase : 1;
/// True if the external AST source provided a layout for this record.
bool UseExternalLayout : 1;
/// The layout provided by the external AST source. Only active if
/// UseExternalLayout is true.
ExternalLayout External;
};
} // namespace
MicrosoftRecordLayoutBuilder::ElementInfo
MicrosoftRecordLayoutBuilder::getAdjustedElementInfo(
const ASTRecordLayout &Layout) {
ElementInfo Info;
Info.Alignment = Layout.getAlignment();
// Respect pragma pack.
if (!MaxFieldAlignment.isZero())
Info.Alignment = std::min(Info.Alignment, MaxFieldAlignment);
// Track zero-sized subobjects here where it's already available.
EndsWithZeroSizedObject = Layout.endsWithZeroSizedObject();
// Respect required alignment, this is necessary because we may have adjusted
// the alignment in the case of pragam pack. Note that the required alignment
// doesn't actually apply to the struct alignment at this point.
Alignment = std::max(Alignment, Info.Alignment);
RequiredAlignment = std::max(RequiredAlignment, Layout.getRequiredAlignment());
Info.Alignment = std::max(Info.Alignment, Layout.getRequiredAlignment());
Info.Size = Layout.getNonVirtualSize();
return Info;
}
MicrosoftRecordLayoutBuilder::ElementInfo
MicrosoftRecordLayoutBuilder::getAdjustedElementInfo(
const FieldDecl *FD) {
// Get the alignment of the field type's natural alignment, ignore any
// alignment attributes.
ElementInfo Info;
std::tie(Info.Size, Info.Alignment) =
Context.getTypeInfoInChars(FD->getType()->getUnqualifiedDesugaredType());
// Respect align attributes on the field.
CharUnits FieldRequiredAlignment =
Context.toCharUnitsFromBits(FD->getMaxAlignment());
// Respect align attributes on the type.
if (Context.isAlignmentRequired(FD->getType()))
FieldRequiredAlignment = std::max(
Context.getTypeAlignInChars(FD->getType()), FieldRequiredAlignment);
// Respect attributes applied to subobjects of the field.
if (FD->isBitField())
// For some reason __declspec align impacts alignment rather than required
// alignment when it is applied to bitfields.
Info.Alignment = std::max(Info.Alignment, FieldRequiredAlignment);
else {
if (auto RT =
FD->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) {
auto const &Layout = Context.getASTRecordLayout(RT->getDecl());
EndsWithZeroSizedObject = Layout.endsWithZeroSizedObject();
FieldRequiredAlignment = std::max(FieldRequiredAlignment,
Layout.getRequiredAlignment());
}
// Capture required alignment as a side-effect.
RequiredAlignment = std::max(RequiredAlignment, FieldRequiredAlignment);
}
// Respect pragma pack, attribute pack and declspec align
if (!MaxFieldAlignment.isZero())
Info.Alignment = std::min(Info.Alignment, MaxFieldAlignment);
if (FD->hasAttr<PackedAttr>())
Info.Alignment = CharUnits::One();
Info.Alignment = std::max(Info.Alignment, FieldRequiredAlignment);
return Info;
}
void MicrosoftRecordLayoutBuilder::layout(const RecordDecl *RD) {
// For C record layout, zero-sized records always have size 4.
MinEmptyStructSize = CharUnits::fromQuantity(4);
initializeLayout(RD);
layoutFields(RD);
DataSize = Size = Size.alignTo(Alignment);
RequiredAlignment = std::max(
RequiredAlignment, Context.toCharUnitsFromBits(RD->getMaxAlignment()));
finalizeLayout(RD);
}
void MicrosoftRecordLayoutBuilder::cxxLayout(const CXXRecordDecl *RD) {
// The C++ standard says that empty structs have size 1.
MinEmptyStructSize = CharUnits::One();
initializeLayout(RD);
initializeCXXLayout(RD);
layoutNonVirtualBases(RD);
layoutFields(RD);
injectVBPtr(RD);
injectVFPtr(RD);
if (HasOwnVFPtr || (HasVBPtr && !SharedVBPtrBase))
Alignment = std::max(Alignment, PointerInfo.Alignment);
auto RoundingAlignment = Alignment;
if (!MaxFieldAlignment.isZero())
RoundingAlignment = std::min(RoundingAlignment, MaxFieldAlignment);
if (!UseExternalLayout)
Size = Size.alignTo(RoundingAlignment);
NonVirtualSize = Size;
RequiredAlignment = std::max(
RequiredAlignment, Context.toCharUnitsFromBits(RD->getMaxAlignment()));
layoutVirtualBases(RD);
finalizeLayout(RD);
}
void MicrosoftRecordLayoutBuilder::initializeLayout(const RecordDecl *RD) {
IsUnion = RD->isUnion();
Size = CharUnits::Zero();
Alignment = CharUnits::One();
// In 64-bit mode we always perform an alignment step after laying out vbases.
// In 32-bit mode we do not. The check to see if we need to perform alignment
// checks the RequiredAlignment field and performs alignment if it isn't 0.
RequiredAlignment = Context.getTargetInfo().getTriple().isArch64Bit()
? CharUnits::One()
: CharUnits::Zero();
// Compute the maximum field alignment.
MaxFieldAlignment = CharUnits::Zero();
// Honor the default struct packing maximum alignment flag.
if (unsigned DefaultMaxFieldAlignment = Context.getLangOpts().PackStruct)
MaxFieldAlignment = CharUnits::fromQuantity(DefaultMaxFieldAlignment);
// Honor the packing attribute. The MS-ABI ignores pragma pack if its larger
// than the pointer size.
if (const MaxFieldAlignmentAttr *MFAA = RD->getAttr<MaxFieldAlignmentAttr>()){
unsigned PackedAlignment = MFAA->getAlignment();
if (PackedAlignment <= Context.getTargetInfo().getPointerWidth(0))
MaxFieldAlignment = Context.toCharUnitsFromBits(PackedAlignment);
}
// Packed attribute forces max field alignment to be 1.
if (RD->hasAttr<PackedAttr>())
MaxFieldAlignment = CharUnits::One();
// Try to respect the external layout if present.
UseExternalLayout = false;
if (ExternalASTSource *Source = Context.getExternalSource())
UseExternalLayout = Source->layoutRecordType(
RD, External.Size, External.Align, External.FieldOffsets,
External.BaseOffsets, External.VirtualBaseOffsets);
}
void
MicrosoftRecordLayoutBuilder::initializeCXXLayout(const CXXRecordDecl *RD) {
EndsWithZeroSizedObject = false;
LeadsWithZeroSizedBase = false;
HasOwnVFPtr = false;
HasVBPtr = false;
PrimaryBase = nullptr;
SharedVBPtrBase = nullptr;
// Calculate pointer size and alignment. These are used for vfptr and vbprt
// injection.
PointerInfo.Size =
Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerWidth(0));
PointerInfo.Alignment =
Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerAlign(0));
// Respect pragma pack.
if (!MaxFieldAlignment.isZero())
PointerInfo.Alignment = std::min(PointerInfo.Alignment, MaxFieldAlignment);
}
void
MicrosoftRecordLayoutBuilder::layoutNonVirtualBases(const CXXRecordDecl *RD) {
// The MS-ABI lays out all bases that contain leading vfptrs before it lays
// out any bases that do not contain vfptrs. We implement this as two passes
// over the bases. This approach guarantees that the primary base is laid out
// first. We use these passes to calculate some additional aggregated
// information about the bases, such as required alignment and the presence of
// zero sized members.
const ASTRecordLayout *PreviousBaseLayout = nullptr;
// Iterate through the bases and lay out the non-virtual ones.
for (const CXXBaseSpecifier &Base : RD->bases()) {
const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
const ASTRecordLayout &BaseLayout = Context.getASTRecordLayout(BaseDecl);
// Mark and skip virtual bases.
if (Base.isVirtual()) {
HasVBPtr = true;
continue;
}
// Check for a base to share a VBPtr with.
if (!SharedVBPtrBase && BaseLayout.hasVBPtr()) {
SharedVBPtrBase = BaseDecl;
HasVBPtr = true;
}
// Only lay out bases with extendable VFPtrs on the first pass.
if (!BaseLayout.hasExtendableVFPtr())
continue;
// If we don't have a primary base, this one qualifies.
if (!PrimaryBase) {
PrimaryBase = BaseDecl;
LeadsWithZeroSizedBase = BaseLayout.leadsWithZeroSizedBase();
}
// Lay out the base.
layoutNonVirtualBase(RD, BaseDecl, BaseLayout, PreviousBaseLayout);
}
// Figure out if we need a fresh VFPtr for this class.
if (!PrimaryBase && RD->isDynamicClass())
for (CXXRecordDecl::method_iterator i = RD->method_begin(),
e = RD->method_end();
!HasOwnVFPtr && i != e; ++i)
HasOwnVFPtr = i->isVirtual() && i->size_overridden_methods() == 0;
// If we don't have a primary base then we have a leading object that could
// itself lead with a zero-sized object, something we track.
bool CheckLeadingLayout = !PrimaryBase;
// Iterate through the bases and lay out the non-virtual ones.
for (const CXXBaseSpecifier &Base : RD->bases()) {
if (Base.isVirtual())
continue;
const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
const ASTRecordLayout &BaseLayout = Context.getASTRecordLayout(BaseDecl);
// Only lay out bases without extendable VFPtrs on the second pass.
if (BaseLayout.hasExtendableVFPtr()) {
VBPtrOffset = Bases[BaseDecl] + BaseLayout.getNonVirtualSize();
continue;
}
// If this is the first layout, check to see if it leads with a zero sized
// object. If it does, so do we.
if (CheckLeadingLayout) {
CheckLeadingLayout = false;
LeadsWithZeroSizedBase = BaseLayout.leadsWithZeroSizedBase();
}
// Lay out the base.
layoutNonVirtualBase(RD, BaseDecl, BaseLayout, PreviousBaseLayout);
VBPtrOffset = Bases[BaseDecl] + BaseLayout.getNonVirtualSize();
}
// Set our VBPtroffset if we know it at this point.
if (!HasVBPtr)
VBPtrOffset = CharUnits::fromQuantity(-1);
else if (SharedVBPtrBase) {
const ASTRecordLayout &Layout = Context.getASTRecordLayout(SharedVBPtrBase);
VBPtrOffset = Bases[SharedVBPtrBase] + Layout.getVBPtrOffset();
}
}
static bool recordUsesEBO(const RecordDecl *RD) {
if (!isa<CXXRecordDecl>(RD))
return false;
if (RD->hasAttr<EmptyBasesAttr>())
return true;
if (auto *LVA = RD->getAttr<LayoutVersionAttr>())
// TODO: Double check with the next version of MSVC.
if (LVA->getVersion() <= LangOptions::MSVC2015)
return false;
// TODO: Some later version of MSVC will change the default behavior of the
// compiler to enable EBO by default. When this happens, we will need an
// additional isCompatibleWithMSVC check.
return false;
}
void MicrosoftRecordLayoutBuilder::layoutNonVirtualBase(
const CXXRecordDecl *RD,
const CXXRecordDecl *BaseDecl,
const ASTRecordLayout &BaseLayout,
const ASTRecordLayout *&PreviousBaseLayout) {
// Insert padding between two bases if the left first one is zero sized or
// contains a zero sized subobject and the right is zero sized or one leads
// with a zero sized base.
bool MDCUsesEBO = recordUsesEBO(RD);
if (PreviousBaseLayout && PreviousBaseLayout->endsWithZeroSizedObject() &&
BaseLayout.leadsWithZeroSizedBase() && !MDCUsesEBO)
Size++;
ElementInfo Info = getAdjustedElementInfo(BaseLayout);
CharUnits BaseOffset;
// Respect the external AST source base offset, if present.
bool FoundBase = false;
if (UseExternalLayout) {
FoundBase = External.getExternalNVBaseOffset(BaseDecl, BaseOffset);
if (FoundBase) {
assert(BaseOffset >= Size && "base offset already allocated");
Size = BaseOffset;
}
}
if (!FoundBase) {
if (MDCUsesEBO && BaseDecl->isEmpty()) {
assert(BaseLayout.getNonVirtualSize() == CharUnits::Zero());
BaseOffset = CharUnits::Zero();
} else {
// Otherwise, lay the base out at the end of the MDC.
BaseOffset = Size = Size.alignTo(Info.Alignment);
}
}
Bases.insert(std::make_pair(BaseDecl, BaseOffset));
Size += BaseLayout.getNonVirtualSize();
PreviousBaseLayout = &BaseLayout;
}
void MicrosoftRecordLayoutBuilder::layoutFields(const RecordDecl *RD) {
LastFieldIsNonZeroWidthBitfield = false;
for (const FieldDecl *Field : RD->fields())
layoutField(Field);
}
void MicrosoftRecordLayoutBuilder::layoutField(const FieldDecl *FD) {
if (FD->isBitField()) {
layoutBitField(FD);
return;
}
LastFieldIsNonZeroWidthBitfield = false;
ElementInfo Info = getAdjustedElementInfo(FD);
Alignment = std::max(Alignment, Info.Alignment);
CharUnits FieldOffset;
if (UseExternalLayout)
FieldOffset =
Context.toCharUnitsFromBits(External.getExternalFieldOffset(FD));
else if (IsUnion)
FieldOffset = CharUnits::Zero();
else
FieldOffset = Size.alignTo(Info.Alignment);
placeFieldAtOffset(FieldOffset);
Size = std::max(Size, FieldOffset + Info.Size);
}
void MicrosoftRecordLayoutBuilder::layoutBitField(const FieldDecl *FD) {
unsigned Width = FD->getBitWidthValue(Context);
if (Width == 0) {
layoutZeroWidthBitField(FD);
return;
}
ElementInfo Info = getAdjustedElementInfo(FD);
// Clamp the bitfield to a containable size for the sake of being able
// to lay them out. Sema will throw an error.
if (Width > Context.toBits(Info.Size))
Width = Context.toBits(Info.Size);
// Check to see if this bitfield fits into an existing allocation. Note:
// MSVC refuses to pack bitfields of formal types with different sizes
// into the same allocation.
if (!UseExternalLayout && !IsUnion && LastFieldIsNonZeroWidthBitfield &&
CurrentBitfieldSize == Info.Size && Width <= RemainingBitsInField) {
placeFieldAtBitOffset(Context.toBits(Size) - RemainingBitsInField);
RemainingBitsInField -= Width;
return;
}
LastFieldIsNonZeroWidthBitfield = true;
CurrentBitfieldSize = Info.Size;
if (UseExternalLayout) {
auto FieldBitOffset = External.getExternalFieldOffset(FD);
placeFieldAtBitOffset(FieldBitOffset);
auto NewSize = Context.toCharUnitsFromBits(
llvm::alignDown(FieldBitOffset, Context.toBits(Info.Alignment)) +
Context.toBits(Info.Size));
Size = std::max(Size, NewSize);
Alignment = std::max(Alignment, Info.Alignment);
} else if (IsUnion) {
placeFieldAtOffset(CharUnits::Zero());
Size = std::max(Size, Info.Size);
// TODO: Add a Sema warning that MS ignores bitfield alignment in unions.
} else {
// Allocate a new block of memory and place the bitfield in it.
CharUnits FieldOffset = Size.alignTo(Info.Alignment);
placeFieldAtOffset(FieldOffset);
Size = FieldOffset + Info.Size;
Alignment = std::max(Alignment, Info.Alignment);
RemainingBitsInField = Context.toBits(Info.Size) - Width;
}
}
void
MicrosoftRecordLayoutBuilder::layoutZeroWidthBitField(const FieldDecl *FD) {
// Zero-width bitfields are ignored unless they follow a non-zero-width
// bitfield.
if (!LastFieldIsNonZeroWidthBitfield) {
placeFieldAtOffset(IsUnion ? CharUnits::Zero() : Size);
// TODO: Add a Sema warning that MS ignores alignment for zero
// sized bitfields that occur after zero-size bitfields or non-bitfields.
return;
}
LastFieldIsNonZeroWidthBitfield = false;
ElementInfo Info = getAdjustedElementInfo(FD);
if (IsUnion) {
placeFieldAtOffset(CharUnits::Zero());
Size = std::max(Size, Info.Size);
// TODO: Add a Sema warning that MS ignores bitfield alignment in unions.
} else {
// Round up the current record size to the field's alignment boundary.
CharUnits FieldOffset = Size.alignTo(Info.Alignment);
placeFieldAtOffset(FieldOffset);
Size = FieldOffset;
Alignment = std::max(Alignment, Info.Alignment);
}
}
void MicrosoftRecordLayoutBuilder::injectVBPtr(const CXXRecordDecl *RD) {
if (!HasVBPtr || SharedVBPtrBase)
return;
// Inject the VBPointer at the injection site.
CharUnits InjectionSite = VBPtrOffset;
// But before we do, make sure it's properly aligned.
VBPtrOffset = VBPtrOffset.alignTo(PointerInfo.Alignment);
// Determine where the first field should be laid out after the vbptr.
CharUnits FieldStart = VBPtrOffset + PointerInfo.Size;
// Shift everything after the vbptr down, unless we're using an external
// layout.
if (UseExternalLayout) {
// It is possible that there were no fields or bases located after vbptr,
// so the size was not adjusted before.
if (Size < FieldStart)
Size = FieldStart;
return;
}
// Make sure that the amount we push the fields back by is a multiple of the
// alignment.
CharUnits Offset = (FieldStart - InjectionSite)
.alignTo(std::max(RequiredAlignment, Alignment));
Size += Offset;
for (uint64_t &FieldOffset : FieldOffsets)
FieldOffset += Context.toBits(Offset);
for (BaseOffsetsMapTy::value_type &Base : Bases)
if (Base.second >= InjectionSite)
Base.second += Offset;
}
void MicrosoftRecordLayoutBuilder::injectVFPtr(const CXXRecordDecl *RD) {
if (!HasOwnVFPtr)
return;
// Make sure that the amount we push the struct back by is a multiple of the
// alignment.
CharUnits Offset =
PointerInfo.Size.alignTo(std::max(RequiredAlignment, Alignment));
// Push back the vbptr, but increase the size of the object and push back
// regular fields by the offset only if not using external record layout.
if (HasVBPtr)
VBPtrOffset += Offset;
if (UseExternalLayout) {
// The class may have no bases or fields, but still have a vfptr
// (e.g. it's an interface class). The size was not correctly set before
// in this case.
if (FieldOffsets.empty() && Bases.empty())
Size += Offset;
return;
}
Size += Offset;
// If we're using an external layout, the fields offsets have already
// accounted for this adjustment.
for (uint64_t &FieldOffset : FieldOffsets)
FieldOffset += Context.toBits(Offset);
for (BaseOffsetsMapTy::value_type &Base : Bases)
Base.second += Offset;
}
void MicrosoftRecordLayoutBuilder::layoutVirtualBases(const CXXRecordDecl *RD) {
if (!HasVBPtr)
return;
// Vtordisps are always 4 bytes (even in 64-bit mode)
CharUnits VtorDispSize = CharUnits::fromQuantity(4);
CharUnits VtorDispAlignment = VtorDispSize;
// vtordisps respect pragma pack.
if (!MaxFieldAlignment.isZero())
VtorDispAlignment = std::min(VtorDispAlignment, MaxFieldAlignment);
// The alignment of the vtordisp is at least the required alignment of the
// entire record. This requirement may be present to support vtordisp
// injection.
for (const CXXBaseSpecifier &VBase : RD->vbases()) {
const CXXRecordDecl *BaseDecl = VBase.getType()->getAsCXXRecordDecl();
const ASTRecordLayout &BaseLayout = Context.getASTRecordLayout(BaseDecl);
RequiredAlignment =
std::max(RequiredAlignment, BaseLayout.getRequiredAlignment());
}
VtorDispAlignment = std::max(VtorDispAlignment, RequiredAlignment);
// Compute the vtordisp set.
llvm::SmallPtrSet<const CXXRecordDecl *, 2> HasVtorDispSet;
computeVtorDispSet(HasVtorDispSet, RD);
// Iterate through the virtual bases and lay them out.
const ASTRecordLayout *PreviousBaseLayout = nullptr;
for (const CXXBaseSpecifier &VBase : RD->vbases()) {
const CXXRecordDecl *BaseDecl = VBase.getType()->getAsCXXRecordDecl();
const ASTRecordLayout &BaseLayout = Context.getASTRecordLayout(BaseDecl);
bool HasVtordisp = HasVtorDispSet.count(BaseDecl) > 0;
// Insert padding between two bases if the left first one is zero sized or
// contains a zero sized subobject and the right is zero sized or one leads
// with a zero sized base. The padding between virtual bases is 4
// bytes (in both 32 and 64 bits modes) and always involves rounding up to
// the required alignment, we don't know why.
if ((PreviousBaseLayout && PreviousBaseLayout->endsWithZeroSizedObject() &&
BaseLayout.leadsWithZeroSizedBase() && !recordUsesEBO(RD)) ||
HasVtordisp) {
Size = Size.alignTo(VtorDispAlignment) + VtorDispSize;
Alignment = std::max(VtorDispAlignment, Alignment);
}
// Insert the virtual base.
ElementInfo Info = getAdjustedElementInfo(BaseLayout);
CharUnits BaseOffset;
// Respect the external AST source base offset, if present.
if (UseExternalLayout) {
if (!External.getExternalVBaseOffset(BaseDecl, BaseOffset))
BaseOffset = Size;
} else
BaseOffset = Size.alignTo(Info.Alignment);
assert(BaseOffset >= Size && "base offset already allocated");
VBases.insert(std::make_pair(BaseDecl,
ASTRecordLayout::VBaseInfo(BaseOffset, HasVtordisp)));
Size = BaseOffset + BaseLayout.getNonVirtualSize();
PreviousBaseLayout = &BaseLayout;
}
}
void MicrosoftRecordLayoutBuilder::finalizeLayout(const RecordDecl *RD) {
// Respect required alignment. Note that in 32-bit mode Required alignment
// may be 0 and cause size not to be updated.
DataSize = Size;
if (!RequiredAlignment.isZero()) {
Alignment = std::max(Alignment, RequiredAlignment);
auto RoundingAlignment = Alignment;
if (!MaxFieldAlignment.isZero())
RoundingAlignment = std::min(RoundingAlignment, MaxFieldAlignment);
RoundingAlignment = std::max(RoundingAlignment, RequiredAlignment);
Size = Size.alignTo(RoundingAlignment);
}
if (Size.isZero()) {
if (!recordUsesEBO(RD) || !cast<CXXRecordDecl>(RD)->isEmpty()) {
EndsWithZeroSizedObject = true;
LeadsWithZeroSizedBase = true;
}
// Zero-sized structures have size equal to their alignment if a
// __declspec(align) came into play.
if (RequiredAlignment >= MinEmptyStructSize)
Size = Alignment;
else
Size = MinEmptyStructSize;
}
if (UseExternalLayout) {
Size = Context.toCharUnitsFromBits(External.Size);
if (External.Align)
Alignment = Context.toCharUnitsFromBits(External.Align);
}
}
// Recursively walks the non-virtual bases of a class and determines if any of
// them are in the bases with overridden methods set.
static bool
RequiresVtordisp(const llvm::SmallPtrSetImpl<const CXXRecordDecl *> &
BasesWithOverriddenMethods,
const CXXRecordDecl *RD) {
if (BasesWithOverriddenMethods.count(RD))
return true;
// If any of a virtual bases non-virtual bases (recursively) requires a
// vtordisp than so does this virtual base.
for (const CXXBaseSpecifier &Base : RD->bases())
if (!Base.isVirtual() &&
RequiresVtordisp(BasesWithOverriddenMethods,
Base.getType()->getAsCXXRecordDecl()))
return true;
return false;
}
void MicrosoftRecordLayoutBuilder::computeVtorDispSet(
llvm::SmallPtrSetImpl<const CXXRecordDecl *> &HasVtordispSet,
const CXXRecordDecl *RD) const {
// /vd2 or #pragma vtordisp(2): Always use vtordisps for virtual bases with
// vftables.
if (RD->getMSVtorDispMode() == MSVtorDispMode::ForVFTable) {
for (const CXXBaseSpecifier &Base : RD->vbases()) {
const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
const ASTRecordLayout &Layout = Context.getASTRecordLayout(BaseDecl);
if (Layout.hasExtendableVFPtr())
HasVtordispSet.insert(BaseDecl);
}
return;
}
// If any of our bases need a vtordisp for this type, so do we. Check our
// direct bases for vtordisp requirements.
for (const CXXBaseSpecifier &Base : RD->bases()) {
const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
const ASTRecordLayout &Layout = Context.getASTRecordLayout(BaseDecl);
for (const auto &bi : Layout.getVBaseOffsetsMap())
if (bi.second.hasVtorDisp())
HasVtordispSet.insert(bi.first);
}
// We don't introduce any additional vtordisps if either:
// * A user declared constructor or destructor aren't declared.
// * #pragma vtordisp(0) or the /vd0 flag are in use.
if ((!RD->hasUserDeclaredConstructor() && !RD->hasUserDeclaredDestructor()) ||
RD->getMSVtorDispMode() == MSVtorDispMode::Never)
return;
// /vd1 or #pragma vtordisp(1): Try to guess based on whether we think it's
// possible for a partially constructed object with virtual base overrides to
// escape a non-trivial constructor.
assert(RD->getMSVtorDispMode() == MSVtorDispMode::ForVBaseOverride);
// Compute a set of base classes which define methods we override. A virtual
// base in this set will require a vtordisp. A virtual base that transitively
// contains one of these bases as a non-virtual base will also require a
// vtordisp.
llvm::SmallPtrSet<const CXXMethodDecl *, 8> Work;
llvm::SmallPtrSet<const CXXRecordDecl *, 2> BasesWithOverriddenMethods;
// Seed the working set with our non-destructor, non-pure virtual methods.
for (const CXXMethodDecl *MD : RD->methods())
if (MD->isVirtual() && !isa<CXXDestructorDecl>(MD) && !MD->isPure())
Work.insert(MD);
while (!Work.empty()) {
const CXXMethodDecl *MD = *Work.begin();
auto MethodRange = MD->overridden_methods();
// If a virtual method has no-overrides it lives in its parent's vtable.
if (MethodRange.begin() == MethodRange.end())
BasesWithOverriddenMethods.insert(MD->getParent());
else
Work.insert(MethodRange.begin(), MethodRange.end());
// We've finished processing this element, remove it from the working set.
Work.erase(MD);
}
// For each of our virtual bases, check if it is in the set of overridden
// bases or if it transitively contains a non-virtual base that is.
for (const CXXBaseSpecifier &Base : RD->vbases()) {
const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
if (!HasVtordispSet.count(BaseDecl) &&
RequiresVtordisp(BasesWithOverriddenMethods, BaseDecl))
HasVtordispSet.insert(BaseDecl);
}
}
/// getASTRecordLayout - Get or compute information about the layout of the
/// specified record (struct/union/class), which indicates its size and field
/// position information.
const ASTRecordLayout &
ASTContext::getASTRecordLayout(const RecordDecl *D) const {
// These asserts test different things. A record has a definition
// as soon as we begin to parse the definition. That definition is
// not a complete definition (which is what isDefinition() tests)
// until we *finish* parsing the definition.
if (D->hasExternalLexicalStorage() && !D->getDefinition())
getExternalSource()->CompleteType(const_cast<RecordDecl*>(D));
D = D->getDefinition();
assert(D && "Cannot get layout of forward declarations!");
assert(!D->isInvalidDecl() && "Cannot get layout of invalid decl!");
assert(D->isCompleteDefinition() && "Cannot layout type before complete!");
// Look up this layout, if already laid out, return what we have.
// Note that we can't save a reference to the entry because this function
// is recursive.
const ASTRecordLayout *Entry = ASTRecordLayouts[D];
if (Entry) return *Entry;
const ASTRecordLayout *NewEntry = nullptr;
if (isMsLayout(*this)) {
MicrosoftRecordLayoutBuilder Builder(*this);
if (const auto *RD = dyn_cast<CXXRecordDecl>(D)) {
Builder.cxxLayout(RD);
NewEntry = new (*this) ASTRecordLayout(
*this, Builder.Size, Builder.Alignment, Builder.Alignment,
Builder.RequiredAlignment,
Builder.HasOwnVFPtr, Builder.HasOwnVFPtr || Builder.PrimaryBase,
Builder.VBPtrOffset, Builder.DataSize, Builder.FieldOffsets,
Builder.NonVirtualSize, Builder.Alignment, CharUnits::Zero(),
Builder.PrimaryBase, false, Builder.SharedVBPtrBase,
Builder.EndsWithZeroSizedObject, Builder.LeadsWithZeroSizedBase,
Builder.Bases, Builder.VBases);
} else {
Builder.layout(D);
NewEntry = new (*this) ASTRecordLayout(
*this, Builder.Size, Builder.Alignment, Builder.Alignment,
Builder.RequiredAlignment,
Builder.Size, Builder.FieldOffsets);
}
} else {
if (const auto *RD = dyn_cast<CXXRecordDecl>(D)) {
EmptySubobjectMap EmptySubobjects(*this, RD);
ItaniumRecordLayoutBuilder Builder(*this, &EmptySubobjects);
Builder.Layout(RD);
// In certain situations, we are allowed to lay out objects in the
// tail-padding of base classes. This is ABI-dependent.
// FIXME: this should be stored in the record layout.
bool skipTailPadding =
mustSkipTailPadding(getTargetInfo().getCXXABI(), RD);
// FIXME: This should be done in FinalizeLayout.
CharUnits DataSize =
skipTailPadding ? Builder.getSize() : Builder.getDataSize();
CharUnits NonVirtualSize =
skipTailPadding ? DataSize : Builder.NonVirtualSize;
NewEntry = new (*this) ASTRecordLayout(
*this, Builder.getSize(), Builder.Alignment, Builder.UnadjustedAlignment,
/*RequiredAlignment : used by MS-ABI)*/
Builder.Alignment, Builder.HasOwnVFPtr, RD->isDynamicClass(),
CharUnits::fromQuantity(-1), DataSize, Builder.FieldOffsets,
NonVirtualSize, Builder.NonVirtualAlignment,
EmptySubobjects.SizeOfLargestEmptySubobject, Builder.PrimaryBase,
Builder.PrimaryBaseIsVirtual, nullptr, false, false, Builder.Bases,
Builder.VBases);
} else {
ItaniumRecordLayoutBuilder Builder(*this, /*EmptySubobjects=*/nullptr);
Builder.Layout(D);
NewEntry = new (*this) ASTRecordLayout(
*this, Builder.getSize(), Builder.Alignment, Builder.UnadjustedAlignment,
/*RequiredAlignment : used by MS-ABI)*/
Builder.Alignment, Builder.getSize(), Builder.FieldOffsets);
}
}
ASTRecordLayouts[D] = NewEntry;
if (getLangOpts().DumpRecordLayouts) {
llvm::outs() << "\n*** Dumping AST Record Layout\n";
DumpRecordLayout(D, llvm::outs(), getLangOpts().DumpRecordLayoutsSimple);
}
return *NewEntry;
}
const CXXMethodDecl *ASTContext::getCurrentKeyFunction(const CXXRecordDecl *RD) {
if (!getTargetInfo().getCXXABI().hasKeyFunctions())
return nullptr;
assert(RD->getDefinition() && "Cannot get key function for forward decl!");
RD = RD->getDefinition();
// Beware:
// 1) computing the key function might trigger deserialization, which might
// invalidate iterators into KeyFunctions
// 2) 'get' on the LazyDeclPtr might also trigger deserialization and
// invalidate the LazyDeclPtr within the map itself
LazyDeclPtr Entry = KeyFunctions[RD];
const Decl *Result =
Entry ? Entry.get(getExternalSource()) : computeKeyFunction(*this, RD);
// Store it back if it changed.
if (Entry.isOffset() || Entry.isValid() != bool(Result))
KeyFunctions[RD] = const_cast<Decl*>(Result);
return cast_or_null<CXXMethodDecl>(Result);
}
void ASTContext::setNonKeyFunction(const CXXMethodDecl *Method) {
assert(Method == Method->getFirstDecl() &&
"not working with method declaration from class definition");
// Look up the cache entry. Since we're working with the first
// declaration, its parent must be the class definition, which is
// the correct key for the KeyFunctions hash.
const auto &Map = KeyFunctions;
auto I = Map.find(Method->getParent());
// If it's not cached, there's nothing to do.
if (I == Map.end()) return;
// If it is cached, check whether it's the target method, and if so,
// remove it from the cache. Note, the call to 'get' might invalidate
// the iterator and the LazyDeclPtr object within the map.
LazyDeclPtr Ptr = I->second;
if (Ptr.get(getExternalSource()) == Method) {
// FIXME: remember that we did this for module / chained PCH state?
KeyFunctions.erase(Method->getParent());
}
}
static uint64_t getFieldOffset(const ASTContext &C, const FieldDecl *FD) {
const ASTRecordLayout &Layout = C.getASTRecordLayout(FD->getParent());
return Layout.getFieldOffset(FD->getFieldIndex());
}
uint64_t ASTContext::getFieldOffset(const ValueDecl *VD) const {
uint64_t OffsetInBits;
if (const FieldDecl *FD = dyn_cast<FieldDecl>(VD)) {
OffsetInBits = ::getFieldOffset(*this, FD);
} else {
const IndirectFieldDecl *IFD = cast<IndirectFieldDecl>(VD);
OffsetInBits = 0;
for (const NamedDecl *ND : IFD->chain())
OffsetInBits += ::getFieldOffset(*this, cast<FieldDecl>(ND));
}
return OffsetInBits;
}
uint64_t ASTContext::lookupFieldBitOffset(const ObjCInterfaceDecl *OID,
const ObjCImplementationDecl *ID,
const ObjCIvarDecl *Ivar) const {
const ObjCInterfaceDecl *Container = Ivar->getContainingInterface();
// FIXME: We should eliminate the need to have ObjCImplementationDecl passed
// in here; it should never be necessary because that should be the lexical
// decl context for the ivar.
// If we know have an implementation (and the ivar is in it) then
// look up in the implementation layout.
const ASTRecordLayout *RL;
if (ID && declaresSameEntity(ID->getClassInterface(), Container))
RL = &getASTObjCImplementationLayout(ID);
else
RL = &getASTObjCInterfaceLayout(Container);
// Compute field index.
//
// FIXME: The index here is closely tied to how ASTContext::getObjCLayout is
// implemented. This should be fixed to get the information from the layout
// directly.
unsigned Index = 0;
for (const ObjCIvarDecl *IVD = Container->all_declared_ivar_begin();
IVD; IVD = IVD->getNextIvar()) {
if (Ivar == IVD)
break;
++Index;
}
assert(Index < RL->getFieldCount() && "Ivar is not inside record layout!");
return RL->getFieldOffset(Index);
}
/// getObjCLayout - Get or compute information about the layout of the
/// given interface.
///
/// \param Impl - If given, also include the layout of the interface's
/// implementation. This may differ by including synthesized ivars.
const ASTRecordLayout &
ASTContext::getObjCLayout(const ObjCInterfaceDecl *D,
const ObjCImplementationDecl *Impl) const {
// Retrieve the definition
if (D->hasExternalLexicalStorage() && !D->getDefinition())
getExternalSource()->CompleteType(const_cast<ObjCInterfaceDecl*>(D));
D = D->getDefinition();
assert(D && D->isThisDeclarationADefinition() && "Invalid interface decl!");
// Look up this layout, if already laid out, return what we have.
const ObjCContainerDecl *Key =
Impl ? (const ObjCContainerDecl*) Impl : (const ObjCContainerDecl*) D;
if (const ASTRecordLayout *Entry = ObjCLayouts[Key])
return *Entry;
// Add in synthesized ivar count if laying out an implementation.
if (Impl) {
unsigned SynthCount = CountNonClassIvars(D);
// If there aren't any synthesized ivars then reuse the interface
// entry. Note we can't cache this because we simply free all
// entries later; however we shouldn't look up implementations
// frequently.
if (SynthCount == 0)
return getObjCLayout(D, nullptr);
}
ItaniumRecordLayoutBuilder Builder(*this, /*EmptySubobjects=*/nullptr);
Builder.Layout(D);
const ASTRecordLayout *NewEntry =
new (*this) ASTRecordLayout(*this, Builder.getSize(),
Builder.Alignment,
Builder.UnadjustedAlignment,
/*RequiredAlignment : used by MS-ABI)*/
Builder.Alignment,
Builder.getDataSize(),
Builder.FieldOffsets);
ObjCLayouts[Key] = NewEntry;
return *NewEntry;
}
static void PrintOffset(raw_ostream &OS,
CharUnits Offset, unsigned IndentLevel) {
OS << llvm::format("%10" PRId64 " | ", (int64_t)Offset.getQuantity());
OS.indent(IndentLevel * 2);
}
static void PrintBitFieldOffset(raw_ostream &OS, CharUnits Offset,
unsigned Begin, unsigned Width,
unsigned IndentLevel) {
llvm::SmallString<10> Buffer;
{
llvm::raw_svector_ostream BufferOS(Buffer);
BufferOS << Offset.getQuantity() << ':';
if (Width == 0) {
BufferOS << '-';
} else {
BufferOS << Begin << '-' << (Begin + Width - 1);
}
}
OS << llvm::right_justify(Buffer, 10) << " | ";
OS.indent(IndentLevel * 2);
}
static void PrintIndentNoOffset(raw_ostream &OS, unsigned IndentLevel) {
OS << " | ";
OS.indent(IndentLevel * 2);
}
static void DumpRecordLayout(raw_ostream &OS, const RecordDecl *RD,
const ASTContext &C,
CharUnits Offset,
unsigned IndentLevel,
const char* Description,
bool PrintSizeInfo,
bool IncludeVirtualBases) {
const ASTRecordLayout &Layout = C.getASTRecordLayout(RD);
auto CXXRD = dyn_cast<CXXRecordDecl>(RD);
PrintOffset(OS, Offset, IndentLevel);
OS << C.getTypeDeclType(const_cast<RecordDecl*>(RD)).getAsString();
if (Description)
OS << ' ' << Description;
if (CXXRD && CXXRD->isEmpty())
OS << " (empty)";
OS << '\n';
IndentLevel++;
// Dump bases.
if (CXXRD) {
const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase();
bool HasOwnVFPtr = Layout.hasOwnVFPtr();
bool HasOwnVBPtr = Layout.hasOwnVBPtr();
// Vtable pointer.
if (CXXRD->isDynamicClass() && !PrimaryBase && !isMsLayout(C)) {
PrintOffset(OS, Offset, IndentLevel);
OS << '(' << *RD << " vtable pointer)\n";
} else if (HasOwnVFPtr) {
PrintOffset(OS, Offset, IndentLevel);
// vfptr (for Microsoft C++ ABI)
OS << '(' << *RD << " vftable pointer)\n";
}
// Collect nvbases.
SmallVector<const CXXRecordDecl *, 4> Bases;
for (const CXXBaseSpecifier &Base : CXXRD->bases()) {
assert(!Base.getType()->isDependentType() &&
"Cannot layout class with dependent bases.");
if (!Base.isVirtual())
Bases.push_back(Base.getType()->getAsCXXRecordDecl());
}
// Sort nvbases by offset.
llvm::stable_sort(
Bases, [&](const CXXRecordDecl *L, const CXXRecordDecl *R) {
return Layout.getBaseClassOffset(L) < Layout.getBaseClassOffset(R);
});
// Dump (non-virtual) bases
for (const CXXRecordDecl *Base : Bases) {
CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(Base);
DumpRecordLayout(OS, Base, C, BaseOffset, IndentLevel,
Base == PrimaryBase ? "(primary base)" : "(base)",
/*PrintSizeInfo=*/false,
/*IncludeVirtualBases=*/false);
}
// vbptr (for Microsoft C++ ABI)
if (HasOwnVBPtr) {
PrintOffset(OS, Offset + Layout.getVBPtrOffset(), IndentLevel);
OS << '(' << *RD << " vbtable pointer)\n";
}
}
// Dump fields.
uint64_t FieldNo = 0;
for (RecordDecl::field_iterator I = RD->field_begin(),
E = RD->field_end(); I != E; ++I, ++FieldNo) {
const FieldDecl &Field = **I;
uint64_t LocalFieldOffsetInBits = Layout.getFieldOffset(FieldNo);
CharUnits FieldOffset =
Offset + C.toCharUnitsFromBits(LocalFieldOffsetInBits);
// Recursively dump fields of record type.
if (auto RT = Field.getType()->getAs<RecordType>()) {
DumpRecordLayout(OS, RT->getDecl(), C, FieldOffset, IndentLevel,
Field.getName().data(),
/*PrintSizeInfo=*/false,
/*IncludeVirtualBases=*/true);
continue;
}
if (Field.isBitField()) {
uint64_t LocalFieldByteOffsetInBits = C.toBits(FieldOffset - Offset);
unsigned Begin = LocalFieldOffsetInBits - LocalFieldByteOffsetInBits;
unsigned Width = Field.getBitWidthValue(C);
PrintBitFieldOffset(OS, FieldOffset, Begin, Width, IndentLevel);
} else {
PrintOffset(OS, FieldOffset, IndentLevel);
}
OS << Field.getType().getAsString() << ' ' << Field << '\n';
}
// Dump virtual bases.
if (CXXRD && IncludeVirtualBases) {
const ASTRecordLayout::VBaseOffsetsMapTy &VtorDisps =
Layout.getVBaseOffsetsMap();
for (const CXXBaseSpecifier &Base : CXXRD->vbases()) {
assert(Base.isVirtual() && "Found non-virtual class!");
const CXXRecordDecl *VBase = Base.getType()->getAsCXXRecordDecl();
CharUnits VBaseOffset = Offset + Layout.getVBaseClassOffset(VBase);
if (VtorDisps.find(VBase)->second.hasVtorDisp()) {
PrintOffset(OS, VBaseOffset - CharUnits::fromQuantity(4), IndentLevel);
OS << "(vtordisp for vbase " << *VBase << ")\n";
}
DumpRecordLayout(OS, VBase, C, VBaseOffset, IndentLevel,
VBase == Layout.getPrimaryBase() ?
"(primary virtual base)" : "(virtual base)",
/*PrintSizeInfo=*/false,
/*IncludeVirtualBases=*/false);
}
}
if (!PrintSizeInfo) return;
PrintIndentNoOffset(OS, IndentLevel - 1);
OS << "[sizeof=" << Layout.getSize().getQuantity();
if (CXXRD && !isMsLayout(C))
OS << ", dsize=" << Layout.getDataSize().getQuantity();
OS << ", align=" << Layout.getAlignment().getQuantity();
if (CXXRD) {
OS << ",\n";
PrintIndentNoOffset(OS, IndentLevel - 1);
OS << " nvsize=" << Layout.getNonVirtualSize().getQuantity();
OS << ", nvalign=" << Layout.getNonVirtualAlignment().getQuantity();
}
OS << "]\n";
}
void ASTContext::DumpRecordLayout(const RecordDecl *RD,
raw_ostream &OS,
bool Simple) const {
if (!Simple) {
::DumpRecordLayout(OS, RD, *this, CharUnits(), 0, nullptr,
/*PrintSizeInfo*/true,
/*IncludeVirtualBases=*/true);
return;
}
// The "simple" format is designed to be parsed by the
// layout-override testing code. There shouldn't be any external
// uses of this format --- when LLDB overrides a layout, it sets up
// the data structures directly --- so feel free to adjust this as
// you like as long as you also update the rudimentary parser for it
// in libFrontend.
const ASTRecordLayout &Info = getASTRecordLayout(RD);
OS << "Type: " << getTypeDeclType(RD).getAsString() << "\n";
OS << "\nLayout: ";
OS << "<ASTRecordLayout\n";
OS << " Size:" << toBits(Info.getSize()) << "\n";
if (!isMsLayout(*this))
OS << " DataSize:" << toBits(Info.getDataSize()) << "\n";
OS << " Alignment:" << toBits(Info.getAlignment()) << "\n";
OS << " FieldOffsets: [";
for (unsigned i = 0, e = Info.getFieldCount(); i != e; ++i) {
if (i) OS << ", ";
OS << Info.getFieldOffset(i);
}
OS << "]>\n";
}